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Bloch Analysis of Artificial Lines and Surfaces
Exhibiting Glide Symmetry

Mohammad Bagheriasl, Oscar Quevedo-Teruel, Senior Member, IEEE, and Guido Valerio, Senior Member, IEEE

Abstract—Glide-symmetric structures have recently emerged
as a smart choice to design planar lenses and electromagnetic
band-gap materials. We discuss here under which conditions a
glide-symmetric structure is equivalent to a non-glide-symmetric
structure with a reduced period. To this aim, we propose an
analysis method based on network theory to efficiently derive
the dispersive behavior of these periodic structures. Both phase
and attenuating constants can be determined, with potential
applications to both guiding and radiating structures. Retaining
higher-order modal interactions among cells helps to derive
the dispersive behavior of periodic structures more accurately.
Furthermore, we take advantage of the higher symmetry of these
structures to decrease the computational cost by considering only
one half or one quarter of a unit cell instead of the entire cell.
We study one and two-dimensional glide-symmetric structures
and confirm the validity of our analysis with comparisons from
commercial software.

Index Terms—Glide symmetry, higher symmetry, transmission
matrix, periodic structures, dispersion analysis.

I. INTRODUCTION

ARTIFICIAL materials made by periodic structures have
long been used as a solution to control the electromag-

netic properties of guided and radiating waves [1]–[3]. Intro-
ducing spatial higher symmetries within each unit cell provides
interesting dispersive properties that make these structures
excellent candidates for many applications. The higher sym-
metries used in electromagnetics are twist and glide. Twist-
symmetric structure are invariant under a translation followed
by a rotation [4]–[6], whereas glide-symmetric structures are
invariant under a translation and a mirroring [7] (see Fig. 1(a)).

Glide symmetry was at first studied in connection to the
theory of 1-D periodic waveguides [8]–[11]. Recently, a surge
of interest in studying 2-D periodic structures with glide
symmetry has started in the framework of metamaterial re-
search [12]–[16]. They find applications such as wideband
artificial lenses and electromagnetic band-gap materials. In
fact, 2-D glide-symmetric metasurfaces reduce considerably
the dispersion of waves propagation with respect to simple
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Fig. 1. (a) 1-D glide-symmetric line whose period is p. (b) Non-glide-
symmetric periodic line obtained by moving the top metals on the bottom
plate. Its period is p/2. (c) Unit cell of the glide-symmetric structure.

periodic structures, mimicking an artificial material whose
refractive index is stable over an ultra-wide band [17]–[19].
Furthermore, 2-D glide-symmetric metasurfaces improve both
the frequency width and the attenuation of stop-bands with
respect to simple periodic structures, offering new solutions
for field confinement [20] and gap-waveguide technology [21],
[22].

These interesting dispersive effects have recently stimulated
research in order to explain the effect of glide symmetry
on periodic structures, i.e. to correctly define the differ-
ence between the structures in Fig. 1(a) and (b). On one
hand, mode-matching [23]–[25] has been proposed for glide-
symmetric holey metasurfaces and corrugations. However, this
approach does not provide a physical interpretation of the glide
symmetry impact in a periodic structure. On the other hand,
the simplicity of circuit-based modeling methods can lead
to a better physical explanation of glide symmetry effects.
For this reason, this approach was chosen in [26] and [27]
for simpler 1-D glide and twist configurations, respectively.
Specifically, the structure analyzed in [26] consists of two
glide-symmetric corrugated structures. Under the assumption
that each corrugation can be replaced by Marcuvitz’s closed-
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form equivalent circuit [28], it was easily shown that the glide
symmetry effect is equivalent to simply halving the spatial
period. The study in [29], discussing reduced representations
of several kinds of higher-symmetric periodic lines proposed in
[30], has recently shown that a more correct condition for this
conclusion is to neglect interactions due to localized excitation
of higher-order waveguide modes.

In this work we explain the difference between glide and
non-glide structures in a general framework which does not
depend on their specific technology, but only on the symmetry
properties of their unit cells. This is done by comparing
the interaction among scatterers in glide and non-glide con-
figurations. In doing so, we define two classes of glide-
symmetric structures: reducible and irreducible. The former
ones are equivalent to non-glide-symmetric structures with
reduced period (halved period in 1-D configurations), as those
discussed in [26]. In the latter ones, glide symmetry is not
reducible to a simple period reduction. In order to explain
the difference between these classes, we describe a unit cell
as a multimodal equivalent network, where several modes are
defined on its access ports and are associated to equivalent
voltages and currents. A multimodal transmission matrix al-
lows for performing a Bloch analysis where interactions due
to the localized excitation of higher-order modes are correctly
modeled, thus generalizing the Bloch analysis in [1]. The
difference between reducible and irreducible structures will
be proved to be the contribution of higher-order modes to the
cell coupling.

