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1 rue Blessig, F-67084 Strasbourg Cedex, France
(Dated: June 21, 2017)

PACS numbers:

I. DEFINITION

By analogy with aqueous solution, a solid solution,
sometimes called mixed crystal, is defined as an homo-
geneous solid-state solution of one or more solutes in a
solvent. Its composition may vary in a more or less wide
range of compositions, between extreme values which cor-
respond to pure solids, known as its end-members. At
variance with a mechanical mixture in which the com-
ponents are mixed but not chemically bonded, mixing in
a solid solution occurs at the atomic level, generally by
substitution of one type of atoms by another on the same
lattice. Many metal alloys, oxides and silicates are sub-
stitutional solid solutions, but solid solutions may also be
formed by insertion of foreign atoms at interstitial sites in
the host crystal (interstitial solid-solutions), or by loss of
atoms in non-stoichiometric compounds (omissional solid
solutions). The importance of solid solutions comes from
the synergistic properties that they may display com-
pared to their end-members and to their ubiquity in the
natural environment.

In some cases, an homogeneous SS may become unsta-
ble with respect to its components and phase separation,
also called demixing or exsolution, may occur. More pre-
cisely, exsolution is the processes of separation of an ini-
tially homogeneous solution phase (liquid or solid) into
two compositionally different immiscible phases. This
process may be triggered by pressure, temperature, or
composition changes, but mostly by the two former for
solid phases which show little volume change upon pres-
sure.

II. INTRODUCTION

Solid solutions (SSs) are often encountered in chem-
istry, metallurgy as well as in the Earth Sciences: miner-
alogy, petrology or geochemistry. In metallurgy, alloying
elements are added to metals to improve their strength
and their hardness or their resistance to corrosion. In the
natural environment, compared to pure minerals, mixed
minerals are the generality rather than the exception.
Indeed, the formation of SSs is often thermodynami-
cally preferred over the separate formation of their end-
members, as can be judged by the frequent incorporation
of trace elements in minerals, the ubiquity of complex
oxides, silicates or carbonates, and the scarcity of pure

minerals (See Trace Elements, Clay Minerals, Oxide Min-
erals, Silicate Minerals, Carbonate Minerals). Two main
processes lead to the formation of SSs: condensation from
a melt or precipitation from a supersaturated aqueous
fluid. Understanding SS formation conditions may bring
insight into global element cycles, composition of natural
waters, diffusion of elements in contaminated soils, and
may be useful to try reconstructing past conditions.

In substitutional SSs, the process of mixing relies on
the existence of local interactions between substituent
(solute) and host atoms. In order that mixing takes place
at the atomic level, several conditions have to be fulfilled:

• the crystal structure of the solvent should remain
unchanged upon addition of the solute. End-
members should thus have the same atomic struc-
ture.

• the substituting and host ions should have ionic
radii differing by less than ≈15% (Hume Rothery
rule) (See Ionic Radii).

• for single substitutions, the substitution has to be
isoelectronic (replacing ion of the same valence as
host ion). For multiple substitutions, global electric
neutrality requires a coupling between charges and
molar fractions. For example, substitution of Si by
Al in the tetrahedral sites of phyllosilicate minerals
requires a correlated charge compensation in the
interlayer space or in the octahedral sites.

• the chemical affinity of host and solute atoms
should be low, otherwise defined compounds are
formed rather than solid solutions.

If these conditions are not fulfilled, SSs are restricted
to a composition range of a few percents. Conversely,
SSs which exist in a large composition range are usually
made from elements which are close to each other in the
periodic table.

Depending on the sign and strength of the interatomic
interactions, fully disordered SSs, SSs with short range
order or defined compounds with long range order may
form. In some instances, phase separation may take
place, for example leading to exsolution upon cooling.
Simple models of mixing account for all these possibilities
and allow deriving generic phase diagrams as a function
of the thermodynamic conditions (temperature, pressure,
composition, contact with an aqueous solution) and dis-
cussing out-of-equilibrium processes.



