Mahdi Rad
email: rad@icg.tugraz.at

Markus Oberweger
email: oberweger@icg.tugraz.at

Vincent Lepetit
email: lepetit@icg.tugraz.at

Feature Mapping for Learning Fast and Accurate 3D Pose Inference from Synthetic Images

We propose a simple and efficient method for exploiting synthetic images when training a Deep Network to predict a 3D pose from an image. The ability of using synthetic images for training a Deep Network is extremely valuable as it is easy to create a virtually infinite training set made of such images, while capturing and annotating real images can be very cumbersome. However, synthetic images do not resemble real images exactly, and using them for training can result in suboptimal performance. It was recently shown that for exemplar-based approaches, it is possible to learn a mapping from the exemplar representations of real images to the exemplar representations of synthetic images. In this paper, we show that this approach is more general, and that a network can also be applied after the mapping to infer a 3D pose: At run-time, given a real image of the target object, we first compute the features for the image, map them to the feature space of synthetic images, and finally use the resulting features as input to another network which predicts the 3D pose. Since this network can be trained very effectively by using synthetic images, it performs very well in practice, and inference is faster and more accurate than with an exemplar-based approach. We demonstrate our approach on the LINEMOD dataset for 3D object pose estimation from color images, and the NYU dataset for 3D hand pose estimation from depth maps. We show that it allows us to outperform the state-of-the-art on both datasets.

Introduction

The power of Deep Learning for inference from images has been clearly demonstrated over the past years, however, for many Computer Vision problems, inference is effective only if a large amount of training data is available. Typically this data is created and labelled manually, which is a task expensive in terms of both money and time. Compared to 2D problems where the labels can be directly de-Figure 1: We propose a method for exploiting real and synthetic images to predict a 3D pose from a real image. This method allows us to outperform the state-of-the-art on standard benchmarks. Top: The LINEMOD dataset for 3D object pose estimation from color images, and Bottom: The NYU dataset for 3D hand pose estimation from depth maps. Left: Estimated 3D pose using BB8 [START_REF] Chang | ShapeNet: An Information-Rich 3D Model Repository[END_REF] and Deep-Prior++ [START_REF] Oberweger | DeepPrior++: Improving Fast and Accurate 3D Hand Pose Estimation[END_REF] for object and hand, respectively. Right: Estimated pose using the method proposed in this paper. Green corresponds to ground truth, blue to our predictions. We obtain the best performances reported so far on these two datasets. (Best viewed in color) fined in the training images, the problem is even exacerbated for 3D problems where the training images have to be labelled with 3D data. This 3D data cannot be guessed easily by the human annotator, and needs to be estimated with an ad hoc method, for example by using markers [START_REF] Hinterstoisser | Gradient Response Maps for Real-Time Detection of Textureless Objects[END_REF] or a semi-automatic approach [45].

Many works therefore aimed at using synthetic images created with computer graphics methods [START_REF] Alhaija | Augmented Reality Meets Deep Learning for Car Instance Segmentation in Urban Scenes[END_REF][START_REF] Gupta | Synthetic Data for Text Localisation in Natural Images[END_REF][START_REF] Li | Deep supervision with shape concepts for occlusion-aware 3d object parsing[END_REF][START_REF] Liebelt | independent object class detection using 3d feature maps[END_REF][START_REF] Stark | Back to the future: Learning shape models from 3d cad data[END_REF]].

The resulting performances are usually suboptimal, as the synthetic images do not correspond exactly to real images. When some real images are available for training, which is often the case in practice, it is possible to use transfer learning [2, [START_REF] Muandet | Domain Generalization via Invariant Feature Representation[END_REF]36,[START_REF] Rozantsev | Beyond Sharing Weights for Deep Domain Adaptation[END_REF], where a first predictor is trained on real images and a second one on synthetic images. By enforcing constraints on the parameters of the two predictors, the first predictor can benefit from a large amount of synthetic training images. Many works using Generative Adversarial Networks (GANs) have also been developed recently [START_REF] Bousmalis | Domain Separation Networks[END_REF][START_REF] Goodfellow | Generative Adversarial Networks[END_REF][START_REF] Shrivastava | Learning from Simulated and Unsupervised Images through Adversarial Training[END_REF][START_REF] Zhu | Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks[END_REF], in which a first Deep Network is trained to generate real images and it competes with a second Deep Network trained to distinguish synthetic images from real ones.

However, transfer learning and GANs are two general approaches. While important by itself, the 3D pose estimation problem has some specificities that are not exploited by these two approaches. It was shown recently in [START_REF] Massa | Deep Exemplar 2D-3D Detection by Adapting from Real to Rendered Views[END_REF] that, by synthesizing views of objects under the same pose as in some available real images, it is possible to learn a mapping between the features computed for a real image and the features computed in a synthetic image corresponding to the same pose. However, [START_REF] Massa | Deep Exemplar 2D-3D Detection by Adapting from Real to Rendered Views[END_REF] applies this mapping to the descriptors of exemplars, which are matched using special layers computing a similarity score with reference exemplars. In this paper, we show that this mapping can be used as input to a general network. We therefore train a network jointly with the feature mapping to predict the 3D pose of a target object from its synthetic images. We can use a virtually infinite number of training images to train this network, and it therefore performs very well. At run-time, given a real input image of a target object, we compute its image features, map them to the space of features of synthetic images, to finally predict the 3D pose of the object from the mapped features.