Furthermore, we transform for the first time the eigenvalue
problem based on the glide operator [8] to a transmission-
matrix formulation. This has several advantages. Firstly, it
restricts the computational domain of the problem to one-half
of the unit cell (one quarter of a suitable non-minimal cell in
the 2-D case). This leads to a reduction of the computation
time, accurately quantified in the paper. In addition, it shows
the different effects of higher-order modes according to their
parity properties, and confirms the role of modal coupling
in reducible and irreducible lines. This means that future
research on equivalent models of specific glide structures will
have to include higher-order modal couplings according to the
formulation described here. Finally, we stress that, unlike the
methods used in commercial software, our method accurately
computes both the phase and the attenuation constants of a
Bloch mode. Therefore, it can be used to study guiding as
well as open structures (such as leaky-wave antennas, where
the attenuation is due to a progressive radiation of the traveling
wave [31], [32]).

All these analyses are performed at first for 1-D glide-
symmetric structures. The generalized eigenvalue problem is
then extended for the first time to 2-D configurations leading
to the first complete formulation of the problem for glide-
symmetric surfaces.

The paper is organized as follows. In Sec. II, we present
a multimodal transmission matrix formulation for dispersive
analysis of 1-D periodic structures. We will then use it
to discuss the differences between reducible and irreducible
structures and show relevant validations with numerical re-
sults. In Sec. III, we transform an eigenvalue problem stated

in terms of the glide-symmetric operator into a multimodal
transmission-matrix formulation. This limits our computation
domain to one half of a unit cell. In Sec. IV we formulate
for the first time an eigenvalue problem in terms of the 2-D
glide-symmetric operator and extend the previous analyses to
2-D glide-symmetric structures.

II. MULTIMODAL COUPLINGS
IN 1-D GLIDE-SYMMETRIC STRUCTURES

In this section, we study the effect of multimodal in-
teractions among unit cells, and their effect on 1-D glide-
symmetric structures. Even if Floquet boundary conditions
are well known, the formulation is stated explicitly for two
main reasons. Floquet conditions are transformed here to a
less common multimodal transmission matrix, which allows
to distinguish between reducible and irreducible structures.
Moreover, these boundary conditions help to highlight the
difference with the formulation based on glide boundary
conditions presented in Section III.

A. Multimodal Periodic Boundary Conditions Along Lines

Fig. 1 (a) shows a 1-D glide-symmetric structure composed
of two corrugated metallic surfaces off-shifted with respect to
each other. For simplicity the structure is assumed invariant
along the y direction. A 1-D glide-symmetric structure is
invariant under the glide symmetry operator Gpx̂, the com-
position of an x-translation of length p/2 and a z-reflection
around the plane z = 0:

Gpx̂ : (x, z)→ (x+ p/2,−z) (1)

We recall that a 1-D periodic structure is invariant under the
translation operator Tpx̂ of length p along the direction of
periodicity x. Since the composition of two glide operators
is Tpx̂ (G2

px̂ = Tpx̂), a glide-symmetric structure is also
a periodic structure of period p. The periodic non-glide-
symmetric structure in Fig 1 (b) can be obtained from the
glide-symmetric structure in Fig. 1 (a) by mirroring the upper
corrugations and moving them from the top to the bottom
plate. Notice that doing so we have halved the period of
the resulting line. Later in the section we will compare the
dispersion behaviors of the two structures in Figs. 1 (a) and
1 (b), which are referred in the following as the non-glide and
the glide structure.

The unit cell of the glide-symmetric line is depicted in
Fig. 1 (c). It is well known that a periodic structure can be
studied by limiting the analysis to its unit cell, and enforcing a
Floquet boundary condition on its periodic boundaries (x = 0
and x = p in this case). This leads to an eigenvalue problem
associated to the translation operator:

Tpx̂ [E (x, z)] = E (x+ p, z) = e−jkxpE (x, z) (2)

whose eigenvalue is related to the propagation constant of a
Bloch mode (kx) and whose eigenvector is the modal field. In
general, kx = β − jα is a complex quantity. Its real part β is
the modal phase constant, while the opposite of its imaginary
part α is the attenuation constant. α can be related either to the
presence of a stop-band or to material or radiation losses along
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the periodic line [1]. The boundary condition (2) is given here
in terms of the electric field E, but it could be equivalently
stated in terms of the magnetic field H . This holds for all the
boundary conditions used in the following, written for brevity
only in terms of E.

We will use a multimodal transmission-matrix analysis to
transform (2) into a finite-dimensional problem. We describe
a unit cell as a multiport network, whose two geometrical
faces (x = 0 and x = p in Fig. 1 (c)) are the contact
ports with adjacent cells. On each of these faces, one can
define N modes of the parallel-plate waveguide limited by the
planes z = −h/2 and z = h/2. The n-th mode on the faces
1 and 2 is associated with voltages and currents V (n)

1 , I
(n)
1

and V
(n)
2 , I

(n)
2 , respectively. We then define a multimodal

generalized transmission matrix (or “T matrix”’) T as:[
V2

I2

]
= T ·

[
V1

I1

]

where Vi =


V

(1)
i

V
(2)
i
...

