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Eigenvector Models for Solving the Seismic Inverse Problem for

the Helmholtz Equation: Extended Materials

Florian Faucher∗,†,‡ , Otmar Scherzer†,§ and Hélène Barucq∗

Abstract

We study the seismic inverse problem for the recovery of subsurface properties in acoustic
media. In order to reduce the ill-posedness of the problem, the heterogeneous wave speed
parameter is represented using a limited number of coefficients associated with a basis of
eigenvectors of a diffusion equation, following the regularization by discretization approach.
We compare several choices for the diffusion coefficient in the partial differential equations,
which are extracted from the field of image processing. We first investigate their efficiency
for image decomposition (accuracy of the representation with respect to the number of vari-
ables and denoising). Next, we implement the method in the quantitative reconstruction
procedure for seismic imaging, following the Full Waveform Inversion method, where the
difficulty resides in that the basis is defined from an initial model where none of the ac-
tual structures is known. In particular, we demonstrate that the method is efficient for the
challenging reconstruction of media with salt-domes. We employ the method in two and
three-dimensional experiments, and show that the eigenvector representation compensates
for the lack of low-frequency information, it eventually serves us to extract guidelines for the
implementation of the method.

1 Introduction

We consider the inverse problem associated with the propagation of time-harmonic waves which
occurs, for example, in seismic applications, where the mechanical waves are used to probe
the Earth. Following the non-intrusive geophysical setup for exploration, we work with mea-
sured seismograms that record the waves at the surface (i.e., partial boundary measurements)
and one-side illumination (back-scattered/reflection data). In the last decades, this problem
has encountered a growing interest with the increase in numerical capability and the use of
supercomputers. However, the accurate recovery of the deep subsurface structures remains a
challenge, due to the nonlinearity and ill-posedeness of the problem, the availability of partial
reflection data only, and the large scale domains of investigation.

In the context of seismic, the quantitative reconstruction of physical properties using an
iterative minimization of a cost function originally follows the work of Bamberger et al. (1979),
Lailly (1983) and Tarantola (1984, 1987) in the time-domain, Pratt et al. (1990; 1996; 1998)
for the frequency approach. The method is commonly referred to as Full Waveform Inversion
(FWI), which takes the complete observed seismograms for data. One key of FWI is that the
gradient of the misfit functional is computed using the adjoint-state method (Lions & Mitter,
1971; Chavent, 1974), to avoid the formation of the (large) Jacobian matrix; we refer to Plessix
(2006) for a review in geophysical applications. Then, Newton-type algorithms represent the
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traditional framework to perform the iterative minimization. Due to the large computational
scale of the domain investigated, seismic experiments may have difficulties to incorporate second
order (Hessian) information in the algorithm, and alternative techniques have been proposed,
for example, in the work of Pratt et al. (1998); Akcelik et al. (2002); Choi et al. (2008); Métivier
et al. (2013); Jun et al. (2015). The quantitative (as opposed to qualitative) reconstruction
methods based upon iterative minimization are naturally not restricted to seismic and we refer,
among others, to Ammari et al. (2015); Barucq et al. (2018) and the references therein for
additional applications using similar techniques.

The main difficulty of FWI (in both exploration and global seismology) lies in the high
nonlinearity of the problem and the presence of local minima in the misfit functional, which
are due to the time shifts and cycle-skipping effect (Bunks et al., 1995), in particular when
the background velocity (the low-frequency profile) is not correctly anticipated (Gauthier et al.,
1986; Luo & Schuster, 1991; Fichtner et al., 2008; Barucq et al., 2019b). For this reason,
the phase information is included in the traveltime inversion by Luo & Schuster (1991) by
using a cross-correlation function between measurements and simulations, where the relative
phase shift is given by the maximum of the correlation. The method is further generalized
by Gee & Jordan (1992), while Van Leeuwen & Mulder (2010) propose to select the phase
shift using a weighted norm. The choice of misfit has further encountered a growing interest
in the past decade: in application to global-scale seismology, Fichtner et al. (2008) compare
the phase, correlation-based, and envelope misfit functionals, the latter being also studied by
Bozdağ et al. (2011). In exploration seismic, comparisons of phase and amplitude inversion are
performed by Bednar et al. (2007); Pyun et al. (2007). The L1 norm is studied by Brossier
et al. (2010) while approaches based upon optimal transport are considered by Métivier et al.
(2016); Yang et al. (2018). In the context where different fields are measured, Alessandrini et al.
(2019); Faucher et al. (2019) advocate for a reciprocity-based functional, which further connects
to the correlation-based formulas (Faucher et al., 2019). In the case of accurate knowledge
of the background velocity, the inverse problem is close to linear or quasi-linear as the Born
approximation holds and then, alternative methods of linear inverse problem can be applied,
such as the Backus–Gilbert method (Backus & Gilbert, 1967, 1968). The difficulty to recover
the background velocity variation has also motivated alternative parametrization of the inverse
problem: for instance the MBTT (Background/Data-Space Reflectivity) reformulation of FWI
(Clément et al., 2001; Barucq et al., 2019b).

In order to diminish the ill-posedness of the inverse problem, a regularization criterion can
be incorporated. It introduces an additional constraint (in addition to the fidelity between
observations and simulations), which, however, may be complicated to select a priori and problem
dependent (with ‘tuning’ parameters). For instance, we refer to the body of work of Kirsch
(1996); Isakov (2006); Kern (2016); Kaltenbacher (2018) and the references therein. In the
regularization by discretization approach, the model representation plays the role of regularizing
the functional, by controlling (and limiting) the number of unknowns in the problem, and
possibly defining (i.e. constraining) the shape of the unknown (e.g., to force smoothness).
Controlling the number of unknowns influences the resolution of the outcome, but also the
stability and convergence of the procedure. The use of piecewise constant coefficients appears
natural for numerical applications, and is also motivated by stability results (Alessandrini &
Vessella, 2005; Beretta et al., 2016). However, such a decomposition can lead to an artificial
‘block’ representation (cf. Beretta et al. (2016); Faucher (2017)) which would not be appropriate
in terms of resolution. For this reason, a piecewise linear model representation is explored by
Alessandrini et al. (2018, 2019), still motivated by the stability properties. We also mention the
wavelet-based model reductions, that offer a flexible framework and are used for the purpose
of regularization in seismic tomography by Loris et al. (2007, 2010). In the work of Yuan
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et al. (2014; 2015), FWI is carried out in the time-domain with a model represented from a
wavelet-based decomposition.

In our work, we will use a model decomposition based upon the eigenvectors of a chosen
diffusion operator, as introduced by De Buhan & Kray (2013); Grote et al. (2017); Grote &
Nahum (2019). Note that this decomposition is shown (with the right choice of operator) to
be related with the more standard Total Variation (TV) or Tikhonov regularizations. The
main difference in our work is that we study several alternatives for the choice of the operator
following image processing techniques, which traditionally also relies on such diffusion PDEs
(e.g. Weickert (1998)). We first investigate the performance of the decomposition depending on
the choice of PDE, and, next, the performance of such a model decomposition as parametrization
of the reconstruction procedure in seismic FWI. It shows that the efficient choice of PDE should
change depending on the situation. In addition, we provide a series of experiment to extract the
robust guidelines for the implementation of the method in seismic.

We specifically target the reconstruction of subsurface salt domes (i.e. media with high
contrasting objects), which is particularly challenging, because (in addition to the usual restric-
tive data) of the change of the kinematics involved and the lack of low frequency data (Farmer
et al., 1996; Chironi et al., 2006; Virieux & Operto, 2009; Barucq et al., 2019a). In such cases,
the use of the Total-Variation regularization (Rudin et al., 1992) with FWI is becoming more
and more prominent, and consists in incorporating an additional constraint on the model in
the minimization problem. Its efficiency is shown in the context of acoustic media with salt-
dome contrasts by, e.g., Brandsberg-Dahl et al. (2017); Esser et al. (2018); Kalita et al. (2019);
Aghamiry et al. (2019). In our work, we study several alternatives and demonstrate that the
model representation with the criterion extracted from Geman & Reynolds (1992) appears the
most appropriate for the eigenvector decomposition method in the presence of salt-domes. We
also show the limitations of the method, in particular, it appears that the decomposition fails
to represent models which are composed of several thin structures.

In Section 2, we define the inverse problem associated with the Helmholtz equation and
introduce the iterative method for the reconstruction of the wave speed. In Section 3, we review
several possibilities for the model decomposition using the eigenvectors of the diffusion operators.
The process of model (image) decomposition is illustrated in Section 4. Then, in Section 5,
we carry out the iterative reconstruction with FWI experiments in two and three dimensions.
Here, the model decomposition is based upon the initial model, which does not contain a priori
information on the target, hence increasing the differences of performance depending on the
selection of the basis. It allows us to identify the best candidate for the recovery of salt dome,
and to extract some guidelines for applications in quantitative reconstruction.

2 Inverse time-harmonic wave problem

2.1 Forward problem

We consider a domain Ω in two or three dimensions, with Ω ⊂ R2 or Ω ⊂ R3. We focus
on acoustic media where, for simplicity, the density is taken as a constant, leading us to the
identification of a single heterogeneous parameter: the wave speed. The propagation of waves
in an acoustic medium with constant density is given by the scalar pressure field p, solution to
the Helmholtz equation (

−∆− ω2c−2(x)
)
p(x) = f(x), in Ω, (1)

where c is the wave speed, f the source, and ω the angular frequency. We now have to specify
the boundary conditions to formulate the appropriate problem.
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Γ1 (free surface)

Σ (measurements location)

Γ2 (absorbing
boundary condition)

domain of interest Ω

point source

Figure 1: Illustration of the two-dimensional computational domain. The sign ‘plus’ indicates
the (point) source and the dotted line is the location of the discrete measure points. The
complete acquisition consists in several sources, all are located at the same depth, only the
lateral position varies; the measure points are fixed.