2

III. MIXING PROPERTIES OF
SUBSTITUTIONAL SOLID SOLUTIONS

The thermodynamic state (molar volume V , entropy S,
enthalpy H, Gibbs free energy G) of a SS of the A1−xBxC
type is conveniently characterized with respect to the
thermodynamic functions of its pure end-members AC
and BC (McGlashan 1979) (See Geochemical Thermody-
namics). When no chemical interaction takes place at the
atomic level, which is the case of a mechanical mixture,
these quantities are obtained by simple linear interpola-
tion between those of the end members, weighted by their
respective mole fractions XAC = 1 − x and XBC = x.
For example, the molar volume of a mechanical mixture
is equal to VMM = XACVAC + XBCVBC , which is the
expression of the Vegard’s rule, and its Gibbs free energy
is equal to GMM = XACGAC +XBCGBC .

When mixing takes place, the linear relationship be-
tween the SS thermodynamic functions and those of its
end-members no longer holds. Mixing quantities (∆VM ,
∆SM , ∆HM , ∆GM ) are then defined by difference be-
tween V , S, H, and G and those of the mechanical mix-
ture, e.g. ∆GM = G−XACGAC −XBCGBC .

A first contribution to ∆GM , of entropic origin, arises
due to the disorder induced by the substitution. In the
case of full randomness, it reads (R the gas constant):

∆SidM = −R(XAC lnXAC +XBC lnXBC) (1)

∆SidM is a positive quantity, which lowers ∆GM =
∆HM − T∆SM (T the temperature) and thus stabilizes
the SS with respect to the mechanical mixture in the
whole compositional range. When ∆GM has no other
contribution than ∆SidM , the SS is said to be ideal (hence
the superscript id).

However, very few SSs are ideal, as shown by numer-
ous results of advanced calorimetric and diffraction meth-
ods (Geiger 2001; Navrotsky 2014) (See Calorimetry).
This stems from so-called excess mixing terms, including
entropy as well as enthalpy contributions. The excess
mixing entropy includes the vibrational entropy and a
contribution due to the decrease in the number of acces-
sible configurations with respect to perfect randomness
when short range order exists (Benisek and Dachs 2012).
The excess mixing enthalpy involves elastic and chemical
terms. The elastic one, always positive, results from the
lattice distortions associated to mixing which increases
the internal energy of both end-members. The chemical
term is associated to effective interactions between sub-
stituent and host atoms. They are both accounted for
in the following polynomial expansion of ∆HM proposed
by Guggenheim (Guggenheim 1937) for non-ideal SSs:

∆HM = XACXBCA0

+XACXBC(XAC −XBC)[A1 +A2(XAC −XBC) + ...]

(2)

The first term relies on the number and strength of each
type of nearest-neighbor bond. Its constant A0 depends

on the energy difference between chemical bonds con-
necting identical or distinct species A0 ∝ 2WA−B −
WA−A +WB−B . Usually, the largest contribution comes
from nearest neighbors but longer range interactions are
also be included in this term. Multi-body interactions
(triplet, quadruplet, etc) are accounted for in the higher
order terms A1, A2, and so on. ∆HM varies with tem-
perature but usually more weakly than ∆SidM .

Aside from experimental methods to determine mix-
ing properties, the huge development of numerical sim-
ulations in the last decades has allowed calculations of
alloy thermodynamic properties such as short-range or-
der in SSs and composition-temperature phase diagrams.
A methodology, known as the cluster expansion method
(Kikuchi 1951; Ducastelle 1991; Vinograd 2010), consists
in parametrizing the energy of an alloy under the form:

E =
∑
i

giJi (Πjpj) (3)

in which the index i scans all existing pairs (in which
case, j takes two values), triplets (j takes three values),
etc, of degeneracy gi associated to occupation numbers
pj = ±1 in the configuration upon consideration. The
coefficients Ji of the cluster expansion are determined by
fitting them to the energy of a relatively small number of
configurations obtained through first-principles computa-
tions (See Density Functional Theory). The convergence
of the expansion is usually rapid. Only a few terms rep-
resenting pairs and small triplets are necessary to obtain
good accuracy on thermodynamic properties.

The cluster expansion method gives a rationale for the
Guggenheim expansion. However, the latter is a mean
field approximation in which the probability of finding
an AB pair is replaced by the (uncorrelated) product of
site probabilities XAC or XBC . Going beyond such an
approximation, for example by using Monte Carlo ap-
proaches, based on the cluster expansion Hamiltonian,
Eq. 3, is necessary to account for fluctuations of proba-
bilities around their mean values and for possible ordered
phases (van de Walle and Asta 2002).

