
HAL Id: hal-02506265
https://hal.science/hal-02506265

Submitted on 12 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rigorous derivation of the Fick cross-diffusion system
from the multi-species Boltzmann equation in the

diffusive scaling
Marc Briant, Bérénice Grec

To cite this version:
Marc Briant, Bérénice Grec. Rigorous derivation of the Fick cross-diffusion system from the
multi-species Boltzmann equation in the diffusive scaling. Asymptotic Analysis, 2023, pp.1-26.
�10.3233/ASY-231847�. �hal-02506265�

https://hal.science/hal-02506265
https://hal.archives-ouvertes.fr


RIGOROUS DERIVATION OF THE FICK CROSS-DIFFUSION
SYSTEM FROM THE MULTI-SPECIES BOLTZMANN EQUATION

IN THE DIFFUSIVE SCALING

MARC BRIANT, BÉRÉNICE GREC

Abstract. We present the arising of the Fick cross-diffusion system of equa-
tions for fluid mixtures from the multi-species Boltzmann in a rigorous manner
in Sobolev spaces. To this end, we formally show that, in a diffusive scaling, the
hydrodynamical limit of the kinetic system is the Fick model supplemented with
a closure relation and we give explicit formulae for the macroscopic diffusion co-
efficients from the Boltzmann collision operator. Then, we provide a perturbative
Cauchy theory in Sobolev spaces for the constructed Fick system, which turns out
to be a dilated parabolic equation. We finally prove the stability of the system in
the Boltzmann equation, ensuring a rigorous derivation between the two models.

Keywords: Multispecies Boltzmann equation; Gaseous and fluid mixture; Fick’s
equation; Perturbative theory; Hydrodynamical limit; Knudsen number.
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1. Introduction

The derivation and the mathematical analysis of models describing gaseous mix-
tures at different scales is a very active field in the literature. Such models are
indeed widely used for different applications in physics and medicine, for example to
describe the air flow in the distal part of the lungs, or to model polluting particles
in the atmosphere. In order to describe a dilute gaseous mixture of N species, the
mesoscopic sale is appropriate, representing species i of the mixture by its distribu-
tion function Fi(t, x, v), depending on time t ∈ R+, position in the d-dimensional
torus x ∈ Td and velocity v ∈ Rd. Several kinetic models have been introduced
for mixtures [18], and we will here follow [26] and consider that each function Fi
satisfies a Boltzmann-like equation, involving mono-species and bi-species collision
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2 MARC BRIANT, BÉRÉNICE GREC

operators Qii and Qij, for any 1 6 i 6= j 6 N . As in the case of a mono-species
gas [28, 21, 1], a H-theorem can be established in the multi-species case [26] in the
isothermal setting, proving that the equilibrium states of the collision operators are
exactly Maxwellian distributions, with macroscopic observable quantities being the
concentration of each species ni(t, x), and a bulk velocity u(t, x).

We shall here focus on the diffusive fluid regime, meaning that both the Knudsen
number, representing the average number of collisions undergone by a particle in
a unit time, and the Mach number are small, taken to be equal to ε > 0 in our
study. This diffusive scaling leads to the following rescaled multi-species Boltzmann
equation for the distribution functions F ε

i

(1.1) ε∂tF
ε
i + v · ∇xF

ε
i =

1

ε

N∑
j=1

Qij(F
ε
i , F

ε
j ), 1 6 i 6 N.

A natural question is then to derive, formally and rigorously, a limit model of (1.1)
when ε tends to zero. This has first been done formally, in the context of mixtures,
both in the isothermal [15, 11] and in the non-isothermal setting [33]. Let us mention
that other scalings can be considered, in particular not assuming the Mach number
to be of order ε, leading to the Euler or the Navier-Stokes limit, which have been
intensively studied, both formally and rigorously, in the context of mono-species
gases (see for example [4, 5, 30]), and partially for mixtures [8, 7, 6, 17, 2].

An important question that rises during the formal derivation of a limit model
for (1.1) when ε tends to zero is the assumption made on the macroscopic velocities
of each species. Indeed, as we mentioned earlier, the equilibria of the multi-species
Boltzmann collision operator are Maxwellian distributions with a mutual bulk veloc-
ity to all species. However, in a rarefied regime, a natural assumption is to consider
that each species moves with its own velocity, independently of the possible diffusive
scaling chosen for the equation. Focusing henceforth on the isothermal setting, this is
what is done in the previous works [15, 34, 11], using for example a moment method
with the ansatz that the distribution functions of each species are local Maxwellian
distributions with different velocities (of order ε) for each species. This setting leads
to the Maxwell-Stefan equations, where the gradient of the concentration ∇xni of
each species is expressed through the so-called Maxwell-Stefan matrix as a function
of the macroscopic flux (niui)16i6N of all species.

Another approach is to consider that at the leading order, the species velocities
are all the same, which is the case when writing an Hilbert or a Chapman-Enskog
expansion of each distribution function F ε

i around an equilibrium of the collision
operator, that is a Maxwellian distribution with concentrations ni for each species,
and a bulk velocity. This is the point of view we chose in this paper. As we
shall see in the following, the limit system obtained in this case is the Fick one, in
which the macroscopic flux Ji of each species, defined as the moment of order 1 in
velocity of the correction at order ε, is related to the concentration gradients of all
species through the so-called Fick matrix. The Fick system, which expresses the
fluxes as functions of the concentration gradients, can be combined with the mass
conservation equations to get rid of the fluxes and obtain a standard cross-diffusion
equation [24, 25].

Despite their structural similarities, the Fick and Maxwell-Stefan systems are
not equivalent, since the two involved matrices are not invertible. Of course, using a
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closure relation (for example equimolar diffusion setting [10, 14, 35]) or using pseudo-
inversion [29], the two models can be linked. However, as we already stated, they
are not constructed using the same assumptions concerning the species velocities.
It has been proved in [12] that the Fick model can be seen as the limit of the
Maxwell-Stefan one in the stiff limit when all species velocities are equal (even in
the non-diffusive setting).

A natural issue is then to justify rigorously the formal convergence of the multi-
species Boltzmann equation towards these macroscopic diffusion systems (Fick or
Maxwell-Stefan). This falls into the wide literature concerning the hydrodynamical
limits of kinetic equations [38]. In the context of mixtures, it has been proved in [9]
that the Maxwell-Stefan model is stable for the Boltzmann multi-species equation,
ensuring a rigorous derivation of the Maxwell-Stefan system in a perturbative set-
ting. In their paper, the authors choose to consider perturbative solutions around a
Maxwellian whose fluid quantities solve the limit macroscopic system as in [19, 23],
and use hypocoercive strategy in the spirit of [37, 32, 16].

In this paper, we shall tackle the rigorous limit towards the Fick model in a per-
turbative setting as well, following the same ideas as in [9]. More precisely, we
first derive formally the Fick diffusion coefficients, and show that they are natu-
rally linked to the inverse of the linear Boltzmann operator. Next, we develop a
Cauchy theory for the Fick system in a perturbative setting, which is inherent to
the hydrodynamic limits in a dissipative regime. The Fick equation arising from
the Boltzmann equation is degenerate but unlike the Maxwell-Stefan model it is
not parabolic, due to the lack of symmetry of the Fick matrix. Standard parabolic
approaches fail in this context (see Remark 6.2). We shall exhibit a dilated parabol-
icity and solve it by intertwining a time and space rescaling. Lastly, the convergence
between the mesoscopic and the macroscopic model is proved by showing that the
Maxwellian whose concentrations satisfy the perturbed Fick system is a stable state
of order ε for the Boltzmann system.

The outline of the paper is the following. First, we describe in Section 2 the
kinetic multi-species setting, and state our main results. Then, in Section 3, we give
some properties of the inverse of the linear Boltzmann operator, and in particular a
spectral gap property for this operator, giving explicit expressions of the constants
(and specifically keeping track of their dependencies on the concentrations). After
deriving formally the Fick system from the Boltzmann one in Section 4, we will
prove some properties of the Fick matrix in Section 5. We will then be able to prove
a perturbative Cauchy theory for the Fick equation in Section 6, which will allow to
conclude the rigorous convergence in Section 7 thanks to a result established in [9].

2. Kinetic setting and statement of the main results

2.1. Kinetic description of the mixture. The mixture is considered to be a di-
lute gas composed of N different species of chemically non-reacting mono-atomic
particles. In order to avoid any confusion, vectors and vector-valued operators in
RN will be denoted by a bold symbol, whereas their components by the same in-
dexed symbol. For instance, W represents the vector or vector-valued operator
(W1, . . . ,WN). The multispecies Boltzmann operator is a vector-valued operator
Q(F) = (Q1(F), . . . , QN(F)) acting only on the velocity variable. For a vector-
valued function F(v) = (Fi(v))16i6N , the former operator is given for all 1 6 i 6 N
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by

Qi(F) =
N∑
j=1

Qij(Fi, Fj),

where Qij describes interactions between particles of either the same (i = j) or
different (i 6= j) species, which are local in time and space. It is given by

Qij(Fi, Fj)(v) =

∫
Rd×Sd−1

Bij (|v − v∗|, cos θ)
[
F ′iF

′∗
j − FiF ∗j

]
dv∗dσ, 1 6 i, j 6 N,

where we used the shorthands F ′i = Fi(v
′), Fi = Fi(v), F

′∗
j = Fj(v

′
∗) and F ∗j = Fj(v∗),

with the pre-collisional velocities v′ and v′∗ defined by
v′ =

1

mi +mj

(miv +mjv∗ +mj|v − v∗|σ)

v′∗ =
1

mi +mj

(miv +mjv∗ −mi|v − v∗|σ)
,

and cos θ = (v−v∗)·σ
|v−v∗| . The masses of species i and j are denoted respectively by mi > 0

and mj > 0. Note that these expressions imply that we deal with gases where only
binary elastic collisions occur (the mass mi of all molecules of species i remains the
same, since there is no reaction). More precisely, v′ and v′∗ are the velocities of two
molecules of species i and j before collision, which give post-collisional velocities v
and v∗ respectively, with conservation of momentum and kinetic energy:

miv +mjv∗ = miv
′ +mjv

′
∗,

1

2
mi |v|2 +

1

2
mj |v∗|2 =

1

2
mi |v′|2 +

1

2
mj |v′∗|

2
.

(2.1)

For the collision kernels, we assume that they satisfy standard assumptions stated
below in the multi-species setting [22, 17], which are also standard in the mono-
species case [3, 36] to obtain spectral properties for the linear operator.

(H1) The following symmetry property holds

Bij(|v − v∗|, cos θ) = Bji(|v − v∗|, cos θ), 1 6 i, j 6 N.

This assumption conveys the idea that collisions are micro-reversible.
(H2) The collision kernels decompose into the product of a kinetic part Φij ≥ 0

and an angular part bij ≥ 0

Bij(|v − v∗|, cos θ) = Φij(|v − v∗|)bij(cos θ), 1 6 i, j 6 N.

This assumption is used for the sake of clarity but covers a wide range of
physical applications.

(H3) The kinetic part has the form of hard or Maxwellian (γ = 0) potentials, i.e.
there exist CΦ

ij > 0, γ ∈ [0, 1] such that

Φij(|v − v∗|) = CΦ
ij |v − v∗|γ, 1 6 i, j 6 N.

It holds for collision kernels coming from interaction potentials which behave
like power-laws.
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(H4) For the angular part, we assume a strong form of Grad’s angular cutoff [31],
namely that there exist constants Cb1, Cb2 > 0 such that, for all 1 ≤ i, j ≤ N
and θ ∈ [0, π],

0 < bij(cos θ) ≤ Cb1| sin θ| | cos θ|, b′ij(cos θ) ≤ Cb2.

Furthermore,

Cb := min
1≤i≤N

inf
σ1,σ2∈Sd−1

∫
Sd−1

min
{
bii(σ1 · σ3), bii(σ2 · σ3)

}
dσ3 > 0.

This positivity assumption is satisfied by most physical models and is re-
quired to obtain an explicit spectral gap in the mono-species case [3, 36]
and is thus a prerequisite for having a spectral gap in the multi-species case
[17] (the boundedness of b′ij could however be relaxed but in that case the
spectral gap is not explicit [22]).

Using the standard changes of variables (v, v∗) 7→ (v′, v′∗) and (v, v∗) 7→ (v∗, v)
together with the symmetries of the collision operators (see [20, 21, 39] among others
and [26, 15, 22] in the multi-species setting), we recover the following weak forms for
any 1 6 i, j 6 N and any test functions ψi, ψj such that the following expressions
make sense∫

Rd
Qij(Fi, Fj)(v)ψi(v) dv =

∫
R2d×Sd−1

Bij(|v − v∗|, cos θ)FiF
∗
j (ψ′i − ψi) dσdvdv∗,

and

∫
Rd
Qij(Fi, Fj)(v)ψi(v) dv +

∫
Rd
Qji(Fj, Fi)(v)ψj(v) dv =

− 1

2

∫
R2d×Sd−1

Bij(|v − v∗|, cos θ)
(
F ′iF

∗
j − FiF ∗j

) (
ψ′i + ψ′∗j − ψi − ψ∗j

)
dσdvdv∗.

(2.2)

Thus, the relation

(2.3)
N∑

i,j=1

∫
Rd
Qij(Fi, Fj)(v)ψi(v) dv = 0

holds if and only if ψ(v) belongs to Span
{
e1, . . . , eN, v1m, v2m, v3m, |v|2 m

}
, where

ek stands for the kth unit vector in RN and m = (m1, . . . ,mN).
The operator Q = (Q1, . . . , QN) also satisfies a multi-species version of the clas-

sical H-theorem [26] which implies that any local equilibrium, i.e. any function
F = (F1, . . . , FN) being the maximum of the Boltzmann entropy, has the form of a
local Maxwellian, meaning that there exist functions nloc,i, 1 6 i 6 N , uloc and θloc

depending on t, x such that

∀1 6 i 6 N, Fi(t, x, v) = nloc,i(t, x)

(
mi

2πkBθloc(t, x)

)d/2
exp

[
−mi

|v − uloc(t, x)|2

2kBθloc(t, x)

]
,

where kB is the Boltzmann constant.
For each species we associate a local equilibrium Mi(t, x, v) that is related to the

multi-species Boltzmann operator (see [13, 15]), chosen with zero bulk velocity and
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temperature equal to 1 for simplicity. It is given, for any 1 6 i 6 N , by

(2.4) Mi(t, x, v) = ni(t, x)
(mi

2π

)d/2
e−mi

|v|2
2 , ∀(t, x, v) ∈ R+ × Td × Rd,

where the concentration of each species in the fluid is denoted by ni(t, x). In the
sequel, we shall use the notationM = (Mi)16i6N . Introducing the global Maxwellian
µ = (µi)16i6N , defined by

(2.5) µi(v) =
(mi

2π

)d/2
e−mi

|v|2
2
,

observe that Mi(t, x, v) = ni(t, x)µi(v).
We can associate to M a linearisation of the Boltzmann operator, namely L (f) =

(Li (f))16i6N , where

(2.6) Li(f) =
N∑
j=1

Lij(f), 1 ≤ i ≤ N,

with

Lij(f) = Qij (Mi, fj) +Qij (fi,Mj)

=

∫
Rd×Sd−1

Bij(|v − v∗|, cos θ)
(
M ′∗

j f
′
i +M ′

if
′∗
j −M∗

j fi −Mif
∗
j

)
dv∗dσ.

(2.7)

The operator L can be written under the form L = −ν(v)+K, where K is a com-

pact operator and ν = (νi)16i6N is the collision frequency, with νi(v) =
∑N

j=1 νij(v),
and

(2.8) νij(v) = CΦ
ij

∫
Rd×Sd−1

bij(cos θ)|v − v∗|γMj(v∗) dv∗dσ.

2.2. Main results. In order to state our main results, let us define some notations.
We define the Euclidian scalar product in RN weighted by a vector W by

〈f ,g〉W =
N∑
i=1

figiWi.

In the case W = 1 = (1, . . . , 1) we may omit the index 1. For function spaces, we
index the space by the name of the concerned variable, so that, for p in [1,+∞]

Lp[0,T ] = Lp ([0, T ]) , Lpt = Lp
(
R+
)
, Lpx = Lp

(
Td
)
, Lpv = Lp

(
Rd
)
.

For W = (W1, . . . ,WN) : Rd −→ R+ a strictly positive measurable function in v,
we will use the following vector-valued weighted Lebesgue spaces defined by their
norms

‖f‖Lpv(W) =

(
N∑
i=1

‖fi‖2
Lpv(Wi)

)1/2

, ‖fi‖Lpv(Wi)
= ‖fiWi(v)‖Lpv ,

‖f‖Lpx,v(W) =

(
N∑
i=1

‖fi‖2
Lpx,v(Wi)

)1/2

, ‖fi‖Lpx,v(Wi)
= ‖‖fi‖LpxWi(v)‖

Lpv
,

‖f‖L∞x,v(W) =
N∑
i=1

‖fi‖L∞x,v(Wi)
, ‖fi‖L∞x,v(Wi)

= sup
(x,v)∈Td×Rd

(
|fi(x, v)|Wi(v)

)
.
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Note that L2
v(W) and L2

x,v(W) are Hilbert spaces with respect to the scalar products

〈f ,g〉L2
v(W) =

N∑
i=1

〈fi, gi〉L2
v(Wi) =

N∑
i=1

∫
Rd
figiW

2
i dv,

〈f ,g〉L2
x,v(W) =

N∑
i=1

〈fi, gi〉L2
x,v(Wi) =

N∑
i=1

∫
Td×Rd

figiW
2
i dxdv.

One can construct a Fick cross-diffusion matrix A(n) from the Boltzmann colli-
sion operator, see Section 4 for the construction and an explicit formula (4.5). One
expects some perturbative solution to the multispecies Boltzmann equation to con-
verge to the Fick system in the sense of their hydrodynamic quantities. Provided one
can construct perturbative solutions to the Fick system of the form n = n∞ + εñ,
the next theorem states that the Fick Maxwellian

(2.9) ∀(t, x, v) ∈ R+ × Td × Rd, Mε(t, x, v) = (n∞ + εñ(t, x))µ(v)

is a stable state of order ε of the Boltzmann system, which shows the hydrodynamic
limit from Boltzmann multispecies to the Fick system.

Theorem 2.1. Let nε(t, x) = n∞ + ñ(t, x) be a perturbative solution of the Fick
system (constructed in Theorem 2.3), which defines the Maxwellian Mε(t, x, v) =
nε(t, x)µ(v). Assume (H1) − (H2) − (H3) − (H4) are satisfied on the collision
kernel and that s > d/2. There exist real numbers δfluid, δB > 0 such that, if the
initial datum F(in) satisfies

(i)
∥∥ñ(in)

∥∥
Hs+2
x
6 δfluid,

(ii) f (in) ∈ Hs
ε with

∥∥f (in)
∥∥
Hsε
6 δB and

∣∣∣∣∫
Td
πL(f (in))dx

∣∣∣∣ 6 δfluid, where πL is

the orthogonal projection in L2
v(µ

−1/2) onto Ker(L) (see Subsection 3.1),

then the multispecies Boltzmann equation (1.1) possesses a unique global perturbative
solution Fε(t, x, v) = Mε(t, x) + εf ε(t, x, v) > 0, with f ε ∈ C0

(
R+;Hs

x,v

(
µ−1/2

))
.

Moreover, there exists a constant CB > 0 and a norm ‖·‖Hsε, equivalent to the
following weighted hypocoercive norm

‖·‖2
Hsε
∼ ‖·‖2

L2
x,v(µ−1/2) +

∑
|α|6s

‖∂αx ·‖
2
L2
x,v(µ−1/2) + ε2

∑
|α|+|β|6s
|β|>1

∥∥∂βv ∂αx ·∥∥2

L2
x,v(µ−1/2) ,

such that the solution to the Boltzmann equation (1.1) satisfies the following stability
property for all t > 0

‖Fε −Mε‖Hsε (t) 6 εCB.

All the constant are explicit and independent of ε.

Remark 2.2. It is important to note that the Hs
ε-norm does not display any ε-factors

in front of the norms of pure spatial derivatives. As the hydrodynamical limit only
concerns integration over the velocity variable it means that we indeed have a strong
convergence of ε

∫
Rd f ε(t, x, v)dv towards 0 in Hs

x as ε vanishes.
Moreover, we loose 2 steps of regularity between the fluid solutions n and the

solutions of the Boltzmann equation in Theorem 2.1. However, as we shall detail in
Remark 7.2, Theorem 2.1 could be rewritten with ñ(in) solely in Hs+1

x , and proved
with the same methodology, but working in L2

tHs
ε rather that L∞t Hs

ε.
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As we stated it before, the previous stability result relies on the construction
of a perturbative Cauchy theory around a stationary state for the associated Fick
equation

(2.10)


∂tn +∇x · (A(n)∇xn) = 0,
N∑
i=1

mini(t, x) =
N∑
i=1

min∞,i.

This is done in the following theorem.

Theorem 2.3. Let A : RN −→MdN,d(R) be the Fick matrix (defined in Section 4).
Let s > d/2 be an integer, let δ > 0 and n∞ > 0. There exist δs > 0 and λs > 0
such that, if the initial datum ñ(in) satisfies

(i) ∀x ∈ Td, n∞ + ñ(in)(x) > δ and

∫
Td

ñ(in)(x)dx = 0,

(ii) ∀x ∈ Td,
N∑
i=1

miñ
(in)
i (x) = 0,

(iii)
∥∥ñ(in)

∥∥
Hs
x
6 δs,

then there exists a unique solution n(t, x) = n∞+ ñ(t, x) on R+ to the Fick equation
(2.10). Moreover, it satisfies, for any t > 0

(a) ∀x ∈ Td, n∞ + ñ(t, x) > δ and

∫
Td

ñ(t, x)dx = 0;

(b) ‖ñ(t)‖Hs
x
6
∥∥∥ñ(in)

∥∥∥
Hs
x

e−λst.

The constants δs and λs only depend on s and δ.

Remark 2.4. Observe that imposing a mean-free property on ñ(in) is not necessary
and is only used for convenience. In the case of a non-zero mean initial perturbation
the same arguments would just apply with initial datum

n∞ + ñ(in) −
∫
Td

ñ(in)(x)dx.

Moreover, the uniqueness is only to be understood in a perturbative sense, which
means among the solution of the form n∞ + ñ where the perturbation ñ remains
small in Hs

x.

3. Properties of the inverse of the linear Boltzmann operator

The Fick matrix will involve the inverse of the multispecies linear Boltzmann
operator. Let us therefore first describe how the latter is defined and obtain explicit
bounds, depending on the concentration of each species ni(t, x). Because the linear
Boltzmann operator only acts on the velocity variable, the results stated in this
section are local in (t, x) and for the sake of readability, we do not write down the
(t, x)-dependences.

3.1. Well-posedness, boundedness and spectral gap. We start with a descrip-
tion of some well-known properties [13, 15, 17] of the multi-species Boltzmann op-
erator. We recall the definition (2.6)-(2.7) of L. Of course, the case of exactly N
species only makes sense if all the ni are positive. Indeed, if one ni is zero, then we
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only have N − 1 species and the following holds with N replaced by N − 1. We thus
assume in the following that min

16i6N
{ni} > 0.

From [22, 17], L is a self-adjoint operator in L2
v(M

−1/2) with 〈f ,L(f)〉L2
v(M−1/2) = 0

if and only if f belongs to Ker(L), where Ker (L) is spanned by the functions φi,
1 6 i 6 N + d+ 1, with

(3.1)



φk(v) =
1
√
nk

Mkek, 1 6 k 6 N,

φk(v) =
vk−N(

N∑
i=1

mini

)1/2
(miMi)16i6N , N + 1 6 k 6 N + d,

φN+d+1(v) =
1(

N∑
i=1

ni

)1/2

(
|v|2 − dm−1

i√
2d

miMi

)
16i6N

.

with the notation ek = (δik)16i6N . These functions (φi)16i6N+d+1 form an orthonor-

mal basis of Ker(L) in L2
v(M

−1/2). Let us denote πL the orthogonal projection onto

Ker(L) in L2
v(M

−1/2)

πL(f) =
N+d+1∑
k=1

(∫
Rd
〈f(v),φk(v)〉L2

v(M−1/2) dv

)
φk(v).

