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ABSTRACT2

Biological neural networks produce information on backgrounds of multi-scale spontaneous3
activity that become more complex in brain states displaying higher capacities for cognition, for4
instance, attentive waking versus anesthetized states. Here, we review brain state-dependent5
mechanisms spanning ionic currents (microscale) to the dynamics of brain-wide, distributed,6
transient functional assemblies (macroscale). Not unlike how microscopic interactions between7
molecules underlie structures formed in macroscopic states of matter, using statistical physics,8
the dynamics of microscopic neural phenomena can be linked to macroscopic brain dynamics.9
Beyond spontaneous dynamics, it is observed that stimuli produce collapses of complexity, more10
remarkable over highly complex background dynamics present in conscious than unconscious11
brain states. In contrast, complexity may not be further collapsed in already low-dimensional12
unconscious spontaneous activity. We propose that increased complexity of spontaneous13
dynamics during conscious states supports responsiveness, enhancing neural networks’14
emergent capacity to robustly encode information over multiple scales.15

Keywords: cerebral cortex, consciousness, computation, empirical, theoretical, statistical physics, mean-field model, manifold,16
coupling, synchrony, regularity, complexity, dimensionality, entropy17

INTRODUCTION
Brain activity transitions between healthy states, including stages of sleep, restful and aroused waking, as18
well as pathological states such as epilepsy, coma, and unresponsive wakefulness syndrome. From such19
a diversity of brain states, phenomenological categories encompassing similar spatio-temporal activity20
patterns can roughly, but usefully, be defined: unconscious (e.g., sleep and anesthesia) and conscious21
(e.g., waking and dreaming) brain states. At the macroscopic, global scale, unconscious brain states are22
dominated by high voltage, low frequency oscillatory brain activity related to the microscopic alternation23
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of synchronous neuronal spiking and near silence (Steriade et al., 1993; Brown et al., 2010). Conversely,24
conscious states are macroscopically characterized by low voltage, high frequency, complex ”disorganized”25
dynamics resulting from more asynchronous irregular (AI) microscopic network activity (Brunel, 2000;26
Tsodyks and Sejnowski, 1995; Van Vreeswijk and Sompolinsky, 1996), thought to be important for neural27
coding (Van Vreeswijk and Sompolinsky, 1996; Zerlaut and Destexhe, 2017; Skarda and Freeman, 1987;28
Tononi and Edelman, 1998).29

Much as different states of matter like solids, liquids, and gases emerge from interactions between30
populations of molecules, different brain states may emerge from the interactions between populations31
of neurons. Statistical physics provides a mathematical framework to uncover structures of microscopic32
interactions underlying macroscopic properties. In this sense, macroscopically observed high synchrony,33
low complexity brain signals recorded from unconscious states may be accounted for by an increased34
coupling in the system’s components, behaving more like a solid (Peyrache et al., 2012; Le Van Quyen35
et al., 2016; Olcese et al., 2016; Nghiem et al., 2018a). In contrast, conscious brain states may be described36
as higher complexity (Sitt et al., 2014; Engemann et al., 2018; Nghiem et al., 2018a), perhaps liquid-like.37

Though quantitative expressions directly linking order and complexity are not straightforward, various38
definitions and metrics of complexity have been described to vary between brain states. Reports of enhanced39
complexity in conscious compared to unconscious states may be understood as increased dimensionality40
(El Boustani and Destexhe, 2010), namely the number of degrees of freedom needed to capture a system’s41
dynamics. Intuitively, dimensionality relates, though is not reducible to, algorithmic complexity which42
quantifies the length of a deterministic algorithm required to reproduce an exact signal. For a random signal43
resulting from purely stochastic dynamics (similar to neural activity observed during conscious states),44
the length of the algorithm would be as long as the signal itself. In contrast, a purely oscillatory signal45
(reminiscent of unconscious brain dynamics) can be recapitulated by a shorter algorithm, easily described46
by a periodic trajectory in few dimensions.47

