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FRACTIONAL GAUSSIAN FIELDS ON THE SIERPINSKI GASKET AND
RELATED FRACTALS

FABRICE BAUDOIN AND CÉLINE LACAUX

Abstract. We define and study a fractional Gaussian field X with Hurst parameter H on the Sierpiński
gasket K equipped with its Hausdorff measure µ. It appears as a solution, in a weak sense, of the equation
(−∆)sX = W where W is a Gaussian white noise on L2

0(K,µ), ∆ the Laplacian on K and s = dh+2H
2dw

,
where dh is the Hausdorff dimension of K and dw its walk dimension. The construction of those fields is
then extended to other fractals including the Sierpiński carpet.

Contents

1. Introduction 1
2. Fractional Riesz kernels on the Sierpiński gasket 3
2.1. Definition of the gasket 3
2.2. Canonical Dirichlet form and heat kernel estimates 4
2.3. Fractional Riesz kernels 5
2.4. Hölder continuity of fractional Riesz kernels 9
3. Fractional Brownian fields on the gasket 11
3.1. Reminders on Gaussian measures 11
3.2. Definition and existence of the fractional Brownian field 11
3.3. Regularity of the fractional Brownian field 13
3.4. Invariance and scaling properties of the fractional Brownian field 16
4. Generalization to other fractals: Barlow fractional spaces 17
References 18

1. Introduction

For s ≥ 0, consider in Rn the Gaussian random measure
(1) X = (−∆)−sW,

where W is a white noise (i.e. a Gaussian random measure with intensity the Lebesgue measure) and
∆ the Laplace operator on Rn. The expression (1) has of course to be understood in a distributional
sense (see [19] for the details) and means that for every f in the Schwartz space S(Rn) of smooth and
rapidly decreasing functions one has∫

Rn

(−∆)sf(x)X(dx) =

∫
Rn

f(x)W (dx).

This class of Gaussian measures includes the following popular examples which are thoroughly presented
in the survey paper [19]: white noise (s = 0), Gaussian free field (s = 1/2), log-correlated Gaussian
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field (s = n
4
) and fractional random measures (n

4
< s < n

4
+ 1

2
). Actually, in the range n

4
< s < n

4
+ 1

2
,

the Gaussian random measure X admits a density with respect to the Lebesgue measure which is the
fractional Brownian motion indexed by Rn. The Hurst parameter H of this fractional Brownian motion
is given by H = 2s − n

2
. In the present paper, we are interested in generalizing those fields on fractals

in the range corresponding to the fractional Brownian motions. For simplicity of the presentation we
carry out explicitly and in details the analysis in the case of the Sierpiński gasket but as we shall discuss
in the last section of the paper, our analysis extends to more general fractals. The main result is the
following:

Theorem 1.1. Let K be the Sierpiński gasket with normalized self-similar Hausdorff measure µ and
Laplacian ∆. Denote dh the Hausdorff dimension of K and dw its walk dimension. Let W be a white
noise on L2

0(K,µ). Then, if dh
2dw

< s < 1− dh
2dw

, there exists a Gaussian random field (X(x))x∈K which
is Hölder continuous with exponent H− where

H = sdw − dh
2
,

and such that for every f which is in the L2
0 domain of the operator (−∆)s∫

K

(−∆)sf(x)X(x)dµ(x) =

∫
K

f(x)W (dx).

By γ−-Hölder we mean (γ−ε)-Hölder continuous for ε > 0. In the range dh
2dw

< s < 1− dh
2dw

it is therefore
natural to call X a fractional Brownian motion indexed by K and with Hurst parameter H = sdW − dh

2
.

For the Sierpiński gasket the explicit values dh = ln 3
ln 2

and dw = ln 5
ln 2

are known. The borderline case
s = dh

2dw
would correspond to the case of a log-correlated field on the gasket. Such field can not be

defined pointwise but only in a distributional sense. We let its study for possible later research.
Since their introduction in [16] and [20], fractional Brownian motions and fields have attracted a lot
of interest, both from theoretical or more applied viewpoints, see [7, 19, 21] and the references therein.
Following the definition by P. Lévy [18] of the Brownian field on the sphere, J. Istas defined in [11, 12]
the fractional Brownian field on manifolds or more generally metric spaces, as a Gaussian field whose
covariance is given by

1

2
(d(x, o)2H + d(y, o)2H − d(x, y)2H),(2)

where o is a fixed point in the space and d the distance. Applying this definition for the Euclidean
distance on the Sierpiński gasket, which is a compact set isometrically embedded in the plane, is not
interesting since it simply yields a field which is the restriction to the gasket of the usual fractional
Brownian field on the plane. It would be more natural to use for the distance d the so-called harmonic
shortest path metric which is for instance defined by J. Kigami in [14]. For this choice of the distance,
it is not clear to the authors what is the exact range of the parameters H for which the function (2) is
indeed a covariance function. Our construction of the fractional Brownian field, which is instead based
on the study of fractional Riesz kernels is similar to the construction of fractional fields on manifolds by
Z. Gelbaum [10] and adopt the viewpoint about fractional fields which is given in [19]. One advantage
of working with fractional fields constructed from the white noise using fractional Riesz kernels is the
availability of all the harmonic analysis tools that can be developed on the underlying space. In the case
of fractals like the Sierpiński gasket such tools have extensively been developed in the last few decades;
we mention for instance the references [9, 13, 22, 23] and the book [15].
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Our paper is organized as follows. In Section 2, we study on the Sierpiński gasket the properties of the
operator (−∆)−s where ∆ is the Laplacian on the gasket, as defined in [13]. One of the main results
of the section is Theorem 2.10 that implies that for s ∈

(
dh
2dw

, 1− dh
2dw

)
and f ∈ L2(K,µ) one can

pointwisely define (−∆)−sf and that one has for every x, y ∈ K,

|(−∆)−sf(x)− (−∆)−sf(y)| ≤ Cd(x, y)sdw− dh
2 ∥f∥L2(K,µ).