V
(N)
i

 and Ii =


I
(1)
i

I
(2)
i
...

I
(N)
i


(3)

relating the voltage and current values on the face 2 to those
on the face 1. The possible use in (3) of N > 1 modes on each
geometrical face of the unit cell is the main difference with
respect to usual monomodal (N = 1) ABCD transmission
matrices [1]. We will show in Sec. II-B that higher-order
modes can prove necessary to extract the accurate dispersive
behavior of glide-symmetric structures with irreducible cells.
This will improve the accuracy of the results by avoiding the
use of multi-cell analysis as done in [33]. In order to solve for
the dispersion relation of the structure, we apply the Floquet
conditions (2) at the boundaries of the unit cell in terms of
voltages and currents:[

V2

I2

]
= e−jkxp

[
V1

I1

]
(4)

Solving the eigenvalue problem (4) for different frequencies
finds kx at these frequencies. In the next subsections, we
will use this eigenvalue problem to extract the dispersive
relations of the 1-D glide-symmetric structure of Fig. 1 (a).
We use a commercial software (frequency domain solver in
CST Microwave Studio [34]) to obtain the impedance matrix
of the unit cell. Then, this matrix is easily converted to the
transmission matrix T that we can use in (3). After solving
for the dispersion relation, we compare the dispersion results
of our proposed Bloch mode analysis with the results directly
obtained from the eigensolver analysis of the CST Microwave
Studio. This will validate our proposed method by verifying
its accuracy. It is good to note that the imaginary part α of
the wavenumber cannot be compared to the CST eigensolver
results as the latter software does not compute this quantity.

B. Reducible and Irreducible Glide Structures

In [26], an equivalence between the structures in Fig. 1 (a)
and Fig. 1 (b) is stated, based on the validity of an equivalent

circuit there proposed. This equivalent circuit neglects the
higher-order modes at the two geometrical faces x = 0 and
x = p. It corresponds then to a formulation of problem (3)
with N = 1, where only one mode is retained on each unit-
cell face. In [26], this assumption is shown to be valid as
long as d > p/2. In [29], the validity is more correctly
stated in terms of higher-mode relevance. In this sub-section,
we class glide-symmetric structures in two kinds, and relate
this classification with the nature of the modal interaction
between adjacent cells. Note that localized higher-order modal
interactions in 1-D periodic structures is known to be relevant,
for example leading to the presence of lumped elements in
equivalent circuits [35]. We explore here the impact of this
phenomenon on glide-symmetric lines.

In reducible glide-symmetric structures, the mirroring op-
eration does not have an impact on the dispersive diagram.
For instance, a reducible line as in Fig. 1 (a) has the same
dispersion relation as the structure in Fig. 1 (b). Conversely,
in irreducible glide-symmetric structures the mirroring oper-
ation does have an impact, so that an irreducible line as in
Fig. 1 (a) has a different dispersion relation from the structure
in Fig. 1 (b). As shown in the following analyses, the same
geometry can be reducible or irreducible according to the
values of its geometrical and physical parameters and the
frequency range of interest.

Using the T-matrix analysis, we aim at demonstrating that
the difference between reducible and irreducible structures
lies in the impact of higher-order modes on each unit-cell
boundary. Reducible structures require only one mode at each
face, whereas irreducible lines (or their non-glide periodic
lines) need higher-order modes at each face to compute the
dispersion diagram correctly.

Fig. 2 (a) shows the dispersion curves for the structures in
Fig. 1 (a) and (b), whose geometrical parameters are p = 3
mm, d = 0.25 mm, h1 = 0.35 mm, h2 = 0.45 mm and h = 1
mm. The results are obtained with the CST eigensolver. This
corresponds to a reducible glide symmetry, since the glide and
non-glide dispersion diagrams are superimposed. In Fig. 2 (b),
we plot the diagrams obtained with the multimodal T-matrix
method. It is clear that using higher-order port modes does not
change the results as the first mode is already enough to reach
the accurate dispersion diagram. Considering the full-wave
CST eigensolver result as our reference, we take the relative
error of the frequency as a criterion for the convergence of the
method. Therefore, the definition of the convergence is:∣∣∣∣f − ffull-wave

ffull-wave

∣∣∣∣ < δ (5)

At each phase constant, f is the frequency given by the
transmission-matrix method, ffull-wave is the frequency given
by CST and δ is the relative error which defines the criteria
for convergence. We use a δ = 0.02 for all the results given in
the paper. For instance, in the previous result, the convergence
inequality given in eq. (5) holds with N ≥ 1. Therefore, the
convergence occurs at N = 1 mode. This suggests that when
the adjacent corrugations are not very close to each other,
they are reducible and the mirroring operation in the glide
symmetry has no impact on the dispersion relation. Therefore,
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(a)

(b)

Fig. 2. Dispersion diagram of the structures in Fig. 1 (a) and (b) with
geometrical parameter: p = 3 mm, d = 0.25 mm, h1 = 0.35 mm, h2 = 0.45
mm and h = 1 mm.

the presence of glide symmetry is strictly equivalent to a
reduction of the period of a factor two. This will be confirmed
by the formulation using glide boundary conditions proposed
in Section III.

