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Scene Flow Estimation from Sparse Light Fields
Using a Local 4D Affine Model

Pierre David, Mikaël Le Pendu, and Christine Guillemot, Fellow, IEEE

Abstract—In this paper, we address the problem of scene flow
estimation from sparsely sampled video light fields. We first
propose a local 4D affine model to represent scene flows, taking
into account light field epipolar geometry. The model parameters
are estimated per cluster in the 4D ray space. They are derived
by fitting the model on initial motion and disparity estimates
obtained by using 2D dense optical flow estimation techniques.
We demonstrate that the model is very effective for estimating
scene flows from 2D optical flows. The model regularizes the
optical flows and disparity maps, and interpolates disparity
variation values in occluded regions. The proposed model allows
us to benefit from deep learning-based 2D optical flow estimation
methods while ensuring scene flow geometry consistency in the
4 dimensions of the light field.

Index Terms—Scene flow, Optical flow, Disparity estimation,
Light field.

I. INTRODUCTION

L IGHT fields, by capturing light rays emitted by a scene
along different orientations, enable a variety of computer

vision applications, and in particular 3D scene modeling.
While the problem of depth estimation for 3D scene modeling
has already been widely investigated [1]–[5], the possibility to
estimate the motion in a 3D scene from light fields remains
widely open, despite the numerous applications, e.g., for robot
navigation, human-computer interfaces, augmented and virtual
reality.

The measured displacement of each point in the 3D scene
is referred to as a dense scene flow, concept that has first been
defined in [6]. Considering a multi-view set-up, the scene flow
is estimated using an optical flow estimator for each view.
The 3D scene flow is then computed by fitting its projection
on each view to the estimated optical flows, hence is defined
by the real 3D motion (∆X,∆Y,∆Z) of each 3D point.
However, in the recent literature (e.g. [7]–[10]), the scene flow
is instead defined as a direct extension of the optical flow,
where the depth (or disparity) d and the depth variation ∆d of
objects along time is represented in addition to the apparent
2D motion (∆x,∆y).

The problem of scene flow analysis has first been addressed
for stereo video sequences. The authors in [7]–[9] estimate a
scene flow (∆x,∆y,∆d, d) assuming that the scene can be
decomposed into rigidly moving objects and using discrete-
continuous optimization techniques. Several methods based
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on RGB-D videos have also been developed [10]–[12]. The
first methods for scene flow analysis from light fields have
been proposed in [13] and [14], based on variational models.
The authors in [15] propose oriented light field windows
to estimate the scene flow from a dense light field. All
these methods rely on epipolar plane images hence are only
applicable to densely sampled light fields (as those captured
with plenoptic cameras). They are not suitable for sparse light
fields (i.e. with large baselines), as for example those captured
by rigs of cameras.

In this paper, we focus on the problem of scene flow analysis
from large baseline video light fields. This problem is made
difficult due to the large temporal and angular occlusions.
Recent work (detailed in Section II) has shown the important
benefits of using deep learning for estimating optical flows,
disparity maps or scene flows from stereo images or videos.
However, extending and training network architectures that
would take light fields as input are challenging. First, using
light fields as inputs would increase the complexity of the
architecture. Then, training a deep neural network typically
requires very large datasets, particularly for high dimensional
data such as light fields. Only a few video light field datasets
are available, which is insufficient for performing unsupervised
learning. Furthermore, none of these datasets contain ground
truth optical flows, disparity maps or scene flows which would
be necessary in the context of supervised learning.

To cope with the above difficulties, we propose a 4D local
affine model for scene flow estimation. The model is defined
in the ray space and incorporates epipolar constraints to ensure
consistency of the scene flow on all light field views. We show
how the proposed model can be used for regularizing initial
and independently computed optical flows and disparity maps
in order to derive a coherent scene flow. To estimate the model,
we first perform a 4D over-segmentation of the light field at
time t, then we compute initial optical flows, disparity maps
and disparity variation estimates between the light field at time
t and t+ 1. For each 4D cluster, the parameters of the affine
model are estimated by fitting the model on the initial optical
flow and disparity estimates. The approach is summarized in
Figure 1. The proposed method and the corresponding 4D
affine model allow us to benefit from state-of-the-art deep
learning-based optical flow estimation methods while ensuring
scene flow geometry consistency in the 4 dimensions of the
light field. Note that a simplified version of the model without
the geometrical constraints, has been presented in [16] within
the context of sparse-to-dense interpolation.

In order to validate the proposed model on sparse light
fields, we have created synthetic video light fields based on the
Sintel movie (used in the optical flow benchmark [17], [18]).
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Fig. 1. Block diagram of our method. The light field at time t is first partitioned into 4D clusters. Then, we build a weighted graph where a node, an edge
and the associated weight respectively represent a cluster, a connection between two adjacent clusters and the distance between their respective centroids.
Using the graph, for each cluster, we search for the closest neighbors. An initial scene flow estimation is simultaneously performed using the light field at t
and t + 1. Finally, for each cluster, we fit an affine scene flow model, using the initial scene flow estimates contained inside the cluster and its neighbors.

The light field views are provided with the corresponding
ground truth scene flow (optical flow, disparity and disparity
variation).

Although the proposed scene flow method is designed for
sparse light fields, we also assess our method on a dense
light field video dataset provided by the authors of [19]. For
the sparse dataset, the obtained scene flows are compared
against those computed with the oriented window method in
[15], with the sparse-to-dense interpolation method in [16]
and with various stereo scene flow methods [7], [8]. We
also compared the estimated optical flow, disparity maps and
disparity variation with the one given by a state-of-the-art
optical flow estimation technique based on a deep learning
architecture called PWC-Net [20]. For the dense dataset, we
compared our results with the full view method in [19], with
the aforementioned stereo scene flow methods [7], [8] and with
various light field depth estimation methods like [3], [21], [22].

Our scene flow estimation outperforms any other tested
method in terms of accuracy of the estimated optical flow,
disparity, and disparity variation for the sparse dataset, and
achieves comparable results to state-of-the-art methods for the
dense dataset.

II. BACKGROUND AND RELATED WORK

Before reviewing prior work on scene flow estimation from
multi-view captures and from light fields, this section gives a
quick overview of recent methods proposed for solving two
strongly related problems, i.e., scene depth estimation from
light fields but also optical flow estimation from videos.

A. Scene depth estimation from light fields

With dense light fields with small baselines, pixels in the
different views corresponding to the same 3D point form a
line in the EPI, whose slope is proportional to the disparity
between the views [23]. This observation naturally led to
estimating scene depth (related to the disparity or parallax
between the views) by analyzing the Epipolar Plane Images
(EPI) of dense light fields. The authors in [1] use structure
tensors to locally estimate these slopes, this local estimation
being then placed in a global optimization framework using a
variational approach. The authors in [2] propose a spinning

parallelogram operator for disparity estimation from EPIs,
accompanied with a confidence measure to handle ambiguities
and occlusions.