Here, we aim to connect spatial scales from microscopic (nanometers to micrometers - molecules to whole48
neurons) to macroscopic brain activity (centimeters to meters - brain areas to individual subjects’ brains),49
describing both spontaneous and evoked dynamics. Toward linking interpretations of studies between50
scales, mesoscopic data (micrometers to millimeters - populations of thousands to tens of thousands51
of neurons) have been useful to inform models of neuronal assemblies. The perspective concludes by52
discussing a hypothesis best tested with a multi-scale understanding of brain function: the global complexity53
of neural activity increases in conscious brain states so as to enhance responsiveness to stimuli. We suggest54
responsiveness may depend on the capacity of neural networks to transiently collapse the dimensionality55
of collective dynamics - in particular neural assemblies sensitive to stimulus features - into evoked56
low-dimensional trajectories supporting neural codes (Fig. 1A).57

MACROSCOPIC SIGNALS VARY ROBUSTLY BETWEEN BRAIN STATES
Both spontaneous and evoked (Fig. 1A-B) neural signals vary macroscopically across brain states, as58
demonstrated in electroencephalography (EEG), magnetoencephalography (MEG), and functional magnetic59
resonance imaging (fMRI). In unconscious states, neural activity is dominated by low-frequency, high-60
amplitude signals (Niedermeyer and da Silva, 2005). Accordingly, analyses of entropy (Sitt et al., 2014;61
Engemann et al., 2018), complexity (Tononi and Edelman, 1998), and dimensionality (El Boustani and62
Destexhe, 2010) during unconscious states indicate a relative simplicity of signals compared to conscious63
states. In unconscious states, synchronous activity slowly sweeps across the cortex (Massimini et al., 2004)64
along paths formed by cortical tracts (Capone et al., 2017). In both conscious resting and unconscious states,65
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the default mode network (Raichle et al., 2001; Boly et al., 2008) establishes a pattern of synchronization66
between brain areas, producing correlations in ultra-slow (< 1 Hz) dynamics (Brookes et al., 2011).67
Sustained, slow oscillations were initially reported in the thalamocortical system (Steriade, 2003), but are68
also observed experimentally in isolated cortex, without thalamus (Timofeev et al., 2000; Sanchez-Vives69
and McCormick, 2000). Thalamocortical connections shape slow wave dynamics (David et al., 2013;70
Crunelli et al., 2015; Destexhe et al., 2007; Zucca et al., 2019; Poulet et al., 2012) although slow oscillations71
appear to be the default state of cortical networks (Sanchez-Vives and McCormick, 2000; Sanchez-Vives72
et al., 2017).73

Patterns of neocortical regions activated in resting state networks have been successfully retrieved using74
eigenmodes of the structural connectivity matrix, i.e. the possible oscillatory patterns at frequencies allowed75
by white matter tract lengths (Atasoy et al., 2016). In active states, the executive control network replaces76
the default mode (Fox et al., 2005), and the co-activation of different cortical regions is more strongly77
controlled by correlations in external stimuli than by white matter structural connectivity (Gilson et al.,78
2018), with patterns of activity propagating recurrently between low-level, sensory areas and high-level,79
associative areas.80

During conscious states, on the background of globally disorganized neural activity, transient patterns81
emerge (Singer, 2013; Uhlhaas et al., 2009; Duncan-Johnson and Donchin, 1982; Goodin and Aminoff,82
1984; Sur and Sinha, 2009; Luck and Kappenman, 2011; Sato et al., 2012; Chemla et al., 2019; Churchland83
et al., 2012). Under an interpretation of brain states in analogy to states of matter, microscopic changes in84
the interactions between neurons could permit the emergence of larger-scale structures in brain activity.85

