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Abstract 

 
The transport properties of soft particle glasses, such as dynamic viscosity, normal stress 

coefficients, and shear-induced diffusivity of its particles, are determined by the microstructure of 

the suspension under flow. A thermodynamic measure of the microstructure is the excess entropy, 

which we show here accurately correlates the transport properties of soft particle glasses onto 

master curves across a wide range of volume fractions, suspending fluid viscosities, particle 

moduli and shear rates. The excess entropy for soft particle glasses is approximated with the two-

body excess entropy computed from the pair distribution function extracted from dynamic 

simulations.  The shear viscosity and normal stress functions diverge and the diffusivity vanishes 

at a critical excess entropy, corresponding to the yield stress of the suspension.  An effective 

temperature is computed and is found to vary linearly with the shear stress and the elastic energy 

of the sheared soft particle glass.  From this an equation of state is derived relating the excess 

entropy to the shear stress.   Consequently, three of the four transport properties are determined 

from the measurement of just one.  Finally, a single master curve of particle diffusivity versus 

excess entropy is presented that unifies observations for both equilibrium and non-equilibrium 

suspensions. 
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I. Introduction  

In 1977 Rosenfeld proposed and showed for the first time that the diffusivity and viscosity of 

fluids composed of particles interacting with Lennard-Jones and short-ranged repulsive 

interparticle potentials are correlated onto a master curve as a function of the excess entropy of the 

system [1].  Separately, Dzugotov showed a similar correlation for liquid metals [2].  Many other 

studies have followed using excess entropy as a means to correlate the diffusivity and viscosity for 

a variety of atomic, molecular and colloidal systems, and interparticle potentials [3-17].  Truskett 

and co-workers have also shown how the correlation extends to particles in confined systems, thus 

connecting the properties in confinement to those in the bulk [8, 18].  In all these studies the 

systems were at equilibrium and there was no flow. 

In Rosenfeld’s and Dzugotov’s original works, the normalized or so-called reduced diffusivity 

and viscosity were found to scale like 
ESeα  and 

ESe β− , respectively, where ES  is the dimensionless 

excess entropy relative to that of an ideal gas on a per particle basis and normalized by the 

Boltzmann factor.  Note the excess entropy is negative.  The constants α  and β  are positive, 

typically about equal and around 0.65-0.95.  The normalization for the diffusivity and viscosity is 

based on the characteristic length and time scales for the systems of interest.  While these scalings 

are observed for moderate values of the excess entropy, the diffusivity increases according to 

1 ES−  at low values [10].  In this paper we show that the diffusivity can also vanish as ES  

approaches a value of the excess entropy E
yS , corresponding to its value at the yield stress of the 

suspension.  In general if the normalized dynamic properties of a material at different temperatures 

and pressures are determined by ES , it is said to obey the excess entropy scaling [4].  The success 

of this scaling was initially argued to be based on the excess entropy being a measure of the free 



3 
 

volume available to the particles which is the underlying microstructural determinant for the 

transport properties of the system [1, 5, 12]. 

The excess entropy scaling does not always work [4, 19].  For example, systems of particles 

that interact with potentials with distinct directional bonding do not obey the excess entropy 

scaling.  The exact requirement is that the interparticle potential be Euler homogeneous, i.e., 

( ) ( )nU Uλ λ −=R R  , where U is the potential energy for the system, R is the coordinates of the 

configuration and λ  is a scaling factor [4].  In practice if this is approximately satisfied, the excess 

entropy scaling will collapse the dynamic properties of the system. 

Here we explore the effectiveness of using the excess entropy to correlate transport properties 

of athermal, jammed suspensions activated by shear, specifically soft particles glasses (SPGs).  

SPGs are concentrated suspensions of deformable particles such as microgels, droplets, and 

micelles.  The volume concentration of these suspensions is well above random close packing for 

spheres.  The dominant forces for these materials are repulsive elastic or Hertzian-like interparticle 

interactions, which are typically much larger than thermal forces.  At rest the suspension is in a 

trapped glassy state.  Under shear flow, the particles become mobile and can diffuse.  The shear 

and normal stresses for SPGs follow a Herschel-Bulkley form [20-22].  All previous examples of 

the excess entropy scaling are for quiescent, thermally equilibrated systems, except for a study on 

the shear viscosity of attractive particles with significant thermal forces [23-25].  This paper aims 

to answer the following questions.  Does the excess entropy correlation work for a non-

equilibrium, athermal, shear activated system to correlate diffusivity and the shear and normal 

stress viscosities of SPGs?  Can one construct a temperature and an equation of state for the SPGs 

connecting rheological properties to excess entropy? Finally, is there a universal scaling with 
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excess entropy for diffusivity for colloidal systems regardless of whether they are thermally or 

shear activated? 

