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Abstract

A new finite volume scheme is used for the approximation of the Navier-Stokes equations on general grids, including
non matching grids. It is based on a discrete approximation of the weak form and on the definition of discrete
gradient and divergence operators on each control volume. A sketch of the convergence proof is given, and the
results of a numerical implementation on a non matching grids are shown. A byproduct is a finite volume scheme
that is convergent for diffusion problems on general grids. To cite this article: R. Eymard, R. Herbin, C. R. Acad.
Sci. Paris, Ser. I .... .

Résumé

Un nouveau schéma de volumes finis colocalisés pour les équations de Navier-Stokes incompressibles
sur des maillages généraux non conformes. Un nouveau schéma volumes finis permet l’approximation des
équations de Navier-Stokes sur des grilles générales. Ce schéma est basé sur une approximation de la formulation
faible, et sur la définition d’opérateurs de gradient et divergence discrets consistants. On donne les grandes lignes
de la preuve de convergence, ainsi que des résultats numériques obtenus pour un maillage non conforme. Un
résultat auxiliaire est l’obtention d’un schéma de volumes finis convergent pour des problèmes de diffusion sur des
grilles générales. Pour citer cet article : R. Eymard, R. Herbin,C. R. Acad. Sci. Paris, ...

Let d = 2 or d = 3, and Ω ⊂ Rd be a polygonal connected domain. We focus here on the approximation
of the pair (u, p) where u = (u(1), u(2)) if d = 2, u = (u(1), u(2), u(3)) if d = 3, stands for the velocity and
p for the pressure, solution of the incompressible steady Navier-Stokes equations

−ν∆u +∇p+ (u · ∇)u = f in Ω

divu = 0 in Ω
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with the usual notation u·∇u =
∑d

i=1u
(i)∂iu, together with a homogeneous Dirichlet boundary condition

for u. A classical weak formulation of this problem is the following:

u ∈ H1
0 (Ω)d, p ∈ L2(Ω) with

∫
Ω

p(x)dx = 0,

ν

∫
Ω

∇u : ∇vdx−
∫
Ω

p divvdx + b(u,u,v) =
∫
Ω

f · vdx ∀v ∈ H1
0 (Ω)d,

divu(x) = 0 for a.e. x ∈ Ω,

(1)

where ν ∈]0,+∞[ and f ∈ L2(Ω)d, ∇u(x) : ∇v(x) =
∑d

i=1∇u(i) · ∇v(i), and b is the trilinear form over
H1

0 (Ω)d defined by: b(u,v,w) =
∑d

k=1

∑d
i=1

∫
Ω
u(i)(x)∂iv

(k)(x)w(k)(x) dx.
In [3], we proposed a colocated finite volume scheme on grids satisfying a so-called orthogonality

condition, such as for instance triangular, rectangular and Voronöı meshes, allowing for a consistent
approximation of diffusion fluxes by two-point fluxes. Colocated schemes are used in commercial codes
(Fluent, CFX) or industrial codes [1] because they are easier to implement and allow for more general
meshes than staggered schemes, even though the latter are known to be inherently stable. We extend here
the study of [3] to general finite volume discretizations which do not have to respect the orthogonality
condition and which may be non matching.

1. Finite volume mesh and scheme

We denote by D = (M, E ,P) a finite volume mesh, where:
(i) M is a finite family of non empty connected open disjoint subsets of Ω (the “control volumes”)

such that Ω = ∪K∈MK. For any K ∈ M, let ∂K = K \K, mK > 0 and hK respectively denote
the boundary, the measure and the diameter of K.

(ii) E is a finite family of disjoint subsets of Ω (the “edges” of the mesh), such that, for all σ ∈ E , σ is
a non empty closed subset of a hyperplane of Rd, whose (d-1)-dimensional measure mσ is strictly
positive. We assume that, for all K ∈M, there exists a subset EK of E such that ∂K = ∪σ∈EK

σ. We
then denote by Mσ = {K ∈M, σ ∈ EK}. We then assume that E is partitionned into E = Eint∪Eext,
such that, for all σ ∈ Eext (boundary edge), Mσ has exactly one element and σ ⊂ ∂Ω, and for all
σ ∈ Eint (interior edge), Mσ has exactly two elements. For all σ ∈ E , we denote by xσ the barycenter
of σ. For all K ∈M and σ ∈ EK , we denote by nK,σ the unit vector normal to σ outward to K.

