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Design Criteria of X-Wave Launchers for
Millimeter-Wave Applications
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ALBANI2, MAURO ETTORRE4, AND ALESSANDRO GALLI1

Bessel-beam launchers are promising and established technologies for focusing applications at microwaves. Their use in
time-domain leads to the definition of a new class of devices, namely, the X-wave launchers. In this work, we discuss the
focusing features of such devices with a specific interest at millimeter waves. The spatial resolutions of such systems are
described under a rigorous mathematical framework to derive novel operating conditions for designing X-wave launchers.
These criteria might be particularly appealing for specific millimeter-wave applications. In particular, it is shown that an
electrically-large aperture is not strictly required, as it seemed from previous works. However, the use of an electrically-
small aperture would demand a considerably wideband capability. The various discussions presented here provide useful
information for the design of X-wave launchers. This aspect is finally shown with reference to the practical design of two
different X-wave launchers.
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I. INTRODUCTION

In applications such as security screening, medical imag-
ing, and radiometry, to name but a few, it is important to
focus the energy in the millimeter-wave range to benefit
of both the non-ionizing character of millimeter waves and
their millimeter resolution [1].

In this context, nondiffracting waves [2], especially
Bessel beams and their polychromatic version, i.e., X-
waves, are gaining much attention in the millimeter-wave
community due to their remarkable focusing features [3].
Indeed, nondiffracting waves do not undergo diffraction
within a certain depth of field. This is a striking difference
with respect to more conventional beams and pulses such
as Gaussian beams [4] and pulses [5, 6], or complex-source
beams [7–9] and complex-source pulsed-beams [10, 11],
that gradually spread their energy as they propagate. It is
worth noting that Gaussian beams and pulses are equiva-
lent to a paraxial complex spherical wave, whereas non-
diffracting waves are generalizations of complex-source
wavefields retaining bidirectional spectra [9, 12, 13].
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Fig. 1. Comparison between Bessel-beam launchers and X-wave launchers.
On the left-side, a Bessel-beam launcher generating a transversely focused
Bessel beam with transverse spot size Sρ. The transverse profile is maintained
along the longitudinal axis up to the nondiffractive range zndr. On the right
side, the same device acts as an X-wave launcher in the time domain. The prop-
agation of a focused X-wave is captured at a given time. Differently from the
Bessel beam, the X-wave is confined also along the longitudinal z-axis where
it exhibits a longitudinal spot size Sz considerably narrower than zndr.

Bessel beams [14] as well as X-waves [15] are able
to maintain their nondiffractive character along the axis
of propagation for a large distance (commonly known as
nondiffractive range), as experimentally demonstrated in
optics [16, 17] and acoustics [18, 19]. Interestingly, while
Bessel beams are focused only along the transverse axis,
X-waves are focused along both the transverse and the
longitudinal axis (see Fig. 1).

Although Bessel beams have been experimentally gen-
erated in the microwave and millimeter-wave range (see,
e.g., [20–24]), experimental results for X-waves are very
recent [25, 26]. The reason for this lack of experimental
results was motivated in [15]. There, the development of
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an original theoretical framework allowed the derivation
of several physical insights on the problem. The proposed
analysis revealed that the design of an efficient X-wave
launcher (i.e., able to focus energy along both the trans-
verse and the longitudinal axis) usually requires a moderate
wavenumber dispersion, a wide fractional bandwidth, and
an electrically-large aperture. These requirements actually
limit the class of suitable planar devices at millimeter
waves to those using holographic approaches [15, 27] and
leaky-wave techniques [26, 28]. In those works, the design
process takes advantage of the concept of metric of con-
finement introduced in [15]. The design criteria adopted in
[15, 28] will be clearly outlined in this manuscript.

On this basis, we provide here a more general cri-
terion for designing X-wave launchers. It is shown that
an electrically-large aperture is not theoretically required
to focus energy along both directions. Using the results
recently outlined in [31], we show that the aperture size
reduction dictates a larger fractional bandwidth.