To study an irreducible glide-symmetric periodic cell, we
consider to shorten the period and increase the width of
the metals to the values p = 1.5 mm and d = 0.5 mm.
In this case, the proximity of the scatterers is expected to
define an irreducible structure. Fig. 3 (a) depicts the dispersion
diagram of the glide structure and its non-glide counterpart
with halved period, obtained with the CST eigensolver. Unlike
the reducible example, the dispersion diagrams of these two
topologies are totally different.

Furthermore, in Fig. 3 (b), we show the results for the glide-
symmetric structure obtained with the multimodal T matrix for
different number of port modes. Retaining only one waveguide
mode results in a wrong dispersion diagram, with an incorrect
stop band at mid-frequencies. In contrast, the inclusion of
one higher-order mode already leads to the correct dispersion
diagram of the periodic structure (convergence of the results
for N = 2). The curve with N = 3 once again exhibits the
robustness of the method: where considering a higher number
of modes than necessary for convergence, the converged
results do not change. The different symmetry of modes 1 and

(a)

(b)

Fig. 3. Dispersion diagram of the structures in Fig. 1 (a) and (b) with
parameter values: p = 1.5 mm, d = 0.5 mm, h1 = 0.35 mm, h2 = 0.45
mm and h = 1 mm.

2 with respect to z = 0 plane suggests that the mirrored nature
of half-cells in glide-symmetries treats modes with different
types of symmetry differently. In the next section, we use this
observation to suggest a modified analysis that uses the higher
symmetry aspect of glide-symmetric structures to obtain the
dispersion relation from half of a unit cell.

III. 1-D GLIDE-SYMMETRIC CONDITIONS
ON THE BOUNDARIES OF HALF A CELL

In this section, we exploit glide symmetry in order to limit
the computational domain to a sub-region of the entire unit
cell. A generalized Floquet theorem discussed in [8] shows
that the study of a glide-symmetric line can be limited to half
of its unit cell (the region 0 < x < p/2 in Fig. 1 (c)) by
formulating the following eigenvalue problem associated to
the glide operator:

Gpx̂ [E (x, z)] = E (x+ p/2,−z) = e−jkxp/2E (x, z) (6)

This means that the field measured after a translation of half
a period and a mirroring with respect to the glide plane is a
scalar multiple of the field at the initial position. It is easy to
realize that two Gpx̂ operations yield the eigenvalue problem
(2).
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It is important to remark that a minus sign could be added
to the last term of (6) by keeping the consistency with (2).
However, this sign would not change the result of the problem.
In fact, if a − sign is introduced, the kx wavenumber is
transformed into the k′x = kx + 2π/p wavenumber. Since k′x
and kx differ of 2π/p, they are simply two harmonics of the
same Bloch mode [23]. This issue is slightly different in 2-D
configurations and will be discussed in the next section.

We want to formulate the glide eigenvalue problem (6) by
means of a multimodal transmission matrix. To this aim, we
define the multimodal transmission matrix T 1/2 associated
to one half of a unit cell (0 < x < p/2 in Fig. 1 (c)).
However, while a transmission matrix performs a translation
along the line, here we need a glide operator, consisting of a
translation and a mirroring. We overcome this issue by writing
the glide boundary condition (6) for each mode defined at the
geometrical ports of the half cell. Each mode is either odd or
even with respect to the mirroring direction z, and it is here
named eevenz and eoddz respectively. Due to the bidimensional
nature of the problem, we consider here the z components of
modal electric fields, used to define equivalent voltages at each
port. The same symmetry holds for the x components of the
modal magnetic fields, which define equivalent currents. For
both these components, the mirror operation reduces then to
an additional product by either a +1 or a −1 factor:{

eevenz (x,−z) = eevenz (x, z)
eoddz (x,−z) = − eoddz (x, z)

(7)

Therefore, the translation of half a cell of each mode is{
Tx̂p/2E

even = e−jkxp/2Eeven

Tx̂p/2E
odd = − e−jkxp/2Eodd (8)

It is easy to realize that the different sign in the translation
Tx̂p/2 in (8) according to the parity of the mode compensates
the different reflection of each mode in (7). The applications
of the two transformations (8) and (7) is equivalent to a
glide operation, and it is consistent with the glide boundary
condition (6) for both even and odd modes. Finally, if a voltage
and a current are associated to each mode, the boundary
conditions (8) for each voltage and current can be stated as[

V
(i)
2

I
(i)
2

]
= q(i) · e−jkxp/2

[
V

(i)
1

I
(i)
1

]

where q(i) =

{
+1 mode i has even symmetry
−1 mode i has odd symmetry

We can write this condition in matrix form by defining a
sign matrix Q whose ith diagonal element is equal to q(i) in
(9).