When only the first term in the Guggenheim expansion
is important, i.e. when the strength of the interactions
is independent on composition, the SS is said to be reg-
ular and ∆GM is symmetric with respect to x = 0.5.
Depending on the sign and the value of A0, ∆GM dis-
plays a single minimum (A0/RT < 2) or two minima
(A0/RT > 2), as shown in Figure 1.

SSs which require two terms in the polynomial expan-
sion of ∆HM (so-called two-parameter Margules model)
are called sub-regular SSs. The A1 term accounts for a
linear dependence of the interactions on composition. It
yields an asymmetry of ∆GM with respect to x = 0.5.
In the infinite dilution limits, A0 +A1 and A0 −A1 rep-
resent the solubilities of B in pure AC and A in pure BC,
respectively (See Solubility).

The chemical potentials µi of the end-members (i= AC
or BC) in the SS are derived from the knowledge of the
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FIG. 1: Composition dependence of the mixing Gibbs free
energy of a regular SS for three values of A0/RT = −1.4, 0
and +2.8.

molar Gibbs free energy G = ΣiµiXi, as:

µi = G+ (1−Xi)

(
∂G

∂Xi

)
P,T

(4)

and this allows determining their activities ai (See Ac-
tivity and Activity Coefficients) through the relationship
µi = Gi + RT ln ai. For a given composition of the SS,
aAC and aBC can be graphically read at the intersections
of the tangent to the G curve at x = 0 and x = 1, re-
spectively (Figure 2, left panel). The activity coefficients
γi = ai/Xi of the end-members in the SS are equal to 1
in ideal SSs, and their deviation from 1 evidences the ex-
istence of excess terms of mixing in the Gibbs free energy.
Following Redlich-Kister, they read (Glynn 1991):

RT ln γAC = X2
BC (A0 +A1(3XAC −XBC) + ...)

RT ln γBC = X2
AC (A0 −A1(3XBC −XAC) + ...) (5)

These concepts may be generalized to the case of
multiple substitutions. For example, when the two
substitutions occur on different sites and are uncou-
pled, the solid solution, of generic chemical formula
A(1−x)(1−y)Bx(1−y)Cy(1−x)Dxy has four end-members (A,
B, C, D), associated to molar fractions XA = (1−x)(1−
y), XB = x(1−y), XC = y(1−x), andXD = xy. The mo-
lar fractions are linked not only by the usual relationship
XA +XB +XC +XD = 1, but also by the cross-product
equality XAXD = XBXC , which results from the fact
that there are only two independent composition param-
eters (x and y). Such solid solutions are referred to as
reciprocal solid solutions. Contrary to the case of a sin-
gle substitution, they are non-ideal with end-member ac-
tivity coefficients different from 1 (Ganguly 2001), even
when the mixing in each site is ideal, i.e. when ∆GM

only involves the ideal mixing entropy term:

∆SidM = −R(x lnx+(1−x) ln(1−x)+y ln y+(1−y) ln(1−y))
(6)

IV. TEMPERATURE-COMPOSITION PHASE
DIAGRAM

Igneous rocks are formed when a magma or a lava cools
and solidifies. Metamorphic rocks, for their part, result
from the transformation of existing rocks when they are
subject to heat and/or pressure. SSs are often encoun-
tered in these cases. The phases in presence, once ther-
modynamic equilibrium has been reached, can be read
on a temperature-composition T − x phase diagram, di-
rectly derived from the canonical ensemble expression of
G discussed previously (See Phase Equilibria).

A. Thermodynamic equilibrium

When the mixing Gibbs energy is negative and dis-
plays a single minimum as a function of composition, as
in the case of ideal or weakly non-ideal SSs, an homoge-
neous mixing is energetically favorable over a mechanical
mixture and a SS exists in the whole composition range.

When ∆GM displays two minima, as in the case of
strongly non-ideal mixing, there exists a composition
range x1 < x < x2, called the miscibility gap, in which
an homogeneous SS is unstable with respect to the co-
existence of two immiscible SSs α and β of compositions
x1 and x2. Phase separation thus takes place. For such
a process to be thermodynamically stable, the chemical
potentials of the end-members µi (i =AC or BC) have to

be equal in the two phases: µαi = µβi . This requirement
graphically defines the compositions x1 and x2 of the α
and β SSs as the abscissa of the points of common tan-
gent to the G curve (Figure 2, left panel). The locus of
these points when temperature varies is called the solvus
(Figure 2, right panel). For a given average composi-
tion x of the solid phase, the proportions Qα and Qβ of
the α and β phases are given by the ratios MM2/M1M2

and MM1/M1M2 of the tangent segments represented in
Figure 2, respectively (lever rule). When T increases
at fixed pressure, the miscibility gap generally becomes
narrower, because the negative contribution to G coming
from the ideal entropy term increases (in absolute value)
much more rapidly than the positive enthalpic contribu-
tion. Beyond a critical temperature TM , called the upper
consolute temperature, the region of phase coexistence
vanishes and the components of the mixture are soluble
in all proportions.

