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SOLUTIONS OF SLOWLY AND PERIODICALLY
VARYING DIFFERENTIAL EQUATIONS.

APPLICATIONS TO SOME CLASSICAL EXAMPLES

NADIR SARI1

Abstract. We study a singularly perturbed second-order differ-
ential equation describing a slowly and periodically varying hamil-
tonian system. Typical dynamics governed by this type of system
are, for example, equations of forced pendulum, of Duffing or of
the “shallow water sloshing” problem. Using symmetries of this
equation and singular perturbation tools, we describe dynamics,
by splitting the phase space in regions where the motion is oscil-
latory and others where it is unbounded, and study dynamics in
each kind of regions. Finally we establish the existence periodic
solutions and give the structure of these solutions in term of re-
sponse curves. In particular, our results extend and complete the
ones stated in [1, 4, 6] and answer to some open questions within.
We also give new results about multiplicity of periodic solutions of
forced pendulum equation. To illustrate our results, we conclude
this work by a numerical study of these classical examples.

key words: singular perturbation, fast oscillations, periodic solu-
tions, nonlinear resonance.

1. Introduction

We consider a slowly and periodically oscillating system described
by the differential equation

(1.1)
d2x

dτ 2
= f(ετ, x)

where ε is a positive and small real parameter and f is a C1 function
that is 2π-periodic and even function in its first variable.
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After the change of time t = ετ , equation (1.1) becomes

(1.2) ε2d
2x

dt2
= f(t, x)

which is a singularly perturbed equation.
Many physical or mechanical phenomena are described by such equa-
tion. Classical examples of (1.1) are the equation of the forced pendu-
lum

(1.3) ε2d
2x

dt2
+ sinx = β cos t

Duffing equation

(1.4) ε2d
2x

dt2
+ ax+ bx3 = β cos t

or equation of the “shallow water sloshing” problem

(1.5) ε2d
2x

dt2
= x2 − (1 + λ+ cos t)

This last equation describing the motion of water in a rectangular
tank forced to oscillate horizontally and periodically was first studied
in [11] by numerical and asymptotical methods, were the authors gave
various numerical results suggesting existence of many periodic solu-
tions.

In fact, these equations often exhibit very complicated dynamics, like
nonlinear resonance, subharmonics, period dubbing and chaos. For ex-
ample in [11], Ockendon et al. have seen, as ε decreases, more and more
2π-periodic solutions appear classified by the number n of spikes near
t = 0 and zero or one spike near t = π. This phenomenon is also present
in dynamics of pendulum and Duffing equations and many other ex-
amples [14]. In the case where equation (1.2) is even in time t, this
kind of symmetry allows us to use a geometric method of shooting to
find even 2π-periodic solutions. This method was introduced in [18],
used in [15, 17] numerically and theoretically, and motivated by the
fact that a great number of physical processes have internal symmetry
properties and are modeled by differential equations, like (1.2), having
this symmetry property: Since the second member of equation (1.2) is
even in the time t, it is easy to see that every trajectory (x(t), dx

dt
(t))

starting at time t = 0 from the point (x0, 0) is symmetric with respect
to the x-axis (which we denote in the sequel by x-symmetric). Now, if
there is x0 ∈ R such that dx

dt
(kπ) = 0, then the corresponding trajec-

tory is 2kπ-periodic and the component x(t) is an even 2kπ-periodic
solution of equation (1.2). Independently, a method of shooting was
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also used in [6] to study equation (1.5).
Figure 1 shows response curves of equation (1.3) with β = 0.3, equation
(1.4) with a = 1, b = −1/3, β = 0.3 and equation (1.5) with λ = 5.
These response curves are initial conditions with respect to ω = 1/ε of
even 2π-periodic solutions. One can see different branches born near
some particular values ωn. The corresponding values εn are called non-
linear resonance values of the frequency [10, 19]. Each branch of the
response curves is a family (ξn,i) of initial conditions of an even 2kπ-
periodic solution which has n ∈ N oscillations near t = 0 and i ∈ {0, 1}
spike near t = π. These branches are, for large ω asymptotic to values
denoted xs and xσ. One can see also that between to consecutive values
of ωn there is an isolated initial condition of periodic solution close to
a value denoted xc.

The goal of this paper is to give sufficient conditions of existence of
periodic solutions for equation (1.2). This result allows us to explain
the structure of the branches observed in figure 1. In one hand, our
results retrieve and complete the results stated in [1, 4, 6], especially,
by giving an answer to conjectures in [1, 6] concerning existence of
fast oscillating periodic trajectories and existence of isolated trajectory
near the center of oscillation. These kinds of solutions are no more
attempted by the results in [4]. We discuss also the organization of
these branches of solutions in term of bifurcation diagram when the
parameter ω crosses non linear resonant values ωn. In the other hand,
our results shed new light on existence and multiplicity of periodic so-
lutions of pendulum equation (1.3) for small frequencies. This question
of existence and multiplicity of periodic solutions especially for pendu-
lum equation continue to mobilize a large number of researchers, the
reader can find in [8, 9] a historical review of this problem.
The paper is organized as follows. We state in the next section, the
main results of this work. we also study in this section the phase
space of the equation (1.2); we split it in two regions, one region where
the motion is oscillatory and another region where the motion is un-
bounded. In section 3, we describe the oscillatory motion and provide
a condition of existence of oscillating trajectory defined for all t. We
introduce the notion of number of rotations and study monotonicity of
this number with respect to the initial condition x0. Finally we study
the motion near the center of oscillation and compute the nonlinear
resonant values. In section 4, we prove the main theorems of this pa-
per. We conclude this work, with section 5, where we apply our results
to equations (1.3), (1.4) and (1.5) and, to illustrate our results, provide
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(a)

(b)

(c)

Figure 1. Response curves of (a) Duffing equation, (b)
shallow water sloshing problem, (c) forced pendulum
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a numerical study of equation (1.5).