Q =


q(1) 0 · · · 0

0 q(2)
. . .

...
...

. . . . . . 0
0 · · · 0 q(N)

 (9)

The glide problem becomes then

T1/2 ·
[
V1

I1

]
= e−jkxp/2

[
Q 0
0 Q

]
·
[
V1

I1

]
(10)

0 being the N ×N null matrix. For example, in a simple case
where only the first two modes with different parity (TEM
mode with even parity, and TM01 mode with odd parity) are
retained, (10) reads as

T 1/2 ·


V

(1)
1

V
(2)
1

I
(1)
1

I
(2)
1

 = e−jkxp/2


V

(1)
1

−V (2)
1

I
(1)
1

−I(2)1

 (11)

With this equation, the dispersion relation of a glide-
symmetric structure can be solved by considering the network
parameters of only half of its unit cell. On one hand, from
(10) and (11), it is clear that in reducible lines, where only one
mode is retained, the glide-symmetric problem is equivalent
to a periodic problem whose period is divided by two (p/2
instead of p). On the other hand, in irreducible lines, the
presence of higher-order modes with different parity along
the mirroring direction is responsible of a different interaction
between elements with respect to the non-glide periodic line.

Fig. 4, shows the dispersion diagram extracted from half
of the unit cell of the irreducible glide-symmetric structure
discussed in Sec. II-B. In Fig. 4(a) the phase constant β is
compared to the solution given by the eigensolver of CST. The
dispersion diagram is fully recovered by considering only half
of the unit cell and two port modes. The perfect agreement
between results obtained with two and three modes at each
face validates the convergence of the solution. Fig. 4(b) plots
the normalized attenuation constant of the Bloch wave (α/k0)
with respect to frequency. As in the analysis with a full unit
cell, a convergence of the method is already observed by
retaining two modes. Note that the α in the stop-band cannot
be computed with the CST eigensolver tool.

IV. 2-D GLIDE-SYMMETRIC SURFACES

In this section the previous analysis of 1-D glide-symmetric
structures is generalized to 2-D configurations, i.e. artificial
surfaces exhibiting glide symmetry. The two axes of peri-
odicity are assumed orthogonal, but the formulation of the
problems and all the results hold in the case of general skewed
axes.

A. Multimodal Periodic Boundary Conditions Along Surfaces

Fig. 5 (a) shows a 2-D glide-symmetric structure, invariant
with respect to the 2-D glide symmetry operator Gpxx̂,pyŷ:

Gpxx̂,pyŷ : (x, y, z)→ (x+ px/2, y + py/2,−z) (12)

As in the 1-D case, glide symmetry implies periodicity, since
G2

pxx̂,pyŷ
= Tpxx̂Tpyŷ . As in the 1-D case, the non glide-

symmetric periodic structure in Fig 5 (b) can be obtained from
the glide-symmetric structure in Fig. 5 (a) by mirroring the
upper pins and moving them from the top to the bottom plate.
If px = py , this transformation yields a periodic structure
whose periods are p/

√
2 along 45° rotated x′, y′ axes. If

px 6= py , the formulation still applies, but a different rotation
is required and different period values are obtained. The glide-
symmetric unit cell is shown in Fig. 6, where black and white
rectangles represent bottom and top vertical pins.
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(a)

(b)

Fig. 4. Dispersion diagram of the glide-symmetric structure in Fig. 1(a)
obtained from the simulation of half of a cell with N modes on each
geometrical face. Geometrical parameters: p = 1.5 mm, d = 0.5 mm,
h1 = 0.35 mm, h2 = 0.45 mm and h = 1 mm. N = 1 mode (green line),
N = 2 modes (dashed red line), N = 3 modes (dashed orange line). (a)
Normalized phase constant βp/π vs. frequency. CST comparison (blue line),
line of light dashed dotted gray line. (b) Normalized attenuation constant
α/k0 vs. frequency.