Following a seismic setup, the boundary of Ω, Γ is separated into two. The upper (top)
boundary, Γ1, represents the interface between the Earth and the air, and is subsequently
represented via a free surface boundary condition, where the pressure is null. On the other
hand, other part of the boundary corresponds to the numerical need for restricting the area of
interest. Here, conditions must ensure that entering waves are not reflected back to the domain
(i.e., because the area of interest is only a part of the Earth), see Figure 1. The two most popular
formulations to handle such numerical boundary are either the Perfectly Matched Layers (PML,
Bérenger (1994)), or outgoing artificial boundary conditions. In our case, we use Absorbing
Boundary Conditions (ABC, Engquist & Majda (1977)) so that the complete problem writes as

(
−∆− ω2c−2(x)

)
p(x) = f(x), in Ω,

p(x) = 0, on Γ1,

∂νp(x)− iωc−1(x)p(x) = 0, on Γ2,

(2)

where ∂ν is the normal derivative. We recall that p denotes the pressure, ω denotes the frequency
of the induced source and c denotes the wave speed.

The inverse problem aims the recovery of the wave speed c in (2), from a discrete set of
measurements (i.e. partial data), which corresponds to observation of the wave propagations.
More precisely, our data consist in measurements of the pressure field solution to (2), at the
(discrete) device locations. We refer to Σ for this set of positions, where the receivers are located,
and define the forward map at frequency ω, Fω (which links the model to the data), such that,

Fω : m → p(x) |Σ . (3)

We have introduced m(x) := c−2(x), which is also our choice of parameter for the reconstruction,
see Remark 2. In seismic, the data are further generated from several point sources (excited one
by one) and all devices (sources and receivers) remain near the surface. All devices (sources and
receivers) remain near the surface (Γ1), as illustrated with Σ in Figure 1.

2.2 Quantitative reconstruction using iterative minimization

The inverse problem aims the reconstruction of the unknown medium squared slowness m (i.e.
the wave speed) from data yω that connects to the forward map Fω(m†) for a reference (target)
model m† with

yω = Fω(m†) + Eω, (4)

where Eω represents the noise in the measurements (from the inaccuracy of the devices, model
error, etc), possibly frequency dependent.
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For the reconstruction, we follow the Full Waveform Inversion (FWI) method (Tarantola,
1984; Pratt et al., 1998), which relies on an iterative minimization of a misfit functional defined
as the difference between the observed data and the computational simulations:

min
m
J (m) =

1

2

∑
ω

‖Fω(m)− yω‖2, (5)

where we use the standard least-squares minimization but alternatives have also been studied,
as indicated in the introduction.

Remark 1 (Multi-frequency algorithm). For the choice of frequency in Problem 5, applications
commonly use a sequence of increasing frequencies during the iterative process (Bunks et al.,
1995; Pratt & Worthington, 1990; Sirgue & Pratt, 2004; Brossier et al., 2009; Barucq et al.,
2018; Faucher, 2017). Namely, one starts with a low frequency and minimize the functional
for the fixed frequency content in the data. Once the misfit functional stagnates, or after a
prescribed number of iterations, the frequency is updated (increased) and the iterations continue,
cf. Algorithm 2. Moreover, the use of sequential frequency (instead of band of frequencies) is
advocated by Barucq et al. (2019a), because it enlarges the size of the basins of attraction.

Remark 2 (Parametrization of the unknown). For the reconstruction, we invert the squared
slowness m = c−2 instead of the velocity. The choice of this parameter is first motivated by the
Helmholtz equation (2). However, it (i.e., velocity, slowness or squared slowness inversion) can
lead to an important difference in the efficiency of the reconstruction procedure. It is discussed,
for example, by Tarantola (1986); Brossier (2011); Köhn et al. (2012); in particular, we motivate
our choice from the comparison of reconstructions provided in the context of seismic by (Faucher,
2017, Section 5.4).

Then, an iterative minimization algorithm is used for the resolution of Problem 5 in the
framework of the Newton methods. Starting with an initial guess m(0), the model is updated at
each iteration k, using a search direction s(k), such that

m(k+1) = m(k) + µs(k), k > 0. (6)

Several possibilities exist for the search direction (e.g., Newton, Gauss-Newton, BFGS, gradient
descent, etc.) and we refer to Nocedal & Wright (2006) for an extensive review of the methods.
The scalar coefficient µ is approximated using a line search algorithm (Nocedal & Wright, 2006).
In our implementation, we rely on a gradient-based optimization, with the nonlinear conjugate
gradient method, and a backtracking line search (Nocedal & Wright, 2006). A review of the
performance of first order-based minimization algorithms and the influence of line search step
selection is further investigated by Barucq et al. (2018) in the context of inverse scattering. The
computation of the gradient of the misfit functional is carried out using the adjoint-state method
(Chavent, 1974; Plessix, 2006), which specific steps for complex-valued fields can be found in
(Barucq et al., 2019b, Appendix A)

3 Regularization by discretization: model decomposition

In this section, we introduce a representation of the unknown, i.e., the model decomposition,
based upon the eigenvectors of a diffusion equation. The objective is to reduce the dimension of
the unknown to mitigate the ill-posedness of the inverse problem. We provide several possibilities
for the choice of the eigenvectors, following the literature in image processing.
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3.1 Regularization and diffusion operators

The resolution of the inverse problem using a quantitative method introduces an optimization
problem (5) where the misfit functional J accounts for a fidelity term. The resolution of such a
problem is also common in the context of image processing (e.g., for denoising or edge enhance-
ment) where the fidelity term corresponds to the matching between the original and processed
images. It is relatively common (for both the quantitative reconstruction methods and in image
processing) to incorporate an additional term in the minimization, for the purpose of regulariza-
tion. The primary function of this additional term is to reduce the ill-posedness of the problem,
by adding a constraint. It has been the topic of several studies, we refer to, e.g., Kirsch (1996);
Isakov (2006); Charbonnier et al. (1994); Robert & Deriche (1996); Rudin et al. (1992); Vogel
& Oman (1996); Lobel et al. (1997); Kern (2016); Qiu et al. (2016); Kaltenbacher (2018). The
regularized minimization problem writes as

min
m
Jr(m) =

1

2

∑
ω

‖Fω(m)− yω‖2 + I(m), (7)

where I stands for the regularization term.
In many applications such as image processing, I is usually defined to only depend on the

gradient of the variable (image), such that

I(m) =

∫
Ω
φ(|∇m|) dΩ , (8)

where φ ∈ L2(Ω). In particular, the minimum of I with respect to m verifies the Euler–Lagrange
equations (Evans, 2010; Dubrovin et al., 1992). In one dimension, it is given by (Dubrovin
et al., 1992, Theorem 31.1.2) and is extended for higher dimensions with (Dubrovin et al., 1992,
Theorem 37.1.2) (further simplified in our case because I only depends on the gradient). It
states that the minimizer of I is the solution of the diffusion equation:

∇ ·
(
φ′(|∇m|)
|∇m| ∇m

)
= 0 in Ω. (9)

For the sake of clarity, we introduce the following notation:

A(y, η) := −∇ ·
(
η(y)∇

)
, with η(y) =

φ′(|∇y|)
|∇y| . (10)

In the following, we present several choices for the diffusion PDE coefficient η, following image
processing theory.

Remark 3. The minimization of Jr in Problem (7) can be performed using traditional gradient
descent or Newton type algorithms. Another alternative, in particular when rewriting with the
Euler–Lagrange formulation in the context of image processing, is to recast the problem as a
time dependent evolution one, see, e.g., the work of Weickert (1998); Catté et al. (1992); Rudin
et al. (1992); Alvarez et al. (1992).

Remark 4. The diffusion equation (9) is obtained using the fact that φ = φ(|∇m|) only depends
on ∇m. In case of dependency of the function with m, or higher order derivatives, the Euler–
Lagrange formulation must be adapted.
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3.2 Diffusion coefficients from image processing

There exist several possibilities for the choice of diffusion coefficient η (also referred to as the
weighting function) in (10), inherited from image processing theory and applications. In the
following, we investigate the most common formulations, see Table 1, for which we have mainly
followed the ones that are reviewed by (Blanc-Féraud et al., 1995, Table 1) and Robert & Deriche
(1996). Furthermore, we incorporate a scaling coefficient β > 0 for the diffusion coefficient, which
impacts on the magnitude. For consistency in the different models, the norms that we employed
are scaled with the maximal values so that they remain between 0 and 1. We define,

g1(m,x) =
|∇m(x)|

γ1
, g2(m,x) =

|∇m(x)|2
γ2

, with

γ1 = max
(
|∇m(x)|

)
, γ2 = max

(
|∇m(x)|2

)
, |∇m(x)| =

√√√√ d∑
k=1

(
∂m

∂xk

)2

,

(11)

where d is the space dimension (d = 2 or d = 3 in our experiments) and x the space coordinates:
x = {xk}dk=1. In order to simplify the formulas, we will omit the space dependency in the
following. Note that in the numerical experiments, we calculate the eigenvalues and eigenvectors
from the linear differential operator A(m, η) defined in (10), where the diffusion coefficient η is
taken from the nonlinear PDE model.

Remark 5. We can make the following comments regarding the nine diffusion coefficients that
are introduced in Table 1.

– The PDE (9) using the Tikhonov diffusion coefficient η9 coincides with the Laplace equa-
tion.