II. Simulations Methods 

The details of the model and the simulation method have been presented in previous studies 

[22, 26-30].  Here we briefly summarize the essential features.  Soft particle glasses are modeled 

as suspensions of 104 non-Brownian elastic particles in a solvent with a viscosity of sη  that are 

jammed at volume fractions larger than the random close-packing of hard spheres.  Suspensions 

with an average radius of unity scaled by the average radius R, polydispersity index of 0.2δ =   

[27, 28], and volume fractions of 0.7, 0.75,0.8,0.85φ = , and 0.9 are studied.  At contact between 

particles α and β, they create a flat facet resulting in a deformation of ( ), 0.5 cR R r Rα β α β αβε = + − , 

where αR and βR  are the radii of particle α and β, rαβ  is the center-to-center distance, and cR  is 

the contact radius, which is given as ( )cR R R R Rα β α β= + .  

The elastic repulsion force between particles α and β acts perpendicularly to the contacting 

facet (i.e., ⊥n ).  It is given by the generalized Hertz law [30]: 

 * 24
3

e n
cCE Rαβ αβε ⊥=f n , (1) 

where E* is the particle contact modulus: ( )* 22 1E E ν= − , with E being the Young modulus and

ν = 0.5 is the Poisson ratio.  C and n are parameters, which depend on the degree of compression.  

For 0.1ε <  1.5n =  and 1C = , for 0.1 0.2ε≤ <  3n =  and 32C = , and if 0.2 0.6ε≤ <  5n =  and 

790C =  [30, 31].  The elastohydrodynamic (EHD) drag force, which is due to the existence of 
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thin films of solvent between the flat facets of two particles in contact during the shear deformation 

[30], is parallel to the contacting facets and is given by:  

 ( ) ( )1 2 2 1 4EHD * 3
,|| ||

n
s cCu E Rαβ αβ αβη ε += −f n , (2) 

where uαβ,|| is the relative velocity component in the direction of parallel to the contacting facets 

(i.e., ||n ).  The fluid inertia is neglected, and the forces are assumed to be pair-wise additive.  The 

velocity field due to the motion of the solvent is given as *
s

xy
Eα
γη∞ =u e


, where ex is the basis vector 

in the x-direction.  The resulting equation of motion is made dimensionless by scaling lengths, 

time and velocity by R, 1γ −&  and Rγ&  respectively, leading to [29, 30]: 

 ( ) ( )1 2 2 1 41 2 1/2 3
,|| ||

4
3

nn
c c

d M C R Cu R
dt R αβ αβ

α
α αβ

β βα

γ ε γ ε +∞ − −
⊥

 
= + − 

 
 x u n n      , (3) 

where the tilde quantities are dimensionless variables.  M is the mobility function which is that of 

a particle corrected by a factor ( )f φ  that accounts for its reduction at high volume fraction, namely 

( ) / 6M f φ π= ; ( )f φ is set to 0.01 in the simulations.  αx  is the position of the particle α.  The form 

of this equation shows that the dynamics is characterized by the dimensionless shear rate 

*γ γη= s E  , which represents the ratio of viscous to elastic forces, and the overlap deformation 

that depends on the volume fraction.  The Lees-Edwards [32] boundary conditions are then used 

in the LAMMPS package [33] in order to impart the desired shear rate to the simulation box.   

 Given the position of the particles at any instant in time, the stress, elastic energy, and 

entropy of the SPG under shear can be computed.  The stress tensor of the suspensions is 

determined using the Kirkwood formula [34]: 



6 
 

 ( )1 N N

V αβ α β
β α β>

= −σ f x x , (4) 

where V is the volume of the system and e EHD
αβ αβ αβ= +f f f  is the total force acting on particle α 

from particle β.  The shear stress xyσ , the first and second normal stress differences, 

1 xx yyN σ σ= − and 2 σ σ= −yy zzN , are computed from the appropriate components of the stress 

tensor.  The dimensionless average elastic energy per volume of the SPGs is determined from the 

pairwise interaction energy between particles according to  

 ( )
1 3

1

8
3 1

nN N
cC R

U
N n

αβ

α β α

ε +

= >

=
+ , (5) 

where the C and n parameters are those used in the force law in Eq. (1).   The elastic energy here 

is non-dimensionalized by * 3E R .  

The excess entropy of the SPGs is approximated by determining the two-body  contribution 

to the entropy as follows[3]:  

 ( ) ( )( ) ( )2
1 ln 1
2

ES S g g g dρ  ≅ = − − +  r r r r , (6) 

where ES  is the dimensionless excess entropy per particle,  ( )g r  is the pair distribution function 

between the particles that is determined in a steady-state flow condition, and ρ  is the number 

density of the SPGs.  The excess entropy is non-dimensionalized by the Boltzmann factor Bk . The 

temperature T is calculated from the derivative of the energy with respect to the excess entropy, 

i.e., ( )
,

E
N V

T dU dS= .  The temperature reported here is non-dimensionalized by * 3
BE R k .  Eqn. 

(6) has been used successfully to compute the excess entropy for liquids.  SPGs are certainly not 
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typical liquids in that they are shear rather than thermally activated.  That being said, they have a 

pair distribution functions that shows no long range order and approaches unity around three 

particle diameters from the reference particle, similar to other liquids[20, 35].  