2. Preliminaries and main results

Before stating the main results of this work, let us introduce some
notations and definitions and also make some hypothesis. We consider
the following dynamical system associated to equation (1.2)

(2.1)

{
εdx
dt

= y

εdy
dt

= f(t, x)

Let t̄ ∈ R, for small variation of t around t̄ of order ε, solutions of sys-
tem (2.1) are approximated by solutions of the following autonomous
dynamical system

(2.2)

{
dx
dT

= y

dy
dT

= f(t̄, x)

To see that it suffices to apply the change of time

T =
t− t̄
ε

System (2.1) becomes

(2.3)

{
dx
dT

= y

dy
dT

= f(t̄+ εT, x)

which is a regular perturbation of system (2.2) parametrized by t̄.
Now we introduce the following hypothesis

Hypothesis 2.1. For all t̄ ∈ R, f(t̄, x) = 0 admits two isolated roots
xc(t̄) and xs(t̄) such that ∂f

∂x
(t̄, xc(t̄)) < 0 and ∂f

∂x
(t̄, xs(t̄)) > 0

This means that, for each t̄ ∈ R, system (2.2) admits two stationary
points:
c(t̄) = (xc(t̄), 0) which is a center and s(t̄) = (xs(t̄), 0) which is a saddle
with a homoclinic separatrix enclosing c(t̄).

Definition 2.1. The bounded region in R3 denoted by O delimited by
the family of homoclinic separatrices parametrized by t̄ of the system
(2.2) is called region of oscillatory motion.
c(t̄) and s(t̄), parametrized by t̄, are called respectively center line and
saddle line.

As long as T is bounded (i.e. t is close to t̄) trajectories of system
(2.3) are approximated by trajectories of system (2.2). Hence, at each
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time t̄, one can describe, for small variation of t around t̄, the behav-
ior of trajectories of system (2.1) by considering the phase portrait of
system (2.2). System (2.2) admits the energy integral

(2.4) E(t̄, x, y) = y2 + F (t̄, x)

where F (t̄, x) is the primitive

(2.5) F (t̄, x) = −2

∫ x

xc(t̄)

f(t̄, ξ) dξ

As long as t = t̄ + O(ε), the trajectory γ(t) = (x(t), y(t)) of system
(2.1) starting at the time t̄ from the point (x̄, ȳ) is approximated by

(2.6) E(t̄, x, y) = ū

where ū = E(t̄, x̄, ȳ).
According to the value of the energy level ū, (i.e. the initial condi-
tions (t̄, x̄, ȳ)), an integral curve of system (2.2) defined by (2.6) may
be a closed orbit, the homoclinic separatrix or an unbounded curve.
Hence a trajectory of (2.1), as long as t = t̄+ O(ε), has three possible
behaviors: It is approximated by a closed orbit, or by the homoclinic
separatrix or by an unbounded trajectory of system (2.2).
When the variation of t is no longer small, a trajectory of system (2.1)
may have the three successive behaviors: an oscillatory motion, then
approaches the homoclinic orbit of (2.2) and then follows an unbounded
trajectory of (2.2).
The periodicity and symmetries of system (2.1) lead to periodicity and
symmetries of its dynamics, it is easy to verify that (0, x, y) and (π, x, y)
are symmetry planes. With these symmetries and periodicity, we can
restrict the study of the phase space of (2.1) to the interval of time [0, π].

Definition 2.2. The unbounded region Ω of system (2.1) is the domain
of R3 such that for all (t̄, x̄, ȳ) ∈ Ω, the solution of system (2.2) starting
at T = 0 from (x̄, ȳ) is an unbounded trajectory.

Figure 2 illustrates the region of oscillatory motion O and the region
of unbounded motion Ω. These two regions are separated by the surface
denoted S and constituted by the family of homoclinic separatrices
parametrized by t̄. We remark on this figure the important role played
by equilibria of system (2.2) in the structure of dynamics of system
(2.1). We denote by σ(t̄) = (xσ(t̄), 0) the intersection the homoclinic
separatrix at the time t̄ with the plan y = 0.

Definition 2.3. A trajectory γ(t) = (x(t), y(t)) of system (2.1) has a
fast oscillating phase if there exists a nonempty interval I such that for
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Figure 2. The region of oscillatory motion O and the
region of unbounded motion Ω separated by the surface
S.

all t in I, γ(t) remains in the oscillatory region O. If I = R, γ(t) is
called fast oscillating trajectory.

We introduce now the following notations:
Hypothesis 2.1 insures the existence of the region of oscillatory motion
for all t ∈ R. Indeed, for all t̄ ∈ R, stationary points c(t̄) and s(t̄) are
isolated and the center point is enclosed by the homoclinic separatrix
of the saddle point. Let A(t̄) be the area of the surface delimited by
this homoclinic separatrix. There exist t∗ and t∗ in [0, π] such that

∀t̄ ∈ [0, π] A(t∗) ≥ A(t̄) ≥ A(t∗) > 0

Let u∗ the real number such that the area of the surface delimited
by the closed orbit of system (2.2) with t̄ = 0 defined by equation
E(0, x, y) = u∗ is equal to A(t∗).
Denote by xi(0, u∗), i = 1, 2, the unique roots in the interval (xσ(0), xs(0))
of equation u∗ − F (0, x) = 0.
We have, by definition of u∗ and xi(0, u∗),

A(t∗) = 2

∫ x2(0,u∗)

x1(0,u∗)

√
u∗ − F (0, x) dx
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Let constants B∗ and C∗ given by

(2.7) B∗ = 2

∫ x2(0,u∗)

x1(0,u∗)

d x√
u∗ − F (0, x)

and

(2.8) C∗ =
1

π

∫ π

0

√
−∂f
∂x
f(t, xc(t)) dt

For all ε > 0, Nε and nε are respectively the integer part

(2.9) Nε =

[
C∗
ε

]
nε =

[
1

B∗ε

]
and (εn)n>0 the sequence defined by εn = C∗

n
.