The paper is organized as follows. In Section I, the
focusing features of X-waves are briefly outlined. In
Section II, we review the concept of metric of confine-
ment and discuss some original aspects relevant for specific
millimeter-wave applications. In Section III the criteria
for designing electrically-small apertures are discussed.
Section IV reports some practical design examples of
X-wave launcher based on holographic approaches and
leaky-wave techniques. Finally, conclusions are drawn in
Section V.

II. NONDIFFRACTIVE FEATURES OF
X-WAVES

X-waves can be obtained as a spectral superposition of
Bessel beams with the same axicon angle [2] over a certain
frequency bandwidth ∆ω. Throughout the paper, we con-
sider only spectrally-flat X-waves, i.e., we tacitly assume
a uniform frequency spectrum. Under this assumption, an
X-wave can be expressed as

χ(ρ, z, t) =

∫
∆ω

J0(kρ(ω)ρ)e−jkz(ω)zejωtdω, (1)

where J0(·) is a zeroth-order Bessel function of the first
kind, ω is the angular frequency, t is time, kρ and kz
are the wavenumbers along the radial ρ and longitudinal
z directions, respectively (related each other through the
separation relation k2

0 = k2
ρ + k2

z , where k0 is the free-
space wavenumber), and θ = arctan[kρ(ω)/kz(ω)] is the
axicon angle. Therefore, any Bessel-beam launcher char-
acterized by a negligible wavenumber dispersion over a
certain frequency bandwidth can act as an X-wave launcher
in time domain. Moreover, since X-waves are obtained
from Bessel beams, they inherit their focusing features.

Specifically, X-waves are localized along the transverse
axis and maintain their transverse spot size Sρ up to the
nondiffractive range zndr = ρap cot θ [14], where ρap is

the aperture radius. In addition, X-waves are also localized
along the longitudinal axis. However, the longitudinal spot
size Sz is narrow as long as a considerable fractional band-
width is guaranteed [15]. This results from the definition of
a suitable metric of confinement for X-waves [15, 31], as
we will review in the following paragraphs.

We note here that throughout the paper we always refer
to zeroth-order X-waves, although higher-order X-waves
are of extreme interest for their capability to carry orbital
angular momentum [29, 30].

A) Metric of confinement
The definition of metric of confinement states that X-waves
are localized if and only if both their transverse Sρ and
longitudinal Sz spot sizes are smaller than the aperture
diameter dap = 2ρap and the nondiffractive range zndr,
respectively [15, 31]. Hence, by introducing the following
confinement ratios

Cρ = Sρ/dap, (2)

Cz = Sz/zndr (3)

the definition of the following metric of confinement is
straightforward:

Cρ,z =

{
1 if max(Cρ, Cz) > 1,

CρCz elsewhere,
. (4)

Clearly, when Cρ,z < 1, the resulting X-wave will be con-
fined along both the radial and the longitudinal direction.
Therefore, the value of Cρ,z gives a well-defined measure
of the localization of the energy. Otherwise, whenCρ,z = 1
the X-wave would not be confined along the radial or the
longitudinal direction.

B) Resolutions along the radial and
longitudinal axis
For spectrally-flat X-waves, the expressions for Sρ and
Sz and in turn Cρ and Cz can be found in analytical
closed form [15]. In the case of a nondispersive X-wave
characterized by an axicon angle θ and generated at the
carrier angular frequency ω0 around a fractional band-
width FBW = ∆ω/ω0, Sρ and Sz take the following
expressions:

Sρ =
j0,1λ0

π sin θ
, (5)

