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Abstract

This document provides further details on the paper “Parameter-
dependent H∞ control for MEMS gyroscopes: synthesis and analysis”.
These details concern the choice of the weighting function parameters
and the system model in pseudo-continuous time (PCT).

1 Background and objectives

The to-be-controlled system is the drive mode of a MEMS, whose model, in
continuous-time (CT), is given by:

Gω0(s) =
y(s)

u(s)
=

k

(s/ω0)
2 + (s/ω0) /Q+ 1

, (1)

where y is the displacement of the drive mode, u is the input force, k is the
static gain, Q is the quality factor, and ω0 is the resonance frequency (in
rad/s), which slowly ranges [ω0min, ω0max].

The control objectives are:

• tracking of a sinusoidal reference signal yr of frequency ω0;

• minimization of the control effort u;

• robust stability.

Moreover, to ensure high performance, the controller depends on ω0.
In Saggin et al. (2020), this problem is solved either for an analog or for
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a digital implementation of the ω0-dependent controller. The solutions are
based on time/frequency normalization and on the H∞ synthesis.

In this report, we detail the choice of the H∞ criterion, more specifically,
the choice of the weighting function parameters, which is presented in Sec-
tion 2. For the specific problem of a digital implementation of the controller,
its design is based on the gyroscope model in the pseudo-continuous time
(PCT). This model is developed in Section 3.

2 Choice of the weighting function parameters

In the H∞ synthesis, the control specifications are expressed through the
choice of the weighting functions and of the weighted closed-loop transfer
functions. We consider the criterion presented in Fig. 1, where we include an
input disturbance d, a measurement noise n and weighting functions W x

ω0
,

and we define ε = yr − ym and ym = y + n.
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Figure 1: H∞ criterion.

The H∞ problem is then: given a performance level γ > 0, compute a
controller Kω0 , if there is any, such that ‖Pω0 ? Kω0‖∞ < γ. If this problem
has a solution for γ = 1, then the following H∞ criterion is also ensured:∥∥∥∥W ε

ω0
Tyr→εW

r
ω0

W ε
ω0
Td→εW

d
ω0

W ε
ω0
Tn→εW

n
ω0

W u
ω0
Tyr→uW

r
ω0

W u
ω0
Td→uW

d
ω0

W u
ω0
Tn→uW

n
ω0

∥∥∥∥
∞
<1. (2)

Then, with the following weighting functions

W ε
ω0

(s) =
1

Mε

(s/ω0)
2 + (s/ω0)αε + 1

(s/ω0)
2 + (s/ω0)αεAε/Mε + 1

,

W u
ω0

(s) = Mu
(s/ω0)

2 + (s/ω0)αuAu/Mu + 1

(s/ω0)
2 + (s/ω0)αu + 1

,
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W r
ω0

(s) = kr, W d
ω0

(s) = kd and Wn
ω0

(s) = kn,

the choice of the parameters Aε ≤ 1, Mε ≥ 1, αε, Au ≤ 1, Mu ≥ 1, αu, kr, kd
and kn ensures the desired specifications, as follows Skogestad, Postlethwaite
(2001):

• Reference tracking: (2) implies that

∀ω, |Tyr→ε(jω)| ≤ 1

|W ε
ω0

(jω)W r
ω0

(jω)| , (3)

which ensures the tracking of the sinusoidal reference signal yr by ym
with a frequency equal to ω0, error bounded by Aε/kr and convergence
speed constrained by αε.

• Control limitation: (2) implies that

∀ω, |Tyr→u(jω)| ≤ 1

|W u
ω0

(jω)W r
ω0

(jω)| , (4)

∀ω, |Td→u(jω)| ≤ 1

|W u
ω0

(jω)W d
ω0

(jω)| , (5)

∀ω, |Tn→u(jω)| ≤ 1

|W u
ω0

(jω)Wn
ω0

(jω)| , (6)

which constrains by αu the bandwidth of the controller and by Au

(for frequencies close to ω0) and Mu (for low and high frequencies) the
control signal amplitude and, therefore, its power.