– For the formulation of η4 and η8, we have to impose a threshold as the coefficient is not
defined for the points where the gradient is zero. In the computations, we impose that
η4 = η8 = 1 for the points xi where ∇m(xi) < 10−12.

– The first Perona–Malik formula η1, is very similar to the Lorentzian approach, η6: only
the position of β differs. Namely, the Perona–Malik formula would rather use small β
while the Lorentzian formula would use large β.

– The second Perona–Malik formula, η2, is very similar to the Gaussian criterion η7, which
only includes an additional dependency on β.

– The formulation of η8 corresponds to the Total Variation (TV) regularization (Vogel &
Oman, 1996).

3.3 Eigenvector model decomposition in FWI

In our work, we employ the regularization by discretization approach: instead of adding the
regularization term I in the minimization problem, we remain with Problem (5), and use a
specific representation for the model (unknown). We follow the work of De Buhan & Osses
(2010); De Buhan & Kray (2013); Grote et al. (2017); Grote & Nahum (2019) with the “Adaptive
Inversion” or “Adaptive Eigenspace Inversion” method. Namely, the unknown is represented via
a decomposition into the basis of eigenvectors computed from a diffusion PDE. The purpose is to
control the number of unknowns in the representation, and consequently reduce the ill-posedness
of the inverse problem. The decomposition uses the steps (given in Grote et al. (2017)) depicted
in Algorithm 1.
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Table 1: List of formula for the coefficient of the diffusion operator which is used to decompose
the image.

reference (name) definition β → 0 β →∞

Perona & Malik (1988, 1990) η1(m,β) =
β

β + g2(m)
0 1

Perona & Malik (1988, 1990) η2(m,β) = exp

(
− g2(m)

β

)
0 1

Geman & Reynolds (1992) η3(m,β) =
2β(

β + g2(m)
)2 0 0

Green (1990) η4(m,β) = tanh

(
g1(m)

β

)(
1

βg1(m)

)
+∞ 0

Charbonnier et al. (1994) η5(m,β) =
1

β

(
β + g2(m)

β

)−1/2

+∞ 0

Grote & Nahum (2019)

(Lorentzian) η6(m,β) =
β(

1 + βg2(m)
)2 0 0

Grote & Nahum (2019)

(Gaussian) η7(m,β) =

(
β exp

(
g2(m)

β

))−1

0 0

Rudin et al. (1992)

(Total Variation, TV) η8(m) =
1

g1(m)
n/a n/a

Tikhonov η9 = 1 n/a n/a

Eigenvector decomposition: given an initial model m(x), a selected integer value
N > 0, and the selected diffusion coefficient η.

1. Compute m0, the solution of the linear PDE{
A(m, η)m0 = 0, in Ω,

m0 = m, on Γ.
(12)

2. Compute the subset of N eigenfunctions {ψk}k=1,...,N which are associated to the
N smallest eigenvalues {λk}k=1,...,N such that, for all k,{

A(m, η)ψk = λkψk, in Ω,

ψk = 0, on Γ.
(13)

3. Compute the model decomposition using N eigenvectors:

m = m0 +

N∑
k=1

αkψk, (14)

where αk is a scalar and ψk a vector. Here, the set of α is chosen to minimize
‖m−m‖2; and the ψk, k = 1, . . . , N are the eigenvectors associated with the N
smallest eigenvalues λk, computed in Step (ii).

Algorithm 1: The model decomposition using the eigenvectors of the diffusion equation
associated with the smallest eigenvalues. We refer to the model decomposition as m(m,N,ψ)
where ψ(m, η,N) is the set of eigenvectors, see (15) and (16).
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Following Algorithm 1, we introduce the notation,

ψ(m, η,N) = {ψk}k=1,...,N the set of N eigenvectors associated with the model m and

th diffusion coefficient η, computed from (12) and (13);
(15)

and

m(m,N,ψ) is the decomposition of the model m using N vectors from ψ, (14). (16)

Therefore, the model is represented via N coefficients α in (14) in the basis given by the
diffusion operator. The reconstruction procedure follows an iterative minimization of (5), and
performs successive update of the coefficients α. The key is that N is much smaller than the
dimension of the original representation of m, but allows an accurate resolution, as we illustrate
in Sections 4 and 5. Algorithm 2 details the procedure.

Remark 6 (Minimization algorithm). For the minimization procedure depicted in Algorithm 2,
we use a non-linear conjugate gradient method for the search direction. This method has the
advantage that it only necessitates the computation of the gradient of the cost function (Nocedal
& Wright, 2006). Then, to control the update step µ in Algorithm 2, a line search algorithm is
typically employed (Eisenstat & Walker, 1994; Nocedal & Wright, 2006; Chavent et al., 2015;
Barucq et al., 2018). This operation is complex in practice because an accurate estimation would
require intensive computational operations (with an additional minimization problem to solve).
Here, we employ a simple backtracking algorithm (Nocedal & Wright, 2006).

Remark 7 (Gradient computation). The gradient of the cost function is computed using the
first order adjoint-state method (Lions & Mitter, 1971; Chavent, 1974), which is standard in
seismic application (Plessix, 2006). It avoids the formation of a dense Jacobian matrix and
instead requires the resolution of an additional PDE, which is the adjoint of the forward PDE,
with right-hand sides defined from the difference between the measurements and the simulations,
see Plessix (2006); Faucher (2017); Barucq et al. (2018, 2019b) for more details.

In our implementation, the gradient is first computed with respect to the original (nodal)
representation and we use the chain rule to retrieve the gradient with respect to the decomposition
coefficients α:

∂J
∂α

=
∂J
∂m

∂m

∂α
. (19)

It is straightforward, from (14), that the derivation for a chosen coefficient αl gives ∂αl
m = ψl.

Therefore, it is computationally easy to introduce the formulation with respect to the eigenvector
decomposition from an already existing ‘classical’ (i.e. when the derivative with respect to the
model is performed) formulation: it only necessitates one additional step with the eigenvectors.

Remark 8. In Algorithm 2, the basis of eigenvectors remains the same for the complete set
of iterations, and is extracted from the initial model. Only the number of vectors taken for the
representation, Ni, changes. Namely, from N1 to N2 > N1, the decomposition using N2 still has
the same N1 first eigenvectors in its representation (with different weights α), and additional
(N2−N1) eigenvectors. As an alternative, we investigate the performance of an algorithm where
the basis changes at each frequency (i.e. it is recomputed from the current iteration model), see
Appendix A.

3.4 Numerical implementation

Our code is developed in Fortran90, it uses both mpi and OpenMP parallelism and run on
cluster1 for efficiency. The forward wave operator is discretized using a Finite Differences scheme,

1The experiments have been performed on the cluster PlaFRIM (Plateforme Fédérative pour la Recherche en
Informatique et Mathématiques, https://www.plafrim.fr/fr) with the following node specification: 2 Dodeca-
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Inputs: the measurements yω; the initial model m(0); the selected number of iterations
niter; the list of frequencies ωi, i = 1,. . .,nω; the decomposition dimension associated
with frequency: Ni, for i = 1, . . . , nω.

Using Algorithm 1,

1. compute the eigenvector basis form(0) using the selected η and the highest integer
Nmax = max

(
{Ni}nω

i=1

)
,

ψ = ψ(m, η,Nmax). (17)

2. Decompose the initial model using the initial decomposition dimension:

m(0) = m(m(0), N1,ψ) = m0 +

N1∑
l=1

α
(0)
l ψl. (18)

Frequency loop for i ∈ {1, . . . , nω} do

Set N = Ni.

Optimization loop for j ∈ {1, . . . , niter} do

Set k := (i− 1)niter + j − 1.

Solve the Helmholtz equation (2) at frequency ωi with model m(k).

Compute the misfit functional J in (5).

Compute the gradient of the misfit functional ∇αJ using the adjoint-state method.

Compute the search direction s(k), see Remark 6.

Compute the descent step µ using the line search algorithm, see Remark 6.

Update the coefficient α with α(k+1) = α(k) − µs(k).

Update the model:

m(k+1) = m0 +

N∑
l=1

α
(k+1)
l ψl.

end

end

Algorithm 2: The iterative minimization algorithm (FWI) using the model decomposition to
control the number of variables. The model is represented in the eigenvector basis, for which
the weights are updated along with the iterations.

e.g. Virieux (1984); Operto et al. (2009); Wang et al. (2011). The discretization of the Helmholtz
operator generates a large sparse matrix, for which we use the direct solver Mumps (Amestoy
et al. (2001, 2006)) for its factorization and the resolution of linear system. This solver is
particularly optimized and designed for this type of linear algebra problems, i.e. large, sparse
matrices. Our preference for direct solver instead of iterative ones is mainly motivated by two

core Haswell Intel Xeon E5–2680 v3 (2.5GHz); 128Go RAM; Infiniband QDR TrueScale: 40Gb s−1, Omnipath
100Gb s−1.
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reasons:

1. seismic acquisition is composed of a large amount of sources, i.e. a large amount of right-
hand sides (rhs) to be processed for the linear system. Using direct solver, the resolution
time is very low once the factorization is performed, hence it is well adapted for the multi-
rhs seismic configuration.

2. For the minimization algorithm, the gradient is computed via the adjoint-state method
(see Remark 7). It means that an additional linear system has to be solved, which is
actually the adjoint of the forward one. Here, the factors obtained from the factorization
of the forward operator can be directly reused, and allow a reduced computational cost,
see Barucq et al. (2018) and the references therein.

The next step is the computation of the eigenvectors associated with the smallest eigenval-
ues for the diffusion operator. We use the package Arpack2, which is devoted to solve large
sparse eigenvalue problems using iterative methods. More precisely, it uses implicitly restarted
Lanczos or Arnoldi methods, respectively for symmetric and non-symmetric matrices, Lehoucq
& Sorensen (1996). Several options are available in the package, including the maximum number
of iterations allowed, or a tolerance parameter for the accuracy of acceptable solution3.