Finally, we suppose this last hypothesis

Hypothesis 2.2. let Ψ((t, x) the function defined by

(2.10) Ψ(t, x) =
F (t, x)

(f(t, x))2

We suppose for each fixed t ∈ R, the function Ψ(t, x) is convex with
respect to variable x.

We recall that a trajectory γ(t) = (x(t), y(t)) of system (2.1) starting
from a point (x0, 0) at time t = 0 is said x-symmetric if it is symmetric
with respect to the x-axis that is if γ(−t) = (x(t),−y(t)). Hence x(t) is
an even solution of equation (1.2). Now we can state our main results.

Theorem 2.1. Let a ∈ (0, C∗/2) and define ε̂n = εn+1(1 + aεn+1) and
ε̄n = εn(1− aεn).
There exists n0 ∈ N such that for all integer n > n0 and for all
ε ∈ (ε̂n, ε̄n), system (2.1) admits an unique x-symmetric 2π-periodic
trajectory remaining in a tubular neighborhood of radius O(ε) of the
center line c(t).

Theorem 2.2. There exists δ > 0 such that for all ε ∈ (0, δ) and all
integer n such that nε ≤ n ≤ Nε system (2.1) possesses a x-symmetric
2π-periodic fast oscillating trajectory γn(t) where n is the number of
oscillations by period 2π around the center line c(t).

Theorem 2.3. There exists δ > 0 such that for all ε ∈ (0, δ) system
(2.1) possesses, for all n ≤ Nε and i ∈ {0, 1}, a x-symmetric 2π-
periodic trajectory ϕn,i(t) = (ξn,i(t), ζn,i(t)) with a fast oscillating phase
defined in a neighborhood of t∗, where n is the number of oscillations
performed during the fast oscillating phase and i the number of spike at
t∗, such that, ξn,i(t∗) is close to xs(t∗) if n is even and ξn,i(t∗) is close
to xσ(t∗) if n is odd.



SLOWLY AND PERIODICALLY VARYING DIFFERENTIAL EQUATIONS 9

Remark 2.1. Theorem 2.3 establishes the existence of trajectories
(in our case periodic and symmetric) connecting hyperbolic invariant
mani-folds for differential systems with slowly varying phase plane. In-
deed, trajectories corresponding to small values of integer p perform
p oscillations in an infinitesimal time of order O(ε) near time t∗, then
spent the remaining time of the period in the vicinity of the saddle line
s(t) and may have 0 or 1 spike at time t∗.
This result can be connected to those obtained in [6] by shooting and
in [4] by geometric singular perturbation (GSP) theory initiated by N.
Fenichel in [3] and developed later by many authors in [4, 7, 12, 20]
which contains many references. Particularly in [4] we can found a
study of equation (1.5) by GSP methods.

Theorem 2.1, theorem 2.3 and theorem 2.2 retrieve and complete
the results stated in [4, 6] by answering to some conjectures stated in
[1, 6] about existence of rapidly oscillating periodic solution (theorem
2.2) and the existence of a solution near the center of oscillation c(t)
(Theorem 2.1). In [1], at page 391, the authors precise in the com-
ments about equation (1.5) that they are not considering resonance-
phenomena. Theorem 4.9, at page 417, is analogue to my theorem 2.3
but in theorem 4.9 authors use also the symmetry of cosine at t = π/2.
In remark 4.11, at page 418, authors suppose the possibility to calculate
an estimate of the number of periodic solutions in the oscillatory region.
This estimate, constante Nε, is established in theorem 2.3. Moreover,
theorem 2.2 provides a lower bound, constante nε, of the number of
2π-periodic and fast oscillating solutions. This kind of solutions are
not attempted by theorem 4.9.
In there concluding remarks of [6], at page 245, authors write that
they observe numerically existence of many solutions uniformly close
to y = −S(t), witch correspond in this work to center line c(t), and are
not covered by their results. In fact, in theorem 2.1, if ε is far from the
resonance values εn there is a unique periodic trajectory in the vicinity
of the center line.

The method of symmetries requires a good knowledge of the geomet-
ric behavior of trajectories. Since ε is a small parameter, when τ has a
bounded variation, f(ετ, x) has a small variation then the differential
system (2.3) has an “almost” first integral. Hence trajectories of this
system follow the level curves of this “almost” first integral. When the
level curves are closed, trajectories oscillate rapidly and may have a
little drift along the nearby closed level curves. When the level curves
are unbounded, trajectories escape, during a small time t of order O(ε),
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from the bounded phase space along these unbounded level curves. To
make precise this heuristic description of this phenomenon for small
parameter ε, we suppose that parameter ε tends to 0 and use tools
of singular perturbation theory. The main tool here is a method of
averaging which describes the oscillatory dynamics by providing adi-
abatic invariants for oscillating trajectory and also allows to compute
the number of rotations (oscillations) of this kind of trajectory around
the center line c(t).