In particular, in the range s ∈
(

dh
2dw

, 1− dh
2dw

)
, the operator (−∆)−s maps L2(K,µ) into the space of

bounded and
(
sdw − dh

2

)
-Hölder continuous functions. This regularization property allows us to define

and study in Section 3, the fractional Brownian field as X := (−∆)−sW where W is a white noise and
then to prove Theorem 1.1. Tools to the study of the regularity of Gausian fields are widely available in
the literature, see for instance [5,6,8,17] and references therein. In our situation, a key step is Theorem
3.9 where we prove, using a Garsia-Rodemich-Rumsey inequality for fractals (see lemma 6.1 of [4]), that
there exists a modification X∗ of X such that

lim
δ→0

sup
d(x,y)
x,y∈K

≤δ

|X∗(x)−X∗(y)|
d(x, y)H

√
|ln d(x, y)|

< +∞

with H = sdw − dh
2

. Finally, at the end of the section, we prove that the fractional field we constructed
is invariant by the symmetries of the gasket and moreover satisfies a natural scaling property related to
the self-similar structure of the gasket. In the final Section 4, we extend our results to the context of
fractional spaces, which are a class of Dirichlet spaces introduced by Barlow in [3].

2. Fractional Riesz kernels on the Sierpiński gasket

2.1. Definition of the gasket. We first recall the definition of the Sierpiński gasket. For further details
we refer to the book by Kigami [15]. In R2 ≃ C, consider the triangle with vertices q0 = 0, q1 = 1 and
q2 = e

iπ
3 . For i = 1, 2, 3, consider the map

Fi(z) =
1

2
(z − qi) + qi.

Definition 2.1. The Sierpiński gasket is the unique non-empty compact set K ⊂ C such that

K =
3∪

i=1

Fi(K).

The Hausdorff dimension of K with respect to the Euclidean metric (denoted d(x, y) = |x − y| in this
paper) is given by dh = ln 3

ln 2
. A (normalized) Hausdorff measure on K is given by the Borel measure µ

on K such that for every i1, · · · , in ∈ {1, 2, 3},
µ (Fi1 ◦ · · · ◦ Fin(K)) = 3−n.

This measure µ is dh-Ahlfors regular, i.e. there exist constants c, C > 0 such that for every x ∈ K and
r ∈ [0, diam(K)],

(3) crdh ≤ µ(B(x, r)) ≤ Crdh ,

where we denote by diam(K) the diameter of K and by B(x, r) the metric ball with center x and
radius r.
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Figure 1. Sierpiński gasket.

2.2. Canonical Dirichlet form and heat kernel estimates. One can construct a canonical Dirichlet
form and associated Laplacian ∆ on the Sierpiński gasket by using a graph approximation of the gasket.
Denote V0 = {q0, q1, q2}, Vn = ∪i1,··· ,inFi1 ◦ · · · ◦ Fin(V0) and

V∗ =
∪
n≥0

Vn

For f ∈ RVn , one can consider the quadratic form

En(f, f) =
1

2

(
5

3

)n ∑
i1,··· ,in

∑
x,y∈V0

(f(Fi1 ◦ · · · ◦ Fin(x))− f(Fi1 ◦ · · · ◦ Fin(y)))
2

Define then
F∗ =

{
f ∈ RV∗ , lim

n→∞
En(f, f) < +∞

}
and for f ∈ F ,

E(f, f) = lim
n→∞

En(f, f).(4)

It is possible to prove that any function f ∈ F∗ can uniquely be extended into a continuous function
defined on the whole K. We denote by F the set of such extensions. One has then the following theorem,
see the book by Kigami [15].
Theorem 2.2. (E ,F) is a local regular Dirichlet form on L2(K,µ) with the following property: for
every f, g ∈ F

E(f, g) = 5

3

∑
i=1,2,3

E(f ◦ Fi, g ◦ Fi).

The semigroup {Pt} associated with E is stochastically complete (i.e. Pt1 = 1) and, from [4], has
a jointly continuous heat kernel pt(x, y) with respect to the reference measure µ satisfying, for some
c1, c2, c3, c4 ∈ (0,∞),

(5) c1t
−dh/dw exp

(
−c2

(d(x, y)dw
t

) 1
dw−1

)
≤ pt(x, y) ≤ c3t

−dh/dw exp

(
−c4

(d(x, y)dw
t

) 1
dw−1

)
for every (x, y) ∈ K ×K and t ∈

(
0, 1).

The exact values of c1, c2, c3, c4 are irrelevant in our analysis. As above, the parameter dh = ln 3
ln 2

is the
Hausdorff dimension. The parameter dw = ln 5

ln 2
is called the walk dimension. Since dw > 2, one speaks

of sub-Gaussian heat kernel estimates.
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2.3. Fractional Riesz kernels. Let ∆ denotes the generator of the Dirichlet form E , i.e. ∆ is the
Laplacian on K. Our goal in this section is to study the operators (−∆)−s, s > 0, defined on L2

0(K,µ)
where

L2
0(K,µ) =

{
f ∈ L2(K,µ),

∫
K

fdµ = 0

}
.

From [15], the heat kernel pt(x, y) admits a uniformly convergent spectral expansion:

pt(x, y) = 1 +
+∞∑
j=1

e−λjtΦj(x)Φj(y)(6)

where 0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · are the eigenvalues of −∆ and the Φj ∈ F , j ≥ 1, an orthonormal
basis of L2

0(K,µ) such that
∆Φj = −λjΦj.

Notice that Φj ∈ F and thus is continuous.
It is known from [9] that the counting function of the eigenvalues:

N(t) = Card{λj ≤ t}

satisfies
N(t) ∼ Θ(t)tdh/dw

when t→ +∞ where Θ is a function bounded away from 0. In particular,
+∞∑
j=1

1

λ2sj
< +∞

whenever s > dh
2dw

. For s > dh
2dw

, the operator (−∆)−s is then defined as the bounded operator (−∆)−s :

L2
0(K,µ) → L2

0(K,µ) given by

(−∆)−sf =
+∞∑
j=1

1

λsj

(∫
K

Φj(y)f(y)dµ(y)

)
Φj.

From this definition, the function (−∆)−sf is thus a priori only defined µ a.e. We will prove in this
section and the next one that it actually admits a Hölder continuous version, see Remark 2.9 and
Theorem 2.10. To this end, we first collect basic heat kernel estimates.

Lemma 2.3. There exists a constant C > 0 such that for every x, y ∈ K and t ≥ 1,
|pt(x, y)− 1| ≤ Ce−λ1t,

where λ1 > 0 is the first non-zero eigenvalue of K.