MICROSCOPIC MECHANISMS; BIOPHYSICS OF BRAIN STATES
Experiments have demonstrated that during unconscious brain states, the membrane potential (Vm) of86
single cells slowly oscillates between hyperpolarized and depolarized potentials associated with alternating87
periods of silence (Down states, also termed “OFF periods”) and AI-like firing (Up states, also termed88
“ON periods”)(Steriade et al., 1993) (Fig. 2A). During conscious brain states, neurons show sustained but89
sparse and irregular AI firing patterns (Vreeswijk and Sompolinsky, 1998; Destexhe et al., 1999; Steriade,90
2000; Brunel, 2000; Renart et al., 2010; Dehghani et al., 2016; di Volo and Torcini, 2018). It was found91
that, during AI states, excitatory (E) and inhibitory (I) synaptic inputs are near-balanced (Dehghani et al.,92
2016), as predicted theoretically (Van Vreeswijk and Sompolinsky, 1996). In AI states, voltage fluctuations93
drive neurons over the threshold for firing action potentials, resulting in irregular spiking dynamics, also94
known as fluctuation-driven regimes (Destexhe, 2007; Destexhe and Rudolph-Lilith, 2012; Kuhn et al.,95
2004). To understand mechanisms at work during fluctuation-driven dynamics, computational models have96
further shown that three parameters are important to capture neuronal responses in this regime, the average97
membrane voltage Vm, the amplitude of Vm fluctuations, and the conductance state of the membrane (Reig98
et al., 2015; Zerlaut et al., 2016).99

Neuromodulators, including acetylcholine, play important biological roles in modulating the membrane100
properties of neurons (McCormick, 1992) and thus transitions between AI and slow oscillatory dynamics101
through the regulation of membrane currents (Hill and Tononi, 2005). Neuromodulators are present102
at higher concentrations during conscious states (McCormick, 1992; Jones, 2003) and, most generally,103
inhibit potassium (activity-dependent and leak K+) channels, which leads to depolarization of cells and104
suppression of spike-frequency adaptation. At low neuromodulatory concentrations, during unconscious105
states, K+ leak channels are constitutively open and activity-dependent K+ open when neurons spike,106
allowing K+ ions to exit the cells thus hyperpolarizing cells. Accumulating self-inhibition in the form107
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of spike-frequency adaptation during Up periods results in the transition to Down states. Conversely,108
spike-frequency adaptation wears off during Down states, allowing noise fluctuations (present ubiquitously109
(Destexhe and Rudolph-Lilith, 2012)) to trigger transitions to Up states (Destexhe, 2009; Jercog et al.,110
2017; di Volo et al., 2019; Nghiem et al., 2018c) (Fig.2B). Computationally speaking, for high values of111
spike-frequency adaptation, bistability can be observed, with solutions at firing rate zero (Down state)112
and non-zero (Up state) values (di Volo et al., 2019; Holcman and Tsodyks, 2006). The more chaotic113
dynamics of AI states associated with states of consciousness allows for more reliable stimulus encoding114
(D’Andola et al., 2017), more reliable propagation (Zerlaut and Destexhe, 2017), and more sustained115
responses (Nghiem et al., 2018c) to stimuli over time. In contrast, during unconscious states, neuronal116
responses are more unreliable and vary greatly depending on the stimulus amplitude and whether cells117
receive inputs in Up or Down periods (Rosanova and Timofeev, 2005; Reig et al., 2015).118

The Ising model for spin glasses (Jaynes, 1982) fitted to neural data (Schneidman et al., 2006) has119
revealed divergent types of emergent neuronal dynamics in conscious and unconscious states. While120
neuronal interactions are pairwise in wakefulness (Nghiem et al., 2017), coupling becomes population-wide121
in deep sleep compared to wakefulness (Nghiem et al., 2018b; Tavoni et al., 2017). In particular, inhibitory122
neurons organize synchronous activity across populations (Nghiem et al., 2018b; Zanoci et al., 2019),123
especially during deep sleep (Peyrache et al., 2012; Le Van Quyen et al., 2016; Olcese et al., 2016) where124
inhibitory neurons regulate rhythms of slow wave dynamics (Compte et al., 2008; Zucca et al., 2017; Funk125
et al., 2017; Zucca et al., 2019).126