Remark 9 (Eigenvectors associated with the lowest eigenvalues). The Lanczos and Arnoldi
methods are particularly efficient to compute the largest eigenvalues and associated eigenvectors
of the matrix, and only require matrix vector multiplication. However, we are interested in the
lowest eigenvalues for our decomposition. The idea is simply to use that the lowest eigenvalues
of the discretized diffusion matrix, say A, are simply the largest eigenvalues of the matrix A−1.
Then, the matrix-vector multiplication, say Av for a vector v, becomes a resolution of a linear
system A−1v. It may appear computationally expensive but it is not thanks to the use of the
direct solver Mumps (see above), which, once the factorization is obtained, is very efficient for
the resolution procedure. Hence, the computation follows the steps4:

1. compute the (sparse) matrix discretization of the selected diffusion operator: A;

2. compute the factorization of the matrix A using Mumps,

3. use the package Arpack to compute the largest eigenvalues of A−1, by replacing the
matrix-vector multiplication step in the iterations by the resolution of a linear system using
Mumps.

Finally, the last step is to retrieve the appropriate coefficients αk in (14) for the decomposi-
tion. It basically consists in the resolution of a dense linear system (from least squares method).
We use Lapack, Anderson et al. (1999) (contrary to Mumps, Lapack is adapted to dense linear
system). Note that, because we usually consider a few hundreds of coefficients for the decompo-
sition, this operation remains relatively cheap compared to the eigenvectors computation. We
compare the computational time for the eigenvectors computation and model decomposition in
Figure 2 for different values of N and η. We first note that the choice of η does not really

2www.caam.rice.edu/software/ARPACK/, Arpack uses sequential computation, hence, contrary to the rest
of our code, this part does not use parallelism. Future developments include the implementation of the parallel
version of the package: Parpack.

3We have observed important reduction of time cost when allowing some flexibility in the accuracy with this
threshold criterion. However, in the computational experiments, we do not use this option, as the numerical
efficiency is not the primary objective of our study.

4Arpack has the possibility to compute the smallest eigenvalues using matrix-vector multiplication, however,
we have observed a drastic increase of the computational time compared to using the inverse matrix and resolution
of linear system.
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modify the computational time. Then, we see that the two operations are mostly linear in N ,
and that the time to solve the least squares problem with Lapack is much smaller than the time
to compute the eigenvectors with Arpack, namely, hundred time smaller. For the largest case:
N = 1000 for a squared matrix of size 277221, it takes about 30min to retrieve the eigenvectors,
and 10 s to compute the α (in our applications we usually take N < 100).

101 102 103

101

102

103

N

ti
m
e
(s
)

η1
η6
η8

(a) The computational time to retrieve the eigenvec-
tors associated with the lowest eigenvalues, (13), us-
ing sequential Arpack.

101 102 103

10−1

100

101

N

η1
η6
η8

(b) The computational time to obtain the coeffi-
cients α in (14) using least squares method and
sequential Lapack.

Figure 2: Comparison of the computational time for the eigenvector decomposition for different
η. The computation of the eigenvectors uses the discretized matrix of a diffusion operator of
size 277221× 277221. It corresponds with the decomposition of the model Figure 3(b) which is
further illustrated in Section 4. Other formulations of η from Table 1 are not shown for clarity,
but follow the exact same pattern.

4 Illustration of model decomposition

First, we illustrate the eigenvector model decomposition with geophysical media in two dimen-
sions. The original model is represented on a structured grid by nx × nz coefficients, and we
have here 921× 301 = 277221 coefficients. We consider three media of different nature:

– the Marmousi velocity model, which consists in structures and faults, see Figure 3(a);

– a model encompassing salt domes: objects of high contrast velocity, see Figure 3(b);

– eventually, the SEAM Phase I velocity model which consists in both salt and layer struc-
tures, see Figure 10.

All three models uses the same number of coefficients for their representations, and the first two
are actually of the same size (9.2× 3 km).

We perform the decomposition of the models by application of Algorithm 1, and steps (12), (13)
and (14) (and we recall that we use the linear PDE problem). We study the main parameters
of the decomposition:

– the choice of η, with the possibilities given in Table 1,

– the choice of the scaling parameter β in the formulation of η (Table 1),

– the number of eigenvectors N employed for the decomposition in (14).
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(a) Marmousi velocity model.
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(b) Salt velocity model.

Figure 3: Seismic velocity models used to illustrate the eigenvector decomposition. They are
both of size 9.2× 3 km and represented with 921× 301 nodal coefficients.

The accuracy of the decomposition is estimated using the L2 norm of the relative difference
between the decomposition and the original representation such that

E = 100
‖m−m‖
‖m‖ , Relative Error (%), (20)

where m is the original model (Figure 3) and m the decomposition using the basis of eigenvectors
from Algorithm 1.

4.1 Decomposition of noise-free models

We decompose the salt and Marmousi models using the nine possibilities for η, that are given
in Table 1. For the choice of scaling coefficient β (which does not affect η8 and η9), we roughly
cover an interval from 10−7 up to 106, namely: {10−7, 10−6, 10−5, 10−4, 10−3, 10−2, 5.10−2,
10−1, 5.10−1, 1, 5, 10, 102, 103, 104, 105, 106}. In Tables 2 and 3, we show the best relative
error (i.e. minimal value) obtained for the Marmousi model of Figure 3(a) and the salt model
of Figure 3(b). We test all choices of η and values of N between 10 (coarse) and 500 (refined).
The corresponding values of the scaling parameter β which gives the best (i.e. the minimal)
error are also given in parenthesis.

Table 2: Minimal relative error obtained and associated scaling coefficient: E (β), for the de-
composition of the Marmousi model Figure 3(a). The definition of η is given Table 1.

Coeff. N = 10 N = 20 N = 50 N = 100 N = 250 N = 500

η1 6% (10−6) 5% (10−6) 4% (10−6) 4% (10−6) 3% (10−6) 3% (10−7)

η2 14% (5.10−2) 13% (5.10−2) 12% (5.10−2) 9% (10−2) 7% (10−2) 5% (10−2)

η3 8% (10−4) 7% (10−3) 6% (10−3) 5% (10−3) 5% (10−3) 4% (10−2)

η4 14% (5.10−1) 14% (101) 13% (101) 13% (10−1) 12% (5.10−1) 10% (5.101)

η5 13% (10−7) 12% (10−6) 12% (10−5) 10% (10−5) 10% (10−5) 6% (10−7)

η6 8% (5.103) 7% (103) 6% (5.102) 5% (103) 5% (103) 4% (102)

η7 14% (5.10−2) 13% (5.10−2) 12% (5.10−2) 11% (5.10−2) 9% (5.10−2) 7% (5.10−2)

η8 15% (n/a) 14% (n/a) 13% (n/a) 12% (n/a) 10% (n/a) 9% (n/a)

η9 14% (n/a) 14% (n/a) 14% (n/a) 13% (n/a) 12% (n/a) 11% (n/a)
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Table 3: Minimal relative error obtained and associated scaling coefficient: E (β), for the de-
composition of the salt model Figure 3(b). The definition of η is given Table 1.

Coeff. N = 10 N = 20 N = 50 N = 100 N = 250 N = 500

η1 4% (10−3) 4% (10−3) 3% (10−2) 2% (10−2) 1% (10−2) 1% (10−2)

η2 9% (10−1) 7% (10−1) 5% (10−1) 5% (10−1) 4% (10−1) 3% (10−1)

η3 8% (5.10−2) 4%(5.10−2) 3% (5.10−2) 3% (5.10−2) 2% (5.10−2) 1% (5.10−2)

η4 14% (10−5) 12%(5.101) 9% (5.101) 8% (5.101) 6% (101) 3% (5.101)

η5 3% (10−6) 3% (10−6) 2% (10−5) 1% (10−5) 1% (10−5) 1% (10−4)

η6 6% (50) 5% (101) 4% (101) 3% (101) 2% (101) 1% (101)

η7 9% (10−1) 7% (10−1) 5% (10−1) 5% (10−1) 3% (10−1) 3% (10−1)

η8 59% (n/a) 22% (n/a) 16% (n/a) 13% (n/a) 11% (n/a) 7% (n/a)

η9 20% (n/a) 15% (n/a) 13% (n/a) 10% (n/a) 7% (n/a) 5% (n/a)

As expected, we observe that the more eigenvectors are chosen (higher N), the better will
be the decomposition. When using 500 eigenvectors, which represents about 2% of the original
number of coefficients (921 × 301 in Figure 3), the error is of a few percent only. This can be
explained by the redundancy of information provided by the original fine grid where the model is
represented (e.g. the upper part of Figure 3(b) and the three salt bodies are basically constant).
Comparing the methods and models, we see that

– the Marmousi model (Table 2) is harder to retrieve than the salt model (Table 3) as it
gives higher errors. In particular for low N , the salt model can be acutely decomposed
(possibly 3% error with N = 10).

– For both models, it appears that four methods stand out: η1 (Perona–Malik), η3 (Geman
& Reynolds (1992)), η5 (Charbonnier et al. (1994)) and η6 (Lorentzian), with a slight
advantage towards η1.

– The scaling coefficient that minimizes the error is consistent with respect to N , with similar
amplitude. However, changing the model may require the modification of β: between the
salt and Marmousi decomposition, the optimal β is quite different for η1, and also for η6.