Proof. As already noted, the heat kernel pt(x, y) admits a uniformly convergent spectral expansion:

pt(x, y) = 1 +
+∞∑
j=1

e−λjtΦj(x)Φj(y).(7)

Since the Φj’s are eigenfunctions, one has for any t > 0,

Φj(x) = eλjt

∫
K

pt(x, y)Φj(y)dµ(y).
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Thus, from Cauchy-Schwarz inequality, we have for every t > 0

|Φj(x)| ≤ eλjt

(∫
K

pt(x, y)
2dµ(y)

)1/2(∫
K

Φj(y)
2dµ(y)

)1/2

= eλjtp2t(x, x)
1/2.

In particular, choosing t = 1/4 and using (5), one obtains that there exists a constant C > 0 such that
for every x ∈ K,

|Φj(x)| ≤ Ceλj/4.

Coming back to the expansion (7) one obtains that for every x, y ∈ K and t ≥ 1,

|pt(x, y)− 1| ≤
+∞∑
j=1

e−λjteλj/2 ≤ e−λ1teλ1

+∞∑
j=1

e−λj/2,

which concludes the proof. □

Lemma 2.4. For any s > 0 and x, y ∈ K, x ̸= y, the integral∫ +∞

0

ts−1(pt(x, y)− 1)dt

is absolutely convergent. Moreover, if s > dh
dw

, the integral is also convergent for x = y.

Proof. Thanks to the heat kernel upper bound (5), the integral
∫ 1

0
ts−1|pt(x, y)−1|dt is finite for any s > 0

when x ̸= y and for s > dh
dw

when x = y. Moreover, for any x, y ∈ K, the integral
∫ +∞
1

ts−1|pt(x, y)−1|dt
is also finite thanks to lemma 2.3. □

We are now ready for the definition of the fractional Riesz kernels:

Definition 2.5. For a parameter s > 0, we define the fractional Riesz kernel Gs by

Gs(x, y) =
1

Γ(s)

∫ +∞

0

ts−1(pt(x, y)− 1)dt, x, y ∈ K, x ̸= y.(8)

with Γ the gamma function.

We will be interested in the integrability properties of Gs. The following estimates are therefore impor-
tant.

Proposition 2.6.
(1) If s ∈ (0, dh/dw), there exists a constant C > 0 such that for every x, y ∈ K, x ̸= y,

|Gs(x, y)| ≤
C

d(x, y)dh−sdw
.

(2) If s = dh/dw, there exists a constant C > 0 such that for every x, y ∈ K, x ̸= y

|Gs(x, y)| ≤ C| ln d(x, y)|.

(3) If s > dh/dw, there exists a constant C > 0 such that for every x, y ∈ K,

|Gs(x, y)| ≤ C.
6



Proof. We have

Gs(x, y) =
1

Γ(s)

∫ +∞

0

ts−1(pt(x, y)− 1)dt

=
1

Γ(s)

∫ 1

0

ts−1(pt(x, y)− 1)dt+
1

Γ(s)

∫ +∞

1

ts−1(pt(x, y)− 1)dt.

The integral
∫ +∞
1

ts−1(pt(x, y)−1)dt can uniformly be bounded on K×K by a constant using lemma 2.3,
so we just need to uniformly estimate the integral

∫ 1

0
ts−1pt(x, y)dt. Thanks to the heat kernel upper

bound (5) we have:∫ 1

0

ts−1pt(x, y)dt ≤ c3

∫ 1

0

ts−1−dh/dw exp

(
−c4

(d(x, y)dw
t

) 1
dw−1

)
dt.

We now divide our analysis depending on the value of s. If s > dh/dw, one can simply bound∫ 1

0

ts−1−dh/dw exp

(
−c4

(d(x, y)dw
t

) 1
dw−1

)
dt ≤

∫ 1

0

ts−1−dh/dwdt.

If s < dh/dw, using the change of variable t = ud(x, y)dw , one sees that∫ 1

0

ts−1−dh/dw exp

(
−c4

(d(x, y)dw
t

) 1
dw−1

)
dt

=d(x, y)sdw−dh

∫ 1/d(x,y)dw

0

us−1−dh/dw exp

(
−c4

(1
u

) 1
dw−1

)
du

≤d(x, y)sdw−dh

∫ +∞

0

us−1−dh/dw exp

(
−c4

(1
u

) 1
dw−1

)
du.

Finally, if s = dh/dw, using again the change of variable t = ud(x, y)dw and setting R = diam(K), one
sees that ∫ 1

0

ts−1−dh/dw exp

(
−c4

(d(x, y)dw
t

) 1
dw−1

)
dt

=

∫ 1/d(x,y)dw

0

1

u
exp

(
−c4

(1
u

) 1
dw−1

)
du

≤
∫ 1/d(x,y)dw

1/Rdw

1

u
exp

(
−c4

(1
u

) 1
dw−1

)
du+

∫ 1/Rdw

0

1

u
exp

(
−c4

(1
u

) 1
dw−1

)
du

≤
∫ 1/d(x,y)dw

1/Rdw

1

u
du+

∫ 1/Rdw

0

1

u
exp

(
−c4

(1
u

) 1
dw−1

)
du

≤dw| ln d(x, y)|+
∫ 1/Rdw

0

1

u
exp

(
−c4

(1
u

) 1
dw−1

)
du ≤ C| ln d(x, y)|.

□
Proposition 2.7. If s > dh

2dw
, then for every x ∈ K, y → Gs(x, y) ∈ L2

0(K,µ). Moreover, there exists
a constant C > 0 such that for every x ∈ K,∫

K

Gs(x, y)
2dµ(y) ≤ C.
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Proof. From proposition 2.6, it is enough to prove that for γ < dh
2

, the function y → C
d(x,y)γ

is in L2(K,µ)

(since e.g. for α > 0, max(1, | lnu|) ≤ C
uα for 0 < u ≤ u0). To prove this, we denote by R the diameter

of K and use the Ahlfors regularity (3) of the measure µ and a dyadic annuli decomposition as follows.
We denote by C constants (depending only on R, s, dh, dw) whose value may change from line to line.
One has: for γ < dh

2
, ∫

K

dµ(y)

d(x, y)2γ
≤

+∞∑
j=0

∫
B(x,R2−j)\B(x,R2−j−1)

dµ(y)

d(x, y)2γ

≤ C

+∞∑
j=0

22jγµ
(
B(x,R2−j) \B(x,R2−j−1)

)
≤ C

+∞∑
j=0

22jγµ
(
B(x,R2−j)

)
≤ C

+∞∑
j=0

2j(2γ−dh) < +∞,

which concludes the proof. □

Proposition 2.8. Let s > dh
2dw

and consider the operator Gs : L
2
0(K,µ) → L2

0(K,µ) defined by

Gsf(x) =

∫
K

Gs(x, y)f(y)dµ(y), x ∈ K.

