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Abstract: Blending amphiphilic copolymers and lipids constitutes a novel approach to combine the 
advantages of polymersomes and liposomes into a new single hybrid membrane. Efforts have been 
made to design stimuli-responsive vesicles, in which the membrane’s dynamic is modulated by 
specific triggers. In this investigation, we proposed the design of pH-responsive hybrid vesicles 
formulated with poly(dimethylsiloxane)-block-poly(ethylene oxide) backbone (PDMS36-b-PEO23) 
and cationic switchable lipid (CSL). The latter undergoes a pH-triggered conformational change and 
induces membrane destabilization. Using confocal imaging and DLS measurements, we 
interrogated the structural changes in CSL-doped lipid and hybrid polymer/lipid unilamellar 
vesicles at the micro- and nanometric scale, respectively. Both switchable giant unilamellar lipid 
vesicles (GUV) and hybrid polymer/lipid unilamellar vesicles (GHUV) presented dynamic 
morphological changes, including protrusions and fission upon acidification. At the submicron 
scale, scattered intensity decreased for both switchable large unilamellar vesicles (LUV) and hybrid 
vesicles (LHUV) under acidic pH. Finally, monitoring the fluorescence leakage of encapsulated 
calcein, we attested that CSL increased the permeability of GUV and GHUV in a pH-specific fashion. 
Altogether, these results show that switchable lipids provide a pH-sensitive behavior to hybrid 
polymer/lipid vesicles that could be exploited for the triggered release of drugs, cell biomimicry 
studies, or as bioinspired micro/nanoreactors. 

Keywords: hybrid polymer/lipid membrane; pH-sensitive liposomes; switchable lipid; giant 
unilamellar vesicles; giant hybrid polymer/lipid vesicles; responsive vesicles 

 

1. Introduction 

Liposomes were initially developed as simplified cell membrane analogs and rapidly recognized 
as promising vesicles for a wide range of pharmaceutical applications, especially as drug delivery 
carriers [1]. More than 15 liposomal-based drug formulations have reached the market [2] (e.g., 
AmBisome®, Doxil®/Caelyx®, and DepoCyt®), and, recently, lipid nanoparticles enabled the delivery 
of the first RNAi-based drug (OnPattro®), which was a milestone for gene therapy [3]. Nonetheless, 
liposomes still suffer from short shelf life due to their low stability and poor control over membrane 
leakage. On the other end, polymersomes have been developed to overcome these limitations. Similar 
to liposomes, such vesicles result from the self-assembly of amphiphilic copolymers, exhibiting more 
robust properties, such as a more stable and less permeable membrane [4].  



Polymers 2020, 12, 637 2 of 14 

 

Recently, it became possible to combine the advantages of both polymersomes and liposomes 
into a new single hybrid unilamellar vesicle. Hybrid polymer/lipid vesicles combine the stiffness and 
stability of polymersomes with the biocompatibility and chemical functionality of phospholipids [5]. 
Modulation of the structuration of the hybrid membrane is possible by playing with the nature of 
polymer and lipids used and the polymer-to-lipid molar ratio [6]. However, the membrane 
permeability remains an issue, as passive diffusion or membrane disruption are the main methods of 
payload release [7]. Therefore, efforts have been made to formulate “smart” hybrid polymer/lipid 
vesicles, which would be able to change their membrane properties in response to specific triggers 
[8]. In particular, pH-sensitive vesicles allow specific drug delivery at acidic conditions encountered 
in some pathological microenvironments, e.g., cancer [9], inflammation [10], and ischemia [11,12], or 
upon vesicle endocytosis in early endosomes [13]. We have recently developed pH-sensitive lipids 
that undergo a conformational switch at acidic pH [14]. Incorporated into lipid nanoparticles, they 
destabilize the lipid membrane in a pH-responsive fashion through a mechanism involving fusion. 
Thanks to their endosomal escape ability, they massively release their cargo in less than 30 min, 
resulting in good in vitro and in vivo transfection of siRNA, for cancer [15], and hypercholesterolemia 
applications [16].  

In polymersomes, stimuli-responsive materials have been explored thanks to the versatility of 
polymer chemistry [7]. Chen et al. formulated pH-sensitive polymersomes based on a poly(ethylene 
glycol) (PEG) moiety-grafted acid-labile polycarbonate able to encapsulate both paclitaxel and 
doxorubicin hydrochloride (DOX.HCl) and promote their release upon acid-triggered hydrolysis 
[17]. Similarly, Liu et al. encapsulated DOX and DOX.HCl in pH-sensitive polymersomes based on 
poly(D,L-lactide)-block-poly(2-methacryloyloxyethyl phosphorylcholine) [18]. However, in both 
cases, only partial drug release was obtained after 24 h of incubation. Quicker responding systems 
would be desired to trigger burst drug release at the target site or to match the time course of 
endosomal maturation, which is under 1 h [19].  