As illustrated in Fig. 1, we demonstrate our approach on two different problems: 3D object pose estimation from color images using the LINEMOD dataset [START_REF] Hinterstoisser | Gradient Response Maps for Real-Time Detection of Textureless Objects[END_REF], and the NYU dataset [45] for 3D hand pose estimation from depth maps. Our experiments show that in both cases, we can significantly outperform the state-of-the-art, by relying on our approach to exploit synthetic images. Moreover, pose inference is very efficient as it is performed by a Deep Network, in contrast to comparisons of exemplars as was done in [START_REF] Massa | Deep Exemplar 2D-3D Detection by Adapting from Real to Rendered Views[END_REF].

In the remainder of this paper, we discuss work related to using synthetic images for training Deep Networks, then present our approach and its evaluation on the LINEMOD and the NYU datasets.

Related Work

A major problem in training Deep Networks is the acquisition of training data, but training data is critical for the success of Deep Networks [START_REF] Sun | Revisiting Unreasonable Effectiveness of Data in Deep Learning Era[END_REF]. An appealing solution is to use training samples rendered from 3D models [START_REF] Hinterstoisser | On Pre-Trained Image Features and Synthetic Images for Deep Learning[END_REF][START_REF] Kehl | SSD-6D: Making RGB-Based 3D Detection and 6D Pose Estimation Great Again[END_REF]. Such annotated samples are very easy to acquire, due to the presence of large scale 3D model datasets [7,[START_REF] Zhou | Thingi10K: A Dataset of 10,000 3D-Printing Models[END_REF]. However, using synthetic data requires special measures to prevent the network from overfitting on the synthetic appearance of the data. To prevent overfitting, [START_REF] Hinterstoisser | On Pre-Trained Image Features and Synthetic Images for Deep Learning[END_REF] uses pretrained feature extractors from image classification networks, such as VGG [START_REF] Simonyan | Very Deep Convolutional Networks for Large-Scale Image Recognition[END_REF], together with sophisticated data augmentation. While this is convenient as no real images are needed, it was only demonstrated on detection problems. [START_REF] Kehl | SSD-6D: Making RGB-Based 3D Detection and 6D Pose Estimation Great Again[END_REF] also uses synthetically generated images from 3D models with pretrained features, however, they require extensive refinement of the initial network predictions, and we will show that by combining some real images and many synthetic images, we can reach better performances.

Synthetic data on one side and real data on the other side can be seen as two different domains, which gives rise to domain adaptation methods. However, there can be significant differences between the synthetic and real images, which makes methods trained only on synthetic data perform poorly in practice [START_REF] Hinterstoisser | On Pre-Trained Image Features and Synthetic Images for Deep Learning[END_REF]. Domain adaptation techniques provide a welcome solution to this problem, since it is easy to get training data in the synthetic domain, and it can be hard to acquire many training samples in the real domain.

For Deep Networks, fine-tuning is one of the most prominent and simple domain adaptation methods [START_REF] Girshick | Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation[END_REF][START_REF] Oquab | Learning and Transferring Mid-Level Image Representations Using Convolutional Neural Networks[END_REF]. This, however, can lead to severe overfitting, if there is only a small amount of training labels in the target domain available. Another way to handle the domain shift is to explicitly align the source and target distributions of the data. This can be achieved by quantifying the similarity of the two distributions and maximizing the similarity thereof. One popular metric is Maximum Mean Discrepancy (MMD) [START_REF] Gretton | A Kernel Method for the Two-Sample Problem[END_REF]. MMD can be either used to align the distributions of target and source features [START_REF] Hu | Deep Transfer Metric Learning[END_REF][START_REF] Tzeng | Deep domain confusion: Maximizing for domain invariance[END_REF], or by learning a transformation of the data such that the distributions match in a common subspace [2, [START_REF] Long | Unsupervised domain adaptation with residual transfer networks[END_REF][START_REF] Muandet | Domain Generalization via Invariant Feature Representation[END_REF]36]. [12] uses a deep feature extractor together with an additional classifier that predicts the domain for each sample. If the learned features are domaininvariant, such a classifier should exhibit poor performance. [START_REF] Tzeng | Deep domain confusion: Maximizing for domain invariance[END_REF] adds an MMD loss to align the source and target data representations learned by Deep Networks.

However, [START_REF] Yosinski | How Transferable are Features in Deep Neural Networks[END_REF] observed that feature transferability drops in higher layers of a Deep Network. To leverage this fact, [START_REF] Long | Learning Transferable Features with Deep Adaption Networks[END_REF] proposed a novel architecture that has the first few layers frozen, the mid layers finetuned, and the fully-connected layers learned for each domain separately. The features of the fully-connected layers are constrained by MMD. This works well for discriminative approaches that separate features into clusters, but not for regression problems. It also requires extensive task-specific validation on which layers to freeze, fine-tune, and transfer.