Then for every f ∈ L2
0(K,µ), one has µ a.e.

(−∆)−sf = Gsf.

Remark 2.9. It is important to note that from proposition 2.7, Gsf is defined for all x ∈ K and not
only µ a.e. Therefore Gsf can be used as a pointwise definition of (−∆)−sf .

Proof. Let f ∈ L2
0(K,µ). One can write

f =
+∞∑
j=1

(∫
K

Φj(y)f(y)dµ(y)

)
Φj

where the sum is convergent in L2
0(K,µ). From proposition 2.7 the operator Gs : L

2
0(K,µ) → L2

0(K,µ)
is bounded.
Therefore, in L2

0(K,µ)

Gsf =
+∞∑
j=1

(∫
K

Φj(y)f(y)dµ(y)

)
GsΦj.

By definition of Gs, we now compute that for x ∈ K

GsΦj(x) =

∫
K

Gs(x, y)Φj(y)dµ(y)

=
1

Γ(s)

∫
K

∫ +∞

0

ts−1(pt(x, y)− 1)Φj(y)dtdµ(y)

8



=
1

Γ(s)

∫ +∞

0

ts−1

∫
K

(pt(x, y)− 1)Φj(y)dµ(y)dt

=
1

Γ(s)

∫ +∞

0

ts−1

∫
K

pt(x, y)Φj(y)dµ(y)dt

=
1

Γ(s)

∫ +∞

0

ts−1(PtΦj)(x)dt

=
1

Γ(s)

∫ +∞

0

ts−1e−λjtdtΦj(x)

= λ−s
j Φj(x).

Therefore, one has µ a.e.

Gsf =
+∞∑
j=1

1

λsj

(∫
K

Φj(y)f(y)dµ(y)

)
Φj = (−∆)−sf,

which establishes the proof. □

2.4. Hölder continuity of fractional Riesz kernels. The main theorem of the section is the follow-
ing:

Theorem 2.10. Let s ∈
(

dh
2dw

, 1− dh
2dw

)
. There exists a constant C > 0 such that for every x, y ∈ K

and f ∈ L2(K,µ), ∣∣∣∣∫
K

(Gs(x, z)−Gs(y, z))f(z)dµ(z)

∣∣∣∣ ≤ Cd(x, y)sdw− dh
2 ∥f∥L2(K,µ).

As a consequence, there exists a constant C > 0 such that for every x, y ∈ K,∫
X

(Gs(x, z)−Gs(y, z))
2dµ(z) ≤ Cd(x, y)2sdw−dh .

We divide the proof in several lemmas. As usual, we will denote by C constants whose value may change
from line to line.

Lemma 2.11. There exists a constant C > 0 such that for every f ∈ L2(K,µ), t > 0 and x ∈ K,

|Ptf(x)| ≤
C

t
dh
2dw

∥f∥L2(K,µ).

Proof. From Cauchy-Schwarz inequality,

|Ptf(x)|2 =
∣∣∣∣∫

K

pt(x, z)f(z)dµ(z)

∣∣∣∣2
≤
∫
K

pt(x, z)
2dµ(z)∥f∥2L2(K,µ)

≤ p2t(x, x)∥f∥2L2(K,µ).

We conclude then with the sub-Gaussian upper bound (5). □
9



Lemma 2.12. There exists a constant C > 0 such that for every f ∈ L2(K,µ), t > 0 and x, y ∈ K,

|Ptf(x)− Ptf(y)| ≤ C
d(x, y)dw−dh

t1−
dh
2dw

∥f∥L2(K,µ).

Proof. From [1,2], it is known that for the Sierpiński gasket there exists a constant C > 0 such that for
every g ∈ L∞(K,µ), t > 0 and x, y ∈ K,

|Ptg(x)− Ptg(y)| ≤ C
d(x, y)dw−dh

t1−
dh
dw

∥g∥L∞(K,µ).

Now, if f ∈ L2(K,µ), then from the previous lemma Ptf ∈ L∞(K,µ), so that the previous inequality
can be applied to g = Ptf . Using the semigroup property this yields

|P2tf(x)− P2tf(y)| ≤ C
d(x, y)dw−dh

t1−
dh
2dw

∥f∥L2(K,µ),

which concludes the proof. □
Our third lemma is the following:

Lemma 2.13. Let dh
2dw

< s < 1− dh
2dw

. There exists a constant C > 0 such that for every f ∈ L2(K,µ)
and x, y ∈ K, ∫ +∞

0

ts−1|Ptf(x)− Ptf(y)|dt ≤ Cd(x, y)sdw− dh
2 ∥f∥L2(K,µ).

Proof. We split the integral into two parts:∫ +∞

0

ts−1|Ptf(x)− Ptf(y)|dt =
∫ δ

0

ts−1|Ptf(x)− Ptf(y)|dt+
∫ +∞

δ

ts−1|Ptf(x)− Ptf(y)|dt

where δ > 0 will later be optimized. First, applying lemma 2.11, we have∫ δ

0

ts−1|Ptf(x)− Ptf(y)|dt ≤
∫ δ

0

ts−1(|Ptf(x)|+ |Ptf(y)|)dt

≤
∫ δ

0

ts−1 C

t
dh
2dw

dt∥f∥L2(K,µ)

≤ Cδs−
dh
2dw ∥f∥L2(K,µ).

