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A Wide Dataset of Ear Shapes and Pinna-Related Transfer Functions Generated by
Random Ear Drawings
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Head-related transfer functions (HRTFs) individualization is a key matter in binaural synthesis.
However, currently available databases are limited in size compared to the high dimensionality of
the data. Hereby, we present the process of generating a synthetic dataset of 1000 ear shapes and
matching sets of pinna-related transfer functions (PRTFs), named WiDESPREaD (wide dataset of
ear shapes and pinna-related transfer functions obtained by random ear drawings) and made freely
available to other researchers. Contributions in this article are three-fold. First, from a proprietary
dataset of 119 three-dimensional left-ear scans, we build a matching dataset of PRTFs by performing
fast-multipole boundary element method (FM-BEM) calculations. Second, we investigate the un-
derlying geometry of each type of high-dimensional data using principal component analysis (PCA).
We find that this linear machine learning technique performs better at modeling and reducing data
dimensionality on ear shapes than on matching PRTF sets. Third, based on these findings, we
devise a method to generate an arbitrarily large synthetic database of PRTF sets that relies on the
random drawing of ear shapes and subsequent FM-BEM computations.

I. INTRODUCTION

In daily life we unconsciously capture the spatial char-
acteristics of the acoustic scene around us thanks to au-
ditory cues such as sound level, time-of-arrival and spec-
trum. Such cues derive from the alterations of sound
on its acoustic path to our eardrums, which depend not
only on the room and the position of the acoustic source,
but also on the listener’s morphology. Their mathemati-
cal description in free-field is called head-related transfer
functions (HRTFs) in the frequency domain and head-
related impulse responses (HRIRs) in the time domain
[30]. They are the cornerstone of a technique called bin-
aural synthesis that allows the creation of a virtual au-
ditory environment through headphones: by convolving
a given sound sample with the right pair of HRIRs be-
fore presenting it to the listener, the sound sample is
perceived at the desired location.

The use of a non-individual HRTF set in binaural syn-
thesis is known to cause discrepancies such as wrong per-
ception of elevation, weak externalization and front-back
inversions [37]. Thus, a lot of work has been done for
the past decades towards user-friendly HRTF individu-
alization, among which four categories can be identified
[10]. Acoustical measurement [38] is the state-of-the-art
method and relies on a heavy measurement apparatus
and is time-intensive. Numerical simulation allows the
simulation of HRTFs from a 3D scan of a listener’s mor-
phology [18]. The associated individual measurement
phase is much less troublesome in terms of equipment (a
portable light-based scanner can be used for instance),
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nevertheless the approach is time-intensive, particularly
so during the simulation step. Finally, the two latter
families of approaches aim at providing somewhat low-
cost but real-time solutions to the matter. They are
usually based either on anthropometric measurements
[13, 14, 27, 44] or on perceptual feed-back [15, 29, 34, 40]
and often rely heavily on HRTF databases.

However, currently available measured HRTF
databases [1, 5–7, 26, 36] are small compared to the
dimensionality of the data. Indeed, the largest that we
know of, the ARI (acoustics research institute) database
[26], features 120 subjects, while the dimension of a
typical high-resolution HRIR set [5] is about 1.2 · 106

(256 time-domain samples × 2300 directions × 2 ears).
While work has been done towards combining existing
databases [2, 35], such composite databases can hardly
attain the same level of homogeneity as a database made
in a single campaign. Furthermore, the total number
of subjects would amount to a few hundreds at best.
Synthetic datasets have also been built by numerically
simulating HRTF sets from scans of listener morphology
[6, 16, 19, 33]. However, to the best of our knowledge,
only the HUTUBS database [6] is fully public. Moreover,
such datasets are not larger than acoustically measured
ones. Indeed, the largest that we know of, HUTUBS
[6], features 96 subjects which is less than the ARI one.
This can be explained by the fact that, although less
tedious than acoustic measurements, the acquisition
of morphological scans for a large number of human
subjects is far from trivial.

In this paper, we aim at alleviating the lack of large-
scale datasets. First, in Section III, we supplement a
dataset of 119 3D human left-ear scans with the corre-
sponding 119 simulated PRTF sets. Then, in Sections IV,
V and VI, we investigate the underlying geometry and the
potential for dimensionality reduction of both types of
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data by performing principal component analysis (PCA)
on each dataset. Although it is a coarse machine learn-
ing technique whose limitations include linearity, PCA1

is a good starting point thanks to its algorithmic sim-
plicity and high interpretability. Finally, based on our
findings, we present in Section VII a method to gener-
ate an arbitrarily large synthetic database of PRTF sets,
which relies on random ear shape drawings and numerical
acoustic simulations.

Let us note that, while we focus here on ear shapes and
matching PRTFs, the information contained in PRTFs
is key to the matter of HRTF individualization. Indeed,
pinnae have a vast influence on the spectral features in-
volved in perceptual discrepancies due to a lack of in-
dividualization [3]. Furthermore, pinnae constitute the
most complex component of HRTF-impacting morphol-
ogy, in terms of shape, inter-individual variability and in
terms of how small physical changes can have a strong
influence on the resulting filters.

II. ORIGINAL EAR SHAPE DATASET

Work presented in this article is based on a propri-
etary dataset of left ear 3-D scans of n = 119 human
subjects. The dataset was constituted in previous work
by Ghorbal, Séguier and Bonjour [9]. The pinna meshes
were acquired using a commercial structured-light-based
scanner. They were then normalized in size and rigidly
aligned. Finally, they were registered: the point clouds
were re-sampled so that they were in semantic correspon-
dence with each other, thus sharing an identical number
of vertices nv = 17176. 35750 triangular faces were de-
fined based on the indices of the nv vertices: the defini-
tion of the faces is identical from one mesh to the other.

In the following, we denote by E = {e1, . . . en} the
set of n ear point clouds whose x, y and z coordinates
were concatenated into row vectors e1, . . . en ∈ R3nv ,
with 3nv = 54528. As mentioned above, the only change
from one mesh to the other resides in the coordinates of
the nv vertices. Therefore, the term ‘ear shape’ is hereon
meant as ear point cloud.

III. NUMERICAL SIMULATIONS OF PRTFS

For all ear shape ei in E, we simulated numerically
the corresponding PRTF set pi ∈ Cnf×nd , where nf and
nd denote respectively the number of frequency bins and
the number of directions of measurements. Simulations
were carried out using the fast-multipole boundary ele-
ment method (FM-BEM) [11], thanks to the mesh2hrtf
software developed by the ARI team [41, 43].

1 PCA is closely related to the Karhunen-Loève transform, widely
used in the field of information theory.

We denote ϕ : R3nv −→ Cnf×nd the process of going
from a registered nv-vertex ear point cloud to the corre-
sponding simulated PRTF set, which is described in the
rest of the subsection.

Simulations were made for nf = 160 frequencies from
0.1 to 16 kHz, regularly spaced with a step of 100 Hz.
The frequency resolution was chosen so that it was finer
than the equivalent rectangular bandwidth (ERB)-based
frequency scale in most of the frequency range. Indeed,
the ERB scale is appropriate for HRTFs according to [22]
and the 100-Hz-spaced linear scale is finer than the ERB
scale for frequencies above 700 Hz, which is more than
sufficient in the case of PRTFs, who include little spectral
variations below 4-5 kHz.

A. Mesh closing and grading

First, we derived the ear mesh from the ear point cloud
by incorporating the 35750 triangular faces defined by the
indices of the nv vertice, as explained in Section II.

Second, we closed the ear mesh by filling the canal hole
based on our prior knowledge of the boundary’s vertex
indices, and then by stitching the resulting mesh onto a
cylindrical base mesh. Using such a small base mesh in-
stead of one of a head and torso has consequences: spec-
tral features that are usually found in HRTFs are altered
(head shadowing effect is reduced to a smaller angular
zone and shifted to higher frequencies) or absent (rip-
ples due to the torso). However, as we did not have at
our disposal a dataset of individual 3-D head and torso
scans, in the latter case we would only have been able
to use a generic head and torso mesh, which would have
mixed non-individual spectral features with the individ-
ual pinna-related ones, at the cost of a great increase in
required computing resources. These steps were scripted
in Blender2 Python and performed automatically using
various Blender built-in mesh treatments.