To summarize, between unconscious and conscious brain states, microscopic data appear intuitively127
related to macroscopic data: synchronous microscopic Up and Down states resulting from constitutive128
and activity-dependent, hyperpolarizing currents due to reduced neuromodulation correspond to relatively129
simple, high-amplitude macroscopic dynamics observed in unconscious states. Active, disorganized,130
desynchronized, AI, low adaptation, high neuromodulation conditions correspond to low amplitude,131
complex, conscious brain signals. On backgrounds of differing spontaneous dynamics, generalizable132
patterns of activity (a.k.a. neural graphoelements) are observed. Cash et al. have shown that K-complexes133
(graphoelements characteristic of sleep stage 2) are complementarily observed both at microscopic and134
macroscopic scales (Cash et al., 2009). Other identifiable patterns also begin to emerge in empirical and135
theoretical data, including phase cones (Freeman and Barrie, 2000) and interacting traveling waves (Sato136
et al., 2012; Chemla et al., 2019). Since statistical physics has successfully described neuronal interactions137
for different brain states, we ask next whether mesoscale methods from statistical physics can help represent138
spontaneous and evoked dynamics of neuronal populations, thus formally linking knowledge between139
micro- and macroscopic scales.140

MESOSCALE BRIDGES; POPULATIONS OF NEURONS
Brain dynamics at mesoscopic scales, describing thousands of neurons, are investigated empirically by141
electrophysiology and more recently, voltage-sensitive dyes (Arieli et al., 1996; Chemla and Chavane,142
2010). At mesoscales, brain activity follows the trend of increasing complexity of spontaneous activity143
with consciousness (Fig.2A). Studying the effects of inputs at the mesoscale, studies have shown that144
perturbations during deep sleep states induce slow waves, but, during waking states, perturbations can result145
in chains of phase-locked activity (Pigorini et al., 2015) leading to causal global interactions (Rosanova146
et al., 2018).147

Mean-field models offer a formalism for scaling up microscopic detail to collective macroscopic dynamics148
using few equations, offering a computational advantage for simulations. In describing states of matter,149
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mean-field models simplify the probabilistic behavior of molecules to the relatively more predictable150
behavior of macroscopic states (Kadanoff, 2009). A rich literature has begun to develop mean-field models151
of neuronal populations, showing that global variables describing population activity can be usefully152
derived from the biophysics of neurons and their interactions (Ohira and Cowan, 1993; Ginzburg and153
Sompolinsky, 1994; El Boustani and Destexhe, 2009; Buice et al., 2010; Dahmen et al., 2016). Mean-field154
models have qualitatively reproduced temporal features of spontaneous dynamics including AI (El Boustani155
and Destexhe, 2009), Up and Down dynamics (Compte et al., 2003; Jercog et al., 2017; Tartaglia and Brunel,156
2017; di Volo et al., 2019), and transitions between these states (Tort-Colet et al., 2019; di Volo et al., 2019).157
In addition, connecting mean-fields provides a tool for simulating the propagation of patterns through time158
and space, across mesoscale structures. For example, recent work deriving mean-field models of networks159
with conductance-based synapses has reproduced the suppressive interaction between travelling waves160
observed in visual cortex during conscious states, a biological phenomenon that could not be captured by161
current-based networks (Chemla et al., 2019).162

Mean-field models have highlighted that, while complicated to apply mathematically in the framework of163
conductance-based models (di Volo et al., 2019), voltage-dependent interactions constitute a significant164
non-linearity in the membrane evolution equations. Voltage-dependent interactions appear to be important165
for explaining non-trivial responses of biological neurons, through the mean and fluctuations of the cells’166
membrane voltage (Reig et al., 2015). In fact, while these results do not imply that this effect is due only167
to conductances, they show that voltage dependent synapses play a role in the nonlinear state-dependent168
response of a neural network. As shown in Fig.2C, various levels of membrane conductance, regulated by169
voltage-dependent synapses, are shown to differently shape population responses.170

Finally, renormalization group theory, a method of coarse-graining microscopic detail to obtain171
macroscopic laws helping to understand how order can emerge from apparent disorder (Cardy, 1996;172
Goldenfeld, 2018; Wilson, 1979) has recently begun to be applied to neural assemblies (Meshulam et al.,173
2019), laying further foundation for the formal connection of our understanding of brain function across174
scales.175

DISCUSSION
In this paper, we briefly reviewed work on the measurement and modeling of brain states at different176
scales, from single neurons to cell assemblies and global brain activity, considering both spontaneous and177
evoked dynamics. In particular we highlighted that increased complexity in the dynamics of conscious178
brain states relates to changes in single-neuron biophysics, tuned by neuromodulation. In unconscious179
states, reduced neuromodulation promotes activity-dependent self-inhibition of excitatory neurons as they180
spike, leading to alternating, synchronous transients of silence and firing, that produce high-amplitude, low-181
complexity, synchronous signals, on resonant frequencies of the structural connectome. During conscious182
states, neuronal discharges are asynchronous, irregular and fluctuation-driven, resulting from sustained183
membrane depolarization in cortical neurons, promoting effective neural communication.184

Beyond conscious and unconscious categories proposed here for the sake of brevity, important differences185
exist within categories of unconscious and conscious states (Brown et al., 2010; El Boustani and Destexhe,186
2010; Nghiem et al., 2018a). Unlike healthy wakefulness and sleep, epileptic networks display both187
excessively high conductance and strongly synchronized, regular dynamics (El Boustani and Destexhe,188
2010). Further, brain signals in coma are both low-amplitude and low-complexity, in contrast to high-189
amplitude signals observed in other unconscious states, but also to complex signals observed in conscious190
states (El Boustani and Destexhe, 2010). Such anomalous deviations from the overall trend of coordinated191
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changes in complexity and amplitude may illuminate mechanisms underlying disease-causing deviations192
from healthy brain states (Mackey and Glass, 1977).193

To characterize brain states, it has been useful to consider not only spontaneous dynamics but also patterns194
evoked by perturbations. It was found that macroscopic responsiveness highly depends on brain state and195
different patterns of responses are evoked in conscious versus unconscious states (Massimini et al., 2005).196
Such state-dependent responsiveness can also be seen at the level of local networks in vivo and in silico,197
for example in the different reliability of responses to perturbations given during Up and Down periods of198
slow waves (Reig et al., 2015; Zerlaut and Destexhe, 2017). In simulations, different responsiveness could199
be accounted for by three parameters: membrane voltage, voltage fluctuation amplitude, and membrane200
conductance (Reig et al., 2015). These parameters could be well described by mean-field models (di Volo201
et al., 2019), able to capture fundamental properties of spontaneous dynamics and also state-dependent202
responses at mesoscales. As such, the data-driven connection of such mean field models may serve as203
natural candidates for modeling the emergence of mesoscopic and macroscopic-scale patterns.204

Transient collapses of dimensionality found in encoding networks were also discussed as substrates205
potentially supporting neural codes. Such collapses in complexity have been observed in active ensembles206
at scales spanning microscopic (Churchland et al., 2010; Fairhall, 2019) to macroscopic (Quiroga et al.,207
2001; Zang et al., 2004) activity. This echoes recent work studying recordings of neural populations which208
highlighted that neural representations of stimuli may lie on low-dimensional manifolds (Gallego et al.,209
2017; Stringer et al., 2019; Chaudhuri et al., 2019; Sadtler et al., 2014; Golub et al., 2018; Chaudhuri210
et al., 2019; Churchland et al., 2012; Zhao and Park, 2017; Recanatesi et al., 2019). Indeed neurons do211
not fire independently, which would yield dynamics of dimensionality as high as the number of neurons,212
but instead follow constrained trajectories of activity that can be captured by descriptions of much lower213
dimensionality that depend on spontaneous and evoked dynamics. For example, a neural population firing214
in synchrony could be fully described by a periodic orbit trajectory constrained to a low-dimensional space215
(Churchland et al., 2012). Since spontaneous global network activity increases in dimensionality during216
conscious states, we ask whether the transient collapse of complexity in specific networks, translating the217
emergence of simpler dynamical structures from disorder, may be associated to neural codes.218