In this study, we hypothesized that doping polymeric membranes composed of 
poly(dimethylsiloxane)-block-poly(ethylene oxide) (PDMS-b-PEO) with switchable lipids would 
provide pH-sensitive properties to the resulting hybrid polymer/lipid vesicles. PDMS-b-PEO was 
selected because both blocks are biocompatible and PDMS exhibits flexible chains, which is required 
to prepare giant vesicle by the hydration process. In addition, such PDMS-b-PEO polymersomes have 
demonstrated their ability to form stable hybrid edifices [20]. We exploited the development of giant 
unilamellar vesicles [21] to investigate the dynamic behavior of switchable lipids in either lipid or 
hybrid polymer/lipid unilamellar membranes (GUV and GHUV) at an acidic environment using 
confocal imaging. We compared the results with dynamic light scattering (DLS) measurements of 
large unilamellar lipid or hybrid polymer/lipid vesicles [21] (LUV and LHUV) at acidic pH. Lastly, 
we analyzed, qualitatively and quantitatively, the influence of switchable lipids on membrane’s 
permeability of calcein-loaded GUV and GHUV in an acidic microenvironment.  

2. Materials and Methods 

All organics solvents and chemicals were purchased from Sigma-Aldrich (Sigma-Aldrich 
Chimie, Saint Quentin Fallavier, France) and Thermo Scientific (Waltham, MA, USA). 1-Palmitoyl-2-
oleoyl-sn-glycero-3-phosphocholine (POPC) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-
N-(lissamine rhodamine B sulfonyl) (Rhodamine-PE) were obtained from Avanti Polar Lipids Inc. 
(Alabaster, AL, USA). Poly(dimethylsiloxane)-nitrobenzoxadiazole (PDMS-NBD) and 
poly(dimethylsiloxane)-block-poly(ethylene oxide) (PDMS36-b-PEO23, Mn 4000 g.mol-1) were 
synthesized as previously described [20]. This copolymer is known to spontaneously form 
polymersomes with a membrane thickness of 9.9 ± 1.6 nm. Cationic switchable lipid (CSL) was 
synthesized as previously described [16]. Sucrose, calcein and all other chemicals were purchased 
from Sigma-Aldrich (Saint Quentin Fallavier, France). 1H Nuclear Magnetic Resonance spectra were 
acquired at 298 K on a Bruker Avance I NMR spectrometer operating at 400 MHz, using trimethylsilane 
(TMS) as the internal standard and deuterated chloroform as solvent. Data were treated with TopSpin 
4.0.7 (Bruker BioSpin, Wissembourg, France). 
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2.1. GUV and GHUV Preparation 

Giant unilamellar vesicles (GUV) and giant hybrid unilamellar vesicles (GHUV) were prepared 
by the electroformation method proposed by Angela et al. [22]. Briefly, a 1.4 mg.mL−1 solution of lipids 
(POPC or a mixture of POPC:CSL at a ratio 80:20 or 50:50 mol %) in chloroform or a mixture of 
polymer (PDMS36-b-PEO23) and lipid (POPC or CSL) at specific ratio (polymer/lipid 80:20 or 50:50 mol 
%) was deposited thrice in each side of an indium tin oxide (ITO)-coated glass slide (Sigma Aldrich, 
Saint Quentin Fallavier, France) using a capillary tip. For confocal visualization, two probes were 
added to the appropriate lipid or polymer/lipid organic solution: rhodamine-PE at 0.1% w/w for lipid 
bilayer visualization and/or PDMS-NBD at 1% w/w for polymer visualization. The electroformation 
chamber was set by connecting both ITO-covered slides using a rubber O-ring, which were then dried 
under vacuum overnight. The next day, samples were connected to an AC generator and an 
alternative voltage (10 Hz, 2 V) was applied, followed by the immediate addition of 200 μL of 100 
mM sucrose solution. GUV or GHUV were collected after 45 min of electroformation using a syringe 
with 21-gauge needle.  

To study the effect of acidic conditions onto GUV and GHUV membranes’ permeability, giant 
vesicles were hydrated with 100 μL of 100 mM sucrose solution containing 10 μM of calcein during 
electroformation. GUV and GHUV were harvested after 45 min of electroformation using a syringe 
with a 21-gauge needle. Non-encapsulated calcein was removed by dialysis against sucrose 100 mM 
overnight at room temperature using a Float-A-Lyzer G2 device (MWCO 50 KDa, Sigma-Aldrich, 
Saint Quentin Fallavier, France). Finally, calcein-loaded GUV and GHUV were harvested in a 0.5 mL 
dark Eppendorf and protected from light until testing. Samples were analyzed within 24 h after 
preparation. 