An important property of the operator L is that it is non-positive. This translates
into the following spectral gap result proved in [17]

Proposition 3.1. The operator L is a closed self-adjoint operator in L2
v(M

−1/2)
and there exists λL > 0 such that

∀f ∈ L2
v(M

−1/2), 〈f ,L (f)〉L2
v(M−1/2) 6 −λL ‖f − πL (f)‖2

L2
v(M−1/2) ,

and there exists CL > 0 such that

∀f ∈ L2
v(M

−1/2), ‖L(f)‖L2
v(M−1/2) 6 CL ‖f‖L2

v(M−1/2) .

Thanks to the above proposition we can define L−1 on Ker(L)⊥ = Im(L) and we
have the following proposition on L−1.

Proposition 3.2. The operator L−1 is a self-adjoint operator in Ker(L)⊥ and for

any h in (Ker(L))⊥ = Im(L) the following holds

(i)
∥∥L−1(h)

∥∥
L2
v(M−1/2)

6
1

λL
‖h‖L2

v(M−1/2);

(ii)
〈
h,L−1 (h)

〉
L2
v(M−1/2)

6 −λL
C2
L

‖h‖2
L2
v(M−1/2);

where λL, CL > 0 have been defined in Proposition 3.1.

Proof of Proposition 3.2. The proof is a direct application of the spectral gap prop-
erty of L (Proposition 3.1). Indeed, applying Cauchy-Schwarz inequality yields, for
all f in Ker(L)⊥

−‖f‖L2
v(M−1/2) ‖L(f)‖L2

v(M−1/2) 6 −λL ‖f‖L2
v(M−1/2) ,
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so that

‖f‖L2
v(M−1/2) 6

1

λL
‖L(f)‖L2

v(M−1/2) ,

which is (i) taking f = L−1(h).
The spectral gap property (ii) comes first from the boundedness of L (Proposi-

tion 3.1) for f = L−1(h) which translates into a coercivity property of L

‖h‖2
L2
v(M−1/2) 6 C2

L

∥∥L−1(h)
∥∥2

L2
v(M−1/2)

,

which we plug into the spectral gap inequality satisfied by L. �

Remark 3.3. The spectral gap result on L actually holds in a more regular space,

which therefore translates onto L−1. Defining the shorthand notation 〈v〉 =
√

1 + |v|2,

we have, for any f ∈ L2
v(M

−1/2)

〈f ,L (f)〉L2
v(M−1/2) 6 −λL ‖f − πL (f)‖2

L2
v(〈v〉γ/2M−1/2) ,

‖L(f)‖L2
v(M−1/2) 6 CL ‖f‖L2

v(〈v〉γ/2M−1/2) ,

and, for any h ∈ Ker(L)⊥,∥∥L−1(h)
∥∥
L2
v(〈v〉γ/2M−1/2) 6

1

λL
‖h‖L2

v(M−1/2) .

3.2. Explicit dependencies on the concentrations. In order to derive estimates
on (ni(t, x))16i6N for the Fick system it is of core importance to find out the depen-
dencies of λL and CL, defined in Proposition 3.1, on n.

We start with λL and we recall that the linear Boltzmann operator is an operator
from L2

v(M ) to L2
v(M ) defined as L(f) = (L1(f), . . . , LN(f)) given by (2.6)–(2.7).

We shall follow the decomposition introduced in [22, 17], which reads

(3.2) L = Lm + Lb with


Lmi = Lii(fi)

Lbi =
∑
j 6=i

Lij(fi, fj).

Physically, Lm encodes all the inner interactions within a unique species whereas
Lb takes care of all the bi-species interactions. Of important note is the fact that
the basis of most of the works on the Boltzmann equation in perturbative settings
require a stronger form of spectral gap for the linear operator. Namely, one needs
a coercivity estimate with a gain of weight ν(v), the collision frequency. If this is
of core importance when solving the Boltzmann equation, it would however give a
suboptimal negative property for the Fick matrix we are about to build up, and we
therefore only derive a standard spectral gap for L. We thus mimick the proof of
[17] to give a standard spectral gap result. This allows to derive a larger negative
feedback, as one can see in the case of mono-species linear operator [3, 36].

The special case of mono-species operators. Since the operators Lii rep-
resent the interactions happening inside each species individually, they are mono-
species Boltzmann linear operators. Such operators have an explicit spectral gap.

In the case when linearizing around the normalized Maxwellian µ0 = 1
(2π)d/2

e−
|v|2
2 ,

then the spectral gap of the linear Boltzmann operator L0 has been computed in [3,
Theorem 1.1].
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Theorem 3.4 (Spectral gap for L0). Let B = Φ(|v − v∗|)b(cos θ) be a collision
kernel for particles of mass 1 and satisfying

(i) ∃R, cΦ > 0, ∀r > R, Φ(r) > cΦ;

(ii) cb := inf
σ1,σ2∈Sd−1

∫
Sd−1

min
{
b(σ1 · σ3), b(σ2 · σ3)

}
dσ3 > 0.

Then, for any h in L2
v(µ
−1/2
0 ), the following holds

〈h, L0(h)〉
L2
v(µ
−1/2
0 )

6 −λ0(cΦ, cb, R) ‖h− πL0(h)‖2

L2
v(µ
−1/2
0 )

where the spectral gap λ0 is given by

(3.3) λ0(cΦ, cb, R) =
cΦcbe

−4R2

96
.

We now would like to apply the theorem above in the case of a more general
Maxwellian Mi which leads to a linear Boltzmann operator Lii. This is the purpose
of the following corollary.

Corollary 3.5 (Spectral gap for Lii). For any h in L2
v(M

−1/2
i ), the following holds

〈h, Lii(h)〉
L2
v(M

−1/2
i )

6 −λi ‖h− πLii(h)‖2

L2
v(M

−1/2
i )

,

where the spectral gap depends on λ0 defined by (3.3) and is given by

(3.4) λi =
λ0(cΦ,i, cb,i, Ri)

m
γ/2
i

.

Proof of Corollary 3.5. We come back to the explicit definition of Lii and write

〈h, Lii(h)〉
L2
v(M

−1/2
i )

= −1

4

∫
R2d×Sd−1

Bii(|v − v∗|, cos θ)MiM
∗
i[(

h

Mi

)′∗
+

(
h

Mi

)′
−
(
h

Mi

)∗
−
(
h

Mi

)]
dvdv∗dσ.

Applying the change of variable (
√
miv,

√
miv∗) 7→ (w,w∗) mapsMi(v) to nim

d/2
i µ0(w)

and v′ into m
−1/2
i w′ (same for v′∗ and w′∗), where w′ and w′∗ are the pre-collisional

velocities giving w and w∗ after a collision between particles of mass 1. More-

over, Φ(|v − v∗|) becomes m
−γ/2
i Φ(|w − w∗|) thanks to hypothesis (H3). Denoting

h̃(w) = h(w/
√
mi) yields

〈h, Lii(h)〉
L2
v(M

−1/2
i )

=
ni

m
γ/2
i

〈h̃, L0(h̃)〉
L2
v(µ
−1/2
0 )

which implies, after applying Theorem 3.4

〈h, Lii(h)〉
L2
v(M

−1/2
i )

6 − ni

m
γ/2
i

λ0(cΦ,i, cb,i, Ri)

∫
Rd
h

(
w
√
mi

)2

µ0(w)dw

6 −λ0(cΦ,i, cb,i, Ri)

m
γ/2
i

‖h‖2
L2
v(Mi)

,

where we made the change of variable w 7→ √miv. This concludes the proof. �
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The general case of multi-species operators. Given concentrations n and
masses m, we associate the total concentration c∞(n) and total density ρ∞(n) de-
fined by

(3.5) c∞(n) =
N∑
i=1

ni et ρ∞(m,n) =
N∑
i=1

mini.

Proposition 3.6. The spectral gap λL of L is given by

(3.6) λL =
Λ(m,n)η0

20N max {ρ∞(m,n), 6c∞(n)}

where c∞(n) and ρ∞(m,n) are defined in (3.5), λi in (3.4), Λ(m,n) in (3.8) and
η0 in (3.9).