• Robust stability: finally, (2) also implies

∀ω, |Td→ε(jω)| ≤ 1

|W ε
ω0

(jω)W d
ω0

(jω)| (7)

and ∀ω, |Tn→ε(jω)| ≤ 1

|W ε
ω0

(jω)Wn
ω0

(jω)| ,

which are respectively used to avoid pole-zero compensations and to
enforce a lower bound on the modulus margin M, which is defined as
M , 1/‖Tn→ε‖∞. Moreover,

‖Tn→ε‖∞ < Mε/kn. (8)

Hence, (2) also implies M > kn/Mε.
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Please note that the weighting functions are parameterized by ω0, express-
ing the control specifications in continuous-time. Nevertheless, the above
discussion also holds for the weighting functions in a normalized or pseudo-
continuous space.

In (Saggin et al., 2020, Section 6), the control specification are:

1. track a reference signal yr(t) = Yr sin (ω0t) with an error ε(t) = yr(t)−
ym(t) such that |ε(t)| < 10−4 · Yr in steady-state;

2. the control signal amplitude is less than 0.02 · Yr in steady-state;

3. the closed-loop system is stable and has a modulus margin M > 1/2.

The first control specification demands |Tyr→ε(jω0)| < 10−4, which is
bounded by Aε/kr, see (3). Then, we choose kr = 1 and Aε = 5 · 10−5.

The third control specification demands ‖Tn→ε‖∞ < 2, which is bounded
by Mε/kn, see (8). Then, we choose Mε = 2 and kn = 1.

To avoid pole-zero compensation, |Td→u| has to be bounded where the
plant presents a resonance peak. Then, we choose kd = 0.05, see (7).

We choose Mu = 400 to minimize the control signal amplitude at low and
high frequencies, see (4), (5) and (6). Moreover, we choose Au = 0.004 to
allow high controller gains around ω0. Note that the control signal amplitude
at ω0 (second specification) is structurally given by Yr/|G(jω0)| and cannot
be modified by the choice of the weighting functions.

Finally, αε and αu are tuned (αε = 0.2 and αu = 1632) to select adequate
response times.

3 Details on the PCT model

Here, we intend to provide further details on Gω0 , see (1), when analyzing
its equivalent discrete-time (DT) model, Gd

ω0
. We highlight that the latter

one takes the presence of the zero-order holder into account.
For Q > 1, the equivalent DT system Gd

ω0
, with sampling period Ts, is

given by

Gd
ω0

(z) = k
b1z + b2

z2 + a1z + a2
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with

a1 = −2e−ω0Ts/(2Q) cos (ω0Ts)

a2 = e−ω0Ts/Q

b1 = 1− e−ω0Ts/(2Q)

(
sin (ω0Ts)√

4Q2 − 1
+ cos (ω0Ts)

)

b2 = e−ω0Ts/Q + e−ω0Ts/(2Q)

(
sin (ω0Ts)√

4Q2 − 1
− cos (ω0Ts)

)
Then, by applying the bilinear transform, we obtain

Gp
$0

(sp) = k
(1− spTs/2) (1 + spz1)

s2p +$0sp/Q+$2
0

with

$2
0 =

4

T 2
s

1− 2e−ω0Ts/(2Q) cos (ω0Ts) + e−ω0Ts/Q

1 + 2e−ω0Ts/(2Q) cos (ω0Ts) + e−ω0Ts/Q

$0

Q =
2

Ts

1− e−ω0Ts/Q

1 + 2e−ω0Ts/(2Q) cos (ω0Ts) + e−ω0Ts/Q

z1 =
Ts
2

1− 2e−ω0Ts/(2Q) 1√
4Q2−1

sin (ω0Ts)− e−ω0Ts/Q

1− 2e−ω0Ts/(2Q) cos (ω0Ts) + e−ω0Ts/Q

For Q� 1, we may approximate e−ω0Ts/(2Q) ≈ 1 and ξ2 ≈ 0. Thus,

$2
0 ≈ 4

T 2
s

1− cos (ω0Ts)

1 + cos (ω0Ts)
=⇒ $0 ≈

2

Ts
tan

(
ω0Ts

2

)
,

$0

Q ≈ ω0

(2Q) (1 + cos (ω0Ts))
=⇒ Q ≈ Q sinc (ω0Ts)

and z1 ≈
Ts
2

− sin (ω0Ts)

(2Q) (1− cos (ω0Ts))
=

1

2Q$0
.
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