(iii) P is a family of points of Ω indexed by M, denoted by P = (xK)K∈M, such that for all K ∈ M,
K is assumed to be xK-star-shaped, i.e. for all x ∈ K, the property [xK , x] ⊂ K holds. Denoting
by dK,σ the Euclidean distance between xK and the hyperplane including σ, one assumes that
dK,σ > 0.

The above definition applies to a large variety of meshes. Non matching meshes such as the one depicted
in the final figure may be used, so that in particular, the common boundary of two neighbouring control
volumes can include more than one edge. Note also that no hypothesis is made on the convexity of the
control volumes, which enables that “hexahedra” with non planar faces can be used (such sets may have
up to 12 faces if each non planar face consists in two triangles).

We introduce the set HD(Ω) of functions which are constant in each K ∈M, and for all regular function
ψ : Ω → R (resp. Ψ : Ω → Rd), we denote by PDψ (resp. PDΨ) the element of HD(Ω) (resp. HD(Ω)d)
such that (PDψ)K = ψ(xK) (resp. (PDΨ)K = Ψ(xK)) for all K ∈ M. Let us write an approximation
scheme for (1) in the following way: find (uD, pD) ∈ HD(Ω)d ×HD(Ω) such that
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
ν〈uD,v〉D −

∫
Ω

pDdivD(v)dx + bD(uD,uD,v, pD) =
∫
Ω

f · vdx, ∀v ∈ HD(Ω)d,∫
Ω

divD(uD)qdx + S(pD, q) = 0,∀q ∈ HD(Ω) and
∫
Ω

pDdx = 0.
(2)

Let us first give the expression of 〈·, ·〉D. For any edge σ ∈ E of the mesh, we define a linear mapping Uσ

on HD(Ω), such that for all regular function ψ, Uσ(PDψ) is an order 2 consistent approximation of ψ(xσ).
Since we consider Dirichlet boundary conditions, we set Uσ(u) = 0 for all u ∈ HD(Ω) and σ ∈ Eext. This
allows to define a consistent approximate gradient of the elements of HD(Ω) by

(∇Du)K =
1

mK

∑
σ∈EK

mσ(Uσ(u)− uK)nK,σ (=
1

mK

∑
σ∈EK

mσUσ(u)nK,σ)∀u ∈ HD(Ω), (3)

We then define the linear mappings (RK,σ)K∈M,σ∈EK
on HD(Ω) by

RK,σu = Uσ(u)− uK − (∇Du)K · (xσ − xK), ∀u ∈ HD(Ω), ∀K ∈M, ∀σ ∈ EK , (4)

For a given family (αK)K∈M of positive real numbers, let us define the following inner product on HD(Ω):

〈u, v〉D :=
∫
Ω

∇Du(x) · ∇Dv(x)dx +
∑

K∈M
αK

∑
σ∈EK

mσ

dK,σ
RK,σu RK,σv, ∀u, v ∈ HD(Ω). (5)

Note that the bilinear form defined by
∫
Ω
∇Du(x) · ∇Dv(x)dx does not define an inner product; the

bilinear form 〈·, ·〉D is definite thanks to the parameters αK > 0. For u,v ∈ HD(Ω)d, we set 〈u,v〉D =∑d
i=1〈u(i), v(i)〉D, and Uσ(u) = (Uσ(u(1)), . . . , Uσ(u(d))). We can now define divDv by

(divDv)K =
1

mK

∑
σ∈EK

mσUσ(v) · nK,σ =
d∑

i=1

(∇Dv(i))(i), ∀v ∈ HD(Ω)d. (6)

Because of the colocated nature of the scheme, the approximation of the mass conservation (second
equation of (2)) includes a stabilization term S(·, ·), which is defined in the following way. Let (λσ)σ∈Eint

be a given family of positive real numbers; we define:

S(p, q) =
∑

σ,Mσ={K,L}

λσmσ(hK + hL)(pK − pL)(qK − qL), ∀p, q ∈ HD(Ω). (7)

At least two methods can be considered for the definition of (λσ)σ∈Eint . We can take all λσ equal to the
same value; this yields a stabilization term inspired by [2]. Alternately, we can define a partition of M,
denoted C, and set λσ = λ if there exists G ∈ C (such G ⊂ M is called ”a cluster”) with Mσ ⊂ G,
otherwise we set λσ = 0 (see [4]). Both methods show good results. For σ ∈ Eint, with Mσ = {K,L},
defining ΦK,σ(u, p) = mσ (Uσ(u) · nK,σ + λσ(hK + hL)(pK − pL)) , the second equation of (2) also reads:∑

σ∈EK∩Eint
ΦK,σ(u, p) = 0. Finally, we define the centred approximation bD(uD,uD,v, pD) of the trilinear

form b by

bD(u,v,w, p) =
∑

K∈M
wK ·

 ∑
σ∈EK ,Mσ={K,L}

ΦK,σ(v, p)
uK + uL

2

 , (8)

which allows for the property bD(uD,uD,uD, pD) = 0. Note that this approximation depends on the
pressure through the stabilisation term in the discrete mass flux ΦK,σ(uD, pD). An upstream weighted
approximation, satisfying the same property, could as well be defined.
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2. Convergence analysis

As in [3], the convergence of the scheme is proven, in the case of constant value for all λσ, thanks to
the following arguments:

(i) Setting v = uD and q = pD in (2), we can get, thanks to the property bD(uD,uD,uD, pD) = 0,
some bounds on 〈uD,uD〉D and S(pD, pD). These bounds yield the existence of a solution to the
scheme thanks to a topological degree argument, and allow to apply a compactness result on the
set of approximate velocities.

(ii) We derive a bound on ‖pD‖L2(Ω), following Nečas results, hence proving the weak convergence in
L2(Ω) of the approximate pressure.

(iii) Let (Dn)n∈N be a sequence of meshes with mesh size tending to 0 as n tends to +∞, let (wn)n∈N ⊂
(HDn(Ω))d be a sequence of functions such that the term 〈wn,wn〉Dn remains bounded, and which
converges in L2(Ω) to some function w ∈ H1

0 (Ω), as n tends to +∞; it may then be shown that,
for any regular function Ψ : Ω → Rd vanishing at the boundary, the term 〈wn,PDnΨ〉Dn tends to∫
Ω
∇w : ∇Ψdx, as n tends to +∞. The proof uses the order 2 consistency property of Uσ(PDnΨ)

with Ψ(xσ). During the course of this proof, we get that the approximate solution for the following
diffusion problem: find u ∈ HD(Ω) such that 〈u(D), v〉D =

∫
Ω
f(x)v(x)dx, for all v ∈ HD(Ω),

converges to the weak solution u ∈ H1
0 (Ω) of −∆u = f with u = 0 on ∂Ω.

(iv) We finally get the convergence of any approximate finite volume solution (that is a solution of (2),
and up to a subsequence) to a weak solution of (1), by passing to the limit, taking, for any regular
function Ψ, PDnΨ as a test function in (2), and concluding by density. This step again uses the
order 2 consistency property of functions Uσ and the bound on S(pD, pD).

3. Numerical results

Let us conclude this paper with some numerical re-
sults: we consider the classical lid driven cavity, with
Re = 1000, taking αK = 1 for all K ∈ M. The
following figure presents on the left the grid used
for the computation of the approximate solution,
which shows that there is no need that the mesh
be conforming in the usual finite element sense, nor
suited for two-points fluxes; the right side of the fig-
ure shows the streamlines obtained on this grid.
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[3] R. Eymard, R. Herbin, and J.C. Latché. Convergence analysis of a colocated finite volume scheme for the incompressible
navier-stokes equations on general 2 or 3d meshes. SIAM J. Numer. Anal., 45(1):1–36, 2007.
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