Very recently, [START_REF] Rozantsev | Beyond Sharing Weights for Deep Domain Adaptation[END_REF] proposed a Siamese Network for do-main adaptation, but instead of sharing the weights between the two streams, their method allows the weights to differ and only regularizes them to keep them related. This method is very general as it can learn adaptation between very different domains. We show in the results section that our approach outperforms [START_REF] Rozantsev | Beyond Sharing Weights for Deep Domain Adaptation[END_REF], as we can exploit the specificities of our problem by rendering synthetic images under the same poses as the real images to learn a mapping. With the development of Deep Learning, Generative Adversarial Networks (GANs) were also proposed for domain adaptation [START_REF] Goodfellow | Generative Adversarial Networks[END_REF][START_REF] Zhu | Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks[END_REF], where a network is trained to transfer images from one domain to another domain. Although GANs are able to generate visually similar images in terms of appearance between different domains [START_REF] Bousmalis | Domain Separation Networks[END_REF][START_REF] Shrivastava | Learning from Simulated and Unsupervised Images through Adversarial Training[END_REF], the synthesized images lack precision required to train 3D pose estimation methods, as our comparisons to [START_REF] Bousmalis | Domain Separation Networks[END_REF] in the results section show. Especially for geometric tasks, such as pose estimation, this shortcoming can be attributed to the lack of geometry in GAN models [START_REF] Yi | DualGAN: Unsupervised Dual Learning for Image-to-Image Translation[END_REF][START_REF] Zhu | Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks[END_REF]. An alternative to generating images in order to bridge the domain gap was presented by [START_REF] Tzeng | Adversarial Discriminative Domain Adaptation[END_REF] and [START_REF] Fang | Multi-task Domain Adaptation for Deep Learning of Instance Grasping from Simulation[END_REF], who use a domain discriminator with adversarial loss to force a network to learn crossdomain features. Although this works well for discriminative applications, the features are not well suited for regression as we will discuss in the results section.

Another approach for domain adaptation is introduced in [START_REF] Busto | Open Set Domain Adaption[END_REF], which casts domain adaptation as an assignment problem, where samples from the target domain are assigned predefined classes from the source domain. This, however, strongly depends on the initialization of the features to obtain a semantically meaningful mapping, and for regression problems the undefined number of classes would make the problem intractable.

[29] proposed the method most related to ours, as they also learn a mapping from the real to synthetic domain. However, they consider an exemplar-based approach for 3D pose retrieval, and the mapping is applied to the exemplar representations. Relying on exemplars requires a discretization of the pose space in order to create the exemplars, and a nearest neighbor search. A fine discretization thus improves the accuracy of the estimated pose, but also slows down the nearest neighbor search. We show in this paper that it is possible to learn a similar mapping jointly with a network inferring the 3D pose after feature mapping. As our experiments show, our approach of retrieving the pose is thus both fast and accurate.

Approach

Since it is easy to create synthetic images, our goal is to exploit such images to guide learning, when training a Deep Network to predict a 3D pose from a real image. This real image can be a color image or a depth map. Figure 2: Our model architecture is made of a feature extractor f (blue), a pose predictor h (red), and a network g to map features extracted from a real image to the feature space of synthetic images (green). We apply g only to the features from real images, not on the features from synthetic images. We can thus train the pose predictor on synthetic images, and apply it to real images at run-time without being affected by the domain gap. Within the mapping network, FC denotes a fully-connected layer, and ReLU a rectified linear unit.

Training

We use synthetic images to train a feature extractor f (x; θ f) together with a 3D pose predictor h(f ; θ h), which predicts a 3D pose given features f extracted from a given image x. θ f and θ h denote the parameters for networks f and h, respectively. However, synthetic images do not resemble real images, and their features also vary significantly. Although this might not harm easier tasks such as object detection or object recognition, it is very important for accurate 3D pose prediction.

We therefore train a network g(f ; θ g) with parameters θ g to map features of the real images into the synthetic feature space, before they are used as input to the h network that predicts the 3D pose from image features. Fig. 2 shows the three networks and how they are connected.

Network g is trained using pairs of images, each pair is made of one of the available real images and of one synthetic image of the target object rendered under the same 3D pose as in the real image. During training, we minimize the distance between the features extracted from the synthetic images and the features extracted from the real image after mapping by g. In the case of 3D pose estimation for color images, given a real image, we render the object's 3D model over the real image to obtain the corresponding synthetic images. The first row of Fig. 3 shows an example. In the case of pose estimation from depth maps, we directly generate a depth map of the 3D model under the same pose.

More exactly, we train the three networks f , h, and g jointly on the training set T = T S ∪ T R where T S = {(x S i , y S i)} i denotes a training set of synthetic images and their corresponding 3D labels, and T R = {(x R i , y R i)} i is made of real images and their 3D labels. We also use a training set T M made of the real images x R i in T R , each paired to a synthetic image generated under the same pose as mentioned above. Jointly training f , h, and g helps learning to extract image features such that they are transferable from the real domain to the synthetic domain.

We optimize the following loss function over the parameters of the three networks:

L(θ f , θ h , θ g ; T S , T R , T M) = L h S + βL h R + γL g . (1)
β and γ are meta-parameters to control the interaction of the losses.

L h S is the loss for predicting the poses for synthetic images:

L h S = (xs,ys)∈T S h(f (x s ; θ f); θ h) -y s 2 .
(2)

Note that we compose network f that extracts image features from image x and network h that predicts a 3D pose from these features.

In practice, for parameterizing the 3D pose y of rigid objects, we use the representation proposed in [START_REF] Chang | ShapeNet: An Information-Rich 3D Model Repository[END_REF], that is the 2D reprojections of the 3D corners of the object's bounding box, which allows us to use the Euclidean norm in Eq. (2). This representation was shown to be easy to predict by a Deep Network from a color image. Moreover, the 3D pose can be accurately computed from these reprojections using a PnP algorithm. In the case of the hand pose estimation, y is simply a vector made of the 3D locations of the hand joints normalized as in [START_REF] Müller | Real-time Hand Tracking under Occlusion from an Egocentric RGB-D Sensor[END_REF].