2.2. LUV and LHUV Preparation 

Large unilamellar vesicles (LUV) and large hybrid unilamellar vesicles (LHUV) were prepared 
using the lipid film hydration method. A lipid or a polymer/lipid solution in chloroform at the desired 
ratio (for LUV, 80:20 or 50:50 mol % POPC:CSL; for GHUV, 80:20 or 50:50 mol % PDMS36-b-
PEO23:CSL) was added in a 25 mL round-bottom flask, dried under reduced pression in a rotary 
evaporator, and further dried under vacuum for at least 2 h before hydration with 10 mL of ultrapure 
water at room temperature without any agitation to yield a 1.4 mg mL−1 lipid suspension. Afterwards, 
the suspension was extruded 11 times through a 1 μm polycarbonate membrane (Avanti Polar Lipids 
Inc., Alabaster, AL, USA) for DLS measurement. 

2.3. 1H NMR Measurement 

For 1H NMR measurements only, GUV or GHUV were prepared by the hydration of the lipid 
film as mentioned above for LUV and LHUV, in order to get the sufficient amount of particles. After 
hydration, vesicles were not extruded but rather transferred to another 150 mL round-bottom flask 
for further freeze-drying. Then, the powder was resuspended in 500 μL of deuterated chloroform for 
1H NMR analysis to reach a final CSL concentration of 7 mg mL−1. Other components were calculated 
according to the POPC:CSL ratio, in GUV, or PDMS36-b-PEO23:CSL in GHUV. Samples were analyzed 
the same day as preparation. 

2.4. Dynamic Light Scattering  

Hydrodynamic diameter and ζ-potential of LUV or LHUV suspension were measured at 20 °C 
using a Malvern Zetasizer Nano ZS (Malvern, Worcestershire, UK). Samples were diluted in Milli-Q 
water (1:2 v/v) to a final volume of 1 mL. Size measurements were performed with a scattered angle 
of 173° and reported as Z-average (intensity). The voltage for ζ-potential was set automatically by the 
equipment. In order to evaluate the effect of pH change on the LUV or LHUV properties, samples 
were acidified with HCl 0.01 M and monitored using a pH-meter until a drop of pH from 6.8 to 2.8 
was reached. When applicable, an equivalent amount to HCl of NaCl at the same molarity was added 
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to vesicles suspension as a control. Measurements were performed at least in triplicate. Graphs were 
plotted using GraphPad (Prism 7, GraphPad Software Inc., San Diego, CA, USA). 

2.5. Confocal Imaging 

All images were acquired on a Leica TCS SP5 (Leica Microsystems CMS GmbH, Mannheim, 
Germany) inverted confocal microscope (DMI6000). A 50-μL aliquot of 100 mM sucrose suspension 
of GUV or GHUV was added into 150 μL iso-osmolar (100 mOsm L−1) glucose solution containing in 
an eight-well μ-Slide (Ibidi, Martinsried, Germany). Vesicles were allowed to sediment for at least 2 
min before imaging. It is important to stress that vesicles were formulated in sucrose 100 mM and 
allowed to sediment in a glucose solution prepared at same concentration to avoid osmolarity shock. 
In order to evaluate the morphological and/or loaded-calcein intensity changes upon acidification, 39 
μL of an iso-osmolar HCl solution in glucose (100 mOsm L−1, 4 × 10−4 mM) was added directly in the 
well chamber. This volume of HCl was sufficient to, within 2 min, drop the pH down to 4.7, which 
was a value lower than the pH of the CSL conformation switch [16]. As a control, the same volume 
of an iso-osmolar sucrose solution of NaCl was added to the vesicles-containing chamber. PDMS-
NBD/calcein and rhodamine-PE were stepwisely imaged using an argon laser line with an 
excitation/range of emission of 488 nm/500–530 nm (PDMS-NBD/calcein) and 514 nm/600–700 nm 
(Rhodamine-PE). Images were processed using Fiji/ImageJ software.  

To calculate the overall fluorescence intensity of loaded calcein immediately before and after (2 
min) HCl treatment, 13 images per condition were processed by ImageJ software on the same Region 
of Interest (ROI). Fluorescence intensity ranged from 0 to 250 and the number of pixels for each 
intensity was normalized by the total amount of pixels measured. A normal distribution of 
fluorescence intensity was plotted using GraphPad (Prism 7, GraphPad Software Inc., San Diego, CA, 
USA). 