To investigate further the last point, we show the evolution of relative error E with respect to
the scaling coefficient β for the decomposition of the Marmousi and salt models in Figure 4,
where we compare four selected formulations for η. We observe some flexibility in the choice
of β that gives an accurate decomposition for η1 and η5. On the other hand, η3 and η6 show
sharp functions, which means that the selection of β has more influence in these cases (and
must be carefully taken). In addition, the range of efficient β changes depending on the model
decomposed, except for η5. It demonstrates that the choice of β for optimality is not trivial in
general, and is model-dependent.

We then picture the resulting images obtained after the decomposition of both models, see
Figures 5 and 6. The pictures illustrate correctly the observations of the tables and the differences
between the formulation. The salt model is usually well recovered with all formulations, while the
Marmousi model is more hardly discovered, except with η1, η3 and η6. Those three formulations
are the only ones able to capture the structures.
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Figure 4: Decomposition of the Marmousi and salt velocity models of Figures 3(a) and 3(b)
using N = 50 eigenvectors and following Algorithm 1. The relative error is computed from (20)
for four selected formulation of η (see Table 1) and different scaling parameter β.
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Figure 5: Decomposition of the noise-free Marmousi velocity model of Figure 3(a) using N = 50,
the formulation for η are from Table 1 and the respective µ values extracted from Table 2. The
color scale varies between 1500 and 5500m s−1.
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Figure 6: Decomposition of the noise-free salt velocity model of Figure 3(b) using N = 20, the
formulation for η are from Table 1 and the respective µ values extracted from Table 3. The
color scale varies between 1500 and 4500m s−1.

4.2 Decomposition of noisy models (denoising)

We incorporate noise in the representation for getting closer to the reality of applications where
few information on the model is available. Hence, we reproduce the model decomposition, this
time working with noisy pictures. For every nodal velocity (of Figure 3), we recast the values
using an uniform distribution that covers ±20% of the noiseless value. The resulting media are
illustrated in Figure 7.
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(a) Marmousi velocity model with noise.
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(b) Salt velocity model with noise.

Figure 7: Seismic velocity models of Figure 3 with added noise. For every coefficient, the noisy
one is obtained by randomly taking a value between ±20% of the noiseless coefficient.

We apply the model decomposition using the different formulations of η and choice of scaling
coefficient β, following the procedure employed for the noiseless model. In Tables 4 and 5,
we show the evolution of best relative error with N , for the noisy Marmousi and salt models
respectively. Here, the relative error is computed from the difference between the noiseless model
and the decomposition of the noisy one. The objective of the regularization is to preserve the
structures while smoothing out the noise effect.

The decomposition of noisy pictures requires more eignevectors for an accurate represen-
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Table 4: Minimal relative error obtained and associated scaling coefficient: E (β). The error is
computed with respect to the noiseless model Figure 3(a) but the decomposition uses the noisy
model of Figure 7(a). The definition of η is given Table 1.

Coeff. N = 10 N = 20 N = 50 N = 100 N = 250

η1 16% (10−4) 15% (10−4) 14% (10−7) 13% (10−7) 11% (10−7)

η2 16% (5.10−2) 16% (5.10−2) 15% (5.10−2) 14% (5.10−2) 13% (5.10−2)

η3 16% (10−2) 14% (10−3) 13% (10−4) 12% (10−4) 10% (10−4)

η4 16% (101) 16% (101) 16% (5.101) 15% (5.101) 14% (102)

η5 16% (10−6) 16% (10−7) 15% (10−7) 15% (10−7) 14% (10−6)

η6 16% (102) 14% (103) 13% (104) 12% (104) 10% (104)

η7 16% (5.10−2) 16% (5.10−2) 15% (5.10−2) 14% (5.10−2) 13% (5.10−2)

η8 17% (n/a) 16% (n/a) 16% (n/a) 15% (n/a) 14% (n/a)

η9 17% (n/a) 17% (n/a) 16% (n/a) 16% (n/a) 14% (n/a)

Table 5: Minimal relative error obtained and associated scaling coefficient: E (β). The error is
computed with respect to the noiseless model Figure 3(b) but the decomposition uses the noisy
model of Figure 7(b). The definition of η is given Table 1.

Coeff. N = 10 N = 20 N = 50 N = 100 N = 250

η1 14% (10−6) 14% (10−6) 11% (10−5) 9% (10−5) 5% (10−3)

η2 17% (5.10−2) 15% (5.103) 11% (5.10−2) 8% (5.10−2) 6% (5.10−2)

η3 10% (10−4) 10% (10−4) 8% (10−4) 6% (10−4) 5% (10−2)

η4 18% (10−3) 15% (100) 12% (10−1) 10% (10−3) 6% (10−3)

η5 17% (10−7) 15% (5.103) 12% (10−4) 9% (10−7) 6% (10−5)

η6 10% (104) 9% (104) 8% (104) 6% (5.103) 5% (102)

η7 17% (5.10−2) 15% (105) 11% (10−2) 8% (5.10−2) 6% (5.10−2)

η8 18% (n/a) 16% (n/a) 12% (n/a) 9% (n/a) 6% (n/a)

η9 21% (n/a) 15% (n/a) 13% (n/a) 11% (n/a) 8% (n/a)

tation. Then, the salt model, with high contrast objects, still behaves better than the many
structures of the Marmousi model. For the decomposition of the noisy Marmousi model, none of
the formulations really stands out and the error never reaches below 10% using at most N = 250.

In Figures 8 and 9, we picture the resulting decomposition for the two media. For the
decomposition of the Marmousi model, we use N = 200; and N = 50 for the salt model. It
corresponds to higher values compared to the pictures shown for the noiseless models (Figures 5
and 6).

The decomposition of the salt model remains acceptable, and we easily distinguish the main
contrasting object. The smaller objects also appear, in a smooth representation. The formu-
lations using η1, η3 and η6 provide sharper boundary for the contrasting objects, in particular
for the upper interface. Regarding the decomposition of the noisy Marmousi model, it illus-
trates the limitation of the method, where none of the formulations is really able to reproduce
the structures, and most edges are lost. In particular, the central part of the model is mostly
missing and the amplitude of the values has been reduced. It seems that η1, η3 and η6 are
slightly more robust and gives (relatively speaking) the best results. To conclude, these three
formulations appear less sensitive (for both media) to noise than the other ones.
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Figure 8: Decomposition of the Marmousi velocity model of Figure 7(a) using N = 200 and the
formulations of η from Table 1. The selected value of β for every method corresponds to the
value given in Table 4. The color scale follows the one of Figure 7(a) with values between 1500
and 5500m s−1.

0 2 4 6 8

0

1

2

3

decomposition using η1.

0 2 4 6 8

decomposition using η2.

0 2 4 6 8

decomposition using η3.

0 2 4 6 8

0

1

2

3

decomposition using η4.

0 2 4 6 8

decomposition using η5.

0 2 4 6 8

decomposition using η6.

0 2 4 6 8

0

1

2

3

decomposition using η7.

0 2 4 6 8

decomposition using η8.

0 2 4 6 8

decomposition using η9.

Figure 9: Decomposition of the salt velocity model of Figure 7(b) using N = 50 and the
formulations of η from Table 1. The selected value of β for every method corresponds to the
value given in Table 5. The color scale follows the one of Figure 7(b) with values between 1500
and 4500m s−1.

In the context of image decomposition, we have can draw the following conclusions for the
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the decomposition using the basis of eigenvectors.

– The method is efficient to represent media with contrasting shapes (e.g., salt domes), even
when noise is contained in the images. In this case, the choice of η does not really affect
the representation of the objects, and all methods behave quite well, see Figure 9.

– The performance of the decomposition strongly depends on the media, and diminishes
with thin structures as in the Marmousi model. In this case, an appropriate choice of
formulation (η1, η3, η6 from Table 2) can provide the accurate representation for noise-free
picture but when incorporating noise, the performance deteriorates and the edge contrasts
are lost.

4.3 Sub-surface salt with layers: SEAM Phase I model

We have seen that the decomposition behaves well when a contrasting object with sharp con-
trast belongs to the medium, while structures/layers are hardly represented. We pursue our
investigation with a common geophysical configuration where both salt-domes and layers exist
in the subsurface. We use a velocity model extracted from the SEAM (SEG Advanced Modeling
Program ) Phase I benchmark5 a consider a medium of size 17.5 × 3.75 km. Per consistency
with the previous experiment, it is represented using a grid of 921× 301 points, see Figure 10.
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Figure 10: SEAM velocity model of size 17.5× 3.75 km, represented on a Cartesian grid of size
921× 301.

Similarly to our previous experiment, we investigate the noiseless model and a noisy one,
which incorporates ±20 % error. The relative error and corresponding scaling coefficients for
both models are given in Tables 6 and 7. The relative error is of a few percent for high N , and
we observe important differences between the formulation. Here, η8, η9 and η4 give the worst
results.

We further illustrate the decomposition in Figure 11, using η1 only for the sake of clarity.
This model, which encompasses salt and layers, is well recovered with a decomposition using

N = 20 when there is no noise. In case of noise, it needs higher N and the contrasting shapes
are smoothed out. Nonetheless, compared to the Marmousi model, the decomposition is able to
capture the main features.

5see https://wiki.seg.org/wiki/Open_data.
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Table 6: Minimal relative error obtained and associated scaling coefficient: E (β), for the de-
composition of the SEAM model Figure 10(a). The definition of η is given Table 1.