The flow properties and microstructure of the suspensions were investigated over a broad 

range of shear rates ranging from 910γ −=  to 410γ −= .  The simulations were performed for 100 

strain units, and the stress tensor is calculated at regular strain intervals.  The value of the time step 

was chosen such that it produced 107 steps per strain at each shear rate.   

II. Results 

II. A.  Overview of rheology and dynamics of SPGs  

The steady-state dimensionless shear stress *Eσ  is plotted against the dimensionless shear rate 

*
s Eγη  in Fig. 1a.  Suspensions show a yield behavior at very low shear rates, and then by 

increasing the shear rate they start flowing.  The magnitude of the yield stress *
y Eσ  increases 

with the volume fraction of suspensions.  Similarly, the first and second normal stress differences 

( *
1N E  and *

2N E− ) are plotted as a function of the shear rate in Fig. 1b and Fig. 1c for SPGs 

with different volume fractions.  At low shear rates, a similar yield behavior as seen in Fig. 1a is 

observed for normal stress differences in Fig. 1b and Fig. 1c.  This yield behavior is followed-up 

by the power-law increase of the shear stress at high shear rates (i.e., shear thinning regime).  The 

shear rate is rescaled using the low-frequency modulus G0 of these pastes, i.e., 0s Gγη  [26, 36].  

The rescaled shear stress yσ σ  collapse onto a master curve, and they follow the Herschel-Bulkley 

(HB) relationship with an exponent of 0.48 for the shear stress as seen in Fig.1 d ( yσ  is obtained 

from fitting the individual shear stress data in Fig. 1a to the HB relationship).  The normalized 
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stress differences also show a universal trend as a function of the shear rate 0s Gγη  as seen in Fig. 

1e and Fig. 1f. 

 

FIG 1. (a) Shear stress *Eσ , (b) first 1 yN σ , and (c) second normal stress differences 2 yN σ−  as a 

function of the shear rate *
s Eγη .  Rescaled (d) shear stress yσ σ , (e) first 1 yN σ , and (f) second normal 

stress differences 2 yN σ−  as a function of the rescaled shear rate 0s Gγη .  The lines in (d-f) are the best 

fits of the data to the Herschel-Bulkley (HB) equation: ( )0.48 0.02
01 404y s Gσ σ γη ±= +  , 

( )0.65 0.02
1 00.1 195y sN Gσ γη ±= + & , ( )0.63 0.02

2 00.14 359y sN Gσ γη ±− = + & . 

 

The shear induced diffusion coefficient of the suspensions is determined from the diffusive 

part of the mean-squared displacement of the SPGs [22] at different shear rates to characterize the 

dynamics of SPGs.  As seen in Fig. 2, the diffusion coefficient data collapse onto a master curve.  

At low shear rates, the rescaled diffusion coefficient 2
0sD G Rη  follows a linear relationship as a 

function of the shear rate, while at high shear rates (where stress increases in a power-law fashion), 
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we observe a power-law relationship between the 2
0sD G Rη  and 0s Gγη  with an exponent of 

2 3.   The crossover between the low and high shear regimes is determined from the intersection 

between the power-law behaviors at low and high shear rates, around 6
0 5 10S Gγη −≅ × , as noted 

by Khabaz et al.[37].   It is important to note that this value is the same as the one that marks the 

crossover between the low shear plateau and the power law regime for the stress and normal stress 

differences in Fig. 1d. 

 

FIG 2. The diffusion coefficient 2
0sD G Rη  as a function of the rescaled shear rate 0s Gγη . 

 

The elastic energy U  of the SPGs at different volume fractions is determined using Eq. 

(6) at different shear rates *
s Eγη .  As seen in Fig. 3a, at low shear rates, the elastic energy shows 

a yield value, and then it increases in a power-law fashion according to the HB relationship (elastic 

energy data in each volume fraction are fitted to the HB relationship ( )* n

y sU U k Eη γ= +   and 

the yield value of the elastic energy yU  is extracted).  The yield value of the elastic energy yU  
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increases with the volume fraction of suspensions.  Using the rescaled shear rate 0s Gγη , all elastic 

energy data collapse onto a master curve as demonstrated in Fig. 3b.   

 

FIG 3.  (a) Elastic energy U  as a function of shear rate *
s Eγη  and (b) master curve of the rescaled elastic 

energy yU U  as a function of the rescaled shear rate 0s Gγη  for SPGs with different volume fractions.  

The solid lines in (a) shows the HB equation fit to data given by ( )* n

y sU U k Eη γ= +  .  The solid line in 

(b) shows the HB equation fit to data given by ( )0.52
01 145y SU U Gη γ= +  . 

 



11 
 

II. B.  Excess entropy of SPGs and connection with macroscopic properties 

The pair distribution function between the soft particles is computed and then used to calculate the 

excess entropy according to Eq. (6).  The values of ES− are plotted against the shear rate for SPGs 

with different volume fractions in Fig. 4a.  At low shear rates the values of ES−  plateaus around a 

value of 9.0.  As the shear rate increases the excess entropy increases (i.e., ES−  becomes less 

negative) due to the effect of shear flow, and it decreases with the volume fraction in the shear 

thinning part of the flow curve.  Similar to the previous section, all excