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Abstract. A mechanobiological model of bone remodeling is developed involving mineralization in a moving diffuse interface 

separating the marrow containing the bone cells responsible for the remodeling from the newly formed bone. A scalar phase field 

quantifies the degree of mineralization within the interface at the level of the bone microstructure, varying continuously between 

the nil lower value (no mineral) and unity for the fully mineralized phase corresponding to new bone. The field equations for the 

mechanical, chemical, and interfacial phenomena are written under the umbrella of thermodynamics of irreversible processes. A 

strain gradient model is developed to account for the impact of the underlying hierarchical microstructure on the effective response 

of bone. Second gradient terms are motivated by the high strain and stress concentrations close to defects, both at mesoscopic and 

microscopic scales. The combination of the balance equations for the microforce associated to the phase field and the kinetic 

equations lead to the Ginzburg–Landau equation for by the phase field with a source term accounting for the dissipative 

microforce.  

 
Keywords: bone remodeling; phase field; diffuse interface; strain gradient effects; Ginzburg-Landau equation 

1. Introduction 

Bone microstructure is organized hierarchically to response to 

the demand of resistance to bending and strain applied on the 

skeleton (fig. 1).  

 

Figure 1: Hierarchical structure of bone from the nanoscale 

of the collagen and hydroxyapatite phases to the macroscale of 

osteons forming compact bone (Vaughan et al., 2012).  

This architecture provides a high resistance to fracture and 

contributes to limit and stabilize microcracks which are stopped 

for 60 % by the osteon (Bertram and Biewener, 1988; O’Brien et 

al. 2005). Bone is an organized mesh of collagen fibers and 

others non-collagenous proteins where hydroxyapatite crystals 

are forming to provide to the tissue its strength. The assemblage 

of ECM (the extracellular matrix) forms a lamellar bone 

structure where osteocytes are embedded and their assemblage 

forms the osteons. Within cortical bone these cylindrical 

structures are several millimeters long and around 0.2 mm in 

diameter. They are enclosed by a boundary called the cement 

line, a compliant interface responsible for a contrast in stiffness 

between osteons and bone (fig. 1). The bone remodeling is a 

cyclic adaptation process in response to variations in external 

loads and biochemical factors, involves three types of bone 

cells: osteoclasts, which resorb the old or damaged bone. 

Osteoblasts, which form new bone in the second phase; 

osteocytes, which are mechanosensing cells and formed an 

interconnected network that can be disrupted by microcracks. 

Osteocytes are inducing mechanotransduction pathways and 

orchestrate bone homeostasis (Parfitt, 1994; Sommerfeldt and 

Rubin, 2001). At the end of the remodeling process bone 

mineralization occurs in the diffuse interface separating the 

marrow from new bone (fig. 2). The interface thickness is of the 

order of 5.10-4 m (Ganghoffer et al., 2016).  

 
Figure 2: Schematic remodeling cycle including 4 main 

steps: healthy bone, initiation and development of damage 

(microcracks) under mechanical stresses, resorption, and new 

bone formation. The phase order parameter is represented in 1D 

as a function of spatial position x. 

 

Bone tissue is morphologically separated from the marrow by 

the bone lining cells for both cortical and trabecular bone. 

Works in the literature show that substantial size effects occur in 

the elastic behavior of bones at different levels of its 

ultrastructure and microstructure, namely at the scale of single 

osteons (Lakes, 1995), human compact bone (Frasca et al., 

1981; Yang and Lakes, 1981, 1982; Park and Lakes, 1986; 

Buechner and Lakes, 2003), and human trabecular bone 

(Harrigan et al., 1988; Ramezani et al., 2012). Size effects in 

osteons are caused by the compliant response of the interfaces 

between laminae that are responsible for bending (fig. 1). Since 

these hierarchical architectures are structurally inhomogeneous 

and show strong contrast in properties, they generate strain and 

stress internal gradients. The bone tissue stiffness is strongly 

dependent on the degree of mineralization (van der Linden et al., 

2001; van Eijden et al., 2004). Furthermore, since strain 
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gradients develop in inverse proportion of size, this entails that 

they can be small at the macrolevel although much larger at 

small scales, thus they would dominate the mechanical response 

and have a strong influence on coupled multiphysical 

phenomena. The presence of a strong texture within bones 

together with its inhomogeneous structures exhibiting radial 

porosity gradients and curved walls of the osteons that form 

tubular structures with concentric lamellae (fig. 1) enhances the 

strain gradients. In trabecular bone as well, the mechanical 

properties at continuum level vary by about 30% over a distance 

that spans three to five trabeculae thus requiring using enhanced 

continuum theories (Harrigan et al., 1988). It is therefore 

important to include these strain gradients into the formulation 

of a description of bone remodeling and as a possible trigger of 

the cell activity responsible for bone remodeling and bone 

growth.  