Coeff. N = 10 N = 20 N = 50 N = 100 N = 200

η1 4% (10−6) 3% (10−6) 3% (10−6) 2% (10−6) 2% (10−7)

η2 8% (5.10−2) 6% (5.10−2) 5% ( 10−1) 3% ( 10−2) 3% ( 10−2)

η3 6% (10−3) 5% (10−2) 4% (10−3) 3% (10−2) 2% (10−3)

η4 10% ( 5) 9% ( 10) 7% (102) 6% (102) 5% ( 5)

η5 7% (10−7) 6% (10−6) 4% (10−6) 3% (10−5) 3% (10−5)

η6 6% (103) 5% (102) 4% (103) 3% (102) 2% (103)

η7 8% (5.10−2) 6% (5.10−2) 5% (10−1) 4% (5.10−2) 3% (5.10−2)

η8 18% (n/a) 17% (n/a) 14% (n/a) 12% (n/a) 9% (n/a)

η9 12% (n/a) 10% (n/a) 7% (n/a) 7% (n/a) 6% (n/a)

Table 7: Minimal relative error obtained and associated scaling coefficient: E (β), for the de-
composition of the SEAM model Figure 10(b). The definition of η is given Table 1.

[ht!]

Coeff. N = 10 N = 20 N = 50 N = 100 N = 200

η1 11% (10−3) 8% (10−3) 6% (10−6) 5% (10−7) 4% (10−5)

η2 8% (5.10−2) 6% (5.10−2) 6% (5.10−2) 4% (5.10−2) 3% (5.10−2)

η3 6% (10−2) 5% (10−2) 4% (10−3) 4% (10−3) 4% (10−2)

η4 11% (10−2) 10% (0.5) 7% (10−4) 6% (10−3) 5% (10−3)

η5 11% (10−4) 10% (1) 7% (10−2) 6% (10−4) 5% (10−5)

η6 8% (102) 6% (102) 5% (102) 4% (102) 3% (102)

η7 8% (5.10−2) 6% (5.10−2) 6% (5.10−2) 4% (5.10−2) 3% (5.10−2)

η8 11% (n/a) 11% (n/a) 7% (n/a) 6% (n/a) 5% (n/a)

η9 12% (n/a) 10% (n/a) 7% (n/a) 7% (n/a) 6% (n/a)
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(a) Decomposition of noiseless model using N = 20.
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(b) Decomposition of noisy model using N = 100.

Figure 11: Decomposition of the SEAM Phase I velocity model of Figure 10 using η1. The
relative errors for all formulations can be found in Tables 6 and 7.

5 Experiments of reconstruction with FWI

In this section, we perform seismic imaging following the FWI Algorithm 2 for the identification
of the subsurface physical parameters. We focus on media encompassing salt domes, as we
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have shown that the decomposition is more appropriate, and it also gives a more challenging
configuration in seismic applications. We follow a seismic context, where the forward problem
is given by (2) and the data are restricted to be acquired near the surface (see Figure 1). The
challenges of our experiments is threefold:

1. the recovery of salt domes is recognized to be difficult (Barucq et al., 2019a);

2. we consider an initial guess that has no information on the subsurface structures and where
the background velocity amplitude is incorrect.

3. we avoid the use of the (unrealistically) low frequencies (below 2 Hz in exploration seismic).

5.1 Reconstruction of two-dimensional salt model

We first consider a two-dimensional salt model of size 9.2×3 km, which consists in three domes,
see Figure 13(a). We generate the data using 91 sources and 183 receivers (i.e. data points)
per source. Both devices are located near the surface: the sources are positioned on a line at
20 m depth and the receivers at 80 m depth. In order to establish a realistic situation despite
having a synthetic experiment, the data are generated in the time-domain and we incorporate
white noise in the measurements. The level of the signal to noise ratio in the seismic trace
is of 10 dB, the noise is generated independently for all receivers record associated with every
source. Then we proceed to the discrete Fourier transform to obtain the signals to be used in
the reconstruction algorithm. In Figure 12, we show the time-domain data with noise and the
corresponding frequency data for one source, located at 20 m depth, in the middle of the x-axis.
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(a) Time-domain trace with included noise.
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(b) Real parts of the discrete Fourier transform.

Figure 12: Data associated with a single centered source. The data are first generated in the
time-domain, then we incorporate white noise and proceed to the Fourier transform. In this
experiment, the complete seismic acquisition is composed of 91 independent sources and 183
receivers for each source.

For the reconstruction of the salt dome model, the starting and true model are given in
Figure 13. We do not assume any a priori knowledge of the contrasting object in the subsurface,
and start with a one-dimensional variation, which has a drastically lower amplitude (i.e., the
background velocity is unknown).
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(b) Initial guess for inversion.

Figure 13: Target model and starting model for FWI. The models are of size 9.2km× 3km. The
initial model corresponds to a one-dimensional variation of low velocity.
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Figure 14: Reconstruction of the salt velocity model from the starting medium Figure 13(b) using
2 Hz frequency data. The reconstruction does not apply eigenvector decomposition. The model
is parametrized following the domain discretization, using piecewise constant representation with
one value per node on a 921× 301 grid.

5.1.1 Fixed decomposition, single frequency reconstruction

We first only use 2 Hz frequency data, and perform 180 iterations for the minimization. In
Figure 14, we show the reconstruction where the decomposition has not been employed, i.e. the
model representation follows the original piecewise constant decomposition of the model (one
value per node). In Figure 15, we compare the reconstruction using Algorithm 2 for the different
formulations of η given in Table 1, using a fixed N = 50. We use N = 100 for Figure 16. For the
sake of clarity, we focus on η3 (the most effective formulation), and η8 (which relates to the Total
Variation regularization) and move the complete pictures with comparison of all formulations
in Appendix B, Figure B1 for N = 100.

We observe that

– the traditional FWI algorithm (without decomposition), see Figure 14, fails to recover any
dome. It only shows some thin layers of increasing velocity, with amplitudes much lower
than the original ones.

– The decomposition using N = 50 is able to discover the largest object with formulation
η1, η3, η5, η6 and η8, see Figure 15. The best result is given by η3 which recovers the
three domes; while η1, η5 and η8 show artifacts in the lower right corner. The other
decompositions fail. We note that, due to the lack of velocity background information, the
positions of the domes are slightly above the correct ones to compensate for the low travel
times.
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Figure 15: Reconstruction of the salt velocity model from the starting medium Figure 13(b) using
2 Hz frequency data. The eigenvector decomposition employs N = 50 and the formulations of
η from Table 1. It uses the same color scale as Figure 13.

– In this experiment, the method behaves much better with a restrictive number of eigen-
vectors. With N = 100 (Figures 16 and B1), the iterative reconstruction only results in
artifacts. The restrictive number of eigenvectors provides a regularization of the problem
by reducing the number of parameters, which is crucial. For instance, the stability is known
to deteriorate exponentially with the number of parameters in the piecewise constant case
(Beretta et al., 2016).

Opposite to the decomposition of images (Section 4), the quantitative reconstruction using
a model represented with a basis of eigenvectors from a diffusion PDE shows drastic differences
between the formulations, where the procedure can fail depending on the choice of η. In addition,
the number of eigenvectors for the representation has to be carefully selected, see Subsection 5.3.

5.1.2 Experiments with increasing N and multiple frequencies

We investigate the performance of the eigenvector decomposition for multiple frequency data,
and with progressive evolution of the number of eigenvectors in the representation N . We have
a total of four different experiments, which are summarized in Table 8. The reconstructions, for
η3 and η8, are shown Figure 17. The results for all η of Table 1 are pictured in Appendix B,
Figures B2, B3 and B4.

From these experiments using multiple N and/or frequency contents, we observe the per-
formance of the method. The best results are obtained using a single 2 Hz frequency with
either progression of increasing N or constant N : Experiments 2 and 1. The progression of N ,
Experiment 2, appears the most robust.

In this experiment, using multiple frequencies does not improve the results. It is probably
due to the lack of knowledge of the velocity background which prevents us from recovering
finer scale (i.e., kinematic error, Bunks et al. (1995)). In particular, local minima in the misfit
functional become more and more prominent in the high-frequency regime (Bunks et al., 1995;
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Figure 16: Reconstruction of the salt velocity model from the starting medium Figure 13(b)
using 2 Hz frequency data. The eigenvector decomposition employs N = 100. The comparison
of all formulations of η (Table 1) is pictured in Appendix B, Figure B1.

Table 8: List of experiments for the reconstruction of the two-dimensional salt dome model
(Figure 13(b)). For each combination of frequency and associated number of eigenvectors N in
the decomposition, 30 iterations are performed (niter in Algorithm 2).

frequency list list of N total iterations Reference

Experiment 1 2 Hz 50 180 Figures 15, B1

Experiment 2 2 Hz {50, 60, 70, 80, 90, 100} 180 Figures 17, B2

Experiment 3 {2, 3, 4, 5}Hz 50 120 Figures 17, B3

Experiment 4 {2, 3, 4, 5}Hz {50, 60, 70, 80} 120 Figures 17, B4

Barucq et al., 2019b). We illustrate the performance of the reconstruction with the results in
the data-space: in Figure 18, we show the time-domain seismograms for the true, starting and
reconstructed velocity models. We observe that when we filter out frequencies above 2 Hz (first
line of Figure 18), the trace from the reconstructed model is indeed very similar to the measured
one. However, when encompassing all frequency contents (bottom line of Figure 18), important
differences arise, in particular, one can see the travel time of the first reflection which is earlier
with the recovered model. This indicates that the location of the salt in the reconstructed
velocity is above its ‘true’ position.