Sz =
2λ0

FBW cos θ
, (6)

where j0,1 ' 2.405 is the first null of the zeroth-order
Bessel function of the first kind, and λ0 = 2π/k0, with
k0 = ω0/c0 c0 being the light speed in vacuum. From
these expressions, we note that the transverse resolution
Sρ is lower-bounded by Sρ,a ' λ0/1.3 (which is close to
the Abbe diffraction limit for optical systems [32]). Con-
versely, the longitudinal resolution Sz could be reduced
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Fig. 2. (a)–(d) The metric of confinementCρ,z vs. ρap/λ0 and θ is shown for (a) FBW = 1%, (b) FBW = 10%, (c) FBW = 20%, and (d) FBW = 50%. In
the black region Cρ > 1 or Cz > 1, thus the resulting X-wave is not confined along both axes. The solid blue lines represent the boundaries for which Cρ = 1

(upper boundary) and Cz = 1 (lower boundary). The two boundaries cross at θ = θ′eq and ρ′eq. (e)–(h) Normalized field intensities |χ(ρ, z, t0)|2/max |χ|2 vs.
ρ/λ0 and z/zndr for an X-wave generated with θ = 30◦ and ρap = 15λ0 (see the blue dots in Figs. 2(a)–(d)). The time t is set at the instant t0 for which the
X-wave peak has reached z = zndr.

arbitrarily, in principle, by increasing the fractional band-
width. Nonetheless, planar radiating structures operating
at millimeter waves are generally limited to 10− 20%
fractional bandwidths, thus Sz is also practically lower-
bounded by 2λ0.

It is worth noting here that the axicon angle has an
opposite effect over the longitudinal and the transverse res-
olutions, and thus it is not possible to narrow the resolution
along both directions by solely changing the axicon angle.

From the expressions of Sρ and Sz , the confinement
ratios Cρ and Cz are readily found

Cρ =
j0,1

(ρap/λ0)2π sin θ
, (7)

Cz =
2 sin θ

(ρap/λ0)FBW cos2 θ
. (8)

As for Sρ and Sz , it is manifest that the FBW is the
only parameter that allows for improving the longitudinal
localization without negatively affecting the transverse one.

A numerical demonstration of this aspect is shown in
Fig. 2. In Figs. 2(a)–(d), the metric of confinement Cρ,z is
reported as a contour-plot of the two variables ρap/λ0 and
θ for values of FBW = 1%, 10%, 20%, 50%. The black
region represents the pairs of values (ρap/λ0, θ) for which
the X-wave is not confined along at least one direction for a
given FBW. This region is determined by the intersection of
the two boundaries (see blue solid lines) that represent the
condition for which Cρ = 1 (upper boundary) and Cz = 1
(lower boundary), respectively.

As is shown, the region within these two boundaries
increases as the FBW increases. In other words, a pair of
values (ρap/λ0, θ) for which the X-wave is not confined

for a certain FBW, might be confined for a higher FBW.
This is corroborated by numerical results (see Figs. 2(e)–
(f)) considering a non-dispersive X-wave characterized
by the pair (ρap/λ0 = 15, θ = 30◦) (see blue dots in
Figs. 2(a)–(d)). As is shown, for low fractional bandwidths
the X-wave is loosely localized along the longitudinal axis
(the main spot has a ‘needle-like’ shape), whereas it is
tightly focused (the main spot has a ‘bullet-like’ shape) for
high fractional bandwidths.

C) Resolution and confinement equalization
For some applications, such as medical imaging, it could
be more important to have the same resolution along both
axes (i.e., Sρ = Sz). Then, it is interesting to find the oper-
ating conditions equalizing the transverse and longitudinal
resolutions. By equating the expressions of Sρ and Sz , it is
readily found that the equalization condition for resolution
is obtained for θeq:

θeq = arctan

(
j0,1FBW

2π

)
' arctan (0.38FBW). (9)