Proof. We recall the decomposition (3.2) for the linear operator L. Thanks to Corol-
lary 3.5 we can estimate the mono-species part in the following way

〈f ,Lm(f)〉L2
v(M−1/2) =

N∑
i=1

〈fi, Lii(fi)〉L2
v(M

−1/2
i )

6 −
N∑
i=1

λi ‖fi − πLii(fi)‖
2

L2
v(M

−1/2
i )

6 − min
16i6N

{λi} ‖f − πLm(f)‖2
L2
v(M−1/2) .(3.7)

Therefore, the constant C1 in [17, Lemma 3.4] is replaced by mini {λi}.
It remains to estimate the cross-interactions Lb. We closely follow the computa-

tions of [17, Proof of Theorem 3.3]. Note however that some constants are differ-

ent, since we do not work in the more regular space L2
v(ν

1/2M−1/2) but remain in

L2
v(M

−1/2). In [17], equation (3.23) is modified by changing 4η into 4ηmini infv {νi(v)}
and keeping the norm considered here. It also changes k0 in (3.24) of [17] into

10N maxk,`

∣∣∣〈Ψk,Ψ`〉L2
v(M−1/2)

∣∣∣, which is equal to 10N : indeed, the scalar product is

either 0 or 1 since (Ψ`)16`6(d+2)N is an orthonormal basis of Ker(Lm) in L2
v(M

−1/2).
We therefore obtain

〈f ,L(f)〉L2
v(M−1/2)

6 − Λ(m,n)η

20N max {ρ∞(m,n), 6c∞(n)}
‖f − πL(f)‖2

L2
v(M−1/2)

−
(

min
i
{λi} − 4ηmin

i
inf
v
{νi(v)} − Λ(m,n)η

10N max {ρ∞(m,n), 6c∞(n)}

)
‖f − πLm(f)‖2

L2
v(M−1/2) ,

where

(3.8) Λ(m,n) =
1

4
min

1≤i,j≤n

∫
R2d×Sd−1

m2
iBij(|v − v∗| , σ)

min

{
1

3
|v − v′|2, (|v′|2 − |v|2)2

}
MiM

∗
j dvdv∗dσ,
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and η ∈ (0, 1] is chosen less or equal than η0 defined by

(3.9) η0 = min

{
1,

10N min
i
{λi}max {ρ∞(m,n), 6c∞(n)}

C2 + 40N max {ρ∞(m,n), 6c∞(n)}min
i

inf
v
{νi(v)}

}
in order to guarantee the positivity of the parenthesis in front of ‖f − πLm(f)‖2

L2
v(M−1/2).

This yields the claimed explicit value for the spectral gap λL of L. �

It remains to give an explicit estimate for CL, defined in Proposition 3.1.

Proposition 3.7. There exists C0(m) > 0 such that the boundedness constant CL
of L is given by

(3.10) CL = C0(m) max
16i6n

|ni| .

Proof. The proof is rather straightforward using the decomposition (3.2) of Li. In-
deed, Mi = niµi with µi independent of any nj. As L2-estimates on Qij leading to
boundedness properties of L have been obtained using direct triangular inequalities
[17], the result follows. �

4. Formal convergence of the Boltzmann equation to the Fick one

We will now derive formally the Fick equation as the hydrodynamical limit of
the multispecies Boltzmann equation in the diffusive scaling (1.1). Let us write the
following expansion, for 1 6 i 6 N

F ε
i = Mi + εf εi = niµi + εf εi ,

where the distribution functions F ε
i satisfy the Boltzmann equation with the diffusive

scaling (1.1).
We first obtain the mass conservation equation by integrating the equation on Rd

with respect to v, and keeping the first order terms (at order ε1), it leads to

(4.1) ∂tni +∇x · Ji = 0,

where the fluxes Ji are defined by

(4.2) Ji =

∫
Rd
f εi v dv.

Further, recalling that Q(M,M) = 0, we inject the above expansion in the Boltz-
mann equation and we keep the terms at order ε0 to write

µiv · ∇xni =
N∑
j=1

Qij(Mi, f
ε
j ) +Qij(f

ε
i ,Mj) = Li(f

ε).

Denoting W = (Wi)16i6N the vector defined by Wi = µiv · ∇xni, this relation
becomes Li(f

ε) = Wi for 1 6 i 6 N . On the condition that (µiv · ∇xni)16i6N

belongs to Ker(L)⊥ in L2
v (M), this equation can be rewritten in the vectorial form

f ε = L−1W. This condition means, by integrating against φk, defined in (3.1) for
N + 1 6 k 6 N + d, that for any 1 6 k 6 d,

0 =
N∑
i=1

∫
Rd
µiv · ∇xnivkmidv = ∂k

(
N∑
i=1

mini(t, x)

)
,
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which, in other terms, imposes

(4.3) ∀(t, x) ∈ R+ × Td, ∇x〈m,n(t, x)〉 = 0.

Then with f ε = L−1W, the k-th component of the flux (4.2) of species i can be
expressed, for 1 6 k 6 d and 1 6 i 6 N

J
(k)
i =

∫
Rd

[L−1W]ivk dv =

∫
Rd

[L−1W]iMivkM
−1
i dv

= ni〈C(i,k),L−1W〉L2
v(M−1/2),

where we defined the tensor C(i,k) = (µivkδij)16j6N .
The operator L−1 is self-adjoint on its domain (Ker(L))⊥. Since C(i,k) /∈ (Ker(L))⊥,

we have that

J
(k)
i = ni〈C(i,k) − πL(C(i,k)),L−1W〉L2

v(M−1/2)

= ni
〈
L−1

(
C(i,k) − πL(C(i,k))

)
,W

〉
L2
v(M−1/2)

=
N∑
j=1

ni

∫
Rd

[
L−1

(
C(i,k) − πL(C(i,k))

)]
j
WjM

−1
j dv.

We can compute Wj in the following way

Wj = µjv · ∇xnj =
d∑
`=1

µjv`∂x`nj =
d∑
`=1

C
(j,`)
j ∂x`nj.

Thus, the flux J
(k)
i becomes

J
(k)
i =

N∑
j=1

d∑
`=1

ni

∫
Rd

[
L−1

(
C(i,k) − πL(C(i,k))

)]
j
C

(j,`)
j ∂x`njM

−1
j dv

=
N∑
j=1

d∑
`=1

ni
〈
L−1

(
C(i,k) − πL(C(i,k))

)
,C(j,`)

〉
L2
v(M

−1/2
j )

∂x`nj.

Lemma 4.1. The quantities
〈
L−1

(
C(i,k) − πL(C(i,k))

)
,C(j,`)

〉
L2
v(M−1/2)

, defined for

1 6 k, ` 6 d and 1 6 i, j 6 N , satisfy the following properties:

(a)
〈
L−1

(
C(i,k) − πL(C(i,k))

)
,C(j,`)

〉
L2
v(M−1/2)

= 0 for any ` 6= k;

(b)
〈
L−1

(
C(i,k) − πL(C(i,k))

)
,C(j,k)

〉
L2
v(M−1/2)

is independent of k, and thus only

depends on i and j.

Proof. The idea of the proof is to use the result proved in [11, Prop. 1 and 2] for
coefficients of the same form but involving L instead of L−1. To this end, let

E = Vect
16i6N
16k6d

C(i,k),

which is of course of finite dimension, and consider Λ the restriction of L to E. We
have the following decomposition of

E = Vect
16k6d

φN+d ⊕ F,

where F = Im Λ ⊂ ImL. Thus, we can define Λ−1 : F → F , which of course
coincides with L−1 on F . Now, observe that for any 1 6 k 6 d and 1 6 i 6 N ,
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C(i,k) − πL(C(i,k)) ∈ F . This means that there exist D(i,k), for any 1 6 k 6 d and
1 6 i 6 N , such that Λ−1(C(i,k) − πL(C(i,k))) = D(i,k). This means that〈

L−1
(
C(i,k) − πL(C(i,k))

)
,C(j,`)

〉
L2
v(M−1/2)

=
〈
D(i,k),Λ(D(j,`))

〉
L2
v(M−1/2)

.

Since Λ and L coincide on F , using [11, Prop. 1 and 2], we know that these coef-
ficients are zero if k 6= `, and do not depend on k = `, which proves the claimed
result.