As an analogy, windmills facing all in one direction display low complexity, but can only be synchronously219
active or inactive. Windmills facing in random directions, in contrast, are a higher complexity configuration220
able to represent wind from any direction through the activity of a subset. The activity of an ensemble221
of windmills tuned to a particular direction of wind could represent a collapse of complexity and the222
generation of information by that subset (in this case, about the direction of wind). Similarly, enhanced223
dimensionality associated with conscious states could subserve neural information through the collapse of224
complexity in neural assemblies tuned to encode particular representations.225
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Figure 1. Complex dynamics associated with conscious brain states provide a potential substrate for
neural coding. A Schematics of spontaneous (top) and evoked (bottom) dynamics in connected neuronal
assemblies encoding different related concepts (different colors) in unconscious (left) and conscious
(right) brain states. In unconscious brain states, slow, synchronous, large amplitude oscillations are
observed. Stimuli delivered during unconscious states evoke large amplitude, transient responses similar to
spontaneous activity. In contrast, during conscious states, asynchronous, irregular firing of neurons results
in macroscopically desynchronized, low amplitude signals. Only networks recruited by the perturbation
(here, a rabbit) produce lower-dimensional patterns that propagate relatively further in time and space. B
Global mean field power (GMFP) recorded with EEG in response to transcranial magnetic stimulation,
during deep, non-rapid eye movement (NREM) sleep versus wakefulness. Mean EEG signal is represented
by black traces. Background colors represent temporal latency (light blue, 0 ms; red, 300ms) of maximum
current sources, also shown in cortical space on the right, where yellow crosses represent the location
of stimulation (right dorsolateral premotor cortex). Reprinted with permission from AAAS (Massimini
et al., 2005). If brain dynamics between states may be described in analogy to states of matter, perturbing
unconscious brains results in large, brief signals perhaps akin to a small perturbation of a solid, which
can displace the solid briefly, but will not modify its internal structure. In contrast, the same perturbation
delivered during conscious, liquid-like brain states results in smaller but more complex patterns that
propagate further in time and space. Under this interpretation, in coding networks, responses evoked during
conscious states could represent a form of transient ’crystallization’, consistent with neural trajectories
lying on low-dimensional manifolds.
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Figure 2. Simple, high-amplitude signals in unconscious brain states are associated with
synchronous regular neuronal firing, whereas complex, low-amplitude signals in conscious brain
states emerge from asynchronous irregular firing. A Data sample from (Peyrache et al., 2012;
Le Van Quyen et al., 2016; Teleńczuk et al., 2017; Dehghani et al., 2016; Nghiem et al., 2018b),
containing local field potential (LFP; top), spike times (action potentials; middle), and spike counts
(bottom) recorded from a human subject during NREM sleep (left) and wakefulness (right). Spikes from
inhibitory (orange) and excitatory (blue) neurons were separated and spike counts were calculated in bins
of 5ms. Up states shaded in the left panel. B Transition between slow-wave (unconscious) and activated
(conscious) state dynamics in vivo (top) and in silico (bottom). Experimentally the transition is generated by
electrical stimulation of acetylcholine neurons in the pedunculopontine tegmentum (PPT) in anesthetized
cat (Volgushev et al., 2011), triggering awake-like, desynchronized dynamics in cortex (Rudolph et al.,
2005). A prominent consequence of enhancing cholinergic signaling in cortex is a reduction of spike-
frequency adaptation (McCormick, 1992). In silico, a similarly desynchronizing effect can be generated by
reducing the parameter responsible for spike-frequency adaptation. Simulated traces shown in the bottom
were modified from (Destexhe, 2009), which used a network of adaptive exponential integrate-and-fire
neurons. The average Vm of the network, the Vm of a randomly chosen neuron, and the raster plot of the
network are shown. Reproduced with permission from (Destexhe, 2009). C State dependence of network
responsiveness. The responsiveness of two spiking networks to a sinusoidal pulse is shown. Raster plots
display spike times of excitatory (blue) and inhibitory (orange) neurons connected by voltage-dependent
synapses. Population activity (spike counts, thin line), as well as mean (thick line), and standard deviation
(shaded area) of population firing rate generated by a mean field model developed in (di Volo et al.,
2019). Responsiveness is found to vary between levels of conductance, obtained by changing the ratio
of the time-averaged global excitatory conductance (GE) (Destexhe et al., 2003) to membrane leakage
conductance (GL) from low (top) to high values (bottom).
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