Inserting (9) into (5) we get an expression for the
equalized spot-size

Seq = λ0

√(
j0,1
π

)2

+

(
2

FBW

)2

, (10)

which represents the diameter of the resulting spherical-
like pulse generated by the considered aperture. As
expected, the minimum equalized spot-size is achieved
for a theoretically infinite bandwidth. More precisely, Seq
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Fig. 3. (a) θeq, θ′eq (in degrees) and Seq, S′eq(normalized to λ0) vs. the fractional bandwidth in the range 0 ≤ FBW ≤ 1. The green dotted line identi-
fies the asymptotic limit Seq ∼ Sρ,a (b) Numerical demonstration of the resolution equalization condition (i.e., equation (9)). Normalized field amplitude
|χ(ρ, z, t0)|/max |χ| vs. ρ/λ0 and z/λ0 for an X-wave generated with FBW = 20% and θeq ' 4.38◦. The aperture radius is fixed at ρap = 10λ0 without
loss of generality. (c) Numerical demonstration of the confinement equalization condition (i.e., Eq. (12)). Normalized field amplitude |χ(ρ, z, t0)|/max |χ| vs.
ρ/ρap and z/zndr for an X-wave generated with FBW = 20% and θeq ' 11.06◦. The aperture radius is fixed at ρap/λ0 = ρ′eq to also show the validity of
Eq. (14). Indeed, the field amplitude vanishes as ρ→ ρap along the transverse axis, and z → zndr along the propagation axis. In both (b) and (c) the time t is set
at the instant t0 for which the X-wave peak has reached z = zndr/2. The white dashed line highlights the iso-line of the half-amplitude level.

asymptotically approaches the limit λ0/1.3 (represented as
a green dotted line in Fig. 3(a)) as pointed out in Section
II.B, i.e.,

lim
FBW→∞

Seq = Sρ,a ' λ0/1.3. (11)

In Fig. 3(a) we have reported Eqs. (9) and (10) on the
same plot to show the variation of θeq and Seq, respec-
tively, as functions of the fractional bandwidth in the range
0 ≤ FBW ≤ 1.

In order to numerically validate the equalization con-
dition we generate an X-wave with a fractional band-
width FBW = 20% at which corresponds θeq ' 4◦ (see
Fig. 3(a)). The contour plot of the generated field distri-
bution over the ρz-plane for this numerical example is
reported in Fig. 3(b).

This equalization criterion gives the design rule to equal-
ize the absolute resolutions (that is dimensionally a length).
However, for some other applications, such as wireless
power transfer, it could be more interesting to have the
same relative resolutions (adimensional) with respect to
the aperture diameter and the nondiffractive range, for the
radial and longitudinal direction, respectively. This can be
accomplished by equalizing the confinement ratios along
both axes (i.e., Cρ = Cz) in place of the resolutions (i.e.,
Sρ = Sz). In that case, Eq. (9) should be replaced by

θ′eq = arctan

√
j0,1FBW

4π
' arctan

(
0.44
√

FBW
)
(12)

where θ′eq gives the condition for equalizing the confine-
ment ratios rather than the resolutions. Inserting (12) into
(7) we get an expression for the equalized confinement

Ceq =
λ0

ρap

2π

j0,1

√
j0,1
2π

+
2

FBW
, (13)

which depends on both the normalized aperture radius and
the fractional bandwidth. However, from Figs. 2(a)–(d) we

note that a point exists for which the upper and lower
boundaries of the metric of confinement (see blue lines in
Figs. 2(a)–(d)) meet at θ = θ′eq and ρap/λ0 = ρ′eq with

ρ′eq =
j0,1

2π sin θ′eq

. (14)

At this point (viz., (θ′eq, ρ
′
eq)) we clearly have

Cρ = Cz = 1. This point represents the limit condi-
tion of confinement equalization. In other words, for any
aperture radius such that ρap/λ0 > ρ′eq, the resulting
X-wave will be efficiently confined and equalized (with
respect to the relative resolutions), provided that θ = θ′eq.
The absolute resolution achieved under the confinement
equalization condition S′eq is obtained from Eq. (5), by
replacing Cρ with Ceq (see Eq. (13)), and reads

S′eq =
πλ0

j0,1

√
j0,1
2π

+
2

FBW
, (15)

which clearly does not depend on ρap. The behavior of S′eq

as a function of FBW is reported in Fig. 3(a) in dashed
blue lines.