3. Results 

3.1. Insertion of CSL into LUV or LHUV 

In order to assess the incorporation of cationic switchable lipid (CSL) in lipid and hybrid 
polymer/lipid membranes, we prepared a series of vesicles and assessed their hydrodynamic 
diameter and polydispersity index (PDI) by DLS, their surface charge by electrophoretic light 
scattering (ELS), and their composition by 1H NMR. CSL was incorporated (0, 20, 50 mol %) into 
POPC large unilamellar vesicles (LUV) or into PDMS36-b-PEO23 large hybrid unilamellar vesicles 
(LHUV) formed by the hydration method (Table 1). Their non-switchable counterparts (POPC only 
and PDMS36-b-PEO23:POPC 80:20 and 50:50 mol %) were prepared in a similar fashion and used as 
control throughout the experiments (Table 1). 

Table 1. Physicochemical properties of large unilamellar vesicles and hybrid vesicles (LUVs and 
LHUVs). CSL: cationic switchable lipid, PDMS36-b-PEO23: poly(dimethylsiloxane)-block-poly(ethylene 
oxide) backbone, POPC: 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine. 

Name 
 

Composition 
(% w/w) 

Measured 
Molar 
Ratio 

(1H NMR)  

Hydrodynamic 
Diameter (nm) 

PDI 
ζ 

Potential 
(mV) 

LUV-POPC POPC n/a 687± 6 0.254 −26 ± 1 

LUV-CSL  
POPC:CSL 80:20 80:20  101 ± 24 0.279 +29 ± 1 
POPC:CSL 50:50 54:46  245 ± 3 0.338 +38 ± 1 

LHUV-
POPC 

PDMS36-b-PEO23:POPC 80:20 N/D 234 ± 0 0.339 −14 ± 1 
PDMS36-b-PEO23:POPC 50:50 N/D 165 ± 9 0.290 −8 ± 1 

LHUV-CSL  PDMS36-b-PEO23:CSL 80:20 83:17  228 ± 2 0.354 +31 ± 1 
PDMS36-b-PEO23:CSL 50:50 51:49  320 ± 1 0.340 +35 ± 1 

N/D: not determined; n/a: not applicable. 
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The ratios of 1H NMR aromatic peaks of CSL and methyl of POPC (CSL/POPC) on the one hand, 
and CSL and methyl of PDMS36-b-PEO23 (CSL/ PDMS36-b-PEO23) on the other hand, were used to 
determine the actual amount of CSL after preparation in LUV and LHUV, respectively (Figures S1–
S4, Supplementary Materials). The values, close to the initial feeding ratio, indicate that the 
switchable lipid was successfully incorporated into LUV and LHUV. After extrusion using a 1 μm 
size filter, surprisingly, the vesicles exhibited a submicron size, which was characteristic of LUV and 
LHUV [21]. The incorporation of CSL into LUV reversed the ζ-potential, which was due to the 
cationic character of CSL. The ζ-potential varied according to the CSL amount within LUV or LHUV, 
accounting for the incorporation of CSL into the membranes. Regarding the hydrodynamic diameter, 
a strong decrease is observed upon incorporation of CSL into LUV, while the evolution is less clear 
for LHUV and depends on the amount of CSL incorporated.  

3.2. Acid-related morphological modifications 

3.2.1. DLS and ζ-measurements 

CSL have been reported to undergo a conformational change upon acidification (predicted pKa 
≈ 5.39), destabilizing liposomes membrane and promoting the fast cytosolic delivery of siRNA if 
incorporated at 50 mol % [16]. In this study, the hydrodynamic size distribution and the total 
scattered intensity (derived count rate (DCR)) were examined before and after the global decrease of 
pH from 6.8 to 2.8 (Figure 1, Figure S5 and Table S1, Supplementary Materials). 

 