L h R is a loss function equivalent to L h S but for the real images:

L h R = (xr,yr)∈T R h(g(f (x r ; θ f); θ g); θ h) -y r 2 , (3
)
where we compose f , g, and h together, to first extract image features, then map them to the space of image features for synthetic images, and finally predict the 3D pose from these mapped features. L g is the loss to learn the mapping between the features extracted from the real images to the features extracted from the synthetic images:

L g = (xr,xs)∈T M g(f (x r ; θ f); θ g) -f (x s ; θ f) 2 . (4)

Effect of the Learned Mapping

To understand better the effect of the learned mapping, we computed the distributions of the absolute differences between the synthetic feature vectors and real feature vectors, as computed by network f , before and after mapping of the real feature vectors by network g. The distributions remain surprisingly close, as their means and standard deviations are (µ 1 = 1.60, σ 1 = 1.64) and (µ 2 = 1.30, σ 2 = 1.50) respectively. However, considering distributions can only provide a limited view. To get a finer insight, we took a pair of real and synthetic images under the same pose, and we plotted the absolute differences between the coefficients of their feature vectors, first without mapping, then after mapping of the real feature vector by network g. The differences are shown in Fig. 3(c) and Fig. 3(d). Blue corresponds to small differences, and red to large differences. It appears that the mapping mostly removes the large differences without changing the smaller differences. We repeated this experiment on other image pairs and observed a similar behavior. Our interpretation is that for each pair, only a few feature coefficients are responsible for the domain gap, and they can be attenuated by the mapping.

Pose Prediction

At run-time, given a real image x, we predict the corresponding 3D pose y by composing the three networks together:

y ← h(g(f (x; θ f); θ g); θ h) ,
where (θ f , θ g , θ h) are the networks' parameters found during training. Note that this composition of the three networks can be implemented as a single network to improve efficiency.

Network Details

As shown in Fig. 2, we use two Residual blocks [START_REF] He | Deep Residual Learning for Image Recognition[END_REF] for network g to map feature vectors of size 1024. Each fully-connected layer within the Residual block has 1024 neurons.

The network architectures of f and h depend on the application. In the case of 3D object pose estimation from color images, we use the VGG-16 network [START_REF] Simonyan | Very Deep Convolutional Networks for Large-Scale Image Recognition[END_REF] for initializing f , where we use the first 10 convolutional layers as feature extractor, and we add two fully-connected layers with 1024 neurons, as in [START_REF] Chang | ShapeNet: An Information-Rich 3D Model Repository[END_REF]. For h we use a single fully-connected layer with 16 outputs-2 coordinates for each corner of the bounding box.

In the case of 3D hand pose estimation from depth maps, we use an architecture similar to the one of [START_REF] Müller | Real-time Hand Tracking under Occlusion from an Egocentric RGB-D Sensor[END_REF][START_REF] Oberweger | DeepPrior++: Improving Fast and Accurate 3D Hand Pose Estimation[END_REF] for the feature extraction network f : It is similar to the 50-layer Residual Network [START_REF] He | Deep Residual Learning for Image Recognition[END_REF] with 4 residual modules. We remove the Global Average Pooling [START_REF] He | Deep Residual Learning for Image Recognition[END_REF], which we experienced during our experiments significantly reduces localization accuracy of the joints, and add two fully-connected layers with 1024 neurons each. f is trained from scratch. We use a single fully-connected layer with 42 outputs-3 for each of the 14 joints-for the pose prediction network h.

For the parameters of the loss function in Eq. (1), we use β = 1, which gives the same weight to the synthetic and real samples, and γ = 0.2, which gives a good trade-off between pose loss and feature mapping loss. We optimize the loss using gradient descent, specifically the ADAM algorithm [START_REF] Kingma | Adam: A Method for Stochastic Optimization[END_REF]. In order to improve convergence, we pretrained the networks with synthetic data only, which in practice gives better results compared to starting from a random initialization.

Experiments

In this section, we present and discuss the results of our evaluation on two different applications, i.e. 3D object pose estimation from RGB images and 3D hand pose estimation from depth maps.

3D Object Pose Estimation

We first compare our method to other domain adaptation methods: The transfer learning method proposed in [START_REF] Rozantsev | Beyond Sharing Weights for Deep Domain Adaptation[END_REF], the GRL method of [12], and the ADDA method of [START_REF] Tzeng | Adversarial Discriminative Domain Adaptation[END_REF], on 3D object pose estimation using the LINEMOD benchmark [START_REF] Hinterstoisser | Gradient Response Maps for Real-Time Detection of Textureless Objects[END_REF]. We also compare to the DDC method [START_REF] Tzeng | Deep domain confusion: Maximizing for domain invariance[END_REF], designed for classification. We therefore changed the classification loss to our regression loss on the 3D pose. For all these methods, we use the VGG-16 network [START_REF] Simonyan | Very Deep Convolutional Networks for Large-Scale Image Recognition[END_REF] as described in Section 3.4, which is also the network used in [START_REF] Chang | ShapeNet: An Information-Rich 3D Model Repository[END_REF].