Then, applying lemma 2.12, we have∫ +∞

δ

ts−1|Ptf(x)− Ptf(y)|dt ≤ C

∫ +∞

δ

ts−1d(x, y)
dw−dh

t1−
dh
2dw

∥f∥L2(K,µ)dt

≤ Cd(x, y)dw−dh

∫ +∞

δ

ts−2+
dh
2dw dt∥f∥L2(K,µ)

≤ Cd(x, y)dw−dhδs−1+
dh
2dw ∥f∥L2(K,µ).

One concludes∫ +∞

0

ts−1|Ptf(x)− Ptf(y)|dt ≤ C
(
δs−

dh
2dw + d(x, y)dw−dhδs−1+

dh
2dw

)
∥f∥L2(K,µ).

Choosing then δ = d(x, y)dw yields the expected result. □
10



We are finally ready for the proof of the main theorem:

Proof. One has ∣∣∣∣∫
K

(Gs(x, z)−Gs(y, z))f(z)dµ(z)

∣∣∣∣ = C

∣∣∣∣∫ +∞

0

ts−1(Ptf(x)− Ptf(y))dt

∣∣∣∣
≤ C

∫ +∞

0

ts−1 |Ptf(x)− Ptf(y)| dt

≤ Cd(x, y)sdw− dh
2 ∥f∥L2(K,µ).

By L2 self-duality, one concludes∫
K

(Gs(x, z)−Gs(y, z))
2dµ(z) ≤ Cd(x, y)2sdw−dh .

□

3. Fractional Brownian fields on the gasket

3.1. Reminders on Gaussian measures. Given a probability space (Ω,F ,P), we consider on the
measurable space (K,K, µ), where K is the Borel σ-field on K, a real-valued Gaussian random measure
WK : K → L2 (Ω,F ,P) with intensity µ. In other words, WK is such that

• a.s. WK is a measure on (K,K)
• for any A ∈ K such that µ(A) < ∞, WK(A) is a real-valued Gaussian variable with mean zero

and variance E
(
WK (A)2

)
= µ(A)

• for any sequence (An)n∈N ∈ KN of pairwise disjoint measurable sets, the random variables
WK(An), n ∈ N, are independent.

Then for any f ∈ L2(K,K, µ), the stochastic integral

WK(f) =

∫
K

f dWK

is well-defined and is a centered real-valued Gaussian variable, see e.g. [19, Section 2.3] for details on
the construction. Moreover, denoting by H ⊂ L2 (Ω,F ,P) the Gaussian Hilbert space spanned by
{WK(A);A ∈ K, µ(A) < ∞}, the functional WK : L2(K,K, µ) → H is an isometry. Hence, for any
f, g ∈ L2(K,K, µ),

(9) E
(∫

K

f dWK

∫
K

g dWK

)
= ⟨f, g⟩L2(K,K,µ) =

∫
K

fg dµ.

3.2. Definition and existence of the fractional Brownian field.

Definition 3.1 (Fractional Brownian field with parameter H). Let H ∈ (0, dw − dh). We define the
fractional Brownian field with parameter H as the random field given by

X(x) =

∫
K

Gs(x, z)WK(dz), x ∈ K,

where s = dh+2H
2dw

, WK is a Gaussian centered real-valued random measure on L2
0(K,µ) with intensity µ

and Gs is the Riesz kernel defined by (8).

Remark 3.2. Thanks to proposition 2.7, the random variable X(x) is well defined for all x ∈ K.
11



Remark 3.3. Thanks to proposition 2.8, one has for every f which is in the L2
0 domain of the operator

(−∆)s ∫
K

(−∆)sf(x)X(x)dµ(x) =

∫
K

f(x)WK(dx).

Remark 3.4. The Gaussian field (X(x))x∈K has mean zero and covariance

E(X(x)X(y)) =

∫
K

Gs(x, z)Gs(y, z)dµ(z) = G2s(x, y).

We note that since 2s > dh/dw, from proposition 2.6, the function G2s is uniformly bounded on K ×K.

Remark 3.5. One could also consider the random field given by

X̃(x) =

∫
K

(Gs(x, z)−Gs(q, z))WK(dz).

where q ∈ K is an arbitrary point of the gasket.

Theorem 3.6. Let H ∈ (0, dw − dh), then there exists a constant C > 0 so that for every x, y ∈ K,

E((X(x)−X(y))2) ≤ Cd(x, y)2H .

Proof. Since

E((X(x)−X(y))2) =

∫
K

(Gs(x, z)−Gs(y, z))
2dµ(z)

this follows from Theorem 2.10. □

Proposition 3.7. Let H ∈ (0, dw − dh), then the fractional Brownian field (X(x))x∈K with parameter
H admits a spectral expansion

X =
+∞∑
j=1

1

λsj
Nj Φj

where the Ni’s are i.i.d. normal centered Gaussian random variables with variance 1 and the series is
convergent in L2(K × Ω, µ⊗ P).

Proof. Note that from the expansion (6), one obtains that µ⊗ µ a.e. x, y ∈ K

Gs(x, y) =
+∞∑
j=1

1

λsj
Φj(x)Φj(y)

where the sum on the right hand side is convergent in L2(K×K,µ⊗µ). Since the Φj’s form a complete
orthonormal system in L2

0(K,µ), one easily proves that

Nj =

∫
K

Φj(z)WK(dz)

Ni’s are i.i.d. normal centered Gaussian random variables with variance 1. □
12



3.3. Regularity of the fractional Brownian field. Barlow and Perkins have established the following
Garsia-Rodemich-Rumsey inequality for fractal (see lemma 6.1 of [4]).

Lemma 3.8. Let p be an increasing function on [0,∞) with p(0) = 0, and ψ : R → R+ be a non-negative
symmetric convex function with limu→∞ ψ(u) = ∞. Let f : K → R be a measurable function such that

Γ =

∫
K×K

ψ

(
|f(x)− f(y)|
p(d(x, y))

)
µ(dx)µ(dy) < +∞

Then there exists a constant cK depending only on dh such that

|f(x)− f(y)| ≤ 8

∫ d(x,y)

0

ψ−1

(
cKΓ

u2dh

)
p(du)

for µ× µ almost all x, y ∈ K ×K.

The main result of this section is the following.