While the above methods are well suited for dense light
fields, they fail in the case of light fields with large baselines
for which stereo matching and optical flow estimation tech-
niques yield more accurate estimates. To give a few examples,
the authors in [3] estimate disparity by computing a matching
cost volume between the central sub-aperture image and sub-
aperture images warped using the phase shift theorem. The ap-
proach in [5] consists in estimating disparities between the four
corner views, then propagating them to the target viewpoint.
The authors in [4] employ an empirical Bayesian framework
to estimate scene-dependent parameters for inferring scene
disparity.

We have recently seen the emergence of deep learning solu-
tions, using in particular convolutional network architectures,
for scene depth estimation from light fields. The architectures
proposed in [24], [25] operate on EPI, hence are well suited for
dense light fields only. A deep neural network, called Dispnet,
is proposed in [26] based on the optical flow estimation
network Flownet2 [27] but computing 1D correlation instead
of 2D correlation to be better suited for disparity estimation.
The authors in [28] propose a learning based depth estimation
framework suitable for both densely and sparsely sampled light
fields, that can learn depth maps for every viewpoint from any
subset of input views.

B. Optical flow estimation from videos

Optical flow estimation and stereo matching have been
prominent issues in computer vision for years. In order to
compare the different methods, benchmark data sets have been
proposed. The two most popular datasets are the MPI Sintel
Dataset [17] and the KITTI Benchmark [29]. The first one
consists in synthetic sequences taken from the movie Sintel.
The second one consists in video sequences captured from
a moving car, and is therefore better suited for autonomous
driving applications.

When looking at the top ranking optical flow estimation
methods with the two datasets, we can see that they are almost
exclusively using a deep learning approach. To only cite a few
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methods, FlowNet [30] was the first end-to-end neural network
to compute an optical flow from images. It is a trainable
encoder-decoder network. The authors in [27] further improve
the network by stacking multiple encoder-decoder networks.
However, the final network is much bigger than the original
one and needs to be trained sequentially for each encoder-
decoder part to avoid over-fitting. To reduce the size of the
network and make it easier to train, a coarse-to-fine strategy,
and the corresponding network called SpyNet, were proposed
in [31]. Finally, the authors in [20], as in [31], take advantage
of coarse-to-fine approaches, and add a partial cost volume
computation in their network, named PWC-Net. It is currently
one of the top ranking optical flow methods in the MPI Sintel
benchmark.

C. Scene flow estimation

The most common way of estimating scene flow is by
using stereo images. The authors in [7] propose a slanted-
plane scene flow model for objects in a 3D scene, within the
context of autonomous driving. They assume that the scene is
composed of a small number of rigidly moving objects and
perform a joint segmentation and scene flow estimation. In
order to estimate the scene flow model, a discrete-continuous
conditional random field is optimized with particle belief
propagation [32]. A scene flow model representing the scene
with piecewise planar and rigidly moving regions is proposed
in [8]. The authors in [9] propose a conditional random field
(CRF) based model for robust 3D scene flow estimation. The
approach estimates so called instance scene flows, i.e. scene
flows of 3D points that are geometrically and semantically
grouped into instances, using a CNN.

While the models used in these methods are not completely
specific for autonomous driving applications, they are however
optimized and tested on the KITTI Benchmark [29]. Using
any of these methods on other scenes than driving scenes may
require some changes in the parameters of the models.

Another way to estimate a scene flow is by using RGB-D
images. In [11], local and global constraints are combined in
a variational framework to estimate a scene flow, assuming
a locally rigid motion. The authors use the depth map to
regularize the final scene flow with an adaptive total variation
formulation. Similarly to [7], the authors in [10] jointly
perform segmentation and 3D motion estimation. The scene is
decomposed into depth layers to handle occlusions and a scene
flow model is computed for each layer. The method in [12] first
performs geometric segmentation and then jointly estimates
odometry and scene flow by isolating the static clusters.

Scene flow estimation from densely sampled light fields was
first tackled in [13]. The authors jointly estimate the disparity
and the optical flow assuming piecewise smoothness of the
scene flow. A preconditioned primal-dual algorithm is used to
solve a convex global energy functional, which also enforces
consistency between the multiple views. On the other hand,
the authors in [14], [15] and [33] first estimate the geometry
of the scene by computing a disparity map and then estimate
the apparent motion in the scene. In [14], the disparity value
in each point of the EPIs is derived by analyzing the structure

tensor. The optical flow is estimated by minimizing an energy
function that assumes spatio-angular smoothness and and takes
into account occlusions between objects in the scene. The
authors in [15] also use an EPI-based method [34] to compute
the disparity maps at time t and t+1. Then, they use oriented
light-field windows along with a coarse-to-fine strategy to
minimize an energy function derived from SimpleFlow [35].
A confidence measure is computed and used to regularize the
scene flow in the coarse-to-fine iterations. The authors in [33]
fist estimate a disparity map using [1] and then recover a 3D
scene flow solving a linear flow equation for each ray. This
equation, which relies on 4D light field gradients, is under-
constrained, so a global and a local approach are combined
in order to solve it. The local one is derived from Lucas-
Kanade [36] and the global one from Horn-Schunck [37]. The
authors in [38] estimate a scene flow to construct a 4D spatio-
temporally coherent representation of dynamic scenes from
sparse light fields. First, a 3D point cloud is estimated, then
every point is back-projected to a more densely sampled virtual
light field, and the resulting EPIs are used to compute the scene
flow using the oriented window approach [15]. Finally, the
authors in [19] use light field super-pixels and their slanted-
planes representation in 3D space to propagate and optimize
an optical flow and a disparity map from the central view to
every other view. The method is mostly fit for dense light fields
because accurately computing the normal of the 3D slanted-
plane for every super-pixels requires to have a dense set of
views.

Our method computes a dense scene flow for every ray of a
light field. It is based on views instead of EPIs and therefore
it is suitable for sparsely sampled light fields. Using a 4D
affine model to represent the scene flow in the light field, we
jointly estimate an optical flow, a disparity map and a disparity
variation map.

III. 4D AFFINE MODEL

Let us consider the 4D representation of Light Fields
proposed in [39] and [40] to describe the radiance along the
different light rays. This 4D function, at each time instant
t, is denoted LF t(u, v, x, y). The pairs (u, v) and (x, y)
respectively denote the angular and spatial coordinates of light
rays. A view (u, v) of a light field at t is written Ltuv . In the
article, we assume that the vertical and horizontal baselines
are the same. The scene flow can be divided in the following
components:

• the optical flow: F =
(
∆x ∆y

)>
,

• the disparity at time t: d t,
• the disparity variation between t and t+ 1: ∆d.
In this paper, we propose a local 4D affine model to

represent a scene flow in a light field. The fundamental affine
model can be defined as follows:

∆x(u, v, x, y) = θ0
1u+ θ0

2v + θ0
3x+ θ0

4y + θ0
5, (1)

∆y(u, v, x, y) = θ0
6u+ θ0

7v + θ0
8x+ θ0

9y + θ0
10, (2)

d t(u, v, x, y) = θ0
11u+ θ0

12v + θ0
13x+ θ0

14y + θ0
15, (3)

∆d(u, v, x, y) = θ0
16u+ θ0

17v + θ0
18x+ θ0

19y + θ0
20, (4)
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where θ0 =
(
θ0

1 . . . θ0
20

)>
are the parameters of the model.

However, this model does not take into account epipolar
geometry of light fields, i.e. the fact that a 3D point in a
scene is projected on 1D lines in EPIs, the slope of these
lines being directly related to inter-view disparity. Hence, we
derive in this section the equations for a reduced affine model
that also satisfies the epipolar constraints.

A. Constraints on the Optical Flow

First, let us consider the vertical epipolar constraints. Given
a non-occluded point in the 3D scene, we denote by P0, P1,
P2 and P3 its respective projections on the views (u, v) and
(u, v + ∆v) at the time instants t and t+ 1, as shown in Fig.
2.

(u
,v

)
(u
,v

+
∆
v
)

t t+ 1

Ltuv

Ltuv+∆v

Lt+1
uv

Lt+1
uv+∆v

P0

•

P1 •

P2

•

P3•

Fig. 2. Projections of one 3D scene point on 2 views of the light field at
time instants t and t + 1

The coordinates of the points P0, P1, P2 and P3 in the
4-dimensional space (u, v, x, y) are then related with the
following equation:

P1 = P0 + ∆v · ν(P0, t),

P2 = P0 + φ(P0),

P3 = P2 + ∆v · ν(P2, t+ 1),

P3 = P1 + φ(P1),

(5)

where ν(P, t) and φ(P ) are 4-dimensional vectors repre-
senting respectively the orientation of the vertical epipolar line
passing by a point P at time t, and the optical flow of P from
time t to t+ 1. These vectors are expressed as:

ν(P, t) =


0
1
0

d t(P )

 and φ(P ) =


0
0

∆x(P )
∆y(P )

 . (6)

We can derive from Eq. (5) that the optical flow vectors
φ(P0) and φ(P1) must satisfy the following equality to be
angularly consistent:

φ(P1)− φ(P0) = ∆v · [ν(P2, t+ 1)− ν(P0, t)] . (7)

From the definition of ν and φ in Eq. (6), this equality can
be rewritten:{

∆x(P1)−∆x(P0) = 0,

∆y(P1)−∆y(P0) = ∆v ·∆d(P0),
(8)

where we define ∆d(P0) = d t+1(P2)− d t(P0).
Let us now reintegrate these constraints into the affine

model. Knowing the relationship between the coordinates of
P0 and P1 in Eq. (5) and the expressions of ∆x and ∆y in
Eqs. (1) and (2), we can express the variation of optical flow
between P0 and P1 (i.e. along a vertical epipolar line) as a
function of the model’s parameters:{

∆x(P1)−∆x(P0) = ∆v
(
θ0

2 + θ0
4 × d t(P0)

)
,

∆y(P1)−∆y(P0) = ∆v
(
θ0

7 + θ0
9 × d t(P0)

)
.

(9)

By combining Eqs. (8) and (9), we obtain the following
constraints on the model’s parameters:

θ0
2 + θ0

4 × d t(P0) = 0, (10)

θ0
7 + θ0

9 × d t(P0) = ∆d(P0). (11)

Similarly, horizontal epipolar constraints give:

θ0
1 + θ0

3 × d t(P0) = ∆d(P0), (12)

θ0
6 + θ0

8 × d t(P0) = 0. (13)

Note that one could directly replace d t(P0) and ∆d(P0)
by their expressions in Equations (3) and (4). However, the
model would lose its linearity and become more complex to
solve. Instead, we choose to approximate the disparity d t(P0)
by a pre-estimated disparity value d. The derivation of d is
detailed in Section IV (see Equation (43)). We also eliminate
∆d(P0) by taking the difference between Equations (11) and
(12). We can then simplify our model and reduce the number
of parameters as

θ0
2 = −θ0

4 × d,
θ0

7 = θ0
1 + θ0

3 × d− θ0
9 × d, (14)

θ0
6 = −θ0

8 × d.

So, the optical flow model becomes

∆x(P0) = θ0
1u+ θ0

3x+ θ0
4 × (y − dv) + θ0

5, (15)

∆y(P0) = θ0
1v + θ0

3dv + θ0
8(x− du) + θ0

9(y − dv) + θ0
10.

B. Constraints on the Disparity and Disparity Variation

Furthermore, we can also reduce the number of parame-
ters of the disparity and the disparity variation models. The
epipolar geometry of a light field requires that the disparity
remains constant along a vertical or horizontal epipolar line.
This constraint gives the following equations:

d t(P0 + ∆v · ν(P0, t))− d t(P0) = 0,

d t(P0 + ∆u · µ(P0, t))− d t(P0) = 0, (16)
∆d(P0 + ∆v · ν(P0, t))−∆d(P0) = 0,

∆d(P0 + ∆u · µ(P0, t))−∆d(P0) = 0.
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By replacing the terms in Equation (16) by the expression
of their model in Equations (3-4), we obtain the additional
constraints:

θ0
12 = −θ0

14 × d,
θ0

11 = −θ0
13 × d, (17)

θ0
17 = −θ0

19 × d,
θ0

16 = −θ0
18 × d.

Te disparity and disparity variation models thus become:

d t(P0) = θ0
13(x− du) + θ0

14(y − dv) + θ0
15, (18)

∆d(P0) = θ0
18(x− du) + θ0

19(y − dv) + θ0
20. (19)

This allows us to reduce again the number of parameters
from 17 to 13. We denote θ =

(
θ1 . . . θ13

)>
the new

parameters. The final scene flow model is the following:

∆x(P0) = θ1u+ θ2x+ θ3(y − dv) + θ4, (20)

∆y(P0) = θ1v + θ2dv + θ5(x− du) + θ6(y − dv) + θ7,

d t(P0) = θ8(x− du) + θ9(y − dv) + θ10,

∆d(P0) = θ11(x− du) + θ12(y − dv) + θ13.

IV. ESTIMATING THE MODEL PARAMETERS

A. Initializing the scene flow

Most recent methods to estimate optical flows or disparity
maps use deep neural networks. However, these methods re-
quire a huge amount of data to train the models. Because of the
limited number of video light field datasets with corresponding
ground truth scene flows, extending deep scene flow estimation
methods to light fields is very challenging.

Instead, in this paper, we propose to take advantage of 2D
optical flow methods and then use our model to regularize the
different flows in the 4D ray space in order to compute a scene
flow that would be consistent across all views. For each view
of the light field, we estimate an optical flow independently.
We also use the same optical flow method to estimate disparity
maps at t and t+1. For the experiments, we consider a state-of-
the-art technique based on a deep learning architecture called
PWC-Net [20]. The initial disparity variation is estimated in
regions where there is no temporal or angular occlusion by
computing the difference of disparity along the optical flow,
using the initial optical flow and disparity maps at t and t+1.