Figure 1. DLS and ζ-potential measurements of LUV and LHUV at pH 6.8 and 2.8. (a) Size distribution 
and correlogram of LUV-CSL 50%; (b) Derived count rate and ζ-potential of both LUV-POPC and 
LUV-CSL 50% at both pHs; (c) Size distribution and correlogram of LHUV-CSL 50% at both pHs and 
after NaCl addition; (d) Derived count rate and zeta potential of LHUV-POPC 50%, LHUV-CSL 20% 
and 50% at both pHs and after NaCl addition. Data represent the mean ±SD (n = 3). Student’s t-test, 
where * (p < 0.05); ** (p < 0.005), **** (p < 0.0001) and ns (not statistically significant). 
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The presence of CSL strongly impacted the properties of both LUV and LHUV as compared to 
non-responsive vesicles. Upon acidification, LUV-CSL 50% became smaller (from 245 to 126 nm, 
Table S1) and presented a 2-fold decrease in the derived count rate whilst exhibiting a suitable 
correlogram profile (Figure 1a,b). In comparison, LUV-POPC did not show any significant change 
upon acidification (Figure 1b, Figure S5 and Table S1, Supplementary Materials). This observation 
confirms the presence of CSL into the lipid bilayer and suggests dynamic changes, which is in 
agreement with previous observations [16]. Interestingly, similar behavior was observed for hybrid 
vesicles. Acidification significantly decreased the LHUV-CSL size (Figure 1c for LHUV-CSL 50% and 
Figure S5 for LHUV-CSL 20%) and DCR (Figure 1d and Table S1, Supplementary Materials). The 
more CSL incorporated into the LHUV, the more marked these effects (Figure 1d). In comparison, 
LHUV-POPC 20% was not impacted by acidification, neither in size (Figure S5b, Supplementary 
Materials) nor DCR (Figure 1d). According to DLS measurement, the size distribution is slightly 
modified with an additional population at slightly higher size for LHUV-POPC 50% (Figure S5c and 
Table S1, Supplementary Materials), although the DCR remained unchanged (Figure 1d). It has to be 
noted that the decreased size and DCR in CSL-containing LHUV were not caused by osmotic changes, 
as the addition of same volume of NaCl at similar molarity did not impact the hydrodynamic 
diameter and only slightly impacted the DCR at the highest CSL concentration (Figure 1d, and Table 
S1, Supplementary Materials). Altogether, those results attest that LUV-CSL and LHUV-CSL exhibit 
pH-triggered changes, which are due to the presence of a switchable lipid embedded in the vesicles’ 
membrane. 

3.2.2. Confocal Observations  

We further investigated the pH-triggered modifications in membranes bearing switchable lipid 
by macroscopic observations using confocal microscopy. We incorporated CSL into giant unilamellar 
vesicles (GUV-CSL) or giant hybrid unilamellar vesicles (GHUV-CSL) prepared by electroformation, 
since their micrometric size is better adapted to confocal microscopy [20]. Their morphological 
alterations upon global decrease of pH was experimentally examined under confocal microscopy 
(Figures S6–S9, Supplementary Materials) and posteriorly categorized as vesicles with inward or 
outward structures (tubular protrusions, membrane-attached aggregation), internalized vesicles, or 
membrane fluctuation (non-round shaped vesicles) [23] and assembled in a table with values 
presented as the relative percentage of total vesicles counted (Table 2). As previously, non-switchable 
giant unilamellar vesicles (GUV-POPC) or giant hybrid unilamellar vesicles (GHUV-POPC) were 
used as control. It has to be noted that we failed to harvest switchable GHUV containing 50% of CSL 
after 45 min of electroformation. Therefore, we assessed the acid-induced modifications on GUV-
POPC, GUV-CSL 20% (Figure S6, Supplementary Materials), and GUV-CSL 50% (Figure S7, 
Supplementary Materials), GHUV-CSL 20% (Figures S8–S9, Supplementary Materials) and GHUV-
POPC 20% (Figure S8, Supplementary Materials).  
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Table 2. Morphological changes in giant unilamellar lipid vesicles (GUV) and giant hybrid 
polymer/lipid unilamellar vesicles (GHUV) upon HCl or NaCl treatment. 

 
Number of 

Vesicles 
Analyzed 

Vesicles with 
Inward 

Structures 1 

Internalized 
Vesicles 

Vesicles with 
Outward 

Structures 1 

Membrane 
Fluctuation 2 

GUV-
POPC 

64 15% 5% 1.5% 0 

GUV-
POPC+ 
NaCl 

77 18%  5% 6.5% 0 

GUV-
POPC + 

HCl 
79 18% 4% 1% 0 

GUV-CSL 
20% 

125 11% 13%  3% 16% 

GUV-CSL 
20% + HCl 

130 11%  16% 20% 4.6% 

GUV-CSL 
50% 

140 9% 6% 6% 9% 

GUV-CSL 
50% 

+ NaCl 
254 6% 6% 2% 8% 

GUV-CSL 
50% 

+ HCl 
208 14.5% 7% 14% 4% 

GHUV-
POPC 20% 

135 14% 28% 4% 0 

GHUV-
POPC 20% 

+ HCl 
183 11.5% 13% 2% 0 

GHUV-CSL 
20%  

43 
 

28% 37% 0  0 

GHUV-CSL 
20% + HCl 

112 11% 40% 14% 7% 

1 nanotube, aggregations; 2 fluctuating non-rounded vesicles. 