Theorem 3.9. There exists a modification X∗ of X such that

lim
δ→0

sup
d(x,y)
x,y∈K

≤δ

|X∗(x)−X∗(y)|
d(x, y)H

√
|ln d(x, y)|

< +∞

Proof. Step 1: Control of X(x)−X(y) for a.e ω and for µ a.e. x, y ∈ K

Let us consider p(u) = uH and ψ(u) = exp( u2

4c2
)− 1 where c > 0 will be chosen later. Let

Γ(ω) =

∫
K×K

ψ

(
|X(x, ω)−X(y, ω)|

p(d(x, y))

)
µ(dx)µ(dy).

Then by Fubini Theorem,

E (Γ) =

∫
K×K

E
(
ψ

(
|X(x)−X(y)|
p(d(x, y))

))
µ(dx)µ(dy)

Let us consider x, y ∈ K such that x ̸= y. Since ψ is non-negative,

E
(
ψ

(
|X(x)−X(y)|
p(d(x, y))

))
=

∫ ∞

0

P
(
ψ

(
|X(x)−X(y)|
p(d(x, y))

)
> t

)
dt

so that by definition of ψ,

E
(
ψ

(
|X(x)−X(y)|
p(d(x, y))

))
=

∫ ∞

1

P
(
|X(x)−X(y)| ≥ 2c

√
log(t) p(d(x, y))

)
dt

Hence, by Theorem 3.6, there exists a finite positive constant C such that for every x, y ∈ K

p(d(x, y)) = d(x, y)H ≥

√
E((X(x)−X(y))2

C
.

Hence choosing c = C, we obtain that for every x, y ∈ K

E
(
ψ

(
|X(x)−X(y)|
p(d(x, y))

))
≤
∫ ∞

1

P
(
|X(x)−X(y)| ≥ 2

√
log(t)

√
E((X(x)−X(y))2)

)
dt

13



Let us now recall that for Z a standard Gaussian random variable,

∀λ > 0, P (|Z| ≥ λ) ≤
√

2

π

exp
(
−λ2

2

)
λ

Therefore since X(x)−X(y) is a centered Gaussian random variable with variance E((X(x)−X(y))2) ̸=
0,

E
(
ψ

(
|X(x)−X(y)|
p(d(x, y))

))
≤ e + 1√

2π

∫ ∞

e

1

t2
√

log(t)
dt ≤ e + 1√

2π

for every x, y ∈ K such that x ̸= y. Then

E (Γ) ≤
(

e + 1√
π

)
µ(K)2 <∞.

Hence, there exists Ω̃ such that P(Ω̃) = 1 and for all ω ∈ Ω̃ Γ(ω) <∞. By applying Lemma 3.8, for all
ω ∈ Ω̃, there exists a finite constant cK which only depends on dh and J(ω) ⊂ K with µ(K\J(ω)) = 0
such that

|X(x)−X(y)| ≤ 8

∫ d(x,y)

0

ψ−1

(
cKΓ

u2dh

)
p(du) = 16c

∫ d(x,y)

0

√
log

(
1 +

cKΓ

u2dh

)
p(du)

for every ω ∈ Ω̃ and x, y ∈ J(ω). Then there exists a finite positive random variable A such that for
every ω ∈ Ω̃ and x, y ∈ J(ω),

|X(x)−X(y)| ≤ A

∫ d(x,y)

0

√
| log(u)| p(du)

Hence for x, y ∈ J(ω) such that d(x, y) ≤ 1/e, using integration by parts, up to change A at each line,

|X(x)−X(y)| ≤ Ad(x, y)H
√

− log(d(x, y)) + A

∫ d(x,y)

0

uH−1√
− log(u)

du

≤ Ad(x, y)H
√

− log(d(x, y)) + Ad(x, y)H .

Therefore, setting φ(u) = uH
√

− log(u) for u > 0,
(10) |X(x)−X(y)| ≤ Aφ(d(x, y))

for all x, y ∈ J(ω) such that d(x, y) ≤ 1/e. Since H > 0, let us remark that we can choose r ∈ (0, 1/e)
such that φ is a non-decreasing function on (0, r).

Step 2: Definition of X∗

Let us consider ω ∈ Ω̃ and x ∈ K. For any n ∈ N∗, let Bn(x) = B
(
x, 1

n

)
= {y ∈ K /d(x, y) ≤ 1

n
} and

Xn(x, ω) =
1

µ (Bn (x))

∫
Bn(x)

X(u, ω)µ(du).

Note that for any integer n,m,
Xn(x, ω)−Xm(x, ω)

=
1

µ (Bn (x))µ (Bm (x))

∫
Bn(x)

∫
Bm(x)

(X(u, ω)−X(v, ω)) µ(du)µ(dv).

14



Since µ (K\J(ω)) = 0 and since φ is a non-decreasing function on (0, r), by applying (10), we have:

|Xn(x, ω)−Xm(x, ω)| ≤ Aφ

(
2

n

)
for any n > 2/r and any m ≥ n. Since limr→0+ φ(r) = 0, (Xn(x, ω))n is a real-valued Cauchy sequence
and then converges. Then for ω ∈ Ω̃ and x ∈ K, we define

X∗(x, ω) := lim
n→+∞

Xn(x, ω).

If ω /∈ Ω̃, we set X∗(x, ω) = 0 for every x ∈ K.

Step 3 : Upper bound for the modulus of continuity of X∗

Let us first assume that ω ∈ Ω̃. Then for any x, y ∈ K,
Xn(x, ω)−Xn(y, ω)

=
1

µ (Bn (x))µ (Bn (y))

∫
Bn(x)

∫
Bn(y)

(X(u, ω)−X(v, ω)) µ(du)µ(dv)

Let x, y ∈ K such that 0 < d(x, y) < r/2. Then for u ∈ Bn(x) and v ∈ Bn(x), if n > 4/r,

d(u, v) ≤ d(x, y) +
2

n
< r

Hence, for n > 4/r,

φ (d(u, v)) ≤ φ

(
d(x, y) +

2

n

)
and, since µ (K\J(ω)) = 0, by (10),

|Xn(x, ω)−Xn(y, ω)| ≤ Aφ

(
d(x, y) +

2

n

)
.

Letting n→ +∞, by continuity of φ on (0, r), we obtain that
|X∗(x, ω)−X∗(y, ω)| ≤ Aφ (d(x, y)) .

for every x, y ∈ K such that d(x, y) ≤ r/2. Note that this last inequality also holds if ω /∈ Ω̃.