�

Finally, denoting, for any value of 1 6 k 6 d,

aij = ni
〈
L−1

(
C(i,k) − πL(C(i,k))

)
,C(j,k)

〉
L2
v(M−1/2)

,

we have

J
(k)
i =

N∑
j=1

aij∂xknj,

which means that the fluxes satisfy the vectorial relation

(4.4) J = A∇xn,

where J = (Ji)16i6N and A = (aij)16i,j6N . Recalling the definition of C(i,k) and
property (b) in Lemma 4.1, we can rewrite

(4.5) aij = ni〈L−1 (vµiei − πL(vµiei)) , vµjej − πL(vµjej)〉L2
v(M−1/2),

with v = 1
d
(v1 + · · ·+ vd), and thus the matrix A as

(4.6) A(n) = N(n)A(n)

where

Nij(n) = niδij and aij =
〈
L−1 (vµiei − πL(vµiei)) , vµjej− πL(vµjej)

〉
L2
v(M−1/2)

.

Of course, thanks to the symmetry invariance, v could be replaced by any coordinate
vi. Now, combining relation (4.4) with the mass conservation equation (4.1) leads
to the Fick equation

(4.7) ∂tn +∇x · (A(n)∇xn) = 0.

Let us emphasize that we have a priori preservation of mass by integrating over Td

∀i ∈ {1, . . . , N} , d

dt

∫
Td
ni(t, x)dx = 0,

which in turns implies

0 =
d

dt

(
N∑
i=1

mi

∫
Td
ni(t, x)dx

)
=

d

dt

∫
Td

(
N∑
i=1

mini(t, x)

)
dx.

The integrand being constant in x from (4.3), we conclude that it is also constant
in time. The limiting Fick equation must thus be supplemented with

(4.8) ∃CFick, ∀(t, x) ∈ R+ × Td,
N∑
i=1

mini(t, x) = CFick.



16 MARC BRIANT, BÉRÉNICE GREC

5. Properties of the Fick matrix

As for the linear Boltzmann operator, the Fick matrix is defined locally in time
and space, and for the sake of readability, we do not write down the dependences
on (t, x). However, we track down the explicit dependences on n = n(t, x) and m.
We recall the Fick matrix associated to N species is given by

A(n) = N(n)A(n)

where N(n) is the diagonal matrix diag(n1, . . . , nN) and A(n) is defined by

(5.1) A =

(〈
L−1 (vµiei − πL(vµiei)) , vµjej − πL(vµjej)

〉
L2
v(M−1/2)

)
16i,j6N

.

The goal of the present section is to understand if A is coercive outside its kernel.
It comes from the properties of the linear operator L−1 which exists when ni(t, x) >
n0 > 0. Moreover, since all ni are positive, N(n) is invertible.

Proposition 5.1. The matrix A is symmetric and Ker
(
A
)

= Span (nm).

Proof of Proposition 5.1. The symmetry property directly comes from the self-adjointness
of L−1 in L2

M−1/2 , Proposition 3.2.

Let us now consider X in Ker
(
A
)
. For all 1 6 i 6 N , we have

0 =
N∑
j=1

AijXj =
〈
L−1 (vµiei − πL(vµiei)) ,

N∑
j=1

Xj (vµjej − πL(vµjej))
〉
L2
v(M−1/2)

.

Summing over i the previous relation multiplied by Xi gives

〈L−1Y,Y〉L2
v(M−1/2) = 0

where Y =
N∑
j=1

Xj (vµjej − πL(vµjej)). The latter implies that Y belongs to Ker(L)

which is fulfilled if and only if X belongs to Span(nm). �

We define ΠA the orthogonal projection in RN on the kernel of A as well as its
orthogonal Π⊥A. For any X ∈ RN ,

(5.2) ΠA(X) = 〈nm,X〉 nm

|nm|
and Π⊥A(X) = X−ΠA(X).

Since A is symmetric, it has N real eigenvalues. We shall prove that they are all
negative and we give explicit bounds for these eigenvalues.

Proposition 5.2. The matrix A has N−1 nonzero eigenvalues denoted β1, . . . , βN−1.
Moreover there exists C1(m) > 0 such that, for any 1 6 i 6 N − 1,

(5.3) − λA(m,n) 6 βi < 0 where λA(m,n) =
C1(m)

min {ni}λL
,

and λL defined by (3.6) depends on (m,n). Moreover, there exists a function βmax :
R∗+ −→ R∗− such that if min

16i6N
{ni} > nmin > 0 then, for any 1 6 i 6 N − 1,

βi < βmax(nmin) < 0.
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Proof of Proposition 5.2. First, the eigenvalues of A are continuous functions of its
coefficients, themselves being continuous functions of m and n. Moreover, since the
kernel of A is of dimension exactly 1, the βi cannot change sign for varying n and m.
Besides, we observe that in the case mi = mj for all 1 6 i, j 6 N , implying µi = µj,
these eigenvalues are equals. Indeed, by definition of L−1 (one can also see it as
the core hypothesis in the Boltzmann model of indistinguishability of particles) we
see that all the non-diagonal coefficients are equal as well as all the diagonal ones.
Therefore, we infer βi = β for all 1 6 i 6 N − 1 and compute, using Proposition 3.2

(N − 1)β = Tr
(
A
)

= N
〈
L−1 (vµ1e1 − πL(vµ1e1)) , vµ1e1 − πL(vµ1e1)

〉
L2
v(M−1/2)

6 −N λL
C2
L

‖vµ1e1 − πL(vµ1e1)‖2
L2
v(M−1/2)

6 −N λL
max {ni}C2

L

‖vµ1e1 − πL(vµ1e1)‖2
L2
v(µ−1/2)

We thus deduce that the eigenvalues β1, . . . , βN−1 are all negative, for any values of n
and m. The existence of the continuous function βmax just comes from the continuity
of the eigenvalues with respect to the ni when there are all strictly positive.

Using Cauchy-Schwarz inequality and Proposition 3.2 we can bound the eigenval-
ues from below

0 > βi >
N∑
j=1

βj = Tr
(
A
)

=
N∑
j=1

〈
L−1 (vµjej − πL(vµjej)) , vµjej − πL(vµjej)

〉
L2
v(M−1/2)

> − 1

λL

N∑
j=1

‖vµjej − πL(vµjej)‖2
L2
v(M−1/2) > −

1

min {ni}λL

N∑
j=1

dj(m),

where we defined dj (m) = ‖vµjej − πL(vµjej)‖2
L2
v(µ−1/2) which is independent of n

and non-negative thanks to the definition of πL. Denoting C1(m) = max
16j6N

{dj(m)}
we obtain the desired lower bound. �

Further, we give some Sobolev estimates for the full matrix A.

Proposition 5.3. Let s > d/2 be an integer, let n∞, δm, δM > 0 and ñ(t, x) in Hs
x

such that
δm 6 n(t, x) = n∞ + ñ(t, x) 6 δM .

Then, for any multi-index |`| 6 s, there exists a continuous function P `
s with P `

s (0) =
0 for |`| > 1 and a constant C(s, δm, δM) > 0 such that

(5.4) ‖∂`A(n)‖L2
x
6 C(s, δm, δM)P `

s (‖ñ‖Hs
x
),

where ∂` denotes derivatives with respect to x.

Remark 5.4. The proposition above is not very precise as we do not explicitly
compute the function P `

s , which would be a tedious calculation to make, since the
exact expression of L−1 seems, at the very least, hard to explicit. It will however
prove itself sufficient to construct a perturbative Cauchy theory for the Fick equation,
the core feature being the fact that P `

s vanishes at 0.
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Proof of Proposition 5.3. For s > d/2, the Sobolev embedding Hs
x ⊂ L∞x implies

that the Hs
x-norm is an algebraic norm for product of functions. Further, observe

that the multispecies Boltzmann linear operator L around n(t, x) is a polynomial
in terms of n(t, x), and thus, for n(t, x) > 0, its inverse and its derivatives are
continuous in n. As a consequence, n 7→ A(n) is infinitely many times differentiable
on Rd \ {0}. Noticing that

∂` [A (n∞ + ñ(t, x))] = (∂`ñ(t, x)) · (∇nA (n∞ + ñ(t, x))) ,

we deduce (5.4) by continuity of ∇nA on the annulus δm 6 |n| 6 δM . �

6. Perturbative Cauchy theory for the Fick equation

We recall Fick equation defined by (4.7) supplemented with the closure relation
(4.8)

(6.1)

{
∂tn +∇x ·

(
N(n)A(n)∇xn

)
= 0

〈m,n〉 = CFick
.