The most remarkable observation concerned outward structures after acidification. GUV-CSL 
20% and GUV-CSL 50% vesicles responded to acidification by projecting outward tubular 
protrusions, since 20% and 14% of the vesicles analyzed presented such structures, respectively 
(Table 2). Membrane-derived structures pointing outward are commonly referred as positive 
curvatures [23], whilst negative curvature denotates membrane-arisen structures pointing inward. In 
the images, we could observe positive membrane curvatures in GUV-CSL 20% and 50% as a result of 
treatment with HCl but not NaCl (Table 2, Figures S6 and S7, Supplementary Materials). 
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Nevertheless, it is difficult to correlate the number of outward structures to the proportion of CSL in 
the lipid composition, since our preparation method does not guarantee the incorporation of similar 
amount of lipids in each vesicle. 

Interestingly, this phenomenon was concomitant with a relative decrease in membrane 
fluctuation (Table 2), which could be associated to a transition from irregular shaped-vesicles toward 
more spherical shaped-vesicles after acid treatment (Figures S6, S7, Supplementary Materials). Those 
effects were not observed in non-responsive vesicles, which did not show any substantial changes 
upon acidification (GUV-POPC, Table 2). Here again, these effects were not due to osmotic shock, 
since NaCl treatment did not impact CSL-GUV morphology (Table 2, Figure S6, Supplementary 
Materials). Finally, in HCl-treated GUV-CSL 50%, the number of inward vesicles increased after 
acidification. This could be attributed to the further rearrangement of irregular-shaped vesicles, 
dividing into two daughter vesicles, as shown in Video S1 (Centre left, frame 1 to 8, Figure S7 and 
Video S1, Supplementary Materials).  

Regarding the hybrid polymer/lipid structures, similar observations could be drawn, although 
a different morphology was observed. Whilst GHUV-POPC 20% exhibited spherical and isolated 
vesicles in agreement with previous reports [20], the presence of CSL in the membrane resulted in 
aggregated multilamellar structures (Figure S8, Supplementary Materials). Interestingly, the dual 
labeling of lipids (rhodamine-PE) and polymers (PDMS-NBD) indicated that the polymers and lipids 
were mixed homogeneously within the membrane (Figure S8, Supplementary Materials). 
Quantitatively, 28% of GHUV-CSL 20% displayed inward structures and 37% of the population had 
internalized vesicles under confocal observation, but no outward protruding tubes or membrane 
fluctuation were observed before acidification. After a global decrease of pH, up to 14% of GHUV-
CSL 20% projected outward tubes, which was in a similar fashion than switchable GUV (Table 2, 
Figure S8, Supplementary Materials). Such quantitative observations, as well as qualitative 
observations (Figure S9 and Video S2, Supplementary Materials), demonstrate that the presence of 
CSL triggered dynamic morphological changes, which were mainly observed as outward 
protrusions, regardless of the membrane’s composition. For GHUV-CSL 20%, this process was 
accompanied by an increase in the number of fluctuating non-rounded shaped vesicles (from 0 to 
7%) and a reduction of the inward structures (Table 2). Furthermore, pH-triggered membrane 
distortions, leading to hybrid vesicles fission, was another similarity between CSL-bearing GUV and 
GHUV (GHUV-CSL 20%, frames 1–8, central left vesicle, Figure S9 and Video S2, Supplementary 
Materials).  

3.3. Study of the pH-Triggered Membrane Permeability to GUV and GHUV  

3.3.1. pH-Triggered Calcein Release from GUV 

Since CSL provided membrane modifications to both lipid-based and hybrid lipid/polymer-
based vesicles, we wondered if this behavior could result in pH-triggered permeability and/or drug 
release ability. Calcein (10 μM) was successfully encapsulated into GUV-CSL 50% and GUV-POPC 
50% using the electroformation method. GUV-CSL 20% were not studied since the morphological 
changes were less significant than for GUV-CSL 50% (Table 2). Calcein was homogenously 
distributed in the core of GUV-POPC vesicles (Figure S10, Supplementary Materials). However, 
calcein was not evenly encapsulated into GUV-CSL 50%, which exhibited aggregation and calcein 
distribution within the core and the membrane of the vesicles (Figure S11, Supplementary Materials). 
The permeability of calcein-loaded GUV was monitored by confocal microscopy upon acid treatment 
(see Section 2.5). The overall fluorescence intensity of vesicles was quantified before and after 
acidification and reported as the percentage of particles exhibiting a specific fluorescence intensity 
(Figure 2).  
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Figure 2. Overall calcein fluorescence intensity in GUVs before and after acidification (pH 6.8 and 
4.8). (a) Calcein loaded GUV-POPC and (b) calcein-loaded GUV-CSL 50%. 