The eigenvalue condition in a 2-D periodic structure as
Fig 5 (a) is:

Tmpxx̂Tnpyŷ [E (x, y, z)] = E (x+mpx, y + npy, z)

= e−j(mkxpx+nkypy)E (x, y, z) (13)

m,n being arbitrary integers. The choice of m = 0, n = 1 and
m = 1, n = 0 enforces two independent conditions covering
the full boundaries of a single minimal unit cell shown in
Fig. 6 (in solid line):

E (x+ px, y, z) = e−jkxpxE (x, y, z)

E (x, y + py, z) = e−jkypyE (x, y, z) (14)

In order to transform the eigenvalue problem (14) into a
finite-dimensional problem, we need to define four geometrical
faces of the unit cell, i.e., the four straight boundaries of the
unit cell in Fig. 6. On each geometrical face, we can define N
modes as in the 1-D case. The unit cell is then equivalent to
a 4N -port network, which can be described by a transmission
matrix:


V3

V4

I3
I4

 = T ·


V1

V2

I1
I2

 (15)

where Vi and Ii (i = 1, . . . , 4) are vector voltages and currents
as in (3). Floquet conditions can be written in terms of voltages
and currents, and replaced in (15). This results in the following
eigenvalue problem:

T ·


V1

V2

I1
I2

 =


e−jkxpxV1

e−jkypyV2

e−jkxpxI1
e−jkypyI2

 (16)

Again, finding the roots of the determinant of the matrix
on the left side of (16) provides the dispersion relation of
the structure. In this section, we only consider an irreducible
structure of the kind presented in Fig. 5.

Also in 2-D artificial surfaces, inter-cell interactions due to
higher-order modes have been shown to be important. They
are usually modeled as lumped elements in equivalent circuits
[36], [37]. To demonstrate the relevance of higher-order modes
in 2-D glide-symmetric structures, we apply this method to a
single unit cell of an irreducible glide-symmetric structure.
The parameters for this case are h = 1.15 mm, h1 = 1
mm, p = 1.2 mm and d = 0.5 mm. Fig. 7 (a) plots the
dispersion diagram of the glide-symmetric unit cell next to
its non-glide symmetric unit cell to confirm the irreducibility
of the chosen structure. Fig. 7 (b) depicts the dispersion
diagram of this glide-symmetric unit cell when propagation

𝑝𝑥

𝑝𝑦
ℎ1

ℎ

𝑑

𝑑

𝑝𝑥′
𝑝𝑦′

(a)

(b)

Fig. 5. (a) 2-D glide-symmetric surfaces whose periods are px and py . (b)
Non-glide-symmetric periodic surfaces obtained by moving the top pins to the
bottom plate. If px = py its periods along the rotated axes are px′ = px/

√
2

and py′ = py/
√
2.
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Γ X

M

x

y

Fig. 6. Top view of the periodic structure in Fig. 5(a). Black and white
squares are bottom and top pins, respectively. At the bottom left, the minimal
unit cell (0 < x < px, 0 < y < py) used in (14) is shown (solid lines). The
centrally symmetric minimal unit cell is shown at the top left (dotted lines).
At the right, the non-minimal unit cell and its quarter used in (18) are shown
(dashed lines).

occurs along the x direction while ky = 0. The results
obtained from the transmission-matrix method are compared
to those of the CST eigensolver for validation. This figure
emphasizes the fact that a transmission-matrix with one mode
on each face (N = 1) does not give correct results, while
11 modes are needed to obtain a perfect convergence of the
result to the CST eigensolver. Fig. 7 (c) plots the normalized
attenuation constant of the Bloch wave (αx/k0) with respect
to frequency. This last result cannot be compared with CST,
but the agreement between results with 11 and 12 modes on
each face confirm the convergence of the method adding extra
modes does not change the converged result. These diagrams
show that the periodic structure is indeed irreducible according
to the definition given in previous section, as higher-order
mode interactions are relevant to obtain an accurate result.
Fig. 8 sketches the full 2-D dispersion diagram using the
transmission-matrix analysis with 11 modes and compares it
to the CST eigensolver solution. The Brillouin diagram is
here computed on the edge of an irreducible zone of the
reciprocal k space. Thanks to the central symmetry of a unit
cell (see Ch. 2 of [2]), this region is delimited by the points
Γ,X,M as shown in Fig. 6: the segment ΓX corresponds
to the line 0 ≤ kx ≤ π/p, ky = 0, the segment XM to
kx = π/p, 0 ≤ ky ≤ π/p, and MΓ to 0 ≤ kx ≤ π/p, ky = kx
(where p = px = py). The centrally symmetric unit cell is
shown with dotted lines at the top left of Fig. 6. However, the
unit cell with solid lines shown at the bottom left of Fig. 6 was
used to derive the dispersion diagram. This choice avoids the
presence of scatterers at the boundaries of the unit cell where
equivalent voltages and currents are defined. A good match
between the curves validates our results for all the considered
propagation directions.