Third, a re-sampling (also called grading) of the mesh
was performed. This step is a pre-requirement to any
boundary element simulation: the mesh ought to be as
regular as possible and sampled finely enough with re-
gard to the maximum simulated frequency. According to
Gumerov, O’Donovan, Duraiswami and Zotkin [12], for
instance, the mesh should present a uniform vertex distri-
bution, equilateral triangles and at least five elements per
wavelength. In our case, we used the progressive grading
approach proposed by Ziegelwanger, Kreuzer and Maj-
dak in [42] and made available on-line as an OpenFlip-
per3 plug-in, which makes the mesh finer near the ear
canal (where the sound source is positioned) and pro-
gressively coarser elsewhere. This considerably decreases
the computing cost of the FM-BEM simulation compared

2 https://www.blender.org/
3 http://www.openflipper.org/
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FIG. 1: Simulation-ready meshes derived from ear point
cloud e1 for four mesh grading configurations, each

corresponding to a frequency band. Left to right: [0.1,
0.4 kHz], [0.5, 2.0 kHz], [2.1, 3.5 kHz] and [3.6, 16 kHz].

to uniform re-sampling, while maintaining numerical ac-
curacy.

Additionally, in order to further reduce the computa-
tional cost, we adapted the mesh grading step to each
of four different frequency bands. At low frequencies,
a uniform re-sampling was enough due to the low num-
ber of required elements. It was performed with target
edge lengths of 10 and 5 mm, in the frequency bands
[0.1, 0.4 kHz] and [0.5, 2.0 kHz], respectively. At higher
frequencies, the re-sampling was progressive, with target
minimum and maximum edge lengths of 2 and 5 mm, and
0.7 and 5 mm, in the frequency bands [2.1, 3.5 kHz] and
[3.6, 16 kHz], respectively. An example of simulation-
ready meshes (each corresponding to a mesh grading con-
figuration) is displayed in Figure 1.

B. Simulation settings

According to the reciprocity principle [45], a sound
source was placed at the entry of the filled ear canal,
while virtual microphones were disposed on a spherical
grid centered on the pinna: a 2-meter-radius icosahedral
geodesic polyhedron of frequency 256 (nd = 2562 direc-
tions), displayed in Figure 2. Although not relevant to
the rest of this article, PRTFs were computed for other
virtual microphone grids as well, which are included in
WiDESPREaD.

The sound source was created by assigning a vibrant
boundary condition to a small patch of triangular faces
located on the ear canal plug. Elsewhere on the mesh, the
boundary condition was set to infinitely reflective. This
boundary condition setting is used in the vast majority of
work involving HRTF calculations [16, 23], which makes
our work more easily comparable to the literature. Fur-
thermore, although modeling the acoustic impedance of
the skin as infinite may be somewhat unrealistic, to the
best of our knowledge no alternative has been proposed
so far, possibly because of the limited frequency range
of impedance tube measurements: up to 6.4 kHz for a
standard device and up to 12.8 kHz for the experimental
one proposed by Kimura, Kunio, Schumacher and Ryu
[20].
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FIG. 2: Spherical grid used for PRTF simulations:
2-meter-radius icosahedral geodesic polyhedron of

frequency 256 (nd = 2562 vertices).

C. Post-processing

Once the simulation of a PRTF set was complete, it
was post-processed as follows. Let praw ∈ Cnf×nd be a
PRTF set simulated for nf = 160 frequency bins that
exclude the constant component and for nd vertices of a
spherical grid.

First, PRTFs were padded in frequency zero with the
100-Hz complex values.

Then, diffuse field equalization [27] was performed by
removing the non-directional component, called Common
Transfer Function (CTF), from the PRTFs. For all fre-
quency bin f = 1, . . . nf and for all direction of index
d = 1, . . . nd,

p(f, d) =
praw(f, d)

c(f)
, (1)

where the CTF c ∈ Cnf was obtained by calculating a
Voronoi-diagram-based [4] weighted average of the log-
magnitude spectra of p over all directions d = 1, . . . nd,
then by deriving the corresponding minimal phase spec-
trum.