Surface and interface effects present in bone can be 

modeled in the framework of second-gradient theories of 

elasticity in line with the seminal work of Mindlin (1964), see 

(Eremeyev, 2015) and references therein. In particular, second-

gradient theories were developed for porous media like bone for 

which surface effects play a crucial role (Sciarra et al., 2007), 

and more recently in Giorgio et al. (2017), who proposed an 

approach including the porosity as an additional relevant 

microstructural variable. In contrast to these works, we shall 

develop a model at the scale of individual trabeculae in order to 

model the evolution of the interface between the marrow phase 

and newly apposed bone.  

 Surface effects (the sealing zone at the boundary of a 

single trabeculae or the cement line enclosing osteons) are able 

to predict the size effects observed for nanosized materials 

(Wang et al., 2006). Gurtin and Murdoch (1975a, b) model for 

surface effects was generalized in Steigmann and Ogden (1997, 

1999) to account for the bending stiffness of the surface layer. 

Recent work based on numerical simulations and a regression 

analysis (Webster et al., 2015) further indicate that the amount 

of resorbed bone is strongly correlated to the gradients of the 

strain energy density in the marrow and to the strain gradients 

within the trabecular matrix. Strong strain gradients may 

develop for instance at the interface between bone and an 

implant, but they in fact develop over the different imbricated 

scales up to the macroscopic bone level, due to the existence of 

defects (cavities, microcracks, localized damage zones), the 

strong contrast of properties between hard (mineralized bone) 

and soft components (the marrow phase).  

Our modeling scale is that of a window of analysis like the 

one shown on the left insert of Fig. 2, including microcracks 

generating high internal strain gradients, the marrow phase, the 

existing bone substrate and newly apposed bone. Phase field 

models have proven to be efficient in modeling the motion of 

interfaces and the growth of precipitates relying on a 

thermodynamic formulation including non-convex free energy 

potentials (Ammar et al., 2009; Forest et al, 2011) and 

references therein. The description of biological phenomena 

with the phase field approach is seemingly relatively new, 

especially in the field of bone remodeling. We incorporate as a 

novel aspect strain gradients into a (strain gradient) elastic 

constitutive model, wherein the effective first and second 

gradient mechanical properties will be modulated by the phase 

field variable. The diffuse interface between the marrow phase 

and the newly formed mineral witnesses strong deformation 

gradients due to the continuous change of mineral composition 

which makes the interface a graded material, the mechanical 

properties of which varying across the thickness.  

 

2. Phase field modeling: balance equations 

The degrees of freedom (DOFs) of the thermodynamic system 

consisting of a microvolume of cortical bone including 

microcracks and the marrow phase (fig. 1) includes the order 

parameter φ representing the phase field, its gradient ∇φ , the 

first gradient of the displacement �, the strain gradient tensor 

ε ⊗ ∇, the total number of moles k-species n� and the absolute 

temperature T; these variables are encapsulated into the vector 

of DOF’s �φ, ∇φ, � ⊗ ∇, ε ⊗ ∇, T 
. The phase field describes 

the degree of mineralization of the diffuse interface; it varies 

continuously between the lower value (no mineral) and unity 

(fully mineralized phase, e.g. new bone), allowing the 

consideration of a diffuse moving interface, Fig. 2. The gradient 

of the phase field rapidly varies in the diffuse interface between 

bone and marrow or due to the contrast of properties of the 

ultrastructure and it contributes to the corresponding interface 

energy.  

2.1. Strain gradient kinematics 

We define the first and second order kinematics over the 

composite domain made of the mineral and collagen fibers, 

adopting reasonably a small strains framework (maximum bone 

strains are of the order of 0.3% (Martin et al., 1998): the first 

and second gradient tensors ( )ε x and ( )k x are defined as 

follows: 

( ) ( ) ( )( )
( ) ( )

T
ij ji

ijk jik

1
: ,  

2

: k k

= ⊗ ∇ + ⊗ ∇ → ε = ε

= ⊗ ∇ → =

ε x U x U x

k x ε x

                 

(1) 