This approach requires to compute an occlusion mask
in order to know where we can estimate reliable disparity
variation. For that purpose, similarly to [5], we compute an
energy value for every point P (u, v, x, y) of LF t, as

E = Ec + λ1E∇c + λ2Ef + λ3E∇f . (21)

The terms Ec and E∇c are respectively color and color
gradient consistency terms computed between the view (u, v)
and the same projected view from t+ 1 to t, and are defined
as

Ec(P ) =
∥∥Lt+1

uv (P + Finit(P ))− Ltuv(P )
∥∥

2
, (22)

LF t LF t+1

Disparity estimation (with PWC-Net)
Optical flow estimation (with PWC-Net)

Fig. 3. Initialization of the scene flow using a deep optical flow method
(PWC-Net [20] in our case).

E∇c(P ) =
∥∥∇xLt+1

uv (P + Finit(P ))−∇xLtuv(P )
∥∥

2

+
∥∥∇yLt+1

uv (P + Finit(P ))−∇yLtuv(P )
∥∥

2
.

(23)

The energy terms Ef and E∇f measure the consistency of the
forward optical flow Finit and the backward optical flow F b

init,
and are defined as

Ef (P ) =
∥∥Finit(P ) + F b

init(P + Finit(P ))
∥∥

2
, (24)

E∇f (P ) =
∥∥∇xFinit(P ) +∇xF b

init(P + Finit(P ))
∥∥

2

+
∥∥∇yFinit(P ) +∇yF b

init(P + Finit(P ))
∥∥

2

(25)

From this energy value, we can compute a confidence
measure C as

C(P ) = exp

(
−E(P )

2σ2
c

)
(26)

where σc controls the “width” of the distribution. Finally, in
order to generate a binary mask B, we threshold the confidence
map as

B(P ) =

{
1 if C(P ) > 0.5

0 otherwise
(27)

For the experiments, we have chosen λ1 = 2, λ2 = 10,
λ3 = 20 and σc = 0.5.

Using this mask, we can compute an initial scene flow
Finit, d

t
init,∆dinit where the optical flow and the disparity map

at t are completely dense and where the disparity variation
is only available on non-occluded regions. We can then use
our model to regularize the optical flow and disparity and to
interpolate the disparity variation in occluded regions (while
also regularizing it in non-occluded regions).

B. Clustering the light field

The model previously described works under one assump-
tion: our model is affine, so the scene flow should not have
discontinuities. As a consequence, we can partition our light
field into clusters that respect the assumption and fit one model
for each cluster. If the clusters correspond to the same object
in the scene, the assumption will be valid. We therefore group
pixels of similar color across the views and corresponding to
the same scene area in 4D clusters, using the method proposed
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in [41]. The method is inspired by the SLIC algorithm [42].
Centroids are first initialised on a reference view. Their dispar-
ity is then estimated and used to project the centroids to all the
views. A k-means clustering is then simultaneously performed
on all views. Using the centroid disparity, all the rays assigned
to a cluster are projected back to the reference view to update
the centroids colors and spatial positions. The approach is fast,
free of any strong scene geometry prior and does not require a
dense depth map estimation. For these reasons, we chose this
method for our model.

To estimate the model parameters for each cluster, the model
is fitted to the initial optical flow and disparity estimates avail-
able in each cluster. The number of estimates may however
not be sufficient in some clusters. For this reason, we propose
to build a graph connecting the different clusters. This graph
enables us to look for the N nearest clusters of a given cluster,
adding more estimates in the computation of the scene flow
model of a given cluster.

C. Connecting the clusters with a weighted graph

In order to connect the different clusters, we build an
undirected weighted graph G = {V, E , w}. V is the set of
the K clusters computed in the clustering step (see Fig.1). A
vertex i is connected to another one j if their corresponding
clusters are adjacent to one another in at least one view of the
light field or if they are in the same range of disparity, that is
if

|d t(Ci)− d t(Cj)| < β

(
max
k∈V

d t(Ck)−min
k∈V

d t(Ck)

)
, (28)

when Ci and Cj denote the clusters centroids and β ∈ [0, 1]
a threshold coefficient. In the experiments, we fix β = 0.1.

The weight between two connected nodes i and j is defined
as

w(i, j) = min
(u,v)∈Ωij

exp [−αD (Puv(Ci),Puv(Cj))], (29)

where Ωij is the set of views where i and j are adjacent,
Puv(C) the projection of the centroid C on the view (u, v)
and α a parameter that we empirically fix to 0.2. The distance
D is based on spatial and color proximity and defined as in
[41]:

D =

√
dc

2 +
m2

S2
ds

2 (30)

where S =
√
H ×W/K with W and H the width and height

of a view. The parameter m has the same value as for the
clustering step, it is used in the clustering step to control the
compactness of the clusters. dc and ds are the color and spatial
distances respectively defined as euclidean distances in the
CIELAB colorspace and the [xy] space:

dc(Ci, Cj) =
√

(Li − Lj)2 + (ai − aj)2 + (bi − bj)2 (31)

ds(Ci, Cj) =
√

(xi − xj)2 + (yi − yj)2 (32)

Once the graph is computed, we can look for the N nearest
neighbors of a given node i using Dijkstra’s algorithm [43].

In the search, we discard every vertex whose corresponding
cluster contains no scene flow estimate (which can happen
when the initial scene flow is sparse). The set of N neighbors
of i (including itself) is denoted Ni. It is used to have more
scene flow estimates than those inside the cluster and in
particular when the cluster i has no estimate inside itself.

D. Fitting a model with RANSAC

The approach we use to fit the model described in Section
III to the scene flow estimates that we have is inspired from
the RANSAC method [44]. The general idea is to choose m
scene flow estimates, to compute the parameters of the model
and then to evaluate the cost of the model.

Let SFi be the set of initial scene flow estimates contained
in the cluster i, we have

SFi =

 u1 v1 x1 y1 ∆x1 ∆y1 d t1 ∆d1

...
...

...
...

...
...

...
...

uni
vni

xni
yni

∆xni
∆yni

d tni
∆dni


(33)

The equation (20) is linear in θ so we build a block matrix
Ai and vector bi such that

∥∥∥Aiθ̂ − bi∥∥∥
2

represents the fidelity

of a model θ̂ to the initial scene estimates SFi.

Ai =


Axi 0 0

Ayi 0 0

0 Adi 0

0 0 A∆
i

 (34)

where the sub-matrices Axi , Ayi , Adi and A∆
i are defined as

Axi =

 u1 x1 y1 − div1 1 0 0 0
...

...
...

...
...

...
...

uni xni yni − divni 1 0 0 0

 (35)

Ayi =

 v1 div1 0 0 x1 − diu1 y1 − div1 1
...

...
...

...
...

...
...

vni
divni

0 0 xni
− diuni

yni
− divni

1


(36)

Adi = A∆
i =

 x1 − diu1 y1 − div1 1
...