Training set creation. For creating the training set T S of Eq. (2), we generate in total 5M synthetic training images online during training, from poses randomly sampled on the upper hemisphere of the object. The in-plane rotation is randomly sampled within range [-45 • , +45 •], scale within range [65cm, 115cm]. We use the 3D models provided with the LINEMOD dataset, and render them over random backgrounds extracted from images of ImageNet [START_REF] Deng | Imagenet: A Large-Scale Hierarchical Image Database[END_REF]. We do not simulate lighting as the object textures already exhibit lighting effects. Note that this lighting does not correspond to the lighting of the real images in general. We also do not add blur, nor Gaussian noise, nor any other techniques often applied to synthetic images created for training [START_REF] Hinterstoisser | On Pre-Trained Image Features and Synthetic Images for Deep Learning[END_REF][START_REF] Rozantsev | Beyond Sharing Weights for Deep Domain Adaptation[END_REF]. For generating the training set T R of Eq. (3) we use the same protocol as in [START_REF] Chang | ShapeNet: An Information-Rich 3D Model Repository[END_REF]: We slightly rescale the image of the segmented object, superimpose it on a random background picked from the ImageNet dataset [START_REF] Deng | Imagenet: A Large-Scale Hierarchical Image Database[END_REF], after a small random translation from the center of the image window.

Comparison results. Table 1 provides the 2D Projection metric [START_REF] Brachmann | Uncertainty-Driven 6D Pose Estimation of Objects and Scenes from a Single RGB Image[END_REF] obtained by these methods using the ground truth 2D object center. Our method significantly outperforms the other domain adaptation methods on this problem. This illustrates that our feature mapping can generalize better to the 3D pose estimation problem compared to existing domain adaptation techniques.

Table 2 provides the final results obtained after the refinement stage of [START_REF] Chang | ShapeNet: An Information-Rich 3D Model Repository[END_REF] trained with synthetic images using our feature mapping method. We compare them with the results obtained by current state-of-the-art methods, i.e. [START_REF] Brachmann | Uncertainty-Driven 6D Pose Estimation of Objects and Scenes from a Single RGB Image[END_REF], BB8 with refinement [START_REF] Chang | ShapeNet: An Information-Rich 3D Model Repository[END_REF], SSD-6D [START_REF] Kehl | SSD-6D: Making RGB-Based 3D Detection and 6D Pose Estimation Great Again[END_REF]. For our method, we use the detection technique of [START_REF] Chang | ShapeNet: An Information-Rich 3D Model Repository[END_REF].

More precisely, Table 2 reports the measures commonly used on the LINEMOD dataset: The 2D Projection [START_REF] Brachmann | Uncertainty-Driven 6D Pose Estimation of Objects and Scenes from a Single RGB Image[END_REF], the 6D pose [START_REF] Hinterstoisser | Model Based Training, Detection and Pose Estimation of Texture-Less 3D Objects in Heavily Cluttered Scenes[END_REF], and the 5cm 5 • [START_REF] Shotton | Scene Coordinate Regression Forests for Camera Relocalization in RGB-D Images[END_REF] metrics for all methods, except [START_REF] Kehl | SSD-6D: Making RGB-Based 3D Detection and 6D Pose Estimation Great Again[END_REF] who provides the 6D pose metric only. To the best of our knowledge, our approach obtains the best results obtained on LINEMOD from RGB images reported so far. To appreciate the quality of ours results, we show in Fig. 5 the bounding boxes we retrieve on the same images as in the third column of Figures 4 and5 of the supplementary material of [START_REF] Kehl | SSD-6D: Making RGB-Based 3D Detection and 6D Pose Estimation Great Again[END_REF] for comparison where they use RGB refinement. Note that for the comparison with [START_REF] Chang | ShapeNet: An Information-Rich 3D Model Repository[END_REF], we use our reimplementation, which achieves slightly better results than the numbers reported in [START_REF] Chang | ShapeNet: An Information-Rich 3D Model Repository[END_REF]. Training [START_REF] Chang | ShapeNet: An Information-Rich 3D Model Repository[END_REF] on a large number of synthetic images, together with real images, performs similar to BB8. Training only on synthetic images performs extremely poorly with a performance of 12% for the 2D Projection metric.

[4] does not report the metrics mentioned above for its GAN approach on the LINEMOD dataset. It does report a mean rotation error of 23.5 • , while our method obtains a significantly lower error of 3.5 • . This indicates that the Figure 5: Qualitative results obtained by method on the LINEMOD dataset [START_REF] Hinterstoisser | Gradient Response Maps for Real-Time Detection of Textureless Objects[END_REF]. The green bounding boxes correspond to the ground truth poses, and the blue bounding boxes to the estimated poses. Our predictions remain always very close to the ground truth. [START_REF] Rozantsev | Beyond Sharing Weights for Deep Domain Adaptation[END_REF], GRL [12], and DDC [START_REF] Tzeng | Deep domain confusion: Maximizing for domain invariance[END_REF]) on 3D object pose estimation, using the LINEMOD dataset and the 2D Projection metric [START_REF] Brachmann | Uncertainty-Driven 6D Pose Estimation of Objects and Scenes from a Single RGB Image[END_REF]. All methods use the ground truth 2D object center and predict the 3D object pose using the 2D projections of the objects' 3D bounding box [START_REF] Chang | ShapeNet: An Information-Rich 3D Model Repository[END_REF]. BB8 w/o ref. [START_REF] Chang | ShapeNet: An Information-Rich 3D Model Repository[END_REF] denotes the results obtained using only the available real images. Our method outperforms the other domain adaptation methods on this problem.

