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Abstract

This document provides further details on the paper “Parameter-
dependent H∞ control for MEMS gyroscopes: synthesis and analysis”.
These details concern the choice of the weighting function parameters
and the system model in pseudo-continuous time (PCT).

1 Background and objectives

The to-be-controlled system is the drive mode of a MEMS, whose model, in
continuous-time (CT), is given by:

Gω0(s) =
y(s)

u(s)
=

k

(s/ω0)
2 + (s/ω0) /Q+ 1

, (1)

where y is the displacement of the drive mode, u is the input force, k is the
static gain, Q is the quality factor, and ω0 is the resonance frequency (in
rad/s), which slowly ranges [ω0min, ω0max].

The control objectives are:

• tracking of a sinusoidal reference signal yr of frequency ω0;

• minimization of the control effort u;

• robust stability.

Moreover, to ensure high performance, the controller depends on ω0.
In Saggin et al. (2020), this problem is solved either for an analog or for
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a digital implementation of the ω0-dependent controller. The solutions are
based on time/frequency normalization and on the H∞ synthesis.

In this report, we detail the choice of the H∞ criterion, more specifically,
the choice of the weighting function parameters, which is presented in Sec-
tion 2. For the specific problem of a digital implementation of the controller,
its design is based on the gyroscope model in the pseudo-continuous time
(PCT). This model is developed in Section 3.

2 Choice of the weighting function parameters

In the H∞ synthesis, the control specifications are expressed through the
choice of the weighting functions and of the weighted closed-loop transfer
functions. We consider the criterion presented in Fig. 1, where we define the
tracking error ε = yr−y, and include an input disturbance d, a measurement
noise n and weighting functions W x

ω0
.

Kω0

W r
ω0

Gω0

W d
ω0

w1

yr
+

u

y

W n
ω0

W u
ω0

W ε
ω0

w3n++

w2

d
+

+

−
ε

z2

z1

Figure 1: H∞ criterion.

The H∞ problem is then: given a performance level γ > 0, compute a
controller Kω0 , if there is any, such that ‖Pω0 ? Kω0‖∞ < γ. If this problem
has a solution for γ = 1, then the following H∞ criterion is also ensured:∥∥∥∥W ε

ω0
Tyr→εW

r
ω0

W ε
ω0
Td→εW

d
ω0

W ε
ω0
Tn→εW

n
ω0

W u
ω0
Tyr→uW

r
ω0

W u
ω0
Td→uW

d
ω0

W u
ω0
Tn→uW

n
ω0

∥∥∥∥
∞
<1. (2)

Then, with the following weighting functions

W ε
ω0

(s) =
1

Mε

(s/ω0)
2 + (s/ω0)αε + 1

(s/ω0)
2 + (s/ω0)αεAε/Mε + 1

,
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W u
ω0

(s) = Mu
(s/ω0)

2 + (s/ω0)αuAu/Mu + 1

(s/ω0)
2 + (s/ω0)αu + 1

,

W r
ω0

(s) = kr, W d
ω0

(s) = kd and Wn
ω0

(s) = kn,

the choice of the parameters Aε ≤ 1, Mε ≥ 1, αε, Au ≤ 1, Mu ≥ 1, αu,
kr, kd and kn ensures the desired specifications, as follows (Skogestad and
Postlethwaite, 2001):

• Reference tracking: (2) implies that

∀ω, |Tyr→ε(jω)| ≤ 1

|W ε
ω0

(jω)W r
ω0

(jω)| ,

which ensures the tracking of the sinusoidal reference signal yr by y
with a frequency equal to ω0, error bounded by Aε/kr and convergence
speed constrained by αε.

• Control limitation: (2) implies that

∀ω, |Tyr→u(jω)| ≤ 1

|W u
ω0

(jω)W r
ω0

(jω)| ,

∀ω, |Td→u(jω)| ≤ 1

|W u
ω0

(jω)W d
ω0

(jω)| ,

∀ω, |Tn→u(jω)| ≤ 1

|W u
ω0

(jω)Wn
ω0

(jω)| ,

which constrains by αu the bandwidth of the controller and by Au

(for frequencies close to ω0) and Mu (for low and high frequencies) the
control signal amplitude and, therefore, its power.

• Robust stability: finally, (2) also implies

∀ω, |Td→ε(jω)| ≤ 1

|W ε
ω0

(jω)W d
ω0

(jω)|

and ‖Tn→ε‖∞ < Mε/kn, which are respectively used to avoid pole-zero
compensations and to enforce a lower bound on the modulus margin
M, which is defined as M , 1/‖Tn→ε‖∞. Therefore, (2) implies
M > kn/Mε.
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3 Details on the PCT model

Here, we intend to provide further details on Gω0 , see (1), when analyzing
its equivalent discrete-time (DT) model, Gd

ω0
. We highlight that the latter

one takes the presence of the zero-order holder into account.
For Q > 1, the equivalent DT system Gd

ω0
, with sampling period Ts, is

given by

Gd
ω0

(z) = k
b1z + b2

z2 + a1z + a2
with

a1 = −2e−ω0Ts/(2Q) cos (ω0Ts)

a2 = e−ω0Ts/Q

b1 = 1− e−ω0Ts/(2Q)

(
sin (ω0Ts)√

4Q2 − 1
+ cos (ω0Ts)

)

b2 = e−ω0Ts/Q + e−ω0Ts/(2Q)

(
sin (ω0Ts)√

4Q2 − 1
− cos (ω0Ts)

)
Then, by applying the bilinear transform, we obtain

Gp
$0

(sp) = k
(1− spTs/2) (1 + spz1)

s2p +$0sp/Q+$2
0

with

$2
0 =

4

T 2
s

1− 2e−ω0Ts/(2Q) cos (ω0Ts) + e−ω0Ts/Q

1 + 2e−ω0Ts/(2Q) cos (ω0Ts) + e−ω0Ts/Q

$0

Q =
2

Ts

1− e−ω0Ts/Q

1 + 2e−ω0Ts/(2Q) cos (ω0Ts) + e−ω0Ts/Q

z1 =
Ts
2

1− 2e−ω0Ts/(2Q) 1√
4Q2−1

sin (ω0Ts)− e−ω0Ts/Q

1− 2e−ω0Ts/(2Q) cos (ω0Ts) + e−ω0Ts/Q

For Q� 1, we may approximate e−ω0Ts/(2Q) ≈ 1 and ξ2 ≈ 0. Thus,

$2
0 ≈ 4

T 2
s

1− cos (ω0Ts)

1 + cos (ω0Ts)
=⇒ $0 ≈

2

Ts
tan

(
ω0Ts

2

)
,

$0

Q ≈ ω0

(2Q) (1 + cos (ω0Ts))
=⇒ Q ≈ Q sinc (ω0Ts)

and z1 ≈
Ts
2

− sin (ω0Ts)

(2Q) (1− cos (ω0Ts))
=

1

2Q$0
.
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