3. The Oscillatory motion

Theorem of adiabatic invariance of the action of Hamiltonian system
slowly varying in time applied to (2.1) has the following consequence

Proposition 3.1. ([16]) Let γ(t) = (x(t), y(t)) be the trajectory of
system (2.1) starting from (x0, y0) at t0 such that the point (t0, x0, y0)
is in the region of oscillatory motion O.
Let Γ the surface given by

(3.1) E(t, x, y) = u(t)

where u(t) is the solution of the differential problem

(3.2)

{
du
dt

= g(t, u)

u(t0) = E(t0, x0, y0)

with

g(t, u) =

∫ x2(t,u)

x1(t,u)

∂F
∂t

(t,x)√
u−F (t,x)

dx∫ x2(t,u)

x1(t,u)
dx√

u−F (t,x)

and xi(t, u), i = 1, 2, are the roots of equation u − F (t, x) = 0. Then,
as long as γ(t) belongs to O, it verifies

E(t, x(t), y(t)) = u(t) +O(ε)

So one can see the cylindrical surface Γ as an approximation of the
graph of the trajectory γ(t) during its oscillatory phase.
Let S(t) be the section of the surface Γ for constant t given by (3.1).
From proposition 3.1 we deduce that the area A(t, u(t)) of S(t) and the
period P (t, u(t)) of the oscillation at the time t are adiabatic invariants.
Indeed we show that A(t, u(t)) is a first integral of equation (3.2) hence
it is almost constant along the trajectory γ(t). As A(t, u(t)) is given
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by

(3.3) A(t, u(t)) = 2

∫ x2(t,u)

x1(t,u)

√
u− F (t, x)dx

and

(3.4)
dA

dt
(t, u(t)) =

∂A

∂t
(t, u) +

∂A

∂u
(t, u)g(t, u)

noticing that

(3.5) g(t, u) = −
∂A
∂t

(t, u)
∂A
∂u

(t, u)

we deduce dA
dt

(t, u(t)) = 0.

Moreover since P (t, u(t)) = 2∂A
∂u

(t, u(t)) we have also

(3.6)

dP
dt

(t, u(t)) = ∂P
∂t

(t, u) + ∂P
∂u

(t, u)g(t, u)

= 2 ∂
∂u

(
∂A
∂t

(t, u) + ∂A
∂u

(t, u)g(t, u)
)

= 0

Hence the area and the period of oscillation are almost constant along
trajectory γ(t).
We can deduce the following result

Proposition 3.2. Let γ(t) = (x(t), y(t)) be the trajectory of (2.1)
starting from (t0, x0, y0) in O such that A(t0, u(t0)) verifies

(3.7) A(t∗) > A(t0, u(t0)) +O(ε)

Then γ(t) is a fast oscillating trajectory.

Proof
The area of the section, at constant t, of the region of oscillatory motion
O is given by

(3.8) A(t) = 2

∫ xs(t)

xσ(t)

√
F (t, xs(t))− F (t, x)dx

A(t) is a 2π-periodic C1 function and reachs its minimum at t∗ ∈ [0, π],
besides the area A(t, u(t)) of the section at time t of the cylinder Γ
approximating the graph of γ(t) is constant, so A(t, u(t)) is equal to
A(t0, u(t0)) for all t ∈ [0, π]. Hence by (3.7), Γ remains in O for all
t ∈ [0, π].
Periodicity and symmetry properties of system (2.1) lead to the same
periodicity and symmetry properties of the surface Γ . Since the ap-
proximation of the graph of γ(t) by the cylinder Γ is of order O(ε),
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trajectory γ(t) remains in the oscillatory region O for all time t. �

In order to precise the position of the point (x(t), y(t)) of the fast
oscillating trajectory γ(t) on Γ at a given t, we introduce and calcu-
late, as in [14, 15], the number of rotations N(t0, t1) completed by this
trajectory around the center line c(t) in the interval [t0, t1].
Let

(3.9) ρ2(t) = E(t, x(t), y(t))

and for every t, consider the following change of variables along the
trajectory γ(t)

(3.10)

{
ρ cos θ = G(x)

ρ sin θ = y

where G(x) is defined by

(3.11) G(x) =

{
−
√
F (t, x) for x < xc(t)√
F (t, x) for x ≥ xc(t)

It easy to see that G is smooth and dG
dx

(x) > 0 for all x 6= xc(t).

Definition 3.1. The rotation number, denoted by η(t0, t1), of a solu-
tion with fast oscillating phase between times t0 and t1 is defined by

(3.12) η(t0, t1) =
1

2π

∫ t1

t0

dθ

dt
(s) ds

Since trajectories turn clockwise around the center line c(t), the num-
ber of rotations is given by N(t0, t1) = −η(t0, t1).

As u(t) is an approximation of ρ2(t), let us denote r(t) =
√
u(t).