...
...

xni
− diuni

yni
− divni

1

 (37)

Let bi be the corresponding vector to Ai:

bi =
(
bxi byi bdi b∆i

)>
(38)

with:

bxi =
(
∆x1 · · ·∆xni

)
(39)

byi =
(
∆y1 · · ·∆yni

)
(40)

bdi =
(
dt1 · · · dtni

)
(41)

b∆i =
(
∆d1 · · · ∆dni

)
(42)
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In order to make our model linear, we approximate the
disparity in Equations (10), (11), (12) and (13) by a pre-
estimated disparity value. We compute one disparity estimate
per cluster di by averaging the disparity estimates contained
in the cluster i and in its neighbors as

di =

∑
j∈Ni

e−λw(i,j)
nj∑
k=1

bdj,k∑
j∈Ni

e−λw(i,j)nj
(43)

The parameter λ controls the weight of the neighboring
clusters in the average computation and bdj,k denotes the kth
element of vector bdj .

The more constant the disparity is in a cluster, the more
correct the approximation is. For each cluster i, we search for
the parameters θ of the model (20) that minimize the following
cost function:

Li(θ) =
∑
j∈Ni

e−λw(i,j) · fj(θ) (44)

where fj(θ) is the number of outliers produced by the model
θ among the estimates which are inside the cluster j, that can
be formally defined as:

fj(θ) =

4nj∑
k=0

J|Aj,kθ − bj,k| > τK (45)

The symbols J·K denote the Iverson brackets, which return 1 if
the proposition inside the brackets is true and 0 otherwise. Aj,k
denotes the kth row of Aj . The hyperparameter τ is analogous
to the threshold defined in the classical RANSAC algorithm. It
is fixed to 5 in our experiments. As with RANSAC algorithm,
we generate an hypothesis θ̂ for our model, we compute its
cost function Li(θ̂) and compare it with the best candidate
θ̂min that we found so far (the one with the lowest cost
function). We iterate Niter times.

Before iterating, we initialize our model to a constant
model: we set every coordinate of θ̂ to 0 except for θ̂4, θ̂7, θ̂10

and θ̂13. This way, the scene flow inside a cluster is constant
and equal to the weighted average scene flow estimate.

θ̂4 = ∆xi =

∑
j∈Ni

e−λw(i,j)
nj∑
k=1

bxj,k∑
j∈Ni

e−λw(i,j)nj

θ̂7 = ∆yi =

∑
j∈Ni

e−λw(i,j)
nj∑
k=1

byj,k∑
j∈Ni

e−λw(i,j)nj
(46)

θ̂10 = di

θ̂13 = ∆di =

∑
j∈Ni

e−λw(i,j)
nj∑
k=1

b∆j,k∑
j∈Ni

e−λw(i,j)nj

What differs from classical RANSAC is the hypothesis gen-
eration. Classically, we would randomly choose 13 rows from
{Aj | j ∈ Ni} to form a matrix As and the corresponding
vector bs, and we would compute - if possible - θ̂ = A−1

s bs.

In our case, the process of selection of estimates is not
totally random. At every iteration, we want to generate stable
parameters θ̂. So, we need to form a matrix As with a low
condition number, which means with rows that are the most
linearly independent from one another.

Inspired by the work in [45], we propose to choose the
samples in a careful way in order to perform our hypothesis
generation step. More precisely, given a cluster i, we first build
the matrix and vector Ui and vi such that

Ui =
⊕
j∈Ni

Aj and vi =
⊕
j∈Ni

bj , (47)

where
⊕

kXk denotes the vertical concatenation of the ma-
trices Xk.

Let M be the number of rows of Ui and vi. Our goal is
to find a set S of 13 linearly independent rows among the M
rows of Ui. The general idea is to iteratively add samples to
S taking into account the previous added samples.

We start with an empty set S. The first sample which is
added is randomly chosen. Then, for every iteration n from 2
to 13, we add a nth sample to the set S. To do so, we build the
matrix Ui(S, T ) with T being the range [1, n]. The resulting
matrix of size (n, n−1) is of rank n−1 because every row is
independent from one another. The nullspace of such matrix
gives us the unique vector z that is orthogonal to all rows
of this matrix. Then, in the normalized version of Ui(R, T )
(with R = [1,M ]), we search for the row that is the most
linearly dependent on the null vector, i.e. the most linearly
independent of the rows of Ui(S, T ). This constitutes the new
sample added to our set. We continue until we can reach our
13 samples. Once the set S is complete, we can build a matrix
and a vector As = Ui(S, T ) and bs = vi(S) with T = [1, 13].
We finally generate an hypothesis θ̂ = arg minθ ‖Asθ − bs‖2.
The hypothesis generation is fully detailed in Algorithm 1.

Another change to the classic RANSAC algorithm is that
for each iteration and for each cluster, we also evaluate the
models given by the neighboring clusters. This allows us to
propagate correct models among the clusters and to make the
algorithm converge faster.

Input: Matrix Ui and its corresponding vector vi
Output: An hypothesis θ̂ for the cluster i

r0 ← selectRandomRow(Ui);
S ← {r0};
R ← [1,M ];
for n = 2→ 13 do
T ← [1, n];
z ← nullspace(Ui(S, T ));
normalizeRows(Ui(R, T ));
b← Ui(R, T )z;
r ← arg maxk∈R|bk|;
S ← S ∪ {r}

end
As ← Ui(S, T );
bs ← vi(S);
θ̂ ← arg minθ ‖Asθ − bs‖2;

Algorithm 1: Hypothesis generation for cluster i
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V. EVALUATION

A. Scene Flow Datasets

In order to be able to compute objective performance
measures, we have generated a synthetic video Light Field
dataset with the corresponding ground truth scene flow1. For
that purpose, we have used the production files of the open
source movie Sintel [46] and have modified them in the
Blender 3D software [47] in order to render an array of
3x3 views. Similarly to the MPI Sintel flow dataset [17],
[18], we have modified the scenes to generate not only the
‘final’ render, but also a ‘clean’ render without lighting effects,
motion blur, or semi-transparent objects. Ground truth optical
flow and disparity maps were also generated for each view.
Since disparity variation maps could not be rendered within
Blender, we have computed them using the disparity map and
the optical flow. However, this process requires projecting
the disparity map of a frame to the next frame using the
optical flow, which results in unavailable disparity variation
information in areas of temporal occlusion. We have processed
two scenes of 3 × 3 views of 1024 × 436 pixels and 50
frames corresponding to the scenes ‘Bamboo2’ and ‘Temple1’
in [17]. The disparities (in pixels) between neighboring views
are in the range [−8,+52] for ‘Bamboo2’ and [−22,+9] for
‘Temple1’. We chose an angular configuration that is similar
to the one of real light fields captured by rigs of cameras,
such as e.g. in [48] and [49], which respectively provide 5×3
and 4 × 4 views. We also use the dataset of [48] to test our
method on a real light field sequence: ‘Bar’. Each frame is a
5 × 3 light field, in which each view has a spatial resolution
of 1920 × 1080 pixels. The horizontal and vertical baselines
of the camera setup are different, the ratio between the two
is 0.625 and the horizontal disparity ranges from 22 to 75
pixels. Finally, we assess our method on a dense synthetic
light field dataset provided by [19]. The light fields have an
angular resolution of 9 × 9 views and their spatial resolution
is either 1024× 720 or 412× 290, respectively referred to as
‘Big’ and ‘Small’ in the rest of the article. This configuration
simulates light fields captured with plenoptic cameras as in
[50] or captured with very dense camera arrays as in [51].

