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This document provides further details on the paper "Parameterdependent H ∞ control for MEMS gyroscopes: synthesis and analysis". These details concern the choice of the weighting function parameters and the system model in pseudo-continuous time (PCT).

Background and objectives

The to-be-controlled system is the drive mode of a MEMS, whose model, in continuous-time (CT), is given by:

G ω 0 (s) = y(s) u(s) = k (s/ω 0 ) 2 + (s/ω 0 ) /Q + 1 , ( 1 
)
where y is the displacement of the drive mode, u is the input force, k is the static gain, Q is the quality factor, and ω 0 is the resonance frequency (in rad/s), which slowly ranges [ω 0min , ω 0max ].

The control objectives are:

• tracking of a sinusoidal reference signal y r of frequency ω 0 ;

• minimization of the control effort u;

• robust stability.

Moreover, to ensure high performance, the controller depends on ω 0 . In [START_REF] Saggin | Parameterdependent H ∞ control for MEMS gyroscopes: synthesis and analysis[END_REF], this problem is solved either for an analog or for 1 a digital implementation of the ω 0 -dependent controller. The solutions are based on time/frequency normalization and on the H ∞ synthesis.

In this report, we detail the choice of the H ∞ criterion, more specifically, the choice of the weighting function parameters, which is presented in Section 2. For the specific problem of a digital implementation of the controller, its design is based on the gyroscope model in the pseudo-continuous time (PCT). This model is developed in Section 3.

Choice of the weighting function parameters

In the H ∞ synthesis, the control specifications are expressed through the choice of the weighting functions and of the weighted closed-loop transfer functions. We consider the criterion presented in Fig. 1, where we include an input disturbance d, a measurement noise n and weighting functions W x ω 0 , and we define ε = y ry m and y m = y + n.

K ω0 W r ω0 W d ω0 W n ω0 G ω0 w 1 y r + u + y y m w 2 d + w 3 n + - + W ε ω0 W u ω0 z 2 ε z 1 Figure 1: H ∞ criterion.
The H ∞ problem is then: given a performance level γ > 0, compute a controller K ω 0 , if there is any, such that P ω 0 K ω 0 ∞ < γ. If this problem has a solution for γ = 1, then the following H ∞ criterion is also ensured:

W ε ω 0 T yr→ε W r ω 0 W ε ω 0 T d→ε W d ω 0 W ε ω 0 T n→ε W n ω 0 W u ω 0 T yr→u W r ω 0 W u ω 0 T d→u W d ω 0 W u ω 0 T n→u W n ω 0 ∞ < 1. (2)
Then, with the following weighting functions

W ε ω 0 (s) = 1 M ε (s/ω 0 ) 2 + (s/ω 0 ) α ε + 1 (s/ω 0 ) 2 + (s/ω 0 ) α ε A ε /M ε + 1 , W u ω 0 (s) = M u (s/ω 0 ) 2 + (s/ω 0 ) α u A u /M u + 1 (s/ω 0 ) 2 + (s/ω 0 ) α u + 1 , W r ω 0 (s) = k r , W d ω 0 (s) = k d and W n ω 0 (s) = k n , the choice of the parameters A ε ≤ 1, M ε ≥ 1, α ε , A u ≤ 1, M u ≥ 1, α u , k r , k d
and k n ensures the desired specifications, as follows [START_REF] Skogestad | Multivariable feedback control -analisys and design[END_REF]:

• Reference tracking: (2) implies that ∀ω, |T yr→ε (jω)| ≤ 1 |W ε ω 0 (jω)W r ω 0 (jω)| , (3) 
which ensures the tracking of the sinusoidal reference signal y r by y m with a frequency equal to ω 0 , error bounded by A ε /k r and convergence speed constrained by α ε .

• Control limitation: (2) implies that

∀ω, |T yr→u (jω)| ≤ 1 |W u ω 0 (jω)W r ω 0 (jω)| , (4) ∀ω, |T d→u (jω)| ≤ 1 |W u ω 0 (jω)W d ω 0 (jω)| , (5) ∀ω, |T n→u (jω)| ≤ 1 |W u ω 0 (jω)W n ω 0 (jω)| , (6) 
which constrains by α u the bandwidth of the controller and by A u (for frequencies close to ω 0 ) and M u (for low and high frequencies) the control signal amplitude and, therefore, its power.