Outside its kernel, we proved in Section 5 that the Fick matrix is strictly negative
as long as n > 0, thus endowing (6.1) with a standard degenerate nonlinear parabolic
structure, if it was not for the dilatation by N(n). Besides, A(n) is continuous in
n due to the continuity of L−1. The negativity of A(n) is continuously controlled
by min {ni} as shown in Proposition 5.2. The issue to obtain a complete Cauchy
theory reduces to preventing the appearance of a singularity, i.e. one of the ni(t, x)
vanishing for some (t, x). However, we are interested only in a perturbative regime
around a global equilibrium n∞ > 0, which means solutions of the form

n(t, x) = n∞ + ñ(t, x),

where ñ stands for a small perturbation. In this framework, if one controls the L∞

norm of ñ globally in time by a control of the form

∃C > 0, ‖ñ‖L∞t,x 6 C ‖ñ(0, ·)‖L∞x ,

then, for sufficiently small initial perturbation ñ(0, ·), one has

∀t > 0,∀x ∈ Td, n(t, x) >
1

2
n∞ > 0,

and the Fick operator ∇x · (A(n)∇x·) acts like a small perturbation of the uni-
formly elliptic operator ∇x · (A(n∞)∇x·) outside its kernel with a lower bound
βmax

(
1
2
n∞
)
> 0 (Proposition 5.2). As we shall see, the kernel part of a solution is

entirely determined by its value at initial time thus allowing to fully estimate the
solution a priori.

The perturbed equation reads

(6.2)

{
∂tñ +∇x ·

(
N∞A(n∞ + ñ)∇xñ

)
= −∇x ·

(
ÑA(n∞ + ñ)∇xñ

)
〈m, ñ〉 = 0

where we straightforwardly denoted N∞ = diag(n∞1, . . . , n∞N) and Ñ = diag(ñ1, . . . , ñN).
We prove the following a priori estimate.

Proposition 6.1. Let s > d/2 be an integer, let δ > 0 and n∞ > 0. There exist
δs > 0 and λs > 0 such that for any ñ(in) in Hs

x satisfying:
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(i) ∀x ∈ Td, n∞ + ñ(in)(x) > δ and

∫
Td

ñ(in)(x)dx = 0;

(ii) ∀x ∈ Td,
N∑
i=1

miñ
(in)
i (x) = 0;

(iii)
∥∥ñ(in)

∥∥
Hs
x
6 δs;

if n(t, x) = n∞ + ñ(t, x) is a solution on [0, Tmax) to the Fick equation (6.1) with
initial datum n∞ + ñ(in)(x), then for any t ∈ [0, Tmax), the following holds

(a) ∀x ∈ Td, n∞ + ñ(t, x) > δ and

∫
Td

ñ(t, x)dx = 0;

(b) ‖ñ(t)‖Hs
x
6
∥∥ñ(in)

∥∥
Hs
x
e−λst.

The constants δs and λs only depend on s and δ.

Proof of Proposition 6.1. The fact that ñ has zero mean directly comes from the
gradient form of the Fick equation. Furthermore, since we have the continuous
Sobolev embedding Hs

x ⊂ L∞x , the positivity follows directly from the control in Hs
x,

as long as δs is sufficiently small. We thus solely have to establish (c).

Remark 6.2. Due to the presence of N∞ it seems natural to work in the equivalent

norm L2
x

(
N∞

− 1
2

)
. However, even dropping the nonlinear terms, a direct estimate

yields

1

2

d

dt
‖ñ‖2

L2
x

(
N∞

− 1
2

) = 〈A∇xñ,∇xñ〉L2
x
6 −βmax(δ)

∥∥Π⊥A (∇xñ)
∥∥
L2
x
.

We do obtain a negative feedback but the kernel quantity

ΠA (∇xñ) = 〈nm,∇xñ〉
nm

|nm|
cannot be easily controlled because of the dilatation. Indeed, it is not constant and
it interacts with the orthogonal part, even at main order. Therefore, we cannot use
standard methods for degenerate parabolic equations.

Rescalings in time and space. The idea is thus to get rid of N∞ by other
means than working with a weighted norm. We shall see that a rescaling in time and
space transforms (6.2) into a degenerate parabolic equation for which the projection
onto the kernel remains constant in time. Let us define for α, β ∈ R the function
g = (gi)16i6N by

gi(t, x) = ñi

(
nα∞,it, n

β
∞,ix

)
, ∀(t, x) ∈ R+ ×

(
n−β∞ Td

)
.

The function g satisfies
(6.3) ∂tgi(t, x) +∇x ·

[
N∑
j=1

n1+α
∞,i

n2β
∞,j

aij (n∞ + g)∇xgj

]
= −∇x ·

[
N∑
j=1

nα∞,i

n2β
∞,j

giaij (n∞ + g)∇xgj

]
〈m,g〉 = 0.

Choosing 1+α = −2β now yields a symmetric matrix and thus a parabolic equation

for g. The new matrix

(
n1+α
∞,i

n2β
∞,j
aij

)
16i,j6N

is still degenerate. We have the following
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L2-estimate, using the spectral gap of A (Prop. 5.2)

1

2

d

dt
‖g‖2

L2
x

= 〈A∇x

(
n−2β∞ g

)
,∇x

(
n−2β∞ g

)
〉L2

x
+ 〈A∇x

(
n−2β∞ g

)
,g∇x (nα∞g)〉L2

x

6 −βmax(δ)
∥∥Π⊥A (∇xn

−2β
∞ g

)∥∥2

L2
x

+ 〈A∇x

(
n−2β∞ g

)
,g∇x (nα∞g)〉L2

x
.

(6.4)

The freedom we gained compared to Remark 6.2 is the power −2β. Indeed, we now
have

ΠA

(
∇xn

−2β
∞ g

)
= 〈(n∞ + g) m,∇x

(
n−2β∞ g

)
〉 (n∞ + g) m

|(n∞ + g) m|
,

and so, fixing 2β = 1, it remains

ΠA

(
∇xn

−2β
∞ g

)
= ∇x (〈m,g〉) (n∞ + g) m

(n∞ + g) m
+ 〈mg,∇x

(
n−1∞ g

)
〉 (n∞ + g) m

|(n∞ + g) m|

= 〈mg,∇x

(
n−1∞ g

)
〉 (n∞ + g) m

|(n∞ + g) m|
,

because of the second relation in (6.3). This implies that the projection ΠA

(
∇xn

−2β
∞ g

)
is now at lower order for small g

(6.5)

∥∥∥∥ΠA∇x

(
g

n∞

)∥∥∥∥
L2
x

6
max {mi}
min {n∞,i}

‖g‖L2
x
‖∇xg‖L2

x
.

We shall now prove an exponential decay for g which will imply (c).
Let us consider s > d/2. We shall denote by C any positive constant independent

of g. We use (6.4), (6.5) and Cauchy-Schwarz inequality to obtain an L2
x estimate

on g as follows

1

2

d

dt
‖g‖2

L2
x
6 −Cβmax(δ)

[
1− C ‖g‖2

L2
x

]
‖∇xg‖2

L2
x

+ CP 0
s (‖g‖Hs

x
) ‖g‖L∞x ‖∇xg‖2

L2
x

where we used Proposition 5.3 to control A. The Sobolev embedding Hs
x ⊂ L∞x

concludes

(6.6)
1

2

d

dt
‖g‖2

L2
x
6 −Cβmax(δ)

[
1− C

(
‖g‖Hs

x
+ P 0

s (‖g‖Hs
x
)
)
‖g‖Hs

x

]
‖∇xg‖2

L2
x
.