IV. PCA OF EAR SHAPES

From the set of ear shapes E described in Section II, we
classically constructed a statistical shape model of the ear
using PCA [8]. Let there be XE = (e1 . . . en)

t ∈ Rn×3nv

the data matrix, ē = 1
n

n∑
i=1

ei the average ear shape and

X̄E = (ē . . . ē)
t ∈ Rn×3nv the matrix constituted of

the average shape stacked n times. Finally, let ΓE ∈
R3nv×3nv be the covariance matrix of XE :

ΓE =
1

n− 1

(
XE − X̄E

)t (
XE − X̄E

)
. (2)

PCA can thus be written as

YE =
(
XE − X̄E

)
UE

t, (3)
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where UE is obtained by diagonalizing the covariance
matrix ΓE

ΓE = Ut
EΣE

2UE . (4)

In the equations above, ΣE
2 ∈ R(n−1)×(n−1) is the

diagonal matrix that contains the eigenvalues of ΓE ,
σE1

2, σE2
2, . . . σEn−1

2, ordered so that σE1
2 ≥ σE2

2 ≥
· · · ≥ σEn−1

2

ΣE
2 =

σE1
2

. . .

σEn−1
2

 , (5)

and UE ∈ R(n−1)×3nv is an orthogonal ma-
trix that contains the corresponding eigenvectors
uE1

, uE2
, . . . uEn−1

∈ R3nv

UE =

 uE1

...
uEn−1

 . (6)

The eigenvalues denote how much variance in the input
data is explained by the corresponding eigenvectors.

In the equations above, we implicitly set the number
of principal components (PCs) to n− 1, because all PCs
after the (n−1)th are trivial, i.e. of null associated eigen-
value. Indeed, the number of examples n is lower than
the data dimension 3nv and the data is centered, thus

r = rank
(
XE − X̄E

)
≤ n− 1. (7)

Hence, the rank of the covariance matrix does not exceed
n− 1 either:

rank (ΓE) ≤ min (r, r) = r ≤ n− 1. (8)

The behavior of the first 3 principal components is il-
lustrated as follows. For each PC of index j ∈ {1, 2, 3},
we set the jth PC weight to λσEj

and all other PC weights
to zero, with λ ∈ {−5, −3, −1, +1, +3, +5} and recon-
structed the corresponding ear shape evj

(λ) by inverting
Equation (3)

evj (λ) =
(
0 . . . 0 λσEj

0 . . . 0
)
UE + ē. (9)

Meshes derived from said ear shapes are displayed in Fig-
ure 3, colored with the vertex-to-vertex euclidean dis-
tance to the average shape.

The first one seems to control vertical pinna elonga-
tion including concha height and lobe length up to dis-
appearance, as well as some pinna vertical axis rotation.
The second one seems to encode the intensity of some
topography features such as triangular fossa depth or he-
lix prominence. It also has an impact on concha shape
and vertical axis rotation. The third PC seems to have a
strong influence on concha depth, triangular fossa depth
as well as upper helix shape.

V. PCA OF LOG-MAGNITUDE PRTFS

In the following, we focus on the log-magnitude spec-
trum of the PRTFs. One reason is that HRTFs can be
well modeled by a combination of minimum phase spec-
trum and pure delay [24]. Another one is the fact that,
the TOA due to the pinnae, i.e. the one contained in
PRTFs, is negligible compared to the effect of head and
torso shadowing in HRTFs. The logarithmic scale was
chosen for its coherence with human perception.

For all ear shape ei ∈ E, let pi = ϕ (ei) ∈ Cnf×nd

be the corresponding PRTF set, computed according
to the process described in Section III, and let qi =
20 · log10 (|pi|) ∈ Rnf×nd be the corresponding log-
magnitude PRTF set, where the |·| and log10 opera-
tors are considered element-wise. Accordingly, let φ :
R3nv −→ Rnf×nd , defined by e 7−→ q = 20·log10 (|ϕ(e)|),
be the process of deriving a log-magnitude PRTF set
from an ear point cloud, and let Q = {q1, . . . qn} =
{φ(e1) . . . φ(en)} be the set of log-magnitude PRTF sets
derived from E.