images generated by the GAN are too inaccurate to infer an accurate 3D pose. We also tried the method of [START_REF] Tzeng | Adversarial Discriminative Domain Adaptation[END_REF], which performed actually more poorly on this problem. This can be explained by the fact that this method does not guarantee that the learned features carry enough information for Table 2: Comparison of our final results to state-of-the-art methods on the LINEMOD dataset. Here [START_REF] Brachmann | Uncertainty-Driven 6D Pose Estimation of Objects and Scenes from a Single RGB Image[END_REF] and [START_REF] Kehl | SSD-6D: Making RGB-Based 3D Detection and 6D Pose Estimation Great Again[END_REF] use their own pose refinement methods, while we use the same refinement stage as [START_REF] Chang | ShapeNet: An Information-Rich 3D Model Repository[END_REF] but trained using our approach, To the best of our knowledge, our approach obtains the best results obtained on LINEMOD from RGB images reported so far.

predicting a pose, as this method was designed for classification, not regression.

Influence of the number of real images. Capturing real data is very cumbersome and time consuming, which motivates the use of synthetic data. On the LINEMOD dataset, [START_REF] Brachmann | Uncertainty-Driven 6D Pose Estimation of Objects and Scenes from a Single RGB Image[END_REF][START_REF] Chang | ShapeNet: An Information-Rich 3D Model Repository[END_REF] both use 15% of the images for training, which represents 180 real images per object on average, and the remaining images for testing. Fig. 4 shows the influence of the number of real training images on the final results. Using our method systematically improves the results compared to using only real images for training. We require about half the amount of training images to achieve the same accuracy as [START_REF] Chang | ShapeNet: An Information-Rich 3D Model Repository[END_REF].

3D Hand Pose Estimation

To show the generality of our approach, we also evaluate it on 3D hand pose estimation from single view depth maps. Figure 4: Influence of the number of real images for 3D object pose estimation using the 2D Projection metric [START_REF] Brachmann | Uncertainty-Driven 6D Pose Estimation of Objects and Scenes from a Single RGB Image[END_REF]. BB8 corresponds to the results obtained when only real images are used for training [START_REF] Chang | ShapeNet: An Information-Rich 3D Model Repository[END_REF]. When using the same number of training images, our method systematically improves the performance. It needs half the number of images to reach the same performance.

For this experiment, we consider the NYU dataset [45]. This dataset is very challenging as it contains hands from multiple subjects under a large range of 3D poses. Moreover, as can be seen in Fig. 6, it exhibits severe noise due to the use of a structured light sensor to capture the depth maps. The dataset is made of 72k depth maps for training and 8k for testing. The depth maps are captured from three different viewpoints and annotated with the 3D joint locations. We follow the protocol of [45] and predict a subset of 14 joints. We use the pipeline provided by [START_REF] Oberweger | Training a Feedback Loop for Hand Pose Estimation[END_REF] to preprocess the depth maps: It crops a 128 × 128 patch around the hand location, and normalizes its depth values to the range of [-1, +1]. We compare our method to very recent state-of-theart methods: DeepPrior++ [START_REF] Oberweger | DeepPrior++: Improving Fast and Accurate 3D Hand Pose Estimation[END_REF] integrates a prior on the 3D hand poses into a Deep Network; REN [START_REF] Guo | Region Ensemble Network: Improving Convolutional Network for Hand Pose Estimation[END_REF] relies on an ensemble of Deep Networks, each operating on a region of the input image; Lie-X [START_REF] Xu | Lie-X: Depth Image Based Articulated Object Pose Estimation, Tracking, and Action Recognition on Lie Groups[END_REF] uses a sophisticated tracking algorithm constrained to the Lie group; Crossing Nets [START_REF] Wan | Crossing Nets: Dual Generative Models with a Shared Latent Space for Hand Pose Estimation[END_REF] uses an adversarial training architecture; Neverova et al. [START_REF] Neverova | Hand Pose Estimation through Semi-Supervised and Weakly-Supervised Learning[END_REF] proposed a semi-supervised approach that incorporates a semantic segmentation of the hand; DeepModel [START_REF] Zhou | Modelbased Deep Hand Pose Estimation[END_REF] integrates a 3D hand model into a Deep Network; DISCO [START_REF] Bouchacourt | DISCO Nets: DISsimilarity COefficient Networks[END_REF] learns the posterior distribution of hand poses; Feedback [START_REF] Oberweger | Training a Feedback Loop for Hand Pose Estimation[END_REF] uses an additional Deep Network to improve results of an initial prediction; Hand3D [START_REF] Deng | Hand3D: Hand Pose Estimation using 3D Neural Network[END_REF] uses a volumetric CNN to process a point cloud.