Step 4: Comparison of X and X∗

Let x ∈ K. Note that

Xn(x)−X(x) =
1

µ (Bn(x))

∫
Bn(x)

(X(u, ω)−X(x, ω))µ(du)

Therefore, by Cauchy-Schwarz inequality,

|Xn(x)−X(x)|2 ≤ 1

µ (Bn(x))

∫
Bn(x)

|X(u, ω)−X(x, ω)|2 µ(du)

Hence, applying Fubini theorem,

E
(
|Xn(x)−X(x)|2

)
≤ 1

µ (Bn(x))

∫
Bn(x)

E
(
|X(u, ω)−X(x, ω)|2

)
µ(du)
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By Theorem 3.6, for every x ∈ K, and all n ∈ N∗,

E
(
|Xn(x)−X(x)|2

)
≤ C

µ (Bn(x))

∫
Bn(x)

d(u, x)2Hµ(du)

≤ C
n2H .

Then for every x ∈ K, (Xn(x))n converges in quadratic mean to X(x), which implies that X(x) = X∗(x)
a.s. In other words, X∗ is a modification of X, which concludes the proof. □

3.4. Invariance and scaling properties of the fractional Brownian field.

3.4.1. Invariance by symmetries. The Sierpiński gasket admits 3 symmetries σ1, σ2, σ3 which are the
reflections about the lines dividing the triangle with vertices q0, q1, q2 into two equal parts.

Proposition 3.10. Let H ∈ (0, dw − dh) and

X(x) =

∫
K

Gs(x, z)WK(dz), x ∈ K,

be the fractional Brownian field with parameter H. Then, for every i = 1, 2, 3 in distribution
(X(σi(x))x∈K =d (X(x))x∈K .

Proof. The Dirichlet form E on the gasket is invariant by σi, i.e. for every f ∈ F
E(f ◦ σi, f ◦ σi) = E(f, f).

Thus, for every x, y ∈ K, pt(σi(x), σi(y)) = pt(x, y). This implies that G2s(σi(x), σi(y)) = G2s(x, y) and
thus E(X(σi(x))X(σi(y)) = E(X(x)X(y)). □
In particular, at the vertices, one obtains that X(q0), X(q1), X(q2) have the same distribution.

3.4.2. Invariance by scaling. Let w = (i1, · · · , in) ∈ {1, 2, 3}n, and denote Fw = Fi1 ◦ · · · ◦ Fin where we
recall that

Fi(z) =
1

2
(z − qi) + qi.

The compact set Kw := Fw(K) ⊂ K is itself a Sierpiński gasket. Denote by Xw a fractional Brownian
motion field with parameter H on Kw.

Proposition 3.11. The Gaussian field (2nHXw(Fw(x)))x∈K is a fractional Brownian motion field with
parameter H on K.

Proof. In the proof let us indicate with a superscript or subscript w the objects related to the Sierpiński
gasket Kw (Dirichlet form, heat kernel, etc...). From the limit (4), one can see that for every f ∈ Fw,
one has

Ew(f, f) =
(
5

3

)n

E(f ◦ Fw, f ◦ Fw).

Thus the relation between the Laplacian of Kw and the Laplacian of K is given
(∆wf) ◦ Fw = 5n∆(f ◦ Fw).

This yields that for the heat kernels (with respect to the reference measure µ)
pwt (Fw(x), Fw(y)) = 3np5nt(x, y).
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As a consequence, one has for x, y ∈ K, x ̸= y,

Gw
s (Fw(x), Fw(y)) =

1

Γ(s)

∫ +∞

0

ts−1(pwt (Fw(x), Fw(y))− 1)dt

=
3n

Γ(s)

∫ +∞

0

ts−1(p5nt(x, y)− 1)dt

=
3n

5nsΓ(s)

∫ +∞

0

ts−1(pt(x, y)− 1)dt.

Since
s =

dh
2dw

+
H

dw
=

1

2

ln 3

ln 5
+H

ln 2

ln 5

one has 5ns = 2nH3n/2 and therefore

Gw
s (Fw(x), Fw(y)) =

3n/2

2nH
Gs(x, y).

Notice now that if WKw is a white noise on L2
0(Kw, µ), due to the self-similarity of the Hausdorff measure

µ one has for every f ∈ L2
0(Kw, µ),

E

((∫
Kw

f(z)WKw(dz)

)2
)

=

∫
Kw

f(z)2dµ(z)

=
1

3n

∫
K

f(Fw(z))
2dµ(z)

=
1

3n
E

((∫
K

f(Fw(z))WK(dz)

)2
)
.

One concludes that in distribution:

X(Fw(x)) =

∫
Kw

Gw
s (Fw(x), z)WKw(dz)

=
1

3n/2

∫
K

Gw
s (Fw(x), Fw(z))WK(dz)

=
1

2nH

∫
K

Gs(x, z)WK(dz).

□

4. Generalization to other fractals: Barlow fractional spaces

Let (K, d, µ) be a compact metric space isometrically embedded in some Euclidean space where µ is
the Hausdorff measure on K. Let now (E ,F = dom(E)) be a strongly local regular Dirichlet form on
L2(K,µ).
We assume that the semigroup {Pt} has a jointly continuous heat kernel pt(x, y) satisfying, for some
c1, c2, c3, c4 ∈ (0,∞) and dh ≥ 1, dw ∈ [2,+∞), dw ≥ dh

(11) c1t
−dh/dw exp

(
−c2

(d(x, y)dw
t

) 1
dw−1

)
≤ pt(x, y) ≤ c3t

−dh/dw exp

(
−c4

(d(x, y)dw
t

) 1
dw−1

)
for every (x, y) ∈ K ×K and t ∈

(
0, 1).
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Figure 2. Sierpiński carpet.

We moreover assume that metric space (K, d) satisfies the midpoint property, i.e. for any x, y ∈ K there
exists z ∈ K such that d(x, z) = d(z, y) = 1

2
d(x, y). The latter is equivalent to requiring the space be

geodesic. Metric spaces satisfying the above assumptions are called fractional metric spaces and were
extensively studied by Barlow in Section 3 of the lectures [3]. Besides the Sierpiński gasket studied
previously, another popular fractal set that fits into this framework is the Sierpiński carpet represented
in Figure 2.
From [1, 2], it is known that under the previous assumptions the measure µ is dh-Ahlfors regular and
that there exists a constant C > 0 such that for every f ∈ L∞(K,µ), t > 0 and x, y ∈ K,

(12) |Ptf(x)− Ptf(y)| ≤ C
d(x, y)dw−dh

t1−
dh
dw

∥f∥L∞(K,µ).