In order to numerically validate the equalization condi-
tion for the relative resolutions we generate an X-wave with
a fractional bandwidth FBW = 20% at which corresponds
θ′eq ' 11◦ (see Fig. 3(a)). We then fixed ρap/λ0 = ρ′eq to
validate also Eq. (14). As a consequence, the generated
X-wave should have a transverse spot size equal to the
aperture diameter and a longitudinal spot size equal to the
nondiffractive range (recall the definitions of Cρ and Cz in
Eqs. (7)–(8)). This can be easily inferred from Fig. 3(c),
where the contour plots over the ρz-plane have been
reported over the range 0 < ρ < ρap and 0 < z < zndr.
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Fig. 4. (a) The metric of confinement Cρ,z vs. FBW and θ is shown for
ρap = 2λ0. The blue solid lines represent the boundaries for which Cρ = 1

and Cz = 1. The two boundaries cross at FBW = FBWmin ' 20%

and θ = θmin ' 11◦ (see the white dot). (b) Numerical demonstration
of the minimum bandwidth condition for electrically-small apertures (i.e.,
Eqs. (16)–(17)). Normalized field amplitude |χ(ρ, z, t0)|/max |χ| vs. ρ/ρap
and z/zndr for an X-wave generated with FBWmin and θmin. The aperture
radius is fixed at ρap = 2λ0. The time t is set at the instant t0 for which the
X-wave peak has reached z = zndr/2.

III. ALTERNATIVE CRITERIA FOR
ELECTRICALLY-SMALL APERTURES

In the previous Section II, we focused on the equaliza-
tion of the resolutions. Also, from the definitions of the
confinement ratios we demonstrated that X-wave launchers
generally require an electrically-large aperture, a consider-
able fractional bandwidth, and a low axicon angle [15]. In
fact, from Figs. 2(a)–(b), it appears that for low fractional
bandwidths and electrically-small apertures, an efficient
confinement is possible only for few values of the axicon
angle around 10◦. However, the situation is rather different
for higher fractional bandwidths (see Figs. 2(c)–(d)), for
which efficient confinement is possible for axicon angles
up to 40◦.

All these aspects can be recast in a more system-
atic way, by inspecting Eqs. (7) and (8). In fact, from
Eq. (7) one finds that the condition for having a trans-
versely localized X-wave (i.e., Cρ < 1) gives an aperture
radius ρap/λ0 > (j0,1/2π) csc θ, which is lower-bounded
by the value j0,1/2π ' 0.38. This means that, even for such
electrically-small apertures, a minimum axicon angle θmin

would exist beyond which the X-wave will be transversely
confined

θ > θmin = arcsin

(
j0,1

2πρap/λ0

)
. (16)

However, since the metric of confinement is lower than 1
if and only if max{Cρ, Cz} < 1 (see Eq. (4)), the X-wave
has to be also longitudinally confined (i.e.,Cz < 1) at θmin.
Then, from Eq. (7), it results that the fractional bandwidth
has to be greater than a minimum value FBWmin

FBW > FBWmin =
2 tan θmin

(ρap/λ0) cos θmin
. (17)

In this regard, in Fig. 4(a), we have reported the met-
ric of confinement as a contour plot of the two vari-
ables θ and FBW for ρap/λ0 = 2. As is shown, even for

(a) (b)

Fig. 5. (a)–(b) An X-wave is launched from (a) an RLSA antenna and (b) an
LPRW. As the X-wave pulse propagates beyond the nondiffractive range zndr,
the spot size increases and the intensity correspondingly decreases.

such an electrically-small aperture, the conditions given by
Eqs. (16) and (17) identify a region where X-waves can be
efficiently confined along both directions. In this numeri-
cal example, the limiting condition for the confinement is
obtained for θmin ' 11◦ and FBWmin ' 20% (highlighted
with a white dot in Fig. 4(a)) and corresponding to the inter-
section of the boundaries Cρ = 1 and Cz = 1 (see both
blue solid lines in Fig. 4(a)).