Training set creation. Creating synthetic depth maps for hand poses is a relatively simple problem. In practice, we Method Average 3D error Neverova et al. [START_REF] Neverova | Hand Pose Estimation through Semi-Supervised and Weakly-Supervised Learning[END_REF] 14.9mm Crossing Nets [START_REF] Wan | Crossing Nets: Dual Generative Models with a Shared Latent Space for Hand Pose Estimation[END_REF] 15.5mm Lie-X [START_REF] Xu | Lie-X: Depth Image Based Articulated Object Pose Estimation, Tracking, and Action Recognition on Lie Groups[END_REF] 14.5mm REN [START_REF] Guo | Region Ensemble Network: Improving Convolutional Network for Hand Pose Estimation[END_REF] 13.4mm DeepPrior++ [START_REF] Oberweger | DeepPrior++: Improving Fast and Accurate 3D Hand Pose Estimation[END_REF] 12.3mm Feedback [START_REF] Oberweger | Training a Feedback Loop for Hand Pose Estimation[END_REF] 16.2mm Hand3D [START_REF] Deng | Hand3D: Hand Pose Estimation using 3D Neural Network[END_REF] 17.6mm DISCO [START_REF] Bouchacourt | DISCO Nets: DISsimilarity COefficient Networks[END_REF] 20.7mm DeepModel [START_REF] Zhou | Modelbased Deep Hand Pose Estimation[END_REF] 16.9mm Synthetic only 21.1mm Ours 7.4mm Comparison results. Table 3 compares the different methods we consider using the average Euclidean distance between ground truth and predicted joint 3D locations, which is a de facto standard for this problem. When training on synthetic data only, the error on the real test images is 21mm, which suggests that the network severely overfits to the rendered depth maps and cannot generalizes to real depth maps, which are often very noisy. By using our feature mapping, we achieve an error of 7.4mm, which improves the state-of-the-art by 4.9mm or almost 40%. Fig. 6 shows some qualitative results. When only synthetic depth maps are used, the predictions for synthetic depth maps are typically very good, but the predictions for real frames are bad. When using our method, the predicted poses significantly improve, especially in the presence of noise in the depth maps. Fig. 7 shows the fraction of frames where all joints of a frame are within a maximum distance from the ground truth. This is a very difficult metric since a single erroneous joint can deteriorate the result of a frame [START_REF] Oberweger | Training a Feedback Loop for Hand Pose Estimation[END_REF][START_REF] Taylor | The Vitruvian Manifold: Inferring Dense Correspondences for One-Shot Human Pose Estimation[END_REF]. We significantly outperform all previous works on this difficult metric, by almost 40% at an error threshold of 20mm.

Computation Times

We implemented our approach in Tensorflow [START_REF]TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems[END_REF] and the code runs on an Intel Core i7 3.30GHz desktop with . We plot the fraction of frames where all joints of a frame are within a maximum distance from the ground truth. A larger area under the curve indicates better results. Our proposed approach performs best among all other methods.

a Geforce TITAN X. For 3D object pose estimation, our reimplementation of [START_REF] Chang | ShapeNet: An Information-Rich 3D Model Repository[END_REF], on which our approach is built on, is significantly faster than the original implementation: It takes 3.2ms for the pose inference including feature mapping, which requires only a few matrix multipli-cations in addition to the feature extraction. This corresponds to approximately 300fps. For 3D hand pose estimation, our approach takes 8.6ms, which corresponds to more than 110fps. These computation times should be compared to those of the exemplar-based approach of [START_REF] Massa | Deep Exemplar 2D-3D Detection by Adapting from Real to Rendered Views[END_REF], which reports run-times of several seconds per image.

Conclusion

We showed that domain transfer between synthetic and real images can be achieved easily in the case of 3D pose inference. We presented an approach that learns a mapping between the two domains from synthetic images rendered under the same pose as the available real training images, jointly with feature extraction and pose inference. Our method is simple to implement, can be easily optimized, is very efficient at run-time, and allowed us to outperform the state-of-the-art on popular datasets for 3D object pose and 3D hand pose estimation.

Mapping for Learning Fast and Accurate 3D Pose Inference from Synthetic Images -Supplementary Material

Comparison to State-of-the-Art Baselines

We compare against BB8 [START_REF] Chang | ShapeNet: An Information-Rich 3D Model Repository[END_REF] and DeepPrior++ [START_REF] Oberweger | DeepPrior++: Improving Fast and Accurate 3D Hand Pose Estimation[END_REF], which are the second best performing methods identified in the main paper. Fig. 8 shows a detailed numerical comparison with these methods on the LINEMOD dataset and the NYU dataset. Figure 8: (a) Joint distribution of the 2D projection metrics (in pixel) on the LINEMOD dataset for our approach (on the x-axis) and BB8 [START_REF] Chang | ShapeNet: An Information-Rich 3D Model Repository[END_REF] (on the y-axis), both using the RGB refinement of [START_REF] Chang | ShapeNet: An Information-Rich 3D Model Repository[END_REF]. (b) Same for the mean Euclidean distance (in mm) on the NYU dataset for our approach and DeepPrior++ [START_REF] Oberweger | DeepPrior++: Improving Fast and Accurate 3D Hand Pose Estimation[END_REF]. The fact that the distribution mass is over the main diagonal shows that our approach improves the pose estimates for most of the images. The improvement is often very large on NYU, and we can still improve the performance on the LINEMOD dataset on which BB8 already performs very well.

Qualitative Results

Fig. 9 shows how much our approach can improve the results of BB8 on the LINEMOD dataset. When a similar pose is present in the training set, we can still often keep improving the accuracy with respect to BB8, as shown in Fig. 10. Figs. 12 and 13 show 3D hand pose estimates obtained with our approach compared to those obtained with DeepPrior++.