The generic phase diagram displayed in Figure 2 is
highly simplistic, since only two ordered phases are con-
sidered (the end-members). The phase diagrams of
metallic alloys, for example, often involve several ordered
phases, several regions of miscibility gaps between them
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FIG. 2: Left panel: Composition dependence of the Gibbs free energy of a strongly non-ideal regular SS at fixed temperature T
(A0/RT = +2.8). The plain straight line is the common tangent to ∆GM , marking the limits of the miscibility gap x1 < x < x2.
Right panel: Typical phase diagram of a strongly non-ideal SS. The region of the miscibility gap is delineated by the solvus
(plain line). The spinodal line is represented by a dashed line.

and SS phases with various compositions. Mixed car-
bonate minerals may also display more complex phase
diagrams, the most famous example being the calcite-
magnesite system with the ordered dolomite phase at
50% composition. Several numerical codes allow calcu-
lation of the phase diagrams of binary systems, e.g. the
ATAT code (and the OpenCalphad code (Fries 2013).

B. Exsolution process

When a SS which is homogeneous in the temperature
range T > TM enters the region of a miscibility gap,
phase separation, also called demixing or exsolution, oc-
curs. Exsolution begins at the atomic scale but as it
continues, the exsolved phase usually forms irregular pat-
terns (lamellae, films or patches), depending on the re-
gion of the miscibility gap in which it takes place. A spe-
cial curve, called spinodal (Figure 2 right panel), which
connects the inflection points of G inside the miscibil-
ity gap (condition ∂2G/∂x2=0), separates the latter in
two regions in which the early composition fluctuations
leading to exsolution are either periodic or exponentially
decaying in space.

Most minerals exsolve upon appropriate conditions of
temperature, pressure and composition, e.g. feldspars,
pyroxenes, amphiboles, micas, oxides, carbonates, sul-
fides (e.g. Schumacher 2007). For example, the impor-
tant group of feldspars, to which belong the most abun-
dant phases of igneous rocks, can be described in the
ternary solid-solution system : albite NaAlSi3O8, mi-
crocline KAlSi3O8 and anorthite CaAl2Si2O8. Albite-
microcline SSs, called alkali feldspars, which are formed
at high temperature, easily exsolve at low temperature,
each end-member being only able to substitute a small
amount of the other alkali ion. At variance, plagioclases

which are also formed at high temperature, do not ex-
solve. All intermediate compositions are known between
their end-members albite and anorthite. These feldspar
SSs play an important role as components of granitic
rocks and major contributors to hydrothermal alteration
or weathering processes at lower temperature.

The process of exsolution of a SS may be used in
solvus geothermobarometry (See Geothermometry and
Geobarometry), due to the sensitivity of the exsolved
phase composition to temperature and pressure. Data
on geothermometers are derived from both laboratory
studies on artificial mineral assemblages, where minerals
are grown at known temperatures and pressures and the
chemical equilibrium measured directly, and from cali-
bration using natural systems. They also require a theo-
retical thermodynamic understanding of the components
and phases involved. The measurements and interpreta-
tion are not straightforward and may lead to noticeable
uncertainties, because it is difficult to assess if a system
has truly reached thermodynamic equilibrium. More-
over, the synthesized minerals are difficult to characterize
due to their often poor crystallinity and their submicrom-
eter sizes.