B. Parameter Study on Reducibility Condition

Here, we perform a parameter study on the structure of
fig. 5 (a). We consider the propagation of the Bloch waves
to be in the x direction, and we discuss the number of
modes needed for convergence of the first two Bloch modes

(a)

(b)

(c)

Fig. 7. Dispersion diagram assuming a propagation along the x direction
(i.e., ky = 0) for the glide-symmetric structure in Fig. 5(a). Geometrical
parameters: px = py = 1.2 mm, d = 0.5 mm, h1 = 1 mm and h = 1.15
mm.

(e.g., from 0 to 100 GHz) using the transmission-matrix
method. Fig. 9 (a) shows the required number of port modes
for different periods while all the other parameters are kept
constant. One can observe that as the period increases, fewer
modes are needed for the convergence. This could be predicted
since as the period increases, the corrugations are further away
from each other, causing weaker couplings between them.
Fig. 9 (b) and fig. 9 (c) show similar plots for different
pin widths (d) and different pin heights (h1). An increase in
h1 or in d, increases the number of modes required for the
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_

+

Fig. 8. Full dispersion diagram of the structure in Fig. 5(a). Geometrical
parameters: px = py = 1.2 mm, d = 0.5 mm, h1 = 1 mm and h = 1.15
mm.

method’s convergence. This can be explained by the fact that
the increase of these values causes a closer proximity of the
corrugations, thus making more waveguide modes significant.

The requirement of higher-order modes is partially related
to the cut-off frequencies of the waveguide modes. In fact,
as the number of modes increases, the higher-order modes
become significant according to the order of their cutoff
frequencies. However, modes can be necessary even if under
cutoff. For instance, the first two Floquet modes of the 2-
D glide-symmetric structure of Fig. 5 (a) in Fig. 7 are both
below the cut-off frequencies of all TM and TE modes of the
exciting waveguide. Nevertheless, 11 modes are still needed
to calculate the dispersion diagram.

The study of the convergence can be performed by running
different simulations for increasing N , until the convergence
is met. However, one can eliminate this step by knowing in
advance how many modes are needed from the beginning.
Our experiments show that the magnitude of the scattering
parameters can be a good predictor of the number of significant
modes. Significant modes are those for which at least one of
the scattering parameters has a magnitude higher than a certain
threshold (in our numerical results, a threshold of -10 dB is
sufficient).

C. 2-D Glide Conditions on the Boundaries of a Quarter of
a Non-Minimal Unit Cell

Section III discussed the exploitation of higher-order sym-
metries of the 1-D glide-symmetric structures in order to
simplify the calculations for obtaining the dispersion relation.
Here, we will take a similar approach to come up with similar
equations for a quarter of a 2-D unit cell. First, we need to
define a proper quarter-cell unit that has the proper symmetric
characteristics to utilize. The generalized Floquet theorem for
2-D glide symmetric structures, not treated in [8], reads

Gmpxx̂,npyŷ [E (x, z)]

= E (x+mpx/2, y + npy/2,−z)
= ±e−j(mkxpx/2+nkypy/2)E (x, y, z) (17)

where m,n are odd integers. The factor ± in the last term
of (17) allows to recover the translation property (13) if

(a)

(b)

(c)

Fig. 9. Number of modes needed for convergence of the T-matrix method:
(a) Versus period p (h1 = 0.5 mm, h = 1.15 mm and d = 0.1 mm). (b)
Versus pin width d (h1 = 0.5 mm, h = 1.15 mm and p = 4 mm). (c) Versus
pin height h1 (p = 4 mm, h = 1.15 mm and d = 0.1 mm).

two glides operations are applied. Note that in this case
m 6= 0, n 6= 0, and the boundaries of the minimal unit cell
defined by (14) cannot be obtained. We choose to enforce (17)
on the boundaries defined by the two independent conditions
m = 1, n = 1 and m = 1, n = −1:

E
(
x+

px
2
, y +

py
2
,−z

)
= ±e−j(kx

px
2 +ky

py
2 )E (x, y, z)

E
(
x+

px
2
, y − py

2
,−z

)
= ±e−j(kx

px
2 −ky

py
2 )E (x, y, z)

(18)

These boundaries define a quarter of the non-minimal cell with
rotated periodic directions shown at the right side of Fig. 6
(dashed lines). In order to recover the plus sign in (13) after
the two glide operations in (18) are applied sequentially, the
same ± signs must be chosen in both equations. Notice that if
either kx or ky is fixed, the sign choice is arbitrary as in the
1-D case, as long as the same sign is chosen. A change in both
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equations changes the harmonic of the fixed wavenumber. On
the contrary, the choice is important if propagation along a
certain skew direction is considered and the condition ky =
ckx is enforced, with c a non-zero constant. In this case, the
choice of the (same) sign in (18) depends on the mode to be
found (more specifically, on its behavior within each unit cell).
This will be detailed below for the numerical example shown.