Figure 9: Zooms on pose estimated the LINEMOD dataset [START_REF] Hinterstoisser | Gradient Response Maps for Real-Time Detection of Textureless Objects[END_REF], using our approach and the RGB refinement of [START_REF] Chang | ShapeNet: An Information-Rich 3D Model Repository[END_REF] also trained using our method, where BB8 [START_REF] Chang | ShapeNet: An Information-Rich 3D Model Repository[END_REF] fails mostly due to the lack of corresponding poses in the training set. The green bounding boxes correspond to the ground truth poses, and the red and blue bounding boxes to the estimated poses using BB8 and our approach, respectively.

Figure 10: Zooms on pose estimated on the LINEMOD dataset [START_REF] Hinterstoisser | Gradient Response Maps for Real-Time Detection of Textureless Objects[END_REF], using our and the RGB refinement of [START_REF] Chang | ShapeNet: An Information-Rich 3D Model Repository[END_REF] also trained using our method. When a similar pose is present in the training set, as it is the case here, we can still often keep improving the accuracy with respect to BB8. The green bounding boxes correspond to the ground truth poses, and the red and blue bounding boxes to the estimated poses using BB8 and our approach, respectively. [START_REF] Oberweger | DeepPrior++: Improving Fast and Accurate 3D Hand Pose Estimation[END_REF]. Bottom row: estimated poses using our approach. Green corresponds to ground truth, blue to our predictions.

Figure 13: Top row: estimated 3D poses for the hand on the NYU dataset [45] by using the state-of-the-art method DeepPrior++ [START_REF] Oberweger | DeepPrior++: Improving Fast and Accurate 3D Hand Pose Estimation[END_REF]. Bottom row: estimated poses using our approach. Green corresponds to ground truth, blue to our predictions.

Figure 3 :

 3 Figure 3: The effect of the mapping learned by network g using a real image (a) and the corresponding synthetic image (b). The second row shows the absolute differences between the synthetic and real feature vectors (reshaped to images for better visualization) before (c) and after mapping (d). The mapping mostly removes the large differences.

Figure 6 :Figure 7 :

 67 Figure 6: Qualitative results on the dataset [45]. Top row: Predicted poses on synthetic test depth maps, and Middle row: predicted poses on real test depth maps, when training on synthetic depth maps only.Training only on synthetic depth maps does not generalize well to real depth maps. Bottom row: Predicted poses when using our method. We plot the 2D projection of the 3D pose prediction. Blue denotes ground truth annotations, red are our predictions.

 Fig.9shows how much our approach can improve the results of BB8 on the LINEMOD dataset. When a similar pose is present in the training set, we can still often keep improving the accuracy with respect to BB8, as shown in Fig.10.Fig 11 shows that our estimated poses are accurate enough for Augmented Reality applications.Figs. 12 and 13 show 3D hand pose estimates obtained with our approach compared to those obtained with DeepPrior++.

Figure 11 :

 11 Figure 11: Our poses are accurate enough for Augmented Reality applications. Given our estimated poses, we render "CVPR 2018" on the Can of the LINEMOD dataset.

Figure 12 :

 12 Figure12: Top row: Estimated 3D poses for the hand on the NYU dataset [45] by using the state-of-the-art method DeepPrior++[START_REF] Oberweger | DeepPrior++: Improving Fast and Accurate 3D Hand Pose Estimation[END_REF]. Bottom row: estimated poses using our approach. Green corresponds to ground truth, blue to our predictions.

Table 1 :

 1 Comparison of different domain adaptation methods ([

	Ape Bench Vise Camera Can Cat Driller Duck Egg Box Glue Hole Puncher 91.5 95.7 94.6 88.6 95.8 96.1 75.4 94.7 95.8 95.7 Iron 87.5 Lamp 80.5 Phone 78.3	96.0 94.8 90.4 95.7 97.0 78.0 95.2 95.6 95.8 91.9 88.8 80.8 80.9	94.4 91.3 84.0 95.1 95.6 70.7 93.1 95.1 94.8 92.6 83.2 77.7 76.0	94.0 90.0 81.7 94.2 94.7 64.7 94.4 93.5 94.8 87.2 81.0 76.2 70.6	96.6 96.3 94.8 96.6 98.0 83.3 96.3 96.1 96.9 95.7 92.3 83.5 88.2
	Average	90.0	90.8	88.0	85.9	93.4

Object

[38] GRL

[12]

DDC

[START_REF] Tzeng | Deep domain confusion: Maximizing for domain invariance[END_REF]

BB8

[START_REF] Chang | ShapeNet: An Information-Rich 3D Model Repository[END_REF]

Ours w/o ref.

Table 3 :

 3 Quantitative evaluation on the NYU dataset[45]. We compare the average Euclidean 3D error of the predicted poses with state-of-the-art methods on the NYU dataset. The numbers are reported for the real test images.use the 3D hand model of[45] to render synthetic views of a hand. However, it should be noted that the noise present in real depth maps captured with a structured light sensor is difficult to simulate, and our synthetic depth maps do not contain any noise. We use 5M synthetic images of the hand that are rendered online during training from poses of the training set perturbed with randomly added articulations.

Acknowledgment

This work was funded by the Christian Doppler Laboratory for Semantic 3D Computer Vision. We thank Alexander Grabner for helpful discussions. We would also like to thank the anonymous reviewers for their work and their constructive comments, in particular Reviewer #1 and the MetaReviewer, and the authors of [23] for their responsiveness during the paper writing period.