V. SOLID SOLUTIONS FORMED BY
PRECIPITATION FROM A SUPERSATURATED

AQUEOUS FLUID

Another important class of SS formation processes con-
cerns the precipitation from a supersaturated aqueous so-
lution (AS) (See Aqueous Solutions). At variance with
results obtained in the canonical ensemble (fixed P , T
and composition), the mean composition of a SS in equi-
librium with a multi-component aqueous medium is not
a priori fixed but depends on the composition of the AS,



5

which may change if external conditions do so (Glynn and
Reardon 1990; Prieto, 2009). In natural solutions, a large
number of chemical elements are usually present which
may participate to the formation of secondary minerals,
either as major constituents or as trace elements in solid
solutions. Clay minerals which are very commonly pro-
duced in geochemical systems (weathering sequences, hy-
drothermal alterations, diagenetic transformations) are
striking examples of SS phases formed in the presence
of an AS. They display a large composition variability,
by substitution in their skeleton (tetrahedral and octa-
hedral sites) and/or cation exchange in their interlayer
space (See Fluid-Rock Interactions, Hydrothermal Alter-
ation, Weathering: Chemical). Clays as well as other SSs
share the major property of being able to adapt their
composition to the evolution of the fluid composition as
a function of time.

A. Thermodynamic equilibrium

As a general statement, a solid of fixed composition is
in equilibrium with an AS when their chemical potentials
are equal. The chemical potential of the relevant ions in
the AS is equal to µions = RT ln(IAP ), with IAP the
ion activity product, and the chemical potential of the
solid phase is equal to its Gibbs energy per mole, which
defines its solubility product K: µsolid = RT lnK (See
Solubility). Equilibrium is thus reached when K = IAP ,
or equivalently, when the saturation state of the AS with
respect to the solid I = IAP/K = 1.

The generalization of this condition to a binary SS
A1−xBxC in equilibrium with an AS involves two condi-
tions, one for each end-member i (i =AC or BC), stating
that their chemical potentials are equal to the chemical
potential of their corresponding ions in the AS. Using
the expression µi = Gi +RT lnXiγi and introducing the
solubility products Ki of the end-members and the sat-
uration states Ii of the AS with respect to them, the
conditions for thermodynamic equilibrium read:

IAC = (1− x0)γAC(x0)

IBC = x0γBC(x0) (7)

Numerical codes, like KINDIS (Madé et al. 1994) or
PHREEQC (Parkhurst and Appello 2013,) allow the de-
termination of the SS characteristics in equilibrium with
an aqueous solution.

Eq. 7 shows that, while a BC compound would not
form as a pure phase in a highly under-saturated AS
(IBC � 1), B ions may easily be incorporated as trace
elements in the substitutional sites of an AC compound,
if the AS is nearly saturated with respect to the latter
(IAC ' 1). This illustrates why most mineral phases
produced in natural systems are not pure end-members.
Conversely, quasi pure phases are strong indicators of the
composition of the fluids that produced them and may
be an indicator of paleo-conditions.

B. Stoichiometric saturation state

Thermodynamic equilibrium conditions (Eq. 7) are
equivalent to saying that the stoichiometric saturation
state I(x) of the AS with respect to the SS of composi-
tion x is simultaneously equal to 1 and maximum with
respect to x. This can be proved by considering the sto-
ichiometric solubility product K(x) of the SS, equal to:

K(x) = K1−x
AC Kx

BC exp

(
∆GM
RT

)
(8)

and writing I(x) = IAP/K(x), i.e.:

I(x) =

[
IAC

(1− x)γAC(x))

]1−x [
IBC

xγBC(x)

]x
(9)

When only the condition that I(x) is maximum with
respect to x is fulfilled, one speaks of the stoichiometric
saturation state. It amounts to considering the SS with
respect to which the AS is the most supersaturated (Pri-
eto 2009). Its composition xst obeys the implicit equa-
tion:

IAC
(1− xst)γAC(xst)

=
IBC

xstγBC(xst)
(10)

It obviously only depends on the composition of
the AS through the quantity W = IBC/IAC =
[B]KAC/[A]KBC , proportional to the ratio of activities
of the exchangeable ions. Eq. 10 has no analytic solu-
tion. However, it can be solved numerically quite easily
for regular and sub-regular SSs (Noguera et al. 2016). It
has a single root whenever ∆GM displays a single min-
imum and three roots if ∆GM has two minima. The
number of solutions of Eq. 10 thus only depends on the
values of the coefficients A0 and A1 in the Guggenheim
expansion of ∆HM .