Acidification did not change the morphology (Figure S10, Supplementary Materials) nor the 
fluorescence intensity (Figure 2a) of the GUV-POPC vesicles. Conversely, GUV-CSL 50% lost their 
fluorescent content (Figure 2b), demonstrating either the release of calcein or the acidification of the 
internal cavity of the vesicle, as the fluorescence emission of calcein is pH-sensitive (Figure S11, 
Supplementary Materials). These results confirm the pH-dependent permeability of the membrane 
reported for switchable lipids previously [14]. In addition, the time course of these experiments 
(analysis after 2 min acidification) agrees with the fast conformational switch of the lipids [14]. 
Remarkably, an uneven distribution of calcein intensity inside GUV-CSL 50% population was 
observed after acidification (Figure 2). This suggests that all the vesicles did not incorporate the same 
amount of CSL, since we previously reported that the magnitude of release was related to the 
proportion of CSL in the lipid composition [14].  

3.3.2. pH-Triggered Calcein Release from GHUV 

The impact of CSL incorporation on the behavior of hybrid lipid/polymer vesicles was 
monitored the same way. Calcein was successfully incorporated into all hybrid lipid/polymer 
vesicles, yielding homogeneous spherical vesicles, even for GHUV-CSL 50% (Figure S12, 
Supplementary Materials), which were not harvested without calcein. GHUV-CSL 20% were also 
much less aggregated and more unilamellar than their empty counterparts (compare Figure S8 and 
3b).  
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A global decrease of pH slightly impacted the intensity of GHUV-POPC 20% vesicles but not the 
regular round morphology (Figure 3a). In contrast, GHUV-CSL 20% drastically lost their fluorescent 
content in a few minutes, resulting in mostly empty vesicles (Figure 3b). Video recording 
demonstrated that the rate of the fluorescence decrease could vary between the vesicles as the CSL 
content is not controlled from a vesicle to another (Video S3, Supplementary Materials). As 
previously checked, this phenomenon was not due to osmotic shock, since NaCl treatment did not 
trigger any release from the GHUV-CSL 20% (Figure 3c). Importantly, significant morphological 
changes were observed in GHUV-CSL 20% and 50% (Figure 3b and S12, respectively). Protruding 
and non-rounded shaped fluctuating vesicles (Figure 3b and Video S3, Supplementary Materials) 
were observed at acidic pH, consistently with unloaded GHUV-CSL (Figure S9). In the case of calcein-
loaded GHUV-CSL 50%, only a few aggregated vesicles were visualized after HCl treatment (Figure 
S12, Supplementary Materials), as the hybrid system was disrupted with global acidification (Video 
S4, Supplementary Materials). 

 

Figure 3. Overall calcein fluorescence intensity distribution in GHUVs before and after acidification. 
(a) Overall intensity in GHUV-POPC 20% followed by confocal pictures before and after acidification; 
(b) overall intensity of loaded-calcein in GHUV-CSL3 20% followed by representative pictures before 
and after acidification or (c) NaCl treatment. Scale bar: 10 μm. Calcein filter. 
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4. Discussion 

Molecular tweezers have been recently explored for pharmaceutical applications [24]. Their 
defined molecular structure allows a fine-tuned control over their conformation, which can be 
monitored by external stimuli, such as pH, ions, or light [25]. We have previously developed 
switchable lipids, which exploit a pH-triggered conformational change in order to destabilize a lipid 
membrane and release hydrophilic drugs and oligonucleotides in the cytoplasm of cells [14,16]. 
Although the microscopic mechanism of membrane destabilization by CSL is not yet elucidated, we 
demonstrated that fusion occurred in a pH-responsive fashion and could explain endosomal escape 
[16]. In this study, we investigated further the biophysical behavior of the lipid membrane upon 
acidification in order to understand deeper the membrane deformation upon acidification. Although 
different types of vesicles were examined (LUV and GUV composed of POPC and CSL, on the one 
hand, and hybrid polymer lipid, LHUV and GHUV composed of PDMS-b-PEO diblock copolymer, 
POPC and CSL, on the other hand), several common features were observed and could be attributed 
to the presence of the switchable lipid. Firstly, the pH-triggered increase of permeability visualized 
by calcein fluorescence drop confirmed the previous fluorescence studies of pH-responsive 
sulforhodamine B leakage from switchable liposomes [14]. In the latter study, 88% of the content was 
released in less than 15 min. The amplitude of release was related to the amount of the switchable 
lipid in the lipid composition and to the pH. In addition, the confocal live observations were 
consistent with a fast responding system (less than 15 min), matching the time course of endosomal 
maturation [19]. Secondly, we show for the first time that CSL-containing LUV undergo a size change 
(Table S1, Supplementary Materials) under acidic treatment and that CSL-containing GUV present 
morphological alterations (Figure S6 and Table 2. Therefore, this study brings additional evidence 
that pH-triggered macroscopic changes of the lipid membranes are due to the conformational switch 
of the CSL. Remarkably, the difference between neutral and acidic conditions demonstrates the pH 
selectivity, which ensures biocompatibility with biological membranes at pH 7.4.  