The following result provides an asymptotic estimate of the rotation
number

Proposition 3.3. The rotation number of trajectory γ(t) of system
(2.1) with fast oscillating phase between times t0 and t1 is such that

(3.13) η(t0, t1) = −1

ε

∫ t1

t0

dt

P (t, r(t))
+O(ε)

where

(3.14) P (t, r(t)) = 2

∫ π

0

r(t) cosϕ

f(t, ξ(t, r(t), ϕ))
dϕ

and ξ(t, r(t), ϕ) is the unique root of G(x) = r(t) cosϕ,
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Proof
Consider the derivative of θ(t) with respect to t; this derivative is well
defined in the interval [t0, t1] and given by

dθ

dt
=

d

dt

(
arctan

y(t)

G(x(t))

)
Straightforward calculation of the variations of θ(t) using the system
(2.1) leads to

dθ

dt
=
−f(t, x(t))

εG(x(t))
− 1

2

y

G(x(t))

∂F
∂t

(t, x(t))

y2(t) + F (t, x(t))

Applying the change of variables (3.10) we obtain

ε
dθ

dt
=
−f(t, x(t, ρ, θ))

ρ cos θ
− ε

2

sin θ

cos θ

∂F
∂t

(t, x(t, ρ, θ))

ρ2

where x(t, ρ, θ) is the unique root of G(x(t)) = ρ cos θ.
Finally, we obtain the differential equation

(3.15) ε
dθ

dt
= p(t, ρ, θ) + εq(t, ρ, θ) sin 2θ

where p and q are given by
p(t, ρ, θ) = −f(t, x)

ρ cos θ

q(t, ρ, θ) = −1
4

∂F

∂t
(t, x)

ρ2 cos2 θ

To determine long time variations of the function θ(t) we shall use
an averaging method. For that purpose, let (tn)n be the sequence of
successive instants such that θ varies by 2π. That is, if trajectory γ(t)
starts at the instant t0 with the angle θ0, we have

θ(tn) = θn = θ0 + 2nπ

Suppose given (tn, θn), we shall compute the successive instant tn+1.
The change of variable and time

(3.16)

 Θ = θ − θn
ε

T = t− tn
ε2

applied to (3.15), leads to the differential equation

dΘ
dT

= p(tn + ε2T, ρ(tn + ε2T ), θn + εΘ)
+εq(tn + ε2T, ρ(tn + ε2T ), θn + εΘ) sin 2(θn + εΘ)



14 NADIR SARI1

As long as T is O(1/ε), solutions of this equation remain ε2-close to
those of the differential equation

dΘ

dT
= p(tn, ρ(tn), θn + εΘ) + εq(tn, ρ(tn), θn + εΘ) sin 2(θn + εΘ)

Let ∆Tn the variation of time T corresponding to the variation ∆Θ =
2π
ε

of the angle Θ so that θ increases by 2π.
To compute ∆Tn, we expand

dT =
dΘ

p(tn, ρ(tn), θn + εΘ) + εq(tn, ρ(tn), θn + εΘ) sin 2(θn + εΘ)

up to order 2 in ε, and obtain

dT = dΘ
p(tn, ρ(tn), θn + εΘ)

[
1− εq(tn, ρ(tn), θn + εΘ)

p(tn, ρ(tn), θn + εΘ)
sin 2(θn + εΘ)

+ε2

(
q(tn, ρ(tn), θn + εΘ)
p(tn, ρ(tn), θn + εΘ)

)2

sin2 2(θn + εΘ) +O(ε3)

]
Since the ratio of the functions q and p2 is an even function on θ, the
variation of time ∆Tn is given by

∆Tn =
2

ε

∫ π

0

dΘ

p(tn, ρ(tn),Θ)
+ 2ε

∫ π

0

q2(tn, ρ(tn),Θ)

p3(tn, ρ(tn),Θ)
sin2 2Θ dΘ +O(ε2)

Hence tn+1 = tn + ε2∆Tn. Consider now the rate of variations of θ(t)
with respect to (tn)

θ(tn+1)− θ(tn)
tn+1 − tn = ∆Θ

ε∆Tn

= π

ε

∫ π

0

dΘ

p(tn, ρ(tn),Θ)
+ ε3

∫ π

0

q2(tn, ρ(tn),Θ)

p3(tn, ρ(tn),Θ)
sin2 2Θ dΘ

By expanding the above expression up to order 2 in ε and using mean
value theorem, we show that the solution θ(t) of equation (3.15) is
ε2-close to the solution of the differential equation

(3.17) ε
dθ

dt
=

π∫ π

0

dΘ

p(t, r(t),Θ)

− ε22π

∫ π

0

q2(t, r(t),Θ)

p3(t, r(t),Θ)
sin2 2Θ dΘ∫ π

0
dΘ

p(t, r(t),Θ)

where we recall r(t) =
√
u(t). Since equation (3.17) is θ-independent,

we find that the rotation number η(t0, t1) of a solution with rapidly
oscillating phase is of the form given by (3.13). �
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The previous proposition shows that the rotation number η(t0, t1)
depends directly on the period P (t, r(t)). But as we have seen this pe-
riod is an adiabatic invariant of trajectory γ(t), hence period P (t, r(t))
depends at any time t only on r0 = r(t0) (i.e. on the initial condition of
trajectory γ(t)). So if this period of oscillation is monotone increasing
with respect to r0 then the number of rotations is monotone decreasing.
We can state the following result on the monotonicity of the number
of rotations. This result of monotonicity of the rotation number can
be related to the condition of monotonicity of the period function of
hamiltonian system exhibiting a center obtained by Chicone in [2].

Proposition 3.4. Let

Ψ(t, x) =
F (t, x)

f(t, x)2

and let γ(t) be a trajectory of system (2.1) with rapidly oscillating phase
between the times t0 and t1 starting from the point (t0, x0, 0).

If ∂
2Ψ
∂x2 is positive in the region O then the number of rotations N(t0, t1)

around c(t) is a monotone decreasing function of the initial amplitude
|x0 − xc(t0)|.