When Eq. 10 has three roots, two correspond to a
minimum of I(x) and one to a maximum. Of the two
minima, the one which is relevant is associated to the
lowest Gibbs free energy of the system (lowest value of
− ln I(x)). Because the I(x) curves associated to the
three roots cross each other, a discontinuity in xst be-
tween two values x1 and x2, characterized by the same
Gibbs free energy, takes place for some specific value of
W , as shown in Figure 3. The discontinuity x2−x1 marks
the existence of a miscibility gap, which increases as the
SS becomes more and more non-ideal. In this representa-
tion, W combines the information on the AS composition
and on the solubility products of the end-members, in a
more compact way than the (equivalent) classical Rooze-
boom plot (Mullin 1993) which displays xst as a func-
tion of [B]/([A] + [B]) but requires one curve for each
KBC/KAC ratio.

C. Out-of-equilibrium processes

The stoichiometric saturation state does not fully char-
acterize thermodynamic equilibrium, but its characteris-
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FIG. 3: Representation of the relationship between a sub-
regular SS composition xst and W = ([B]KAC)/([A]KBC ]),
which characterizes the AS composition, for A1/RT = 1 and
various values of the Guggenheim parameters A0/RT . When
A0/RT & 1.15, the xst curve displays a discontinuity.

tics are useful to approach nucleation and growth pro-
cesses (See Crystal Growth). Within the classical nucle-
ation theory, assuming that the SS surface energy σ and
molar volume v are weakly dependent on composition,
the change in Gibbs free energy in the formation of a
SS nucleus of composition x and containing n formula
units reads (kB the Boltzmann constant and X a shape
factor)(Markov 1995; Noguera et al. 2016):

∆G(n, x) = −nkBT ln I(x) + n2/3v2/3Xσ (11)

When I(x) > 1, ∆G(n, x) displays a maximum as a func-
tion of n, which defines the nucleus size and the barrier
∆Gm(x) to overcome for its nucleation:

∆Gm(x) =
4X3σ3v2

27(kBT ln I(x))2
(12)

The composition x∗ of the critical nuclei is then deter-
mined by the condition that the nucleation barrier is min-
imum with respect to x, leading to a maximum of the
nucleation frequency. Since, according to Eq. 12, this
amounts to finding the maximum of ln I(x), the com-
position of the critical nuclei is equal to xst. A similar
reasoning can be applied to the composition of the incre-
mental growth layers, when growth is limited by surface
reactions.

Since the composition of an AS may vary with time, ei-
ther because external conditions change (temperature or
seasonal cycles) or in a closed system due to the precip-
itation process itself, xst is also due to depend on time.
Time variations of the particle composition thus usually
occurs, which leads either to a change in the average com-
position (if solid state diffusion is efficient) or to compo-
sition inhomogeneities inside the particles (composition

profiles) when solid state diffusion does not occur. Con-
sidering the typical evolution of xst as a function of the
AS composition W as shown in Figure 3, the compo-
sition profiles are smooth in ideal or weakly non-ideal
SSs, while they display a discontinuity for strongly non-
ideal SSs. Except under very specific conditions, W does
not remain fixed at the critical value of the discontinu-
ity during the precipitation process, so that demixing is
much less likely than in processes at constant T , P and
x conditions. Numerical codes like KINDIS (Madé et al.
1994) or NANOKIN (Noguera et al. 2010) account for
the kinetics of precipitation of SSs under various approx-
imations.

The specificity of SS dissolution kinetics has not been
considered in details so far. In dissolution processes, SSs
are generally assumed to be defined compounds with a
fixed composition inherited from their formation condi-
tions. This assumption overlooks the existence of a dis-
tribution of compositions inside the particle population,
and the existence of composition profiles inside each par-
ticle. Moreover, when equilibrium is approached, the ac-
tivity ratio of the ions released in the AS is likely closer
to that in the solid phase than to the one required in the
AS for thermodynamic equilibrium. The way equilibrium
can be reached thus remains an open question.

VI. SUMMARY

Solid solutions are ubiquitous in the natural environ-
ment, due to the existence of multi-component fluids
(aqueous solutions or melts) from which they form. Their
major property is their ability to continuously adapt their
composition as the fluid composition evolves in time.
Their phase diagrams may involve homogeneous phases
in part or in the whole concentration range, and regions of
phase separation. Incorporation of trace elements is often
thermodynamically easy, which explains the scarcity of
pure minerals, particularly those formed at low tempera-
ture and pressure. While the description of their mixing
properties and their equilibrium properties has greatly
improved in the last decades, both experimentally and
theoretically, much remains to be done to account for
the kinetics of their formation and dissolution.
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