B. Influence of hyperparameters

We have various hyperparameters in our method: the most
critical ones are the number of clusters K, the number of
nearest neighbors N we select and the number of iterations to
compute an affine model Niter. For the experiments, we used
three metrics to assess the scene flow estimations: the End-
Point Error (EPE) for the optical flow, the Mean Absolute
Error (MAE) for the disparity map dt and the MAE for the
disparity variation ∆d. The latter is only computed for dis-
occluded pixels because there is no ground truth on occluded
pixels.

In order to search for the best combination of (N,K)
hyperparameters for the scene flow estimation, we perform
a grid search, using the aforementioned metrics for the whole
Sintel dataset. We have tested 4 different values of N = {1, 2,

1http://clim.inria.fr/Datasets/SyntheticVideoLF/index.html

5, 10} for 5 different values of K = {625, 1250, 2500, 5000,
10000}. The results of the grid search are shown in Figure 4.

From Figure 4, we notice that the optical flow and the
disparity grid search have approximately the same profile:
the errors decrease when the number of neighbors N and the
number of clusters K increase. We also notice that the optical
flow and disparity errors increase drastically when the number
of clusters is small. This is due to some underfitting of the
model: there are too many estimates and our affine model is
not complex enough to fit the data.

On the other hand, we see that the disparity variation
profile of the grid search behaves differently: the lowest error
is obtained when the number of neighbors N is high and
the number of clusters K is low. The difference with the
optical flow and disparity behaviour is caused by the way we
compute the initial disparity variation estimates: we compute
an occlusion mask to remove outliers. If there are inaccuracies
in the occlusion mask, outliers will be taken into account for
the model fitting. As a consequence, taking bigger clusters
and more neighbors helps reducing the errors by decreasing
the weight of an outlier among the estimates.

In our experiments, we choose K = 10000 and N = 10 as
it is the best combination for both optical flow and disparity
estimations.

After selecting the optimal combination of N and K, we
need to determine the number of iterations Niter that the model
needs to converge towards a stable solution. The evolution of
the cost function (written in Eq.(44)) is shown in Figure 5. In
the figure, we normalized with the initial cost, that is the cost
of the initial model as given in Eq.(46).

The convergence rate is high and from the third iteration, the
cost function is quasi-constant. So, we have taken Niter = 3
for the following evaluations.

C. Comparison with state-of-the-art methods

TABLE I
EPE OF ESTIMATED OPTICAL FLOW FOR ALL PIXELS

Bamboo2 Temple1

clean final clean final

Central
View

OSF [7] 1.943 1.901 6.400 4.797
PRSM [8] 1.203 1.287 1.285 1.671
OLFW [15] 1.421 1.462 2.061 2.374
PWC-Net [20] 0.946 1.018 1.032 1.284
SDSF [16] 1.007 1.102 1.042 1.383
Ours 0.883 0.946 0.959 1.242

All
Views

PWC-Net [20] 0.947 1.019 1.029 1.290
SDSF [16] 1.090 1.169 1.109 1.453
Ours 0.889 0.952 0.968 1.253

The proposed method is first assessed using our sparse
dataset. It is compared to the methods in [15], [16], respec-
tively referred to here as OLFW (Oriented Light Field Win-
dow) and SDSF (Sparse-to-Dense Scene Flow). The OLFW
method was designed for dense light fields captured with
plenoptic cameras and is hardly applicable when the baseline
is large. However, the optical flow searched via the oriented

http://clim.inria.fr/Datasets/SyntheticVideoLF/index.html
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Fig. 4. Grid search to find the optimal parameters N and K for the scene flow regularization. Each image is an average error map for a set of (K,N)
computed with the whole Sintel dataset. The combination of hyperparameters that gives the lowest errors is K = 10000 and N = 10.
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Fig. 5. Evolution of the cost in the RANSAC model fitting. The cost is
normalized by the cost of the initial model computed with Eq. (46). The cost
becomes almost constant from the third iteration.

TABLE II
MAE OF ESTIMATED DISPARITY FOR ALL PIXELS

Bamboo2 Temple1

clean final clean final

Central
View

OSF [7] 2.578 2.611 19.307 16.990
PRSM [8] 2.619 2.665 16.414 14.639
FDE [28] 1.598 1.663 0.250 1.090
PWC-Net [20] 1.888 1.985 0.384 0.689
Ours 1.738 1.819 0.332 0.674

All
Views

FDE [28] 2.067 2.137 0.419 1.391
PWC-Net [20] 1.972 2.055 0.378 0.710
Ours 1.868 1.932 0.338 0.682

window can be combined with disparity maps estimated with
methods suitable for sparse light fields. In the test reported
here, we have used ground truth disparity maps for this
method, thus showing the best results it can give for the
estimated scene flow. We also compare the disparity maps that
we estimate, as part of our scene flow model, with the ones
obtained with the deep learning based disparity estimation
method in [28], referred to here as FDE (Flexible Depth
Estimation).

Besides, our method is compared with the initial scene flow
estimated as in IV-A, using PWC-Net [20]. The optical flow
estimation technique [20] is used for separately estimating the
optical flow in each view as well as the disparity between

TABLE III
MAE OF ESTIMATED DISPARITY VARIATION FOR ALL UNOCCLUDED

PIXELS

Bamboo2 Temple1

clean final clean final

Central
View

OSF [7] 0.539 0.518 1.491 3.159
PRSM [8] 0.173 0.171 0.165 0.175
OLFW [15] 0.356 0.345 0.152 0.162
PWC-Net [20] 0.820 0.878 0.299 0.416
SDSF [16] 0.136 0.140 0.109 0.128
Ours 0.146 0.153 0.098 0.116

All
Views

PWC-Net [20] 0.869 0.938 0.295 0.418
SDSF [16] 0.140 0.142 0.111 0.131
Ours 0.150 0.157 0.105 0.127

views. In order to have a dense disparity variation for this
naive approach, we do not compute the occlusion mask. So,
the disparity variation in occluded or disoccluded areas will
never be consistent. Finally, we tested two stereo scene flow
methods: [7], [8], denoted as OSF (Object Scene Flow) and
PRSM (Piecewise Rigid Scene Model), using the central view
and its right neighbour as stereo pair.

The results are summarized in Tables I, II and III. For each
successive light field frame of the four sequences (Bamboo2
and Temple1, both rendered as clean and final), we compute
the optical flow EPE, the disparity and disparity variation
MAE on every ray of the light field (denoted 4D) and also
on the central view only (denoted 2D).