The kinematics is defined at the mesoscopic scale (including 

few lamellae for osteons) representing a small volume element 

including a microstructure within which remodeling phenomena 

occur. It makes then sense to define growth strains and second 

gradient of growth tensors representing the irreversible 

‘deformation’ due to the bone mass production and internal 

microstructure evolution. These mappings are in general non 

compatible, so they are accompanied by elastic mappings; this 

entails the following additive split of the total strain and strain 

rate tensors (time and space derivation commute): 

g e g eε ε ε ε ε ε= + ® = +& & &
                               (2) 

with g e
,ε ε  successively the growth and elastic mapping. The 

elastic ‘strain’, tensor 
e
ε  in (2), may have one chemical origin 

(hydrostatic term due to chemical reactions, thus associated to 

the phase field itself representing the degree of mineralization) 

and the accommodation of defects, especially in the vicinity of 

microcracks (a non-hydrostatic contribution), this last 

contribution fading with ongoing remodeling. At the scale of the 

RVE shown in fig. 2 for cortical bone and considering that 

remodeling occurs by apposition of mineral, it is accordingly a 

surface growth process described by a surface growth velocity 

field 
gV  (over the RVE boundary); in analogy with the equality, 

V V

grad dX dS
∂

= ⊗∫ ∫V V N , with N  the unit exterior normal to 
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the volume boundary V∂ , the average growth velocity gradient 

g
L  and its symmetrical part can be elaborated as the following 

surface integral  

( ) ( )
g

g

g g

g

T

1g g g g g g

g

1
: dS

1 1 1
: dS

2 2

∂Ω

∂Ω

= ⊗ ⇒
Ω

= + = ⊗ + ⊗ ≅
Ω

∫

∫

L V N

D L L V N N V ε&

     (3) 

with N  the unit exterior normal to the boundary of gΩ , the 

RVE volume isolated in fig. 2, including a substructure made of 

a set of lamellae within cortical bone and micro defects like 

microcracks, voids, microdamage. Note that the growth ‘strain‘ 

appears as a result of averaging microstructural evolutions, 

especially the surface evolution due to the apposition of mineral. 

Surface remodeling is here deemed as fully irreversible, so that 

the surface remodeling field is compatible. The last equality 

follows from the small strains rate assumption due to bone 

growth being a slow process (the remodeling cycle lasts about 3 

weeks). Due to this, one can further linearize the average strain 

rates and approximate them by their small strains rate 

counterparts (times derivatives and spatial derivatives 

commute): it thus holds the following approximations: 

g 1g e 11ee 1g
,   D ε D ε D ε ε ε@ @ ® @ = -& & & & &                      (4) 

Turning now to the second order average kinematics, the 

average second gradient rate of growth can be constructed as the 

following third order tensor defined by a surface averaging over 

the RVE: 

( )

( ) ( ) ( )
B

B

g g x

V

g x x g gijk ikj
V

1
: dS

V

1
dV

V

∂

= ⊗∇ ⊗ ≡

⊗ ∇ ⊗ ∇ → =

∫

∫

k V N

V k k

&

& &

                         (5) 

Recent works tend to prove the importance of curvature effects 

at the macroscopic level (Nowak et al., 2018). It is especially in 

line with the idea that surface remodeling will act to minimize 

stress gradients on the surface of either trabeculae or at the level 

of the outer boundary of a macroscopic bone sample.   

The second gradient elastic rate of deformation tensor is then 

elaborated as the difference between the total second gradient 

rate of deformation tensor and the (second gradient) rate of 

growth,   

2e e g:≅ = ⊗ ∇ −D k ε k& &&                    (6) 

wherein we have used the small strain rate assumption for the 

first equality (the subscript 2 in any tensor therein indicates a 

third order tensor representative of second gradient effects): 

This additive decomposition of second gradient rates of 

deformation directly entails by time integration the additive 

decomposition of the strain gradient tensor:        

e gk k k= +                     (7) 

The irreversible contribution g
k  may be also caused by damage 

like defects that are prone to strong spatial gradients, especially 

in the vicinity of interfaces or close to the microcrack tips, thus 

it could itself split into a defect part and a phase term. The total 

number of moles n� results from the production of the 

corresponding chemical species by chemical reactions n�
��
�

 and 

of exchanges with the external environment n����� - in the 

present case the bone marrow - as expressed in the balance law 

n� = n����� + n�
��
�

                             (8) 

The principle of virtual power states that the sum of the 

virtual power of internal, external and contact forces vanishes in 

a quasi-static situation, so that it holds the equality 

� p(�)
� dV + � p(�)

� dV + � p(�)
�� dS =0                               (9) 

The internal power of mechanical forces includes a contribution 

from the strain and the strain gradients; a proper form of the 

second gradient growth model is obtained from the expression 

of the local dissipation reflected by Clausius-Duhem inequality, 

adopting the framework of generalized standard materials. The 

effective material is characterized by a free energy density sum 

of elastic and growth contributions, each of them depending on 

the average first and second gradient of the elastic and growth 

deformation tensors 

( ) ( )e e e g g gψ ψ , ψ ,ε k ε k= +                                            (10)        

Note that the growth deformations are here considered as 

internal variables associated to a purely dissipative behavior. 