Most work in the literature either stacks the HRTFs
of various directions and subjects into a data matrix of
size (n · nd) × nf prior to PCA [21, 28], or performs
PCA one direction at a time on nd different n × nf -
sized matrices [31, 39]. In contrast, we chose to con-
catenate PRTFs from the nd directions into a row vec-
tor qi ∈ Rnfnd for each subject i = 1, . . . n. The
n row vectors were then stacked into the data matrix
XQ = (q1, . . . qn)

t ∈ Rn×(nfnd). This approach has the
advantage of parsing only the across-subject variability,
instead of mixing the contributions of directionality and
inter-individuality into the statistical analysis.

As in the case of ear shapes, we performed PCA on the
data matrix XQ according to Equations (3), (4) and (6).
The number of non-trivial PCs is (n− 1) in this case as
well, due to the fact that n < nfnd.

Various PRTF sets that illustrate the behavior of the
three first PCs were reconstructed as explained in Sec-
tion IV and Equation (9). They can be observed in Fig-
ure 4 for directions that belong to the median sagittal
plane. As it was expected, no variations are visible below
5 kHz: at these wavelengths the pinna have little impact
on sound propagation. Each PC appears to represent
a different pattern of change in anterior and posterior
directions, although only the first one seems to have a
strong influence on directions above the head. However,
it does not seem possible to distinguish patterns that are
limited to a certain range of directions and/or frequen-
cies. Furthermore, we are not able to identify a PC or a
combination of PCs that represents a frequency shift in
the PRTFs. Although the pinnae used to construct the
model are normalized in size, one could have expected
to observe frequency shifts due to variations in concha
volume, for example.
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FIG. 3: (color online) First three principal components (PCs) of the PCA ear shape model. Rows: PC of index
j ∈ {1, 2, 3}. Columns: Weight assigned to given PC, indicated in proportion of its standard deviation σEj .

VI. COMPARISON OF BOTH PCA MODELS

A. Dimensionality reduction capacity

Let S ∈ {E,Q} be either dataset. PCA can be used as
a dimensionality reduction technique by retaining only
the first p PCs and setting the weights of the discarded
PCs to zero [17], where p ∈ {1, . . . n− 1}:

ỸS =

yS1,1 . . . yS1,p 0 . . . 0
...

. . .
...

...
. . .

...
ySn,1

. . . ySn,p
0 . . . 0

 , (10)

where ySi,j
is the value of matrix YS at the ith row and

jth column for all i = 1, . . . n and j = 1, . . . n− 1.
Indeed, the change of basis defined by US

t allows us
to transform the dataset XS into a domain where the
associated covariance matrix ΣS

2 is diagonal with its di-
agonal values in decreasing order. In other words, PCs
are independent up to the second-order statistical mo-
ment and are ordered so that the first PCs describe more

variability in the data than the last ones.
Approximated data can then be reconstructed by in-

verting Equation (3):

X̃S = ỸSUS + X̄S . (11)

A simple but useful metric to evaluate the capacity of
a PCA model to reduce dimensionality is the cumulative
percentages of total variance (CPV) [17, section 6.1]

τSp = 100 ·

 p∑
j=1

σSj
2

 /

n−1∑
j=1

σSj
2

 , (12)

where S ∈ {E,Q} represents either the set of ear
shapes E or the set of log-magnitude PRTFs Q and
p ∈ {1, . . . n− 1} is the number of retained PCs. CPVs
for both models are plotted in Figure 5.

A first notable result is that, for the ear shape model,
the 99%-of-total-variance threshold is reached for p = 80
retained PCs, i.e. only p

n−1 = 80
118 = 67.8% of the

maximum number of PCs. In other words, the 118-
dimensional linear subspace of R3nv = R56661 defined
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FIG. 4: (color online) First Principal Components (PCs) of the PCA model of log-magnitude PRTFs.
Reconstructed PRTF sets are plotted in the median sagittal plane. Rows: PC. Columns: Weight assigned to given

PC, indicated in proportion of its standard deviation σ.

by the n = 119 pinnae of our database can be described
using only 80 parameters with reasonable reconstruction
accuracy, in the sense of a vertex-to-vertex mean-square
error.