We can observe that our method always yields the most
accurate optical flows (see Table I), and disparity maps (see
Table II). Our method is only outperformed by the FDE
method [28] for the disparity of the central view on Bamboo2
clean & final and Temple1 clean. However, even for these light
fields, our method provides better average results than FDE
when considering the disparity maps of all the views, which
indicates a better consistency between views. Furthermore,
the FDE method only estimates disparity (and not optical
flow or disparity variation), while our approach computes
the full scene flow. Even though, we did not choose the
best combination of K and N parameters for the disparity
variation, the mean absolute error is the lowest for the Temple1
sequence and the second lowest among every tested method for
the Bamboo2 sequence (see Table III). It is only outperformed
by a small margin by our prior sparse-to-dense interpolation
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Fig. 6. Visual comparison of our method with [7], [8], [15], [20] on a frame of Bamboo2 clean. The optical flows are visualized with the Middlebury color
code, and the disparity maps and disparity variations are visualized using a gray-scale representation. The red pixels are the occlusion mask where there is
no ground truth disparity variation available.
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Fig. 7. Visual comparison of our method with [7], [8], [15], [20] on a frame of Temple1 final. The optical flows are visualized with the Middlebury color
code, and the disparity maps and disparity variations are visualized using a gray-scale representation. The red pixels are the occlusion mask where there is
no ground truth disparity variation available.

method (SDSF [16]). Note that the two stereo methods failed
to estimate an accurate disparity in the Temple1 sequence.
These methods were mainly developed in the context of
autonomous driving and their default parameters were fine-
tuned for urban scenes.

We also performed some qualitative assessment of the
methods on frames of Bamboo2 clean (Figure 6), Temple1
final (Figure 7) and of Bar (Figure 8). We can notice that our
method gives sharper optical flow and disparity maps than the
initial scene flow computed by [20], while correcting occlusion
errors.

Finally, we tested our method on a dense dataset provided
by [19]. In order to keep the complexity low, we estimated an

initial scene flow on a set of nine views (central view, corner
views and top, bottom, left and right views). Then, clustering
every views, we were able to fit a scene flow model, interpolate
and regularize the scene flow on every view of the light field.

For the disparity estimation, some light field depth estima-
tion methods were added to compare: globally consistent depth
labeling (GCDL) [21], phase-shift based depth estimation
(PSDE) [3] and occlusion-aware depth estimation (OADE)
[22]. Note that the metric used to compute the disparity
estimation is Root Mean Square Error (RMSE) as it was in the
original paper [19]. The results are given in Tables IV and V.
We see that, in terms of optical flow and disparity, our method
yields similar results to [19] for the central view, and that, in
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Fig. 8. Visual comparison of our methods with [20]. The optical flows are visualized with the Middlebury color code, and the disparity maps and disparity
variations are visualized using a gray-scale representation. The light field frames are taken from [48].

TABLE IV
EPE OF ESTIMATED OPTICAL FLOW FOR ALL PIXELS

NewSecretaire Mario Drawing Balls NewBalls

Small Big Small Big Small Big Small Big Small Big

Central
View

PRSM [8] 1.261 1.809 1.120 1.395 1.257 3.093 0.289 0.495 0.670 0.892
OSF [7] 0.877 1.513 2.749 6.239 - 4.355 0.744 1.613 0.547 0.794
LDOF [52] 3.780 3.174 2.136 4.524 1.129 1.766 0.440 0.587 1.259 1.883
OLFW [15] 2.265 4.441 4.893 7.166 2.495 5.005 1.167 6.073 1.206 13.713
FVOF [19] 0.781 1.393 0.826 1.012 0.928 1.324 0.284 0.481 0.496 0.693
Ours 0.771 0.851 1.065 0.865 1.146 1.661 0.390 0.430 0.602 0.708

All
Views

FVOF (4D) [19] 1.337 1.853 1.174 1.299 1.019 1.427 0.397 0.555 0.588 0.807
Ours (4D) 1.247 1.333 1.381 1.201 1.158 1.677 0.395 0.435 0.608 0.719

most scenes, it gives more accurate estimation when taking
every view into account. Both methods outperform every other
tested method based on light fields or stereo images.

D. Model validation

In order to validate the affine model, we used the ground
truth scene flow as initial estimation and then we performed
the clustering step as well as the fitting of the model with the
same hyperparameters as in Section V-B. This gives us the
minimum errors that can be obtained with our method, due
to the model approximation. The results of this experiment
for every scene and rendering are summarized in Table VI. In
comparison with state-of-the-art methods, the endpoint errors
for the optical flow and the mean absolute errors for the
disparity that we obtain are substantially lower by a factor
of 6. The mean absolute errors for the disparity variation also

decrease but less significantly, because they are already very
low.

Visual comparisons between the estimated scene flow and
the corresponding ground truth are also presented in Figures 9
and 10 for the light field frames that have the highest endpoint
errors in each scene rendered in final mode. We observe that,
although these frames are the worst frames in their respective
sequences, thin structures are well reconstructed. However, our
estimated optical flow is inaccurate for objects whose disparity
is so high that it disappears in other views of the light field,
making it very difficult to accurately cluster the object and fit
an accurate affine model. This is why the optical flow of the
butterfly on the bamboo frame in Figure 9 is visually different
from the ground truth. Inaccuracies are also observed when
small objects have colors that are very close to the background:
this leads to a weighted graph with strong edges between the
aforementioned object and the background clusters. This is the
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TABLE V
RMSE OF ESTIMATED DISPARITIES FOR ALL PIXELS

NewSecretaire Mario Drawing Balls NewBalls

Small Big Small Big Small Big Small Big Small Big

Central
View

GCDL [21] 0.134 0.123 0.176 0.273 0.084 0.067 0.277 0.211 0.092 0.069
PSDE [3] 0.350 0.136 0.543 0.092 0.115 0.119 0.595 0.111 0.148 0.077
OADE [22] 0.193 0.138 0.196 0.165 0.074 0.068 0.245 0.111 0.172 0.079
PRSM [8] 0.136 0.125 0.139 0.102 0.079 0.061 0.051 0.036 0.059 0.048
OSF [7] 0.131 0.120 0.216 0.103 - 0.141 0.062 0.053 0.068 0.061
OLFW [15] 0.147 0.126 0.188 0.123 0.097 0.067 0.094 0.064 0.077 0.057
FVOF [19] 0.110 0.080 0.136 0.073 0.058 0.039 0.068 0.036 0.051 0.041
Ours (2D) 0.113 0.084 0.084 0.058 0.061 0.053 0.049 0.033 0.053 0.039

All
Views

FVOF [19] 0.123 0.088 0.145 0.082 0.062 0.045 0.090 0.038 0.059 0.044
Ours 0.114 0.086 0.090 0.060 0.064 0.054 0.053 0.034 0.054 0.040

case for the optical flow of the dragons on the temple frame
in Figure 10.

TABLE VI
VALIDATION OF THE AFFINE MODEL ACCORDING TO THE SCENE

Bamboo2 Temple1

clean final clean final

EPE (∆x,∆y) 0.159 0.165 0.172 0.199
MAE dt 0.347 0.309 0.062 0.061
MAE ∆d 0.118 0.119 0.064 0.064

t
t

+
1

(∆
x
,∆
y
)

d
t

∆
d

Central view Ground Truth Ours

Fig. 9. Visual comparison of the ground truth scene flow and the one obtained
with our method using the ground truth scene flow as initialization, with a
Bamboo2 final frame.