As for the previous equalization conditions, the numeri-
cal validation of Eqs. (16)–(17) is performed by generating
an X-wave with ρap = 2λ0, FBW = 20%, and θ = 11◦,
corresponding to the operating conditions highlighted with
a white dot in Fig. 4(a). The contour plot over the ρz-plane
for this numerical example is reported in Fig. 4(b). As is
seen, the normalized field amplitude approaches the first
null exactly at ρ = ρap and at z = zndr. We note that the
field localization along the transverse plane improves as θ
is increased (see Eq. (7)). This increase in the value of θ,
would in turn adversely affect the longitudinal confinement
which, however, can be improved by increasing FBW (see
Eq. (8)). More generally, for the considered fixed aperture
radius, viz., ρap = 2λ0, the pairs of θ and FBW values that
grant an efficient confinement are represented by the bright
region in Fig. 4(a).

IV. DESIGN OF X-WAVE LAUNCHERS

We consider here the design of two X-wave launchers both
based on radial waveguides, but following two different
approaches: a radial-line slot array (RLSA) antenna [33]
(see Fig. 5(a)), adopting a holographic design principle
[34], and a leaky periodic radial waveguide (LPRW) [28]
(see Fig. 5(b)), exploiting leaky-wave theory [35].

Among the various planar realizations of microwave and
millimeter-wave Bessel-beam launchers (see, e.g., [20–24]
and references therein), the RLSA and the LPRW both
possess wideband capabilities, and therefore they can also
operate as X-wave launchers. The details for the accurate
design of these devices as X-wave launchers can be found
in [15] and in [28], for RLSA antennas and for LPRWs,
respectively. Here we report the design of two X-wave
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Fig. 6. (a) The confinement metric for a fractional bandwidth of 20%. A blue (green) dot represents the operating conditions of an RLSA(LRPW) design. (b)–(c)
Contour plot of an X-wave launched by (b) an RLSA antenna and (c) by a LPRW with operating conditions as in (a). The X-wave is captured at a time instant for
which the wavefront has traveled the distance z = zndr/2).

launchers to validate the analysis developed in the previous
Sections.

A) RLSA antenna design
An RLSA antenna is a radial waveguide where slots are
etched on the upper-plate in order to synthesize a pre-
scribed aperture distribution for radiation (see Fig. 5(a)).
Specifically, in [27, 33], the radiating slots are arranged
in a spiral path to synthesize an inward cylindrical-wave
aperture distribution creating a Bessel beam. Once the aper-
ture radius, the operating frequency, and axicon angle are
fixed, the position and the size of each slot are optimized
according to an in-house method-of-moments (MoM) code
[34]. Since the operating fractional bandwidth of an RLSA
antenna easily achieves 10%− 20%, the efficient gen-
eration of X-waves is granted for several combinations
of the design parameters, i.e., ρap and θ0, as shown in
Fig. 6(a), reporting the metric of confinement for FBW =
20%. Indeed, all pairs (ρap, θ) lying in the bright region
of Fig. 6(a) can be used to launch efficiently-confined
X-waves.

As an example, we report in Fig. 6(b) the contour plot
of an X-wave generated at f = 60 GHz by an RLSA with
ρap = 15λ0, and θ = 11◦ corresponding to the operating
conditions of the blue dot in Fig. 6(a). The resulting X-
wave is obtained through the numerical evaluation of the
radiation integral and the Fourier-Transform of the spec-
tral field as extensively discussed in [15]. This result will
be commented further on, in comparison with the result
obtained through an LPRW design.