More importantly, PCA appears to be significantly
more successful at reducing the dimension of ear shapes
ei than that of PRTF sets generated from the same ear
shapes qi = φ(ei). Indeed, the PRTF CPV is signif-
icantly lower than the ear shape CPV for any number
of retained PCs. For instance, the 99%-of-total-variance
threshold is reached for 112 PCs out of 118 for the PRTF
model against 80 out of 118 for the ear shape one.

B. Statistical distribution

Furthermore, in order to get a better idea of the repar-
tition of the data in both 118-dimensional linear sub-
spaces, we tested the PCs of each model for multivariate
normal distribution using Royston’s test [32]. The test
was performed on the columns of the PC weights matrix
YS , where S ∈ {E,Q} denotes the dataset.

The outcome of the test is an associated p-value of
3.7% in the case of ear PCs, and 0.0% in the case of
PRTF PCs, where the p-value refers to the null hypoth-

0 10 20 30 40 50 60 70 80 90 100 110
0

10
20
30
40
50
60
70
80
90

100

FIG. 5: CPV τSp as a function of the number of
retained PCs p ∈ {1, . . . n− 1} for either PCA model.

Circles: ear shape model (S = E). Dots: PRTF set
model (S = Q).

esis that the distribution is not multivariate normal. In
other words, the ear model’s PC weights can be consid-
ered to be multivariate-normally distributed with a sig-
nificance level of 3.7%, while its PRTF counterpart’s fail
the test for any significance level.
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C. Summary

Overall, it appears that PCA performs better at mod-
eling and reducing the dimensionality of ear shapes than
of the corresponding log-magnitude PRTF sets.

Hence, linear techniques such as PCA seem ill-suited to
reduce the dimensionality of PRTF sets. As, in addition,
the ear shape model’s PC weights follow a multivariate
normal distribution, it appears to be more suitable than
its PRTF counterpart for generalization and the genera-
tion of new data.

VII. DATABASE GENERATION

Non-linear machine learning methods may thus be
more suited to model PRTFs sets than linear ones. How-
ever, such more complex techniques usually require larger
amounts of data. Nevertheless, as mentioned in the intro-
duction, currently available databases of HRTFs feature
about 102 subjects in the best case, for a data dimension
of about 106, that is a proportion of 10−4 of the data’s
dimension. Hence, we propose a scalable method to con-
struct a large database of synthetic PRTF sets by using
the ear shapes space as a back door where to generate
relevant artificial data.

A. Random drawing of ear shapes

The statistical ear shape model learned from dataset
E presented in Section IV can be used as a generative
model. Indeed, based on the results from Section VI, we
assume hereafter that the model’s PCs (i.e. the columns
of YE) are mutually statistically independent and follow
normal probability laws of zero mean and σEj standard
deviation N (0, σEj ), where j ∈ {1, . . . n− 1} represents
the PC index.

An arbitrarily large number N of ear shapes
e′1, . . . e′N ∈ R3nv could thus be generated as fol-
lows. First, for all i = 1, . . . N , a PC weights vec-
tor yEi

= (yEi,1
, . . . yEi,n−1

) ∈ Rn−1 was obtained by
drawing the (n − 1) PC weights yEi,1

, . . . yEi,n−1
inde-

pendently according to their respective probability laws
N (0, σE1

), . . .N (0, σEn−1
). Second, the corresponding

ear shapes were reconstructed by inverting Equation (3)

X′E = UEY′E + X̄E , (13)

where Y′E ∈ RN×(n−1) is the matrix whose rows are the
N PC weights vectors

Y′E =

y′E1

...
y′EN

 =

y
′
E1,1

. . . y′E1,n−1

...
. . .

...
y′EN,1

. . . y′EN,n−1

 , (14)

and X′E ∈ RN×3nv is the data matrix whose rows are the

N ear shapes e′1, . . . e′N ∈ R3nv

X′E =

e′1
...

e′N

 . (15)

B. Ear shapes quality check

At the end of the ear shape generation process, meshes
were derived from the point clouds as in the case of the
original dataset (see Section II). We then verified that
the meshes were not aberrant and that they were fit for
numerical simulation: any mesh that presented at least
one self-intersecting face was left out.