• Robust stability: finally, (2) also implies

∀ω, |T d→ε (jω)| ≤ 1 |W ε ω 0 (jω)W d ω 0 (jω)| (7) and ∀ω, |T n→ε (jω)| ≤ 1 |W ε ω 0 (jω)W n ω 0 (jω)|
, which are respectively used to avoid pole-zero compensations and to enforce a lower bound on the modulus margin M, which is defined as

M 1/ T n→ε ∞ . Moreover, T n→ε ∞ < M ε /k n . (8) 
Hence, (2) also implies M > k n /M ε .

with a 1 = -2e -ω 0 Ts/(2Q) cos (ω 0 T s )

a 2 = e -ω 0 Ts/Q b 1 = 1 -e -ω 0 Ts/(2Q) sin (ω 0 T s ) 4Q 2 -1 + cos (ω 0 T s ) b 2 = e -ω 0 Ts/Q + e -ω 0 Ts/(2Q) sin (ω 0 T s ) 4Q 2 -1 -cos (ω 0 T s )
Then, by applying the bilinear transform, we obtain

G p 0 (s p ) = k (1 -s p T s /2) (1 + s p z 1 ) s 2 p + 0 s p /Q + 2 0 with 2 0 = 4 T 2 s 1 -2e -ω 0 Ts/(2Q) cos (ω 0 T s ) + e -ω 0 Ts/Q 1 + 2e -ω 0 Ts/(2Q) cos (ω 0 T s ) + e -ω 0 Ts/Q 0 Q = 2 T s 1 -e -ω 0 Ts/Q 1 + 2e -ω 0 Ts/(2Q) cos (ω 0 T s ) + e -ω 0 Ts/Q z 1 = T s 2 1 -2e -ω 0 Ts/(2Q) 1 √ 4Q 2 -1
sin (ω 0 T s )e -ω 0 Ts/Q 1 -2e -ω 0 Ts/(2Q) cos (ω 0 T s ) + e -ω 0 Ts/Q

For Q 1, we may approximate e -ω 0 Ts/(2Q) ≈ 1 and ξ 2 ≈ 0. Thus,

2 0 ≈ 4 T 2 s 1 -cos (ω 0 T s ) 1 + cos (ω 0 T s ) =⇒ 0 ≈ 2 T s tan ω 0 T s 2 , 0 Q ≈ ω 0 (2Q) (1 + cos (ω 0 T s )) =⇒ Q ≈ Q sinc (ω 0 T s ) and z 1 ≈ T s 2 -sin (ω 0 T s ) (2Q) (1 -cos (ω 0 T s )) = 1 2Q 0 .

Please note that the weighting functions are parameterized by ω 0 , expressing the control specifications in continuous-time. Nevertheless, the above discussion also holds for the weighting functions in a normalized or pseudocontinuous space.

In (Saggin et al., 2020, Section 6), the control specification are:

1. track a reference signal y r (t) = Y r sin (ω 0 t) with an error ε(t) = y r (t)y m (t) such that |ε(t)| < 10 -4 • Y r in steady-state;

2. the control signal amplitude is less than 0.02 • Y r in steady-state;

3. the closed-loop system is stable and has a modulus margin M > 1/2.

The first control specification demands |T yr→ε (jω 0 )| < 10 -4 , which is bounded by A ε /k r , see (3). Then, we choose k r = 1 and A ε = 5 • 10 -5 .

The third control specification demands T n→ε ∞ < 2, which is bounded by M ε /k n , see (8). Then, we choose M ε = 2 and k n = 1.

To avoid pole-zero compensation, |T d→u | has to be bounded where the plant presents a resonance peak. Then, we choose k d = 0.05, see (7).

We choose M u = 400 to minimize the control signal amplitude at low and high frequencies, see ( 4), ( 5) and ( 6). Moreover, we choose A u = 0.004 to allow high controller gains around ω 0 . Note that the control signal amplitude at ω 0 (second specification) is structurally given by Y r /|G(jω 0 )| and cannot be modified by the choice of the weighting functions.

Finally, α ε and α u are tuned (α ε = 0.2 and α u = 1632) to select adequate response times.

Details on the PCT model

Here, we intend to provide further details on G ω 0 , see (1), when analyzing its equivalent discrete-time (DT) model, G d ω 0 . We highlight that the latter one takes the presence of the zero-order holder into account.

For Q > 1, the equivalent DT system G d ω 0 , with sampling period T s , is given by