For the Sierpiński carpet it is known that dh = log 8
log 3

= 3 log 2
log 3

and dw ≈ 2.097. However, the Hölder
exponent dw − dh in (12) might not be optimal and it has actually been conjectured in [2] that the best
Hölder exponent in (12) is dw − dh + dtH − 1 where dtH is the topological Hausdorff dimension of the
carpet.
In this framework, the ingredients (11) and (12) are enough to repeat the proofs of proposition 2.6 and
theorem 2.10. The proof of theorem 3.9 also extends to this setting. As a consequence one obtains the
following theorem valid under the assumptions of this section.

Theorem 4.1. Let W be a white noise on L2
0(K,µ). Then, if dh

2dw
< s < 1− dh

2dw
, there exists a Gaussian

random field (X(x))x∈K which is Hölder continuous with exponent H− where

H = sdw − dh
2
,

such that for every f which is in the L2
0 domain of the operator (−∆)s∫

K

(−∆)sf(x)X(x)dµ(x) =

∫
K

f(x)W (dx).

References
1. P. Alonso Ruiz and F. Baudoin, Gagliardo-Nirenberg, Trudinger-Moser and Morrey inequalities on Dirichlet spaces,

2020. 10, 18
2. P. Alonso Ruiz, F. Baudoin, L. Chen, L. Rogers, N. Shanmugalingam, and A. Teplyaev, Besov class via heat semigroup

on Dirichlet spaces III: BV functions and sub-Gaussian heat kernel estimates, arXiv:1903.10078 (2019). 10, 18
18



3. M. T. Barlow, Diffusions on fractals, Lectures on probability theory and statistics (Saint-Flour, 1995), Lecture Notes
in Math., vol. 1690, Springer, Berlin, 1998, pp. 1–121. 3, 18

4. M. T. Barlow and E. A. Perkins, Brownian motion on the Sierpiński gasket, Probab. Theory Related Fields 79 (1988),
no. 4, 543–623. 3, 4, 13

5. A. Benassi, S. Jaffard, and D. Roux, Elliptic Gaussian random processes, Rev. Mat. Iberoamericana 13 (1997), no. 1,
19–90. 3

6. H. Biermé and C. Lacaux, Hölder regularity for operator scaling stable random fields, Stochastic Process. Appl. 119
(2009), no. 7, 2222–2248. 3

7. S. Cohen and J. Istas, Fractional fields and applications, Springer, 2013. 2
8. R. M. Dudley, Sample functions of the Gaussian process, Ann. Probability 1 (1973), no. 1, 66–103. 3
9. M. Fukushima and T. Shima, On a spectral analysis for the Sierpiński gasket, Potential Anal. 1 (1992), no. 1, 1–35.

2, 5
10. Z. A. Gelbaum, Fractional Brownian fields over manifolds, Trans. Amer. Math. Soc. 366 (2014), no. 9, 4781–4814. 2
11. J. Istas, Spherical and hyperbolic fractional Brownian motion, Electron. Comm. Probab. 10 (2005), 254–262. 2
12. , Manifold indexed fractional fields, ESAIM Probab. Stat. 16 (2012), 222–276. 2
13. J. Kigami, Harmonic calculus on p.c.f. self-similar sets, Trans. Amer. Math. Soc. 335 (1993), no. 2, 721–755. 2, 3
14. , Harmonic metric and Dirichlet form on the Sierpiński gasket, Asymptotic problems in probability theory:

stochastic models and diffusions on fractals (Sanda/Kyoto, 1990), Pitman Res. Notes Math. Ser., vol. 283, Longman
Sci. Tech., Harlow, 1993, pp. 201–218. 2

15. , Analysis on fractals, Cambridge Tracts in Mathematics, vol. 143, Cambridge University Press, Cambridge,
2001. 2, 3, 4, 5

16. A. N. Kolmogoroff, Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum, C. R. (Doklady)
Acad. Sci. URSS (N.S.) 26 (1940), 115–118. 2

17. N. Kôno, On the modulus of continuity of sample functions of Gaussian processes, Journal of mathematics of Kyoto
University 10 (1970), no. 3, 493–536. 3

18. P. Lévy, Processus stochastiques et mouvement brownien, Suivi d’une note de M. Loève. Deuxième édition revue et
augmentée, Gauthier-Villars & Cie, Paris, 1965. 2

19. A. Lodhia, S. Sheffield, X. Sun, and S. S. Watson, Fractional Gaussian fields: a survey, Probab. Surv. 13 (2016),
1–56. 1, 2, 11

20. B. B. Mandelbrot and J. W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev.
10 (1968), 422–437. 2

21. G. Samorodnitsky and M. S. Taqqu, Stable non-Gaussian random processes, Stochastic Modeling, Chapman & Hall,
New York, 1994, Stochastic models with infinite variance. 2

22. R. S. Strichartz, Analysis on fractals, Notices Amer. Math. Soc. 46 (1999), no. 10, 1199–1208. 2
23. , Function spaces on fractals, J. Funct. Anal. 198 (2003), no. 1, 43–83. 2

F.B: Department of Mathematics, University of Connecticut, Storrs, CT 06269

C.L.: Avignon Université, LMA EA 2151, 84000 Avignon, France

19


	1. Introduction
	2. Fractional Riesz kernels on the Sierpiński gasket
	2.1. Definition of the gasket
	2.2. Canonical Dirichlet form and heat kernel estimates
	2.3. Fractional Riesz kernels
	2.4. Hölder continuity of fractional Riesz kernels

	3. Fractional Brownian fields on the gasket
	3.1. Reminders on Gaussian measures
	3.2. Definition and existence of the fractional Brownian field
	3.3. Regularity of the fractional Brownian field
	3.4. Invariance and scaling properties of the fractional Brownian field

	4. Generalization to other fractals: Barlow fractional spaces
	References