Then, such properties were exploited for hybrid lipid/polymer membranes in order to provide 
pH-responsive permeability to polymersomes. Hybrid lipid/polymer vesicles have been designed 
with the idea of overcoming the drawbacks of each component (leakage and mechanical instability 
for liposomes, low permeability for polymersomes) and combining the benefits of each component 
(biocompatibility and permeability of liposomes, toughness of polymersomes) [5,26]. Some studies 
comment about their potential use [27], as nano/micro reactors [28] and/or as drug delivery agents 
[29] where membrane permeability is of prime importance. Without stimuli-responsive properties, 
payload release is only achieved by passive diffusion. In this study, we selected PDMS-b-PEO diblock 
copolymers, as they are able to form hybrid vesicles in association with POPC [20]. We used 
lipid/polymer composition leading to a homogenous phase distribution and the pH-sensitive 
properties were maintained in GHUV, demonstrating the potential of the switchable lipid. 

Macroscopically, GUV-CSL 50% and GHUV-CSL 20% shared a remarkable feature when 
submitted to HCl treatment: both lipid and hybrid polymer/lipid vesicles underwent morphological 
changes after global acidification (Table 2, Figure S6 and S8, Supplementary Materials). In particular, 
the observation of outward structures upon acidification were specific to CSL-containing vesicles, 
since POPC-containing vesicles did not exhibit such deformations, and they were not due to osmotic 
changes. Another interesting observation shared among minimal membrane system and hybrid 
polymer/lipid vesicles was intense membrane fluctuation leading to vesicles fission (Figure S7 and 
S9, Supplementary Materials). Altogether, the morphological changes observed in this study at a 
nanometer (LHUV) or micrometer scale (GHUV) are due to the presence of the switchable lipid, 
which is able to destabilize polymer membranes, and these are reported to be much stiffer than lipid 
membranes [4,30,31]. To our knowledge, the morphological changes reported here are the first report 
of pH-sensitive lipid/polymer hybrid vesicles (LHUV or GHUV). 
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5. Conclusions 

In this study, we show how a cationic switchable lipid (CSL) impacts the membrane dynamics 
of a lipid or hybrid lipid/polymer membrane in a pH-responsive manner. At a nanometer scale (LUV 
and LHUV), the incorporation of CSL resulted in decreased size and count rate, which was not 
observed for non-responsive vesicles. At a micrometer scale (GUV and GHUV), CSL incorporation 
resulted in pH-triggered membrane morphological changes and increased membrane permeability. 
This study gives additional insight to the biological behavior of CSL-based lipid nanoparticles 
previously reported [16] and open new perspectives in hybrid lipid/polymer vesicle design [5]. In 
future studies, it would be important to screen different polymers or lipid/polymer blends to 
investigate the possibility of domains formation, which could lead to a pH-responsive gate in 
synthetic vesicles. In this case, we need to further develop a fluorescent-tagged switchable lipid to 
address their distribution within lipid and hybrids polymer/lipid membranes. Moreover, anisotropic 
NMR could unveil whether the tweezer-like structure arisen from pH-triggered conformational 
change are responsible for a bilayer incompatible polymorphism [32].  

Supplementary Materials: The following are available online at www.mdpi.com/2073-4360/12/3/637/s1, Figure 
S1 : 1H NMR of GUV-CSL 20% in CDCl3, Figure S2 : 1H NMR GUV-CSL 50% in CDCl3, Figure S3 : 1H NMR 
GHUV-CSL 20% in CDCl3, Figure S4 : 1H NMR GHUV-CSL 50% in CDCl3, Figure S5: Size distribution and 
correlogram fit of LUV and LHUV at pH 6.8 and 2.8, Figure S6: Morphological changes of GUVs upon HCl or 
NaCl treatment, Figure S7: Snapshots of morphological changes in GUV-CSL 50% treated with HCl, Figure S8: 
Morphological changes of GHUVs upon HCl treatment, Figure S9: Snapshots of morphological changes in 
GHUV-CSL 20% treated with HCl, Figure S10: Permeability of calcein-loaded GUV-POPC 50% treated with HCl, 
Figure S11: calcein-loaded GUV-CSL 50% treated with HCl, Figure S12: calcein-loaded GHUV-CSL 50% treated 
with HCl, Table S1: Physicochemical properties of LUVs and LHUVs before and after treatment with HCl or 
NaCl, video S1: morphological changes in GUV-CSL 50% treated with HCl; video S2: morphological changes in 
GHUV-CSL 20% treated with HCl; video S3: calcein-loaded GHUV-CSL 20% treated with HCl, video S4: calcein-
loaded GHUV-CSL 50% treated with HCl. 
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