Then, while we incorporate the higher frequency in the minimization procedure, the FWI
is not amenable to improve the results (see Figure 17) and it is most likely due to the missing
velocity background which is not improved during the first iterations, and still missing. In
Figure 19, we show the frequency-domain data at 2 and 4 Hz: the observed data at 2 Hz
are accurately obtained with the model reconstructed with the decomposition in eigenvectors,
which confirms the pertinence of the method. Interestingly, at 4 Hz, while the frequency is
not even used in the inversion scheme (we only use 2 Hz for Figure 17(a)), we already have a
good correspondence near the source and only the parts further away show a shift. In order
to overcome the issue of recovering the background velocity, one would need lower frequency
content, or one could employ alternative strategies, such as the MBTT method, based upon
the decomposition of the background velocity model and the reflectivity (Clément et al., 2001).
Here, the decomposition in eigenvectors appropriately recover the reflectivity part (better than
traditional FWI), but the background model remains missing.
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(d) Reconstruction Experiment 2 using η8 (Total
Variation).
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(e) Reconstruction Experiment 3 using η3.
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(f) Reconstruction Experiment 3 using η8 (Total
Variation).
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(g) Reconstruction Experiment 4 using η3.
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(h) Reconstruction Experiment 4 using η8 (Total
Variation).

Figure 17: Results of Experiments 2, 3 and 4 of Table 8 for the reconstruction of the salt velocity
model Figure 13. The comparison of all formulations of η (Table 1) is pictured in Appendix B,
Figures B2, B3 and B4.

5.1.3 On the choice of the number of eigenvectors

We have shown in Figures 15 and 16 that one should take an initial N relatively low for the
reconstruction algorithm to succeed. It remains to verify if the appropriate N can be selected
‘a priori ’, or based upon minimal experiments. In Figure 20(a), we show the evolution of the
misfit functional with thirty iterations, for different values of N , from 10 to 250. We compare,
in Figure 20(b), with the progression of N , which follows Experiment 2 of Table 8.
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(f) Seismic trace from the starting veloc-
ity model, Figure 13(b).

Figure 18: Comparison of the time-domain seismic traces for a central shot using different
velocity models of the salt medium reconstruction experiment.

From Figure 20(a), we see that all of the choices of N have the same pattern: first the
decrease of the functional and then its stagnation. We notice that the good choice for N is
not reflected by the misfit functional. Indeed, it shows lower error for larger N , while they are
shown to result in erroneous reconstructions (Figure 16 compared to Figure 15). It is most likely
that using larger N leads to local minima and/or deteriorates the stability (see, for the piecewise
constant case, Beretta et al. (2016)). It results in the false impression (from the misfit functional
point of view) that it would improve the efficiency of the method. Using a progression of N ,
Figure 20(b), eventually gives the same misfit functional value than the large N , but it needs
more iterations. This increase of iterations and ‘slow’ convergence is actually required, because
it leads to an appropriate reconstruction, see Figure 17.

Therefore, we cannot anticipate a good choice for N a priori (with a few evaluation of the
misfit functional). the guideline we propose, as a safe and robust approach, is the progression of
increasing N , from low to high: it costs more in terms of iterations, but it converges properly.

5.2 Reconstruction of the SEAM Phase I model

We now consider the recovery of the SEAM Phase I model, which is expected to be more
challenging as it contains both a salt-dome and sub-salt layers. The starting model for the
reconstruction is shown in Figure 21, where, for the sake of clarity, we also picture the reference
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(a) Comparison of the real parts of the pressure fields at 2 Hz.

20 40 60 80 100 120 140 160 180
−2

0

2

·10−2

Receivers index

A
m
p
li
tu
d
e c† cstart crec

(b) Comparison of the real parts of the pressure fields at 4 Hz.

Figure 19: Comparisons of the frequency-domain data (pressure field) at the receivers location
for a central source. We compare the data obtained from the target wave speed with salt of
Figure 13(a), the starting wave speed of Figure 13(b) and the reconstruction of Figure 17(a).
Those three models are respectively denoted c†, cstart and crec.
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Figure 20: Evolution of the misfit functional (scaled with the first iteration value) with iterations
depending on the choice of N , using 2 Hz frequency.

model which was previously used for the decomposition. This medium is of size 17.5× 3.75 km
and the starting model we use is a smooth version of the reference one, where the contrasting
objects and layers are missing.

We follow the same configuration as in the previous experiment: the data are generated in
the time-domain, and noise is incorporated to the seismograms using a signal-to-noise ratio of
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Figure 21: Target model and starting model for FWI, of size 17.5× 3.75 km.

10 dB. Next, we proceed with the discrete Fourier-transform to employ the iterative procedure
with time-harmonic waves. In this experiment, the smallest available frequency is 2 Hz.

For the sake of conciseness, we only present the reconstruction results with the the represen-
tation using η3 (which was the most efficient). We follow a slow increase of N in a fixed basis
(analogous to Experiment 2 of Table 8) which was the more stable approach. The reconstruction
using 2 Hz is shown in Figure 22.
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(a) Reconstruction after 180 iterations without
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(b) Reconstruction using eigenvector decomposition
with η3 and a sequence N = {25, 35, 50, 60, 70, 80}
with 30 iterations for each, i.e. a total of 180 itera-
tions.

Figure 22: Reconstruction of the SEAM phase I model from an initially smooth model, see
Figure 21, using 2 Hz frequency data.

We observe that the standard FWI algorithm gives artifacts over the medium, with oscil-
latory patterns, in particular on the sides. On the other hand, the reconstruction using the
representation based upon the eigenvector decomposition is stable, and is able to capture ac-
curately the upper boundary of the salt dome. Because of the frequency employed, only the
long wavelengths are recovered at this stage. In Figure 23, we further illustrate the recovery by
showing the frequency-domain data at 2 Hz frequency using the different wave speed models.
We can see that the data from the starting model are out of phase as soon as we move away
from the source, with cycle-skipping effects. However, the reconstruction using the eigenvector
decomposition is able to retrieve this information and accurately capture the oscillations of the
signal, and only the amplitude is inaccurate.

We now continue the procedure using increasing frequencies. Because of the smoothing
effect of the decomposition, we employ the algorithm without the eigenvector representation
(alternatively, one could use the decomposition but with large N). Therefore, the velocity model
obtained from the FWI with eigenvector decomposition of Figure 22(b) is used as an initial model
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(a) Comparison of the real parts of the pressure fields.
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(b) Comparison of the imaginary parts of the pressure fields.

Figure 23: Comparisons of the frequency-domain data (pressure field) at the receivers location for
a centrally located source at 2 Hz frequency for the SEAM Phase I wave speed of Figure 21(a), the
starting wave speed of Figure 21(b) and the reconstruction using the eigenvector decomposition,
Figure 22(b). Those three models are respectively denoted c†, cstart and crec.

for restarted FWI with multiple frequencies, from 2 to 10 Hz (we use the sequential progression
advocated by Barucq et al. (2019a)). Eventually, the reconstruction after 10 Hz iterations is
pictured in Figure 24.
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Figure 24: Reconstruction of the SEAM phase I model starting from the reconstruction obtained
with eigenvector decomposition of Figure 22(b), using data of frequency from 2 to 10 Hz, with
30 iterations per (sequential) frequency.

The reconstruction is able to capture the finer details of the velocity model: the salt dome is
clearly defined, and the sub-salt layer starts to appear. Therefore, the eigenvector decomposition
method can also serve to build initial models for the FWI algorithm, where it appears as an
interesting alternative to overcome the lack of low frequency. To illustrate the different steps
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of the reconstruction, we show the time-domain seismograms at the different stages of the
reconstruction in Figure 25 (while the 2 Hz frequency-domain data are given in Figure 23).
We compare the traces resulting from the initial and true wave speed models, from the partial
reconstruction obtained with the eigenvector decomposition (Figure 22(b)), and from the final
reconstruction (Figure 24).
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(c) Seismic trace corresponding to the
partial reconstruction using the eigen-
vector decomposition, Figure 22(b).
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(d) Seismic trace corresponding to the final
reconstruction given Figure 24.

Figure 25: Comparison of the time-domain seismic traces for a central shot using different
velocity models.

The trace that uses the starting model mainly shows the first arrivals, with some minor
reflections coming from the smoothing of the salt dome. The one using the partial reconstruction
with eigenvenctor decomposition and only the 2 Hz data accurately resolves the main multiple
reflections between the salt upper boundary and the surface (the thick line in the center of the
red ellipses in Figure 25) but it misses the events of smaller importance. Eventually, the final
reconstruction, that uses up to 10 Hz data contents is able to reproduce some of the events of
smaller amplitudes. We also note that the amplitude of the trace for the final reconstruction is
slightly high, which indicates that the contrasts are even too strong.
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5.3 Implementation of the method

The eigenvector decomposition for the model representation depends on different choices of pa-
rameters, and it is not trivial to efficiently implement the method in the iterative reconstruction
procedure. From the experiments we have carried out, we propose the following strategy.

1. Regarding the choice of weighting coefficient, η3 from Geman & Reynolds (1992) is the
most efficient in these applications, and supersedes the standard Total Variation approach
(i.e., η8).

Secondly, the difficulty resides in the number of eigenvectors to take for the decomposition:
N . More important, it appears that the misfit functional does not provide us with a good
indication (see Figure 20).

2. The number of eigenvector N for the decomposition should initially takes a low value, and
progressively evolves to higher values with iterations. It may not be the fastest convergence,
but it is the most robust approach.

Finally, the reconstruction can serve as an initial model for multi-frequency data:

3. the (partial) reconstruction with eigenvector decomposition is used as a starting model for
multi-frequency algorithm. It allows the recovery of the finer details, which depend on the
smaller wavelengths and where the smoothing effect is misleading.

Namely, the decomposition is particularly efficient to overcome the lack of low-frequency in the
data.