Proof
Since ρ0 = G(x0) and dG

dx
(x) > 0, ρ0 increases with the amplitude

|x0 − xc(t0)|. Hence, it suffices to show that the period P (t0, ρ0) given
by (3.14) is an increasing function with respect to ρ0.
We drop the index of ρ0 and compute the derivative dP

dρ
of the period

of a closed orbit of system (2.2) of energy E(t, x, y) = ρ2.
By ξ(t, ρ, θ) = G−1(ρ cos θ) we have

∂ξ

∂ρ
= − G(ξ(t, ρ, θ))

f(t, ξ(t, ρ, θ))
cos θ

We now differentiate P (t0, ρ) given by (3.14) with respect to ρ

dP

dρ
= 2

∫ π

0

(f(t0, ξ(t0, ρ, θ)))
2 − ∂f

∂x
(t0, ξ(t0, ρ, θ))F (t0, ξ(t0, ρ, θ))

(f(t0, ξ(t0, ρ, θ)))3
cos θ dθ

Integrating by parts, where we put u′(θ) = cos(θ) and

v(θ) =
(f(t0, ξ(t0, ρ, θ)))

2 − ∂f
∂x

(t0, ξ(t0, ρ, θ))F (t0, ξ(t0, ρ, θ))

(f(t0, ξ(t0, ρ, θ)))3

where the prime ′ is the derivative with respect to x, we obtain

dP

dρ
= ρ

∫ π

0

(
6(f ′)2F − 2Fff ′′ − 6f 2f ′

f 4

)
(t0, ξ(t0, ρ, θ))

sin2 θ

G′(ξ(t0, ρ, θ))
dθ
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Thus
dP

dρ
= ρ

∫ π

0

Ψ′′(ξ(t0, ρ, θ))

G′(ξ(t0, ρ, θ))
sin2 θ dθ

Since G′ is positive we conclude that dP
dρ

is positive.

Consequently, proposition 3.3 shows that η(t0, t1) is decreasing with
respect to initial amplitude. �

3.1. Trajectory in the vicinity of the center line. We can state, in
a small tubular neighborhood of center line c(t) of radius O(

√
ε), ana-

logue results as the previous ones concerning the adiabatic invariance
of the action and the rotation number. For that purpose we perform
the following change of variables

(3.18)

{
X = x−xc(t)√

ε

Y = y√
ε

System (2.1) becomes

(3.19)

{
εdX
dt

= Y −
√
εdxc
dt

(t)

εdY
dt

= 1√
ε
f(t, xc(t) +

√
εX)

which can be rewritten as

(3.20)

{
εdX
dt

= Y −
√
εdxc
dt

(t)

εdY
dt

= ∂f
∂x

(t, xc(t))X +
√
ε∂

2f
∂x2

(t, xc(t))X
2 +O(ε2)

As above the theorem of adiabatic invariance of the action in a Hamil-
tonian system depending slowly in time applied to (3.20) allows us to
write the following

Proposition 3.5. Let σ(t) = (X(t), Y (t)) be the trajectory of system
(3.20) of initial condition (t0, X0, Y0) and Σ the surface of equation

(3.21) Y 2 − ∂f

∂x
(t, xc(t))X

2 = u0

√
∂f
∂x

(t, xc(t))
∂f
∂x

(t0, xc(t0))

where u0 = Y 2
0 + ∂f

∂x
(t0, xc(t0))X2

0 .
Then σ(t) verifies

Y (t)2 − ∂f

∂x
(t, xc(t))X(t)2 = u0

√
∂f
∂x

(t, xc(t))
∂f
∂x

(t0, xc(t0))
+O(ε)

Moreover the area of the section, at constant t, of Σ is a constant
function with respect to time t.
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We can also obtain, in the tubular neighborhood of the center line
c(t), an analogous result to proposition 3.3, the reader can found in
[13] a detailed proof of the following

Proposition 3.6. The rotation number of a trajectory σ(t) of system
(3.20) starting at t0 is such that

(3.22) η(t0, t) = −1

ε
J(t0, t) +O(ε)

where

J(t0, t) =
1

2π

∫ t

t0

√
−∂f
∂x

(s, xc(s)) ds

This last result shows that the motion in a small tubular neighbor-
hood of center line c(t) is quasi-isochronous since the rotation number
is approximated by J(t0, t) which does not depend on the initial con-
ditions of the trajectory in the vicinity of the center line.

4. Proof of Theorems

We have seen in section 2 that, as long as the variation of t is small
of order ε, the graph of the trajectory of (2.1) with initial condition
(x0, 0) in the region Ω is approximated by the unbounded curve defined
by equation (2.6). System (2.1) shows that the components x(t) and
y(t) are positive increasing functions. So we can state the following
result

Proposition 4.1. Let γ(t) = (x(t), y(t)) be a trajectory of (2.1) start-
ing from a point (t0, x0, 0) of the x-axis in Ω, hence components x(t) and
y(t) are monotone increasing functions in [t0,+∞) and for sufficiently
large t, γ(t) remains in the quarter-plan R+ × R+.

Before giving the proof of theorem 2.1, let us construct the nonlin-
ear resonance values εn. According to proposition 3.6, the motion in
the vicinity of the center line c(t) is quasi-isochronous. So, suppose a
trajectory realizes a whole number n of half-rotations in the interval
of time [0, π] hence its rotation number η(0, π) is equal to −n/2 (recall
that the solution turns clockwise around c(t)). The rotation number
given by equation (3.22) is

−n
2

= η(0, π) = −1

ε
J(0, π) + εC.

Now, compute ε with respect to n we have

ε =
−n+ n

√
1 + 16J(0,π)C

n2

4C
=

2J(0, π)

n
+O(

1

n2
)
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and finaly

εn =
2J(0, π)

n
Now we are able to give the proofs of our main results.