B) LPRW design
An LPRW is a radial waveguide where the upper plate is
replaced by an annular periodic metal strip grating (MSG).
As shown in [28], the period of the MSG is chosen so as
to excite a backward leaky-wave in the frequency range
of interest. We recall here that leaky waves are character-
ized by a complex propagation wavenumber kρ = β − jα
where the imaginary part, the leakage rate, accounts for
radiation losses [35]. Backward (forward) leaky waves are

those for which the group and phase velocities are in oppo-
site (identical) directions [35]. As a result, the backward
character of the excited leaky wave allows for recover-
ing the inward character required for the generation of a
Bessel beam (see [28] for a rigorous theoretical explana-
tion). However, as opposed to RLSA antennas where the
radiation efficiency is entirely controlled during the MoM
optimization procedure [23] , the radiation efficiency of
an LPRW depends on the product between the leakage
rate and the aperture radius of the device. As a conse-
quence, a low value of the leakage rate (which is desirable
to improve the focusing efficiency of the LPRW [28])
demands for a relatively large aperture radius, in order to
obtain a satisfactory radiation efficiency (commonly above
90% [24]).

As an example, we report in Fig. 6(c) the contour plot
of an X-wave generated at f = 60 GHz by an LPRW with
ρap = 40λ0, and θ = 15◦, corresponding to the operating
conditions highlighted with a green dot in Fig. 6(a). At this
point, it is worth to compare the results in Figs. 6(b)–(c)
obtained through an RLSA and an LPRW. As is manifest,
the X-wave launched by an RLSA is less confined, but
more intense than the one launched through by an LPRW.
These two aspects have a clear physical explanation.

With regard to the confinement efficiency, it could be
predicted from Fig. 6(a) that the operating conditions of
the LPRW antenna would lead to a more confined X-wave
with respect to the RLSA design. The former lay in a region
of higher confinement (the color is brighter) according to
the metric Cρ,z . However, it should be stressed that this
improved confinement is only due to the larger aperture
radius of the LPRW with respect to the RLSA. On the other
hand, the confinement of the X-wave generated through the
RLSA design can be improved by using a larger radiating
aperture.

With regard to the different field intensities, we should
comment on the role of the leakage constant in the LPRW.
Indeed, the complex nature of leaky waves contribute to
taper the aperture field distribution with an exponentially-
decaying function of the type exp(−αρ). As a conse-
quence, the resulting X-wave does not present tails in the
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radial direction, but it experiences a higher field attenu-
ation while propagating along the longitudinal direction
(the interested reader may find a detailed analysis on this
aspects in [28]), with respect to the one generated through
an RLSA design.

As a final comment we should discuss the energy tails
surrounding the main spot of both X-waves. Indeed, an
ideal X-wave would have tails outlining an X-shape (pre-
cisely, the axicon angle determines the intersection angle
of the two branches forming the X-shape). Conversely, the
X-waves reported in Figs. 6(b)–(c) spread their energy even
in other directions, partly masking the X-shape of the tails.
This phenomenon is due to the dispersive features of an
RLSA antenna and an LPRW, as shown in [27] and [28],
respectively.

V. CONCLUSION

In this work, the design of efficient X-wave launchers has
been discussed from an original perspective. By reviewing
the concept of metric of confinement, we discussed alter-
native criteria for designing X-wave launchers that might
be of interest for specific millimeter-wave applications. In
particular, it has been shown that X-wave launchers can be
designed to get either the same resolutions or the same con-
finement ratios along the longitudinal and transversal axes.
Also, we discussed the possibility to design an efficient
X-wave launcher without requiring an electrically-large
aperture. This comes at the expense of a larger fractional
bandwidth. The discussion outlined in this work can be
beneficial for the design process of X-wave launchers.
The design of two X-wave launchers based on holographic
and leaky-wave approach has been outlined to validate the
results of the paper. The possibility to extend these results
to the relevant case of dispersive X-waves is envisaged for
future works.
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