5.4 Three-dimensional experiment

The method extends readily for three-dimensional model reconstruction, simply incurring a
larger computational cost (as larger matrices are involved for the eigenvector decomposition
and the forward problem discretization). We proceed with a three-dimensional experiment,
where we consider a subsurface medium of size 2.46× 1.56× 1.2 km, encompassing several salt
domes, illustrated in Figure 26. The seismic acquisition consists in 96 sources, positioned on a
two-dimensional plane at 10 m depth; one thousand receivers are positioned at 100 m depth.
Similar to the previous experiments, the data are first generated in the time-domain and we
incorporate noise before we proceed to the Fourier transform. Figure 28 shows the time-domain
data associated with a centrally located source, and the corresponding Fourier transform at 5
Hz frequency. For the reconstruction, we start with a one-dimensional variation, in depth only,
where none of the objects is intuited, see Figure 27, and the velocity background is incorrect.

In Figure 29, we show the reconstruction without employing the eigenvector decomposition,
where the wave speed has a piecewise constant representation on a 124 × 79 × 61 nodal grid.
We only use 5 Hz frequency data, and 30 iterations. Next, we employ the eigenvector model
representation with Algorithm 2. Following the discussion in Subsection 5.3, we select η3, which
is the most robust, and try two situations:

– single frequency (5 Hz), fixed N reconstruction using η3, N = 50 and 30 iterations, the
final reconstruction is Figure 30;

– single frequency (5 Hz), multiple N reconstruction using η3, N = {20, 30, 50, 75, 100} and
30 iterations per N , i.e. 180 iterations in total: the final reconstruction is Figure 31.

For visualization, we focus on the two-dimensional vertical and horizontal sections which
illustrate the positions and shapes of the objects. This experiment is consistent with the two-
dimensional results, and we observe the following.
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Figure 26: Three-dimensional model incorporating contrasting objects. The domain is of size
2.46× 1.56× 1.2 km. We highlight a horizontal section at 550 m depth and vertical section at
y = 670 m.
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Figure 27: Initial model taken for the reconstruction of the three-dimensional medium with
vertical section at y = 670 m. It consists in a one-dimensional variation in depth.
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Figure 28: Time-domain data and corresponding Fourier transform at 5 Hz frequency. The
three-dimensional trace corresponds with the evolution receivers recordings (positioned on a 2D
map in the x–y plane) with time. There are 1000 data points per time step (i.e. 1000 receivers on
the domain) and we highlight sections at fixed time (0.5 s) and for a line of receivers (positioned
at y = 710 m).
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Figure 29: Velocity model reconstruction with vertical section at y = 670 m, from the starting
medium Figure 27 using 5 Hz frequency data. The reconstruction does not apply the eigenvector
decomposition. The model is parametrized following the domain discretization, using piecewise
constant representation with one value per node on a 124× 79× 61 grid.
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Figure 30: Velocity model reconstruction with vertical section at y = 670 m, from the start-
ing medium Figure 27 using 5 Hz frequency data. The reconstruction applies the eigenvector
decomposition with η3 and N = 50 with 30 iterations, see Algorithm 2.
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Figure 31: Velocity model reconstruction with vertical section at y = 670 m and horizon-
tal section at 550 m depth, from the starting medium Figure 27 and using 5 Hz frequency
data. The reconstruction applies the eigenvector decomposition with η3 and progression of
N = {20, 30, 50, 75, 100}, with 30 iterations per N , see Algorithm 2.
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– The classical FWI reconstruction fails to discover the subsurface objects, with only a
narrow layer, misplaced, see Figure 29.

– The reconstruction with the representation with eigenvector decomposition is able to ac-
curately capture the largest subsurface salt domes, see Figures 30 and 31.

– The best results are obtained when we use the progression of N , with a single frequency,
see Figure 31. The main salt dome is captured and smaller ones start to appear, including
near the boundary. Using a single N is also a good candidate, Figure 30, as it necessitates
much less iterations (30 instead of 180) hence less computational time.

6 Conclusion

In this paper, we have investigated the use of a representation based upon a basis of eigenvectors
for image decomposition and quantitative reconstruction in the seismic inverse problem, using
two and three-dimensional experiments. We have implemented several diffusion coefficients, and
compared their performance, depending on the target medium.

1. In the context of image decomposition, the case of contrasting objects (salt domes) is
clearly more appropriate than the layered media (such as Marmousi). All of the diffusion
coefficients behave well and provide satisfactory results for salt domes image decomposi-
tion, even in the presence of noise.

2. For the decomposition of images with layered patterns, only a few formulations per-
form well (η1, η3, η6). It would be interesting to investigate further the performance
of anisotropic or directional diffusion coefficients, mentioned by Weickert (1998); Grote &
Nahum (2019).

Next, we have considered the quantitative reconstruction procedure in seismic, where only
partial, backscattered (i.e. reflection) data are available, from one side illumination. We have
probed the performance of the method by considering initial guesses with minimal a priori infor-
mation, and by avoiding the low frequency data, which are not accessible in seismic applications.
In this context, the FWI algorithm based upon the eigenvector model representation has shown
promising results of subsurface 3D salt dome media. The method only requires the preliminary
computation of the basis of eigenvectors associated with the diffusion operator, and a trivial
modification of the gradient computation. Namely, the overall additional cost of the method
remains marginal compared to the cost of FWI. Our findings are the following.

3. For reconstruction, the result depends on the choice of diffusion coefficient. We recommend
η3, from Geman & Reynolds (1992), which was the most robust in our applications, even
with a fixed N and a few iterations.

4. We have shown that the choice of N is not trivial, and one cannot rely on the misfit
functional evaluation. Therefore, we have proposed a progression of increasing N , which
appears to stabilize the reconstruction.

5. Because the method has a smoothing effect, it focuses on the long wavelength structures.
Thus, the reconstruction using the decomposition can serve as an initial model to iterate
with higher frequency contents, in order to improve the resolution.

Following these analyses, some difficulties remain regarding the optimal choice of parameters.
For instance, it is possible that η has to be selected differently depending on the model (as
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illustrated with the Marmousi decomposition). Similarly, the scaling coefficient β would affect
the performance but the acceptable range appears, hopefully, quite large.

For future work, it seems that the lack of background velocity information would not be
overcome by the decomposition, possibly resulting in artifacts. Therefore, we envision the use of
multiple basis to parametrize the velocity (e.g., using the background/reflectivity decomposition
idea of Clément et al. (2001); Barucq et al. (2019b), with a dedicated smooth eigenvector basis
to represent the background, and another to represent the reflectors).

Eventually, the method can readily extend to multi-parameter inversion (e.g. for elastic
medium), upon taking a separate basis per parameter (e.g. one for each of the Lamé parameters
in linear elasticity). However, a more appropriate approach would be the use of joint-basis by,
e.g., considering a system of PDE instead of the scalar diffusion operator. We have in mind
strategies such that joint-sparsity and tensor decomposition.
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A Two-dimensional reconstruction with evolution of basis

In this appendix, we experiment the re-computation of the eigenvectors basis along with the
iterations. We consider two additional experiments, which are derived from Experiments 1 and
2 of Table 8, with one major difference: the set of eigenvectors is recomputed from the current
iteration model every 30 iterations. This is advocated in De Buhan & Kray (2013); Grote &
Nahum (2019) where, contrary to our experiments, the background velocity is mostly known.

Therefore, for the 180 total iterations, the basis are

– computed from the initial model when starting the very first iteration,

– re-computed from the current reconstruction at the beginning of iterations 31, 61, 91, 121,
151.

Compared to Algorithm 2, instead of using a fixed ψloc from the initial model, it is recomputed
from the current m(k). The reconstructions using the update of basis are shown Figures A1
and A2, for N = 50 and N = {50, 60, 70, 80, 90, 100} respectively.

We observe that changing the basis along with the iterations provides similar accuracy of
the reconstruction compared to keeping the basis fixed. For some formulations, the salt dome
appears slightly larger than with the fixed basis but the artifacts at the bottom are also stronger,
with patches of high velocities.

We believe that the difficulty is due to the lack of prior information regarding the velocity
background. Namely, the starting model has a background profile of low amplitude compared
to the target model, see Figure 13(b). While our reconstruction captures the contrasting object,
the background remains mostly erroneous (i.e. m0 in (14)), impacting the decomposition. Then,
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Figure A1: Reconstruction after 180 iterations from starting medium Figure 13(b) (same color
scale) using 2 Hz data. The decomposition uses N = 50 and the set of eigenvectors is re-
computed every 30 iterations, from the current iteration model. The formulations of η are
Table 1.
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Figure A2: Reconstruction from starting medium Figure 13(b) (same color scale) using 2 Hz
data. The decomposition employs the sequence N = {50, 60, 70, 80, 90, 100} with 30 iterations
per N . The set of eigenvectors is re-computed every 30 iterations, from the current iteration
model (i.e. every time we update N). The formulations of η are from Table 1.

when we update the decomposition, the new set of eigenvectors will try to encompass the
background variation, creating the bottom artifacts.
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B Extended set of figures

We provide here the reconstructions obtained for all η for the two-dimensional salt dome FWI
test case of Subsection 5.1.
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Figure B1: Reconstruction of the salt velocity model from starting medium Figure 13(b) (with
the same color scale) using 2 Hz frequency data. The eigenvector decomposition employs N =
100 and the formulations of η from Table 1.
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Figure B2: Experiment 2 of Table 8 (multiple N , single frequency data) for the reconstruction
of the salt velocity model from starting medium Figure 13(b) (with the same color scale), the
formulations of η follow Table 1.
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Figure B3: Experiment 3 of Table 8 (single N , multiple frequency data) for the reconstruction
of the salt velocity model from starting medium Figure 13(b) (with the same color scale), the
formulations of η follow Table 1.
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Figure B4: Experiment 4 of Table 8 (multiple N , multiple frequency data) for the reconstruction
of the salt velocity model from starting medium Figure 13(b) (with the same color scale), the
formulations of η follow Table 1.
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