Proof of theorem 2.1
Denote by Π, the Poincaré map of half-period associated to system
(3.20) defined by

(4.1)
Π: R2 → R2

(X0, Y0) 7→ (X(π), Y (π))

where (X(t), Y (t)) is the trajectory of system (3.20) starting at t = 0
from the point (X0, Y0).
Consider Π the image of the X-axis by map Π defined by ΠX =
{Π(X0, 0) ∈ R2 /X0 ∈ R} and let ε a small parameter such that hy-
pothesis of theorem 2.1 holds. According to proposition 3.6, since ε is
far away from resonant values εn, the image ΠX is approximated by a
straight line passing by the origin and different from the X-axis. Hence
ΠX crosses the X-axis at some point Xπ, by continuity of ΠX there is
an input X̄ ∈ R such that Π(X̄, 0) = (Xπ, 0). Let Γ(t) = (X(t), Y (t))
the trajectory of system (3.20) starting from (X̄, 0), it obviously veri-
fies Y (π) = 0. It is clear that X̄ is O(

√
ε). In the coordinates (x, y),

the corresponding solution (ξ(t), ζ(t)) starting at t = 0 from the point
(x̄, 0) with x̄ = xc(0) +

√
εX̄ is such that ζ(π) = 0 hence by symmetry

ξ(t) is an even 2π-periodic solution of equation (1.2).
Let us show now that this solution is unique. Consider the variational
differential system associated to the periodic trajectory (ξ(t), ζ(t))

(4.2)

{
εdU
dt

= V

εdV
dt

= −∂f
∂x

(t, ξ(t))U

Since ξ(t) is close to xc(t),
∂f
∂x

(t, ξ(t)) is strictly negative. System (4.2)
is of the same type as system (3.20) we can apply the same argument
as above to see that the image by the Poincaré map Π of the X-axis is
a straight line passing throw the origin and different from the X-axis.
So system (4.2) can not admit a 2π-periodic non trivial solution.
Hence, system (4.2) has no non trivial 2π-periodic solution in the tubu-
lar neighborhood of c(t) of radius O(

√
ε). We conclude by Poincaré

perturbation theorem [5, p. 415]. �

Proof of theorem 2.3.
To prove existence of the finite family (ϕn,i) of x-symmetric 2π-periodic
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trajectories of system (2.1), we consider the interval Ia = [a−, a+] con-
taining the interval I0 = [xσ(0), xs(0)] such that a− et a+ are respec-
tively not ε-close to xσ(0) and xs(0) so that (0, a−, 0) and (0, a+, 0)
are in the region Ω of unbounded motion. Consider the image of the
segment Ia × {0} by the Poincaré map of half-period P associated to
system (2.1) defined by

(4.3)
P : R2 → R2

(x0, y0) 7→ (x(π), y(π))

where (x(t), y(t)) is the trajectory of system (2.1) starting at t0 = 0
from the point (x0, y0).
According to proposition 4.1, P (a−, 0) and P (a+, 0) remain in R+×R+

hence trajectories of (2.1) starting from the points (a−, 0) and (a+, 0)
at time t0 = 0 realize in clockwise direction respectively less than one
half-rotation and less than one quarter-rotation around the center line
c(t).
On the other hand, according to proposition 3.6, for all point x0 ∈ I0

in the vicinity of xc(0), the number of rotations N(0, π) of the trajec-
tory of system (2.1) starting from (x0, 0) at t0 = 0 is of order O(1/ε).
Since system (2.1) has continuity property of trajectories with respect
to initial conditions, N(0, π) is a continuous function with respect to
the amplitude |x0 − xc(0)|, moreover, by proposition 3.4, this function
is monotone decreasing. Its maximum Nε, given by (2.9), is reached
in the vicinity of xc(0). Then by continuity of application P , there
exist two positive numbers α+ and α− such that for all integer n, with
0 ≤ n ≤ Nε, there exists a unique point ξ0

n,0 ∈ [xc(0), xs(0) + εα+]

(respectively ξ0
n,1 ∈ [xσ(0)− εα−, xc(0)]) such that the number of rota-

tions of the trajectory ϕn,0(t) = (ξn,0(t), ζn,0(t)) (respectively ϕn,1(t) =
(ξn,1(t), ζn,1(t))) starting from (ξ0

n,0, 0) (respectively (ξ0
n,1, 0)) is equal to

n
2

(respectively n+1
2

).
In the half-period, this trajectory realizes a whole number of half-
rotations around the center line c(t) so its component ζn,i(t) vanishes
at t = π. Since this trajectory is x-symmetric, it is 2π-periodic. �

Proof of theorem 2.2.
Recall that u∗ is the level of energy integral of the homoclinic sep-
aratrix so that its area reaches its minimum at t∗. Consider as in
the previous poof, the image by Poincaré map (4.3) of the segment
[x1(0, u∗), x2(0, u∗)]× {0} include in O.
According to proposition 3.2, trajectories of (2.1) starting from points
of [x1(0, u∗), x2(0, u∗)]×{0} are fast oscillating trajectories. The num-
ber of rotation N(0, π), at the bounds of this segment, is equal to nε,
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while in the vicinity of center c(0) it is equal to Nε, given by (2.9).
Since, by proposition 3.4, the number of rotation is a decreasing func-
tion we conclude, as in the previous proof, the existence of rapidly
oscillating 2π-periodic even solutions that have n oscillations by pe-
riod for each n ∈ [nε, Nε]. �

5. Application and Numerical Illustration

In this section, we shall apply our results to the different examples
given in the introduction. We can apply at each equation theorems 2.1,
2.2 and 2.3. To do so, we can verify easily hypotheses (2.1) and (2.1)
for these equations:
For pendulum equation (1.3) and Duffing equation (1.4), the phase
portrait has an other symmetry plan at t = π

2
. Hypothesis (2.1) is

verified and there exists an oscillatory region defined for all t ∈ R if
we choose 0 < β < 1 in equation (1.3). The same occurs for equation
(1.4) if we choose a > 0, b < 0 and 0 < β < 2

3
a
√
− a

3b
.