Using the additive split of the strain rate tensor in (2) and (7), 

the virtual power of internal forces writes after elementary 

calculations due to the introduced additive split of the average 

strain rates as  

i,mech e g e gp : := − − − ∴ − ∴σ ε σ ε S k S k& && &              (11) 

with ,  σ S  the Cauchy stress and hyperstress tensors, 

respectively a second order and a third order tensor. The 

hyperstress represents the internal moments of Cauchy stress 

with respect to a fixed point (the center of the RVE). The virtual 

power of external forces for the strain gradient continuum 

includes successively volumetric, surface, line and edge 

contributions: 

W f u dV T u dS R D u dS E u dSmech,ext k k k k k k k k

V S S C

δ = δ + δ + δ + δ∫ ∫ ∫ ∫
       (12) 

The quantities T ,R ,Ek k k  therein are respectively the surface 

tractions, the surface double tractions and the edge tractions; the 

quantity D ukδ  in (12) represents the normal derivative of the 

variation ukδ . The balance of linear momentum writes 

successively in tensor and index notation: 

( ) ( )div div( ) S f 0ij ijk,k i, j
− + = ↔ σ − + =σ S f 0

             (13) 

Classical derivations lead to the identification of the external 

forces versus Cauchy stress and hyperstress (the double bracket 

. stands for the jump of the enclosed quantity) as  

( ) ( ) ( )P n S D n S D n n n S ,

 R n n S ,E s e n n S

k j jk ijk,i j i ijk l l j i ijk

k i j ijk k m mlj l j ijk

= σ − − +

= =  
  

       (14)  

with emlj  the components of the third order permutation 

tensor, and ms  the components of the surface vector. The 

occurrence of these forces involving contributions specific to 

second gradient continua leads to specific features like boundary 

layers and concentrated forces.  

Summarizing, the virtual power of internal, external and contact 

forces writes (Ganghoffer et al., 2016):    

p(�) = πφφ� − ξΦ . ∇φ� − σ:� ⊗ ∇� − " ∴ ε� ⊗ ∇ + µ�
��
� n� �

��
�

                                          (15) 

p(�) = πφ
��$φ� + f . u� + µ�

��
� ��$ n� �
��
�

                                (16) 

p(�) = πφ
�
'$φ� + t . u� + R. *+u + µ�

��
� �
'$ n� �
��
�

               (17) 
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with πφ, πφ
��$,  πφ�
'$ therein representing the internal, external 

and contact forces associated to φ respectively, ξΦ the 

microforce associated to ∇φ, σ the (second order) Cauchy stress 

tensor, and "  the hyperstress third order tensor. The notation 

*+� stands for the normal derivative. The scalars 

µ�
��
�

, µ�
��
� ��$

, µ�
��
� �
'$

 therabove are the chemical potentials 

(for the production, external and contact chemical actions 

respectively) associated to the production term n�
��
� and f, ,, - 

terms in ’16), (17) denote the volume and surface densities of 

external forces. The free energy may be expressed as 

Ψ .φ, ∇φ, ε�, /�, n�����, T0, where ε�, k� are respectively the 

elastic part of the total and elastic strain; in analogy with 

mechanics, the free energy density incorporates the number of 

moles being exchanged. The equilibrium equations and 

associated boundary conditions arising from the principle of 

virtual power are of the following local form in V (2 is the body 

force vector):  

(σ − ". ∇). ∇ + 2 = 0,    (σ − ". ∇). 4 = 5                               

∇. ξΦ  + πφ
��$ + πφ = 0,  ξΦ . 4 =  πφ�
'$  

(µ�
��
� + µ�

��
� ��$) n� �
��
� = 0                                          (18) 

the decomposition of the mole fraction of k-species into 

exchanged and produced terms, viz  n� � =  n� ����� +  n� �
��
�

, 

which implies the condition µ�
��
� �
'$ n� �

��
� = 0, together with 

the boundary conditions on ∂V for the stress field and the 

microforce. We further assume πφ
��$ = 0 . 