In order to provide more insights on where our affine model
fails to accurately represent the ground truth, we measured
the influence of temporal occlusions, motion amplitude and
disparity with the Sintel dataset. In Table VII, we computed
errors on temporally non-occluded and occluded regions, re-
spectively referred to as NOC and OCC. The last row is the
ratio of each region for the whole dataset (e.g. there are 96%
pixels that are not occluded in the Sintel dataset). We can

t
t

+
1

(∆
x
,∆
y
)

d
t

∆
d

Central view Ground Truth Ours

Fig. 10. Visual comparison of the ground truth scene flow and the one
obtained with our method using the ground truth scene flow as initialization,
with a Temple1 final frame.

notice that the errors are much higher in occluded areas. Since
occlusions are typically located on objects boundaries, a bad
clustering that groups pixels from different objects will cause
errors during the model fitting step, thus giving a scene flow
with more errors in the occluded areas.

In Table VIII, the impact of motion amplitude is measured.
Let s =

√
∆x2 + ∆y2 be the amplitude of motion of a pixel,

s10, s10-40, s40 respectively represent the regions where s <
10, s ∈ [10, 40] and s > 40. The results show that the error
of the model is larger for objects with a very large motion
(s > 40).

Finally, we evaluate the influence of disparity on the errors
in Table IX. Low disparity areas correspond to background
objects, which tend to have lower motion amplitude than
objects of the background whose disparities are higher. There-
fore, high disparity and large motion are inherently related in
the tested scenes, which explains why the areas with large
disparity have higher errors.
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TABLE VII
INFLUENCE OF OCCLUSIONS ON THE AFFINE MODEL

NOC OCC

EPE (∆x,∆y) 0.112 1.609
MAE dt 0.174 0.671
MAE ∆d 0.091 /
Ratio (%) 96 4

TABLE VIII
INFLUENCE OF THE MOTION AMPLITUDE ON THE AFFINE MODEL

s10 s10-40 s40

EPE (∆x,∆y) 0.096 0.647 4.505
MAE dt 0.202 0.084 0.475
MAE ∆d 0.080 0.088 0.957
Ratio (%) 91 8 1

E. Complexity

Using the optimal hyperparameters, the computation takes
one hour per light field frame on average for the sparse
dataset, with our laptop equipped with an Intel Core i7 -
6600U CPU and 16 GB RAM. Note that the aforementioned
duration is calculated with a non-optimal and fully sequential
implementation. However, most of the steps (i.e. scene flow
initialization, clustering, nearest neighbor search, model fit-
ting) could benefit from a parallel implementation. The authors
in [41] implements their clustering on a GPU. Then, once the
weighted graph is built, we can simultaneously search for the
nearest neighbors of each cluster. Finally, the model fitting
step can be performed independently on each cluster.

Let Ma × Ma and Ms × Ms be the angular and spatial
resolutions of our light field, K be the number of clusters, N
the number of neighbors, I the number of iterations and S
the number of initial scene flow estimates per cluster. Then,
the time complexity of fitting our model to every cluster is
O(13IKN2S), where 13 corresponds to the number of pa-
rameters of our model. Complexity changes quadratically with
the number of neighbors N due to the propagation step added
in the RANSAC algorithm. In the case where we estimate an
initial scene flow on every view, we have S = M2

aM
2
s /K and

the complexity becomes O(13IN2M2
aM

2
s ). However, if we

want to reduce the complexity of our method, we do not need
to have an initial scene flow estimate on every view. This is
what we did for the dense dataset, where we took 3×3 views
(instead of 9× 9 views) in the initialization step. In this case,
the complexity becomes O(117IN2M2

s ).

F. Limitations

We further test our method (with the PWC-Net [20] ini-
tialization) on dense synthetic datasets ray-traced using POV-
Ray, Apples and Snails provided by [13], that have very
narrow baselines. Their angular resolution is 9 × 9 with
a respective disparity range of [1.1, 1.7] and [0.3, 1.4]. The
scenes are photo-realistic with strong specular reflections,
strong shadows and non-lambertian surfaces. Therefore they
are very challenging light fields. We compare the mean square

TABLE IX
INFLUENCE OF THE DISPARITY ON THE AFFINE MODEL

dt < 10 dt > 10

EPE (∆x,∆y) 0.146 0.351
MAE dt 0.172 0.333
MAE ∆d 0.062 0.245
Ratio (%) 86 14

errors (MSE) produced by our estimations with those obtained
by the method proposed in [13] (denoted PPDA for Precon-
ditioned Primal-Dual Algorithm). The results are summarized
in Table X.

We can see that our method fails to accurately estimate
the scene flow on this dataset. This failure is mostly caused
by the initialization step which produces too many outliers
for the fitting of the model. The method we used, i.e. PWC-
Net [20], is indeed not very robust to strong specularity and
does not handle ambiguous situations, e.g. when a shadow is
moving, it is unclear whether the optical flow should represent
the apparent motion of the shadow or the motion of the surface
the shadow is projected on. The method in [13] operating on
epipolar plane images is on the contrary well suited for such
light fields with narrow baselines but cannot be used when the
disparity is large, the case we focus on in this paper.

TABLE X
MSE OF ESTIMATED OPTICAL FLOW AND DISPARITY

Apples Snails

MSE ∆x: PPDA [13] 0.3114 0.0996
Ours 0.3283 0.2652

MSE ∆y: PPDA [13] 0.0245 0.0406
Ours 0.0321 0.1095

MSE dt: PPDA [13] 0.0025 0.0036
Ours 0.00023 0.0043

VI. CONCLUSION

In this paper, we have presented a new model of scene
flow that takes into account the epipolar structure of light
fields. Using the developed model, we proposed a method
to estimate scene flows from sparsely sampled video light
fields. This method is based on the three following steps:
first an initial scene flow estimation, then a 4D clustering
of the light field, and finally a fitting of the model for each
cluster. For the performance evaluation, we have generated a
synthetic dataset from the open source movie Sintel in order to
extend the popular MPI Sintel benchmark to sparsely sampled
light fields and scene flow. We also assessed our method on
a dense light field dataset. Some qualitative tests were finally
run on real light fields using the Fraunhofer dataset. For the
sparse dataset, our method had lower errors for the optical
flow, the disparity and the disparity variations than any other
state-of-the-art scene flow approaches. On the dense dataset,
our method gave comparable performances with the state-of-
the-art light field method regarding the horizontal and vertical
displacements (i.e. the optical flow) and disparity of the central
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view while yielding more accurate results on the whole 4D
light field. Using the ground truth scene flow as initialization,
we have shown that the ground truth locally conform to our
affine model. This model is also a light way of describing a
dense scene flow on the whole light field as it requires only
13 parameters per cluster. It could therefore be incorporated
in a light field coding scheme as it would provide a prediction
of every view of the light field at time t+1, only transmitting
the central view at t alongside with the scene flow parameters.
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