For these equations, the area A(t) is an increasing function in the
interval

[
0, π

2

]
, hence we have

∀t ∈ [0, π] , A
(π

2

)
≥ A(t) ≥ A(0) > 0

For the ”shallow water sloshing” problem, if we choose λ > 0 in equa-
tion (1.5), hypothesis (2.1) is verified and there exists also an oscilla-
tory region defined for all t ∈ R. For this equation, the area A(t) is a
decreasing function in [0, π] and verifies

∀t ∈ [0, π] , A(0) ≥ A(t) ≥ A(π) > 0

Let us verify that hypothesis (2.2) is also satisfied by our examples
which has the consequence that the number of rotation is a decreasing
function of the initial amplitude |x(0) − xc|. This explains the fact
that more and more 2π-periodic trajectories appear as ω increases.
These trajectories are classified by their numbers of rotation by period

around the center line c(t). We compute the seconde derivative ∂2Ψ
∂x2

where Ψ(t, x) =
F (t, x)
f(t, x)2 and verify that it is positive.

Since the period of oscillation is an adiabatic invariant, we can compute
this derivative for any fixed t. If we choose t = π/2 then xc(π/2) = 0 for
equations (1.3) and (1.4) which leads to a simpler expression of F (t, x).
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Forced pendulum : For the forced pendulum equation we have

Ψ(π/2, x) =
2(1− cos(x))

sin2(x)
hence straightforward computation con-

duces to
∂2Ψ

∂x2
(π/2, x) =

2(1− cos(x))2(2− cos(x))

sin4(x)

which is positive for all x.

Duffing equation : For this equation we have Ψ(π/2, x) =
2ax2 + bx4

2(ax+ bx3)2 and obtain

∂2Ψ

∂x2
(π/2, x) = 3

bx4(−a2 + 4abx2 + b2x4)

(ax+ bx3)4

The sign of ∂2Ψ
∂x2

(π/2, x) depends on the sign of parameters a and b. For

example, if we choose a > 0, b < 0 and β > 0 such that β < 2
3
a
√
− a

3b
then there is an oscillatory region defined for all t ∈ R. Hence for
a > 0 and b < 0, the derivative ∂2Ψ

∂x2
(π/2, x) is positive in the inter-

val
[
−
√

2 +
√

5
√
−a
b
,
√

2 +
√

5
√
−a
b

]
which includes the oscillatory

interval
[
−
√
−a
b
,
√
−a
b

]
.

Shallow water sloshing problem : Let some fixed t̄ and denote
x̄c = xc(t̄) = −

√
1 + λ+ cos(t̄). The change of variable X = x− x̄c in

equation (1.5) leads to the equivalent equation

(5.1) ε2d
2X

dt2
= 2x̄cX +X2

For this last equation, we have Ψ(t̄, X) = −2
3

3x̄cX
2 +X3

(2x̄cX +X2)2 and obtain

∂2Ψ

∂X2
(t̄, X) = −4

3

X4(5x̄c +X)

(2x̄cX +X2)4

The trajectory remains in the oscillatory region if X ∈ [Xσ, Xs] =

[x̄c, −x̄c] and in this interval ∂
2Ψ
∂X2 (t̄, X) is positive.

We conclude this study by a numerical analysis of the structure of
the even 2π-periodic solutions of equation (1.5).
We have plot, in figure 3, the response curves diagram of equation (1.5)
with λ = 5. We retrieve the unique solution predicted by theorem 2.1
near the center. When ω crosses the nonlinear resonant values ωn a
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bifurcation appears and gives rise to two new branches of periodic so-
lutions which have n oscillations by period. These branches correspond
to initial conditions of rapid oscillating trajectories predicted by the-
orem 2.2 when these initial conditions are far from xs and xσ and to
initial conditions of phase oscillating trajectories predicted by theorem
2.3 with 0 or 1 spike near t = π
We can see when ω increases (ε decreases), like observed in [6, 11] for
equation (1.5) (and also in [10, 15] for equation (1.3), in [17] for equa-
tion (1.4) see figure 3), that more and more initial conditions appear.
In fact at each time, when ω crosses the nonlinear resonance values
ωn = 1/εn, a new branch of periodic solutions borns. This new branch
wins one rotation around the center line c(t). Moreover near xc(0) but
when ω is far from ωn, according to theorem 2.1, there is an unique
initial condition of periodic solution.
In figure 4 we have plotted some of these solutions obtained for ω∗ = 4
(ε∗ = 0.25) and λ = 5, figure 4-(a) represents the solutions of the fam-
ily ξn,0 for n = 1 to n = 8 and figure 4-(b) represents the solutions of
the family ξn,1 for n = 0 to n = 7.
We have also two other solutions that we have not plotted here, the
solution ξ0,0 whose the graph is closed to the graph of xs (dashed line)
and the solution ξ predicted by theorem 2.1 whose the graph is closed
to the graph of the center xc (dot-dashed line)

Figure 3. Response curves of equation 1.5 with respect
to the parameter ω = 1/ε.
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(a) (b)

Figure 4. 2π-periodic solutions obtained for ω = 4 and
λ = 5, the number corresponds to n in the family ξn,i (a)
i = 0 spike near t = π and (b) i = 1 spike near t = π.
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