Let ` be a multi-index such that |`| 6 s and let us take the ∂`-derivative of (6.3)
and integrate against ∂`g. It yields

1

2

d

dt
‖∂`g‖2

L2
x

= 〈A∇x

(
∂`g

n∞

)
,∇x

(
∂`g

n∞

)
〉L2

x
+

∑
`1+`2=`
|`1|>1

〈∂`1A∇x

(
∂`2g

n∞

)
,∇x

(
∂`g

n∞

)
〉L2

x

+
∑

`1+`2+`3=`

〈∂`1A∇x

(
∂`2g

n∞

)
,

(
∂`3g

n∞

)
∇x

(
∂`g

n∞

)
〉L2

x
.

Since 〈m, ∂`g〉 = 0 we can copy the arguments of the L2
x-estimate for the first term

on the right-hand side. The last two terms are estimated using Cauchy-Schwarz
inequality, the Sobolev embedding Hs

x ⊂ L∞x (which implies that Hs
x is an algebraic

norm) and the Sobolev controls on A from Proposition 5.3 and lead to the following
estimate

1

2

d

dt
‖∂`g‖2

L2
x
6 −βmax(δ)

[
1− CPs(‖g‖Hs

x
)
]
‖∇x∂`g‖2

L2
x

+ Ps(‖g‖Hs
x
) ‖∇xg‖2

Hs
x
,
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where Ps is a continuous function satisfying Ps(0) = 0. Therefore, summing over
|`| 6 s, we get

(6.7)
1

2

d

dt
‖g‖2

Hs
x
6 −βmax(δ)

[
1− CPs(‖g‖Hs

x
)
]
‖∇xg‖2

Hs
x
.

To conclude, since Ps(0) = 0, there exists a ball B(0, η) centered at 0 and of radius
η > 0 such that for any x ∈ B(0, η), CPs(x) 6 1

2
. Thus, choosing g(in) such that∥∥g(in)

∥∥
Hs
x
∈ B(0, η), we ensure, using (6.7), that CPs(‖g‖Hs

x
) 6 1

2
at all times. This

implies that

∀t > 0,
1

2

d

dt
‖g‖2

Hs
x
6 −βmax(δ)

2
‖∇xg‖2

Hs
x
.

It remains to use assumption (i) which states that g has a zero integral over the
torus and we can thus apply Poincaré inequality

∀0 6 |`| 6 s, ‖∂`g‖L2
x
6 Cp ‖∇x∂`g‖L2

x
,

which yields

∀t > 0,
1

2

d

dt
‖g‖2

Hs
x
6 −Cp

βmax(δ)

2
‖g‖2

Hs
x
.

This concludes the proof thanks to Grönwall’s lemma.
�

7. Rigorous convergence towards the Fick equation

This section is devoted to the proof of the stability of the Fick Maxwellian

Mε(t, x, v) = (n∞ + εñ(t, x))µ(v)

for the multispecies Boltzmann equation.

Proof of Theorem 2.1. The theorem is a direct application of a recent theorem [9,
Th. 2.4], which we state below for the sake of readibility. In the following statement
we denote

Sε =
1

ε
∂tM

ε +
1

ε2
v · ∇xM

ε − 1

ε3
Q(Mε,Mε)

the source term coming from a local linearization in (1.1).

Theorem 7.1 (Th. 2.4 of [9]). Under the assumptions (H1)− (H2)− (H3)− (H4)
on the collision kernel, there exists an integer s0, some constants δfluid, δB, CB > 0,
ε ∈ (0, 1] and a norm

‖·‖2
Hsε
∼

 ∑
06|`|6s

∥∥∂`x·∥∥2

L2
x,v

(
µ−

1
2

) + ε2
∑

06|`|+|j|6s
|j|>1

∥∥∂`x∂jv·∥∥2

L2
x,v

(
µ−

1
2

)


such that, if we consider functions

(i) c(t, x) = c + εc̃(t, x) in Hs
x with ‖c̃‖L∞t Hs

x
6 δfluid;

(ii) u(t, x) = u(t, x) + εũ(t, x) in Hs−1
x with ∇x · u = 0 and ‖ũ‖L∞t Hs−1

x
6 δfluid;

(iii) a fluid Maxwellian M ε
i (t, x) = ci(t, x)

(mi

2π

) d
2
e−
|v−εui(t,x)|

2 such that∥∥π⊥L (Sε)
∥∥
Hsε

= O
(
δfluid

ε

)
and ‖πL (Sε)‖Hsε = O

(
δfluid

)
;
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(iv) f (in) in Hs
ε with

∥∥f (in)
∥∥
Hsε
6 δB and

∥∥∥∥∫
Td
πLµ(f (in))dx

∥∥∥∥
L2
x,v(µ−1/2)

= O
(
δfluid

)
where πLµ is the orthogonal projection in L2

v(µ
− 1

2 ) onto the kernel of Lµ the
Boltzmann operator linearized around the global equilibrium state µ;

Then the multispecies Boltzmann equation (1.1) with initial datum F(in) = Mε(0, x)+
εf (in)(x, v) > 0 possesses a unique perturbative solution Fε(t, x, v) = M(t, x) +

εf ε(t, x, v) > 0 with f ε belonging to C0
(
R+;Hs

x,v(µ
− 1

2 )
)

and it satisfies the stability

property
∀t > 0, ‖Fε −Mε‖Hsε (t) 6 εCB.

All the constant are explicit and independent of ε.

In the framework we consider here, assumption (i) is satisfied taking c = n∞,
c̃ = ñ and u = ũ = 0. Moreover we directly see that since, for u = 0, the state Mε

cancels the Boltzmann operator Q,

Sε =
1

ε
∂tM

ε +
1

ε2
v · ∇xM

ε − 1

ε3
Q(Mε,Mε) =

1

ε
∂tM

ε +
1

ε2
v · ∇xM

ε.

Moreover, we also have
πL (Sε) = 0.

It thus remains to prove the following estimate

(7.1)

∥∥∥∥∂tMε +
1

ε
v · ∇xM

ε

∥∥∥∥
Hsε

6 δfluid.

The definition of the Hs
ε-norm and the choice of Mε imply that, if there exists a

constant Cfluid > 0 such that

(7.2) ε ‖∂tñ‖Hs
x

+ ‖∇xñ‖Hs
x
6 Cfluidδfluid,

then the estimate (7.1) is satisfied.
From Theorem 2.3 with

∥∥ñ(in)
∥∥
Hs+1
x
6 Cfluidδfluid/2, we have that

(7.3) ∀t > 0, ‖∇xñ‖Hs
x
6 ‖ñ‖Hs+1

x
6
∥∥ñ(in)

∥∥
Hs+1
x

e−λs+1t 6
Cfluidδfluid

2
.

Moreover, in order to control ε ‖∂tñ‖Hs
x
, let us denote CA the constant (obtained

from Proposition 5.3) such that

‖A (n∞ + εñ)‖Hs+2
x
6 CA ‖ñ‖Hs+2

x
.

If we take
∥∥ñ(in)

∥∥
Hs+2
x
6
√
Cfluidδfluid/(2CA), it leads to

‖∂tñ‖Hs
x

= ‖∇x · [A (n∞ + εñ)∇xñ]‖Hs
x
6 CA ‖ñ‖2

Hs+2
x
6 CA

∥∥ñ(in)
∥∥2

Hs+2
x
6
Cfluidδfluid

2
.

Therefore, (7.2) is satisfied, and this concludes the proof of Theorem 2.1. �

Remark 7.2. We conclude this proof by indicating that the general result Theorem
7.1 could in fact be rewritten under a weaker form with local-in-time Hs

ε-norms
replaced by L2

[0,Tmax)Hs
ε. We refer explicitely to [9, Equation (3.36)] that one could

integrate in time. In that framework we would solely have to prove the following
control

ε ‖∂tñ‖L2
tH

s
x

+ ‖∇xñ‖L2
tH

s
x
6 Cfluidδfluid
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where the second term is already dealt with using (7.3). We saw in Section 6 that
ñ satisfies a nonlinear non-degenerate parobolic equation for which we know, see for
instance [27, Section 7], that

‖∂tñ‖L2
tH

s
x
6 C

∥∥ñ(in)
∥∥
Hs+1
x

and so we would obtain Theorem 2.1 for ñ(in) in Hs+1
x rather than Hs+2

x but the
solutions to the Boltzmann system would be weak in L2

tHs
ε.
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