Conditions (18) can be transformed into the following finite-
dimensional problem whose domain is restricted to a quarter
of non-minimal unit cell whose transmission matrix is T1/4:

T 1/4 ·


V1

V2

I1
I2

 = ±
[
Q 0
0 Q

]
·


e−j(kx

px
2 +ky

py
2 )V1

e−j(kx
px
2 −ky

py
2 )V2

e−j(kx
px
2 +ky

py
2 )I1

e−j(kx
px
2 −ky

py
2 )I2

 (19)

where the ± sign, being the same in the two boundaries, can
be brought outside the vectors in the right terms. The matrix
Q is defined as in (9) with respect to the parity of the vertical
components of the modal electric fields ez , used to define the
equivalent voltages.

Fig. 8 also depicts the full dispersion diagram of the
irreducible structure of Fig. 5 computed from the T matrix of
a quarter of the unit cell using (19). The plot shows that with
11 modes, a convergence to the correct solution is reached.
As an example, the first four relevant modes are those of a
rectangular waveguide with PMC lateral walls. They are the
TEM, TM01, TE10 and TE11 modes. The TEM and TE10 have
even symmetry with respect to z, so the sign factors q(1) and
q(3) are chosen equal to +1. In contrast, TM01 and TE11 have
odd symmetry in the z direction and a q(i) factor of -1 is
adopted for these modes. The same procedure applies to the
higher modes.

Close to each curve, we show the sign used in (19) to
recover the mode. As stated previously, in the segments Γ−X
and X −M the choice of the sign is arbitrary since ky = 0
and kx = π/px is fixed, respectively. In the segment M − Γ
kx = ky , and the sign used is shown close to each curve.

D. Computational Time

To have a comparison between the computational time
of the multimodal transmission-matrix method and the CST
eigensolver, we consider the 2-D glide-symmetric example
discussed in Sec. IV. We apply the two methods and compare
the execution time for each of them. In this comparison,
we used a computer with 128 GB of RAM and an Intel(R)
Xeon(R) CPU with 6 cores and a base frequency of 3.60 GHz
for its CPU cores. First, it is necessary to note that it is not
very straightforward to compare the time cost of these two
methods due to the difference in their nature. For instance,
the CST eigensolver performs a sweep of the phase constant,
whereas the transmission-matrix method does a sweep on the
frequency.

For the comparison performed, we used 74 points on the
dispersion diagram in both methods. The execution time in
CST eigensolver was 402 seconds. Next, we applied the
transmission-matrix method in two steps. In the first step,

TABLE I
COMPUTATIONAL TIME FOR SOLVING THE EIGENVALUE PROBLEM IN (19)

Number of
modes
(N)

Time (seconds) Number of
modes
(N)

Time (seconds)

1 0.04 7 0.39
2 0.07 8 0.49
3 0.07 9 0.52
4 0.08 10 0.64
5 0.11 11 0.88
6 0.16 12 1.13

we used the CST Frequency solver to extract the scattering
parameters for the quarter of a unit cell used in Sec. IV-C.
For this matter, the frequency range of 0-90 GHz was used
and four waveguide ports were applied with 12 modes at
each port. This gave us the multimodal scattering matrix for
N ≤ 12. The execution time for the first step was 82 seconds.
Then, we calculated the transmission matrix from the CST
scattering parameters using a simple MATLAB code [38],
whose execution time (around 10 ms) is negligible. In the
second step, we used the algorithm in [39] to find the complex
roots of the eigenvalue problem in (19), again in MATLAB.
The execution time of the second step is given in Table I, and
it is clearly much faster than the full-wave simulation. In fact,
calculation of all the first 11 cases (11 modes were needed for
convergence) takes less than 4 seconds in total. As a result,
the standard CST eigenvalue solver (solving for a full cell)
required 402 s, while the transmission matrix method (solving
for a quarter of cell) with 12 modes required 82+1.13 s with
12 modes at each port.

V. CONCLUSION

The connection between glide-symmetric and non-glide
symmetric structure with reduced period has been discussed
in this paper. Reducible and irreducible glide structures have
been defined, depending whether the effect of glide symmetry
is a simple division by two of the period or not, respectively.
A condition to distinguish between these structures is given in
terms of relevance of higher-order modal interactions among
periodic scatterers.

A new formulation in terms of glide-symmetric boundary
conditions explicitly shows the different modal interactions
due to mirrored scatterers and confirm the relevance of higher-
order modes for irreducible structures.

All the formulations have been derived from eigenvalue
problems related to relevant symmetry operators, transformed
into finite-dimensional problems with a multimodal transmis-
sion matrix approach. The results have been presented and
validated with commercial software, both in 1-D lines and in
2-D surfaces. In this last case, the choice of the computational
domain as a quarter of a rotated non-minimal unit cell is
motivated. All methods presented can compute both phase and
attenuation constants of Bloch modes, for possible application
to glide-symmetric leaky-waves.
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