In total, 24% (320 out of 1325) of the meshes were dis-
carded. Performing the Royston’s multivariate normality
test on the 1325 randomly drawn ear PC weights then on
the 1005 remaining ones, we observed a decrease in the
significance level of the test from 4.8% to 0.8%: the it
appears that the statistical distribution of the ear PC
weights was degraded by the selection process. However,
when looking into the distribution of each PC of the se-
lected ear shapes separately (using the Shapiro-Wilk uni-
variate normality test with a significance level of 5%), we
observe that the 9 rejected PCs account only for 3.7% of
the total variance.

For simplicity, we consider further on that N is the
number of retained meshes i.e. N = 1005.

C. Numerical simulation

Finally, PRTF sets were numerically simulated from
the ear shapes of the new set E′ according to the process
described in Section III

p′j = ϕ
(
e′j
)
, ∀j = 1, . . . N. (16)

Computing time for the simulation of the 1005 PRTF sets
was of 40 days on a workstation that features 12 CPU
and 32 GB of RAM.

D. Data visualization

By checking visually, we find that the synthesized ear
shapes and PRTF sets look as realistic as hoped. For pur-
poses of illustration, the first 10 ear shapes and matching
PRTF sets of the WiDESPREaD dataset are displayed
in Figure 6. These first 10 randomly drawn subjects il-
lustrate well how ear shapes and matching PRTFs can
be diverse and highlight the interest of this dataset.

VIII. CONCLUSIONS

In this paper, based on a proprietary dataset of 119 left
ear meshes, we constituted a corresponding dataset of 119
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(a)

(b)

FIG. 6: (color online) Visualization of the first 10 subjects of WiDESPREaD. (a) Meshes derived from the
synthetic ear shapes e′1, . . . e′10. Color represents the vertex-to-vertex euclidean distance to the generative model’s
average ē. (b) Log-magnitude PRTF sets 20 · log10(p′1), . . . 20 · log10(p′10) displayed in the median sagittal plane.

PRTF sets by FM-BEM calculations. We then applied
a simple linear machine learning technique, PCA, inde-
pendently to each dataset and found that it performed
better at modeling and reducing the dimensionality of
data on ear shapes than on PRTF sets. Based on this
result, we proposed a method to generate an arbitrar-
ily large synthetic PRTF database by means of random
drawing of ear shapes and FM-BEM calculation. The
resulting dataset of 1005 ear meshes and corresponding

PRTF sets, named WiDESPREaD, is freely available on
the Sofacoustics website: https://www.sofacoustics.
org/data/database/widespread.

Increasing the number of PRTF sets by generating new
artificial subjects in the ear shape space, where linear
modeling seems adequate, may allow us to better un-
derstand the complexity of PRTF and HRTF generation
from listener morphology and help to model them bet-
ter. In particular, non-linear machine learning techniques

https://www.sofacoustics.org/data/database/widespread
https://www.sofacoustics.org/data/database/widespread
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such as neural networks can benefit from the scalability of
this synthetic dataset generation process, as they usually
require a large amount of data. As it is, WiDESPREaD
is the first database, to our knowledge, with over a thou-
sand PRTF sets and matching registered ear meshes. Al-
though PRTFs are not complete HRTFs, they include an
important part of the information relevant to HRTF indi-
vidualization and, as the dataset includes about 8 times
more subjects than any available HRTF dataset, it has
great potential to help develop and improve methods for
HRTF modeling, dimensionality reduction and manifold
learning, as well as spatial interpolation of sparsely mea-
sured HRTFs.

Future work includes the analysis of the augmented
PRTF dataset and the search for a non-linear manifold.
If needed, new data can be generated to increase the
size of the dataset, providing computing power and time.
Furthermore, anthropometric measurements of the pin-
nae such as introduced with the CIPIC dataset [1] can be

directly derived from the registered meshes, which may
prove useful for the active field of HRTF individualization
based on anthropometric features. Finally, the method
for data generation itself could be further improved on
several aspects. Indeed, our rudimentary generative ear
shape model could be ameliorated by using either simple
upgrades like probabilistic PCA [25, p. 5] or other mod-
eling techniques altogether, although our results suggest
that linear modeling techniques may be sufficient. Go-
ing one step further, including statistical models of the
human head, shoulders and right pinna could extend the
method to the synthesis of HRTFs.
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