 

3. Phase field model of bone remodeling in the context of 

strain gradient mechanics and TIP 

The thermodynamics of irreversible processes (TIP) is the 

adequate framework to express the internal dissipation 

accounting for the multiphysical processes underlying bone 

remodeling. The combination of the first principle and the 

virtual power principle leads to the energy balance based on free 

energy: 

Ψ� = ∂φΨ φ� + ∂∇φΨ. ∇φ� + ∂ε6Ψ: ε�� + ∂�6Ψ ∴  k� � +
∂'869:;Ψ n� ����� + ∂<Ψ T�                  (19) 

E� = −P(�) + δQ                                (20) 

e� = −πφφ� + ξΦ . ∇φ� + σ:� ⊗ ∇� − " ∴ ε ⊗ ∇ − µ�
��
� n� �

��
� −
∇. A                                              (21) 

Ts� = e� − T� s − Ψ�                                           (22) 

In (20), the scalar quantities E� , P(�), δQ denote successively the 

rate of the total internal energy, the internal power of forces and 

the total amount of heat. Quantities e, s, in (22) are successively 

the internal energy and entropy density. Last expression 

combined with the second principle, inequality 

s� ≥ −∇. (D
<) + E

<∇. Fµ�
��
�J�H                (23) 

leads in a straightforward manner to Clausius-Duhem inequality, 

which leads following the standard Coleman-Noll procedure to 

the state laws and the residual dissipation, this last quantity 

taking the form 

− πφ��II φ� + σ ∶  ε� ��� + " ∴  /� ��� − µ�
��
� n� �

��
� − J�.∇µ�
��
� −

FE
<H q.∇T ≥ 0                                                                (24) 

Previous inequality entails the different sources of dissipation 

associated with the phase field, mechanical, chemical and 

thermal phenomena, successively specified as:  

Dφ = − πφ��II φ�  , DM��� = σ ∶  ε� ��� + " ∴  /� ���,  

D���M = −µ�
��
� n� �

��
� − J�.∇µ�
��
�

, D$���M = −q. F∇<
< H      

(25)          

One needs in order to complete the thermodynamic model to 

specify the kinetic laws governing the evolution of the internal 

variables. In view of this objective, we introduce the dissipation 

function Ω ( πφ��II ,σ , S,∇µ�
��
�,µ�

��
�,∇T) decomposing into 

different contributions involving the forces satisfying the 

previous state laws,  

Ω = E
N L(φ) ∇µ�

��
�.∇µ�
��
� − E

N P E
τφ

Q .πφ��II0N + f(σ, ") −
E
N F E

τ8
H Fµφ��
�HN + E

N k F∇<
< HN

                                                   (26) 

satisfying Onsager’s properties, and with the dissipative 

microforce, Cauchy stress (a second order tensor), the third 

order hyperstress tensors, the chemical potential and entropy 

density successively given by 

πφ
��II = πφ +  ∂φΨ, σ = ∂ε6Ψ, " = ∂�6Ψ,  

µ�
��
� = ∂'869:;Ψ , s = −∂<Ψ                                    (27) 

In (26), the yield function f(σ, ") depends on both the stress and 

hyperstress tensors. As expected, the resulting kinetic laws 

follow from previous writing as  

ε�M������ = ∂Ω

∂σ
= ∂R

∂σ
, /� M������ = ∂Ω

∂S = ∂R
∂S, φ� = − ∂Ω

∂πφ
TUVV = − E

τφ
πφ

��II 

 n� �
��
� = ∂Ω

∂µ8
WXYT = − E

τ8
µ�

��
�
,−Z�  = ∂Ω

∂∇µ8
WXYT = L(φ) ∇µ�

��
�
                       

(28) 

The influence function L(φ) is taken as in (Ganghoffer et al., 

2016) 

L(φ) = h(φ) D\   k\⁄ + .1 − h(φ)0 D_   k_⁄ , h(φ) = φN(3 −
2φ)                                                                                         (29) 

The scalars D\ , D_   in (29) represent the diffusivities within 

bone or marrow respectively, and the Fick’s law is recovered in 

both phases. These equations successively express the evolution 

of the irreversible mechanical strain tensor, of the phase field, 

the number of produced moles, and the flux of chemical species. 

Combining the balance equations (18) with the state equation 

delivers the so-called Ginzburg-Landau equation governing the 

spatio-temporal evolution of the phase field 

∇. ∂Ψ
∂∇φ

− F∂Ψ
∂φ

H = − πφ��II                                  (30) 

The balance laws of forces and microforces, the state laws and 

the kinetic equations define the set of equations one has to solve 

in order to describe the formation of new bone through the 

evolution of the interface between the apposed bone and the 

marrow. 

One may consider in line with the small strains and strain rates 

context the usual additive decomposition of the total strain rate 

and its gradients into mechanical and chemical sources of 

dissipation 

ε� ��� = ε�M������ + ε���
����
, /� ��� = /� M������ + /� ��
����                         (31) 
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The high local strains in the vicinity of microcracks leads to a 

local plastic deformation of the mineral phase. The existence of 

strain gradients reflects the continuous change of mineral 

content across the diffuse interface. The elastic strain rate and 

elastic strain rate gradient are then computed as the differences 

involving the first and second gradient compliance tensors ", b: 

ε�� = ε� − ε� ��� =  " ∶ σ� ,  /� � = /� − /� ��� +  b ∴ "�                     (32) 

We next assume that the irreversible strain rate linked to the 

production of hydrostatic k-species is an isotropic tensor linearly 

depending on the rate of produced species; furthermore, the 

irreversible rate of strain gradient is assumed to be oriented 

along the gradient  ∇n� �
��
�

, so that it holds 

ε���
���� = γ n� �
��
� c, /� ��
���� = δ ∇n� �

��
�  ⊗ c                              (33) 

where I represents the second order identity tensor. Furthermore, 

the production of species-k is directly correlated to the change of 

the order parameter reflecting the formation of new bone 

n� ���
� = a φ� , thus ∇n� ���
� = a∇ φ�                                           (34) 

These two assumptions lead to the following relations for the 

chemical irreversible strains and strain gradients versus the 

phase field rate and rate of gradient:  

ε���
���� = a γ φ�  c,   /� ��
���� =  bδ ∇φ� ⊗ c                                   (35) 

Similarly, the irreversible strain gradient rate (a third order 

tensor) is assumed to be linked to the gradient of the rate of 

produced species, in the form /� ��
���� = δ∇ n� �
��
� ⊗ c. Last 

relation means that the trace of /� ��
����  is the vector defined from 

the gradient of n� ���
�
, supposed to be oriented essentially in the 

direction of the normal to the interface. This leads to the 

following expression of the elastic strain rate and rate of elastic 

strain gradient 

ε�� = ε� − a γ φ�  c − ∂R
∂σ

, /� � = k� − a  δ ⊗ ∇ φ�  c − ∂R
∂S               (36) 

The free energy taking into account the chemical and 

mechanical contributions expresses as 

Ψ .φ, ∇φ, εg, /�, n�����, T0 =  ΨM���(ε�, /�,φ, T) +
Ψ���M (n�����,φ, ∇φ)                                   (37) 

with the mechanical and chemical contributions therein, 

quantities ΨM���(ε�, k�, φ, T) and Ψ���M (n�����,φ, ∇φ) 

respectively. Regarding mechanical aspects, the mechanical free 

energy reads 

ΨM���(ε�, k�,φ, T) = E
N ε

�: C(φ, T): ε� + E
N k�: A(φ, T): k�              (38) 

with C(φ, T), j(φ, T) therein the first and second gradient elastic 

stiffness tensors, depending on the order parameter φ, and upon 

the elastic properties of the medium. A mixture law is used 

including the interpolation function h(φ), involving the first and 

second gradient elasticity tensors CB, A\ , CM, A_ of the new 

bone and marrow respectively (the same interpolation function 

h(φ) is here selected for both first and second gradient rigidity 

tensors). The chemical energy term is chosen as in (Ganghoffer 

et al., 2016). We obtain following the same method as in 

(Ganghoffer et al., 2016) the spatio-temporal evolution of the 

phase field, the following parabolic equation involving 

mechanical and chemical energies in the bracket term: 

 τφ  φ� = α∆φ + 2φ (1 − φ)(2φ − 1)W + 6φ (1 −
φ) o− E

N ε
�: (C\  −C_): ε� − E

N /� ∴ A\ ∴ /� + (Ψ_   − Ψ\)p          (39) 

The scalar parameters W and α  control the diffuse interfaces 

behavior. Given a chemical free energy of the type “W φN( 1 −
φ)N + α

N  ∇φ. ∇φ” and a planar interface at equilibrium, the 

diffuse interface width can be estimated as q ≅ 2s2α/W, with 

the parameter α  therein quantifying the strength of interfacial 

effects. The marrow phase is deemed to follow a pure first 

gradient elastic behavior. The network of osteocytes detects 

microcracks and local damages, which naturally involves high 

local strains and strain gradients close to zones of ultimate 

strength, so that the material locally deforms plastically. The 

irreversible mechanical strain and strain gradient associated to 

the development of the plastic zone can be computed from a 

generalized Von Mises yield criterion including both stress and 

hyperstress tensors; this is however outside the scope of this 

contribution.  

4. One dimension example: bone representative unit cell 

under combined pure bending and traction 

We analyze bone formation or resorption within a rectangular 

domain (fig. 3) corresponding to a biological situation pictured 

in fig. 2, relying on the field equations written in previous 

sections.  

 
Figure 3: Mechanosensation of the mechanical stimulus by 

the osteocytes network (left). Schematics of the cortical bone 

RVE from fig. 2 with the motion of the diffuse interface (right). 

 

The applied stress gradient associated to pure bending triggers 

internal stress and strain gradients within the domain show in 

fig. 3 (right), which will be unbalanced at the mesoscopic level 

of the RVE. The microstructure within the RVE (the stratified 

set of lamellae including the collagen fibers and microdamage) 

is also prone to strain gradient effects, thus its mechanical 

behavior is that of a strain gradient microcontinuum as well. 

This entails that a resulting strain continuum behavior will 

emerge at both microscopic and mesoscopic levels (the 

mesoscopic scale is the RVE scale). Accounting for the selected 

form of the stress field and assuming that xx pσ = −  is uniform 

(corresponding to the boundary condition at the horizontal edge, 

mx h (t)= ), we assume the following form of Cauchy stress 

( ) ( )
( )

xx x x yy y y

x x m y y

y x

p ax

= σ ⊗ + σ ⊗ =

− ⊗ + σ + ⊗

σ e e e e

e e e e
                (40) 

Using the equilibrium equation delivers the hyperstress tensor 

linear in x, 
y y xAx ,  A=Cte= ⊗ ⊗S e e e . The elastic strain 

gradient tensor 
e

k  generated by the bending load can be 

assimilated to the gradient of the elastic strain, viz 
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yyxx
e x x y yhom hom

x y

e e y y xhom

y

E E

a(t)

E

σσ= ⊗ + ⊗

→ ≅ ⊗ ∇ = ⊗ ⊗

ε e e e e

k ε e e e

                                   (41) 

for an orthotropic bone RVE with effective principal moduli 

hom hom

l tE 18MPa,E 10MPa≅ ≅ in the longitudinal and 

transverse directions respectively (Reilly et al, 1975). Function 

a(t) in (47) has been introduced in (46). This leads to the order 

of magnitude of the curvature given by the ratio hom

ta(t) / E ; it 

further entails the hyperstress tensor using the strain gradient 

constitutive law for an assumed centrosymmetric RVE:  

{ }

( )

e hom e

y y x Bhom

y

hom

B y y x y y xhomyyxyyx
y

hom

yhom

B y y x y y x

a(t)
A

E

a(t)
A Ax

E

E
A Ax

a(t)

= ⊗ ⊗ ⇒ = ∴ ≅

⊗ ⊗ ≅ ⊗ ⊗

⇒ = ⊗ ⊗ ⊗ ⊗ ⊗

k e e e S k

e e e e e e

e e e e e e

    (42) 

The parameter A  therein can be formally evaluated from the 

hyperstress tensor formally computed as the dyadic product of 

Cauchy stress with the spatial position within the RVE (Trinh, 

2012), viz 
RVE

1
dV

RVE
= ⊗∫S σ x , relying on numerical 

methods to evaluate previous volume integral. It is clear that the 

magnitude of parameter A in relation (42) depends on the 

internal lengths, elaborated as the ratio of the second gradient 

moduli to first gradient moduli. Note that the microscopic stress 

in previous integral should not be confused with the boundary 

mesoscopic stress over the RVE pictured on fig. 3; localizing the 

boundary stress uniformly within the RVE domain is a possible 

method used in the literature to identify the effective moduli, 

which however leads to a too soft response (Trinh et al., 2012).  

An estimate of the internal length within cortical bone is 

given by the distance between two lamellae, of the order of 

l 10 m= µ ; it provides an estimate of the size of region over 

which second gradient effects are of importance and an estimate 

of the order of magnitude of the strain gradient moduli, here: 

( )
hom hom

yhom B
B iyyxyyx

hom
hom 2 4B

B m i hom

m

E A
A Ax ,l : 10 m

Ea(t)

A a(t)E
A Ah (t)l 100N A 2.10

a(t) h (t)E

= = ≅ µ

⇒ = ≅ ⇒ = ≅

    (43) 

The effective first gradient modulus has been taken as the bulk 

modulus of bone, viz 
s

E 12 GPa= (Gibson, 2003); this is 

nevertheless an upper bound since the composite ultrastructure 

of lamellar cortical bone shall lead to a lower value, thus it is 

likely that parameter A (dimensionless) will take higher values. 

Referring to fig. 3, the mechanical boundary conditions write as 

follows: 

( ) ( )
mh (t )

x x y y m y

0

x 0, t ,  dx F F ,  ax= = = + = σ +∫u 0 t e e t e (44) 

The first equality expresses the clamped bottom edge, the 

second and third ones the traction applied along the domain 

vertical edges (a unit thickness is considered here); a constant 

pressure is applied on the horizontal top edge, leading to an 

additional boundary condition that will however not be written. 

Consideration of the lateral boundary condition with previous 

chosen form of the stress component ( )yy xσ  leads to the 

expression of the interface height 
m

h (t)  versus time:  

( ) ( ){ }
( )( ){ }

( )
m

y m y

1/2
2

h ( t )
m m y

y y m

0

. div( ). a(t) A x

2F a(t) 2 A

. dx F h (t)
a(t) 2 A

= − → = σ + −

−σ + σ + −
⇒ = ⇒ =

−∫

t σ n S n t e e

t e

      (45) 

Thereby, a relation is obtained between the stress gradient 

parameter a(t) and the domain height 
m

h (t) , delimiting the 

border between the region of bone formation and marrow; 

previous relation clearly means that the stress gradient controls 

the speed of remodeling through the size of the grown domain 

and the hyperstress coefficient A. One recovers the expression 

of the interface height for the pure Cauchy continuum for a nil 

strain gradient coefficient A. The evolution of the interface 

height versus time for a linear temporal evolution 

0
a(t) a kt= + is pictured in fig. 4 for two opposite values of the 

‘slope’ – parameter k - of function a(t) , resulting in two 

opposite situations of bone resorption and apposition 

respectively.  

 
Figure 4: Evolution of the interface height (in meters) versus 

time (in seconds). Parameters values: 
10 6

0 y ma 10 ,F 1000 N,  1MPa,  A=2.10= = σ = . Left: 

3
k 5.10= − , Right: 

3
k 5.10=  

 

The strain gradient parameter A will strongly influence the 

response close when the denominator of previous expression of 

the interface height is close to the nil value: for a typical bone 

remodeling time of 21 days, this happens when 

( ) 8

0 cycleA a kT / 2 4.64.10= + =  for the selected parameters 

set. Note also that parameter A may by itself change the sign of 

the factor ( )a(t) 2A−  in the expression of the interface 

height, thus it controls the transition from bone apposition to 

bone resorption. Assuming as in (Ganghoffer et al., 2016) that 

the phase field contribution in Ginzburg-Landau equation 

vanishes in order to get a qualitative understanding of the RVE 

behavior  

α∆φ + 2φ (1 − φ)(2φ − 1)W = 0                            (46) 

the interface keeps a fixed shape over time, so that its shape is 

now determined by the sign of the quantity 
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6φ (1 − φ) u− 1
2 ε

�: (C\  −C_): ε� − 1
2 k�

∴ A\ ∴ k� + (Ψ_   − Ψ\)v 

which has to be evaluated at the position corresponding to the 

interface height. We quantify the effect of the elastic strain 

gradient energy to the elastic strain energy, evaluated for x =
hx(t):    

( )
2 2

xx xx
e B M e e hom hom hom

x y y

2
2

mhom hom hom

x y m y

1 1 1 a(t)
: C C : Ax

2 2 2 E E E

1 p 1 2F Ax a(t)

2 E 2E h (t) 2 E

 σ σ− − + ∴ ≅ + +  
 

 
≅ + − σ + 

 

ε ε k S
   (47) 

Therefore, the strain gradient energy will enhance the total 

elastic strain energy by the additional positive term 
hom

y

Ax a(t)

2 E
. 

The ratio of second gradient to first gradient strain energy terms 

is evaluated based on the set of parameters used in fig. 4 and is 

plotted versus time in fig. 5 (it shall increase if the slope k is 

chosen to be positive instead). The second gradient energy is 

here smaller by a factor about 500 compared to the first gradient 

energy for the adopted values of the model parameters; the strain 

gradient has nevertheless via parameter A a strong influence on 

the bone remodeling process since it controls the transition from 

bone formation to resorption.  

 
Figure 5: Evolution versus time of the ratio of second gradient to 

first gradient energy contributions in equ. (47). Parameter 

values: 
10 6 3

0 y ma 10 ,F 1000N,  1MPa,  A=2.10 ,k 5.10= = σ = = −  

 

6. Summary 

We have developed a mechanobiological model of bone 

remodeling involving bone mineralization bone within a moving 

diffuse interface separating the marrow from newly formed 

bone. A phase field has been introduced, quantifying the degree 

of mineralization within the diffuse interface at the level of 

individual trabeculae; it varies continuously between the lower 

value (no mineral) and unity (fully mineralized phase 

corresponding to new bone). The model accounts for the strong 

strain gradients generated at the different scales of bone, caused 

by the curved interfaces prone to bending effects and the strong 

contrast of chemical composition and mechanical properties of 

the constituents. The biological basis is osteocytes being 

sensitive to the strain energy contribution including strain 

gradient terms that become pronounced close to the tip of 

microcrack. Since bone is a hierarchical structure, strain 

gradients exist at the different scale levels and propagate 

towards the higher scale levels; it is likely that the scale 

imbrication from the collagen molecule level to tissue level will 

lead to a whole spectrum of internal lengths the evaluation 

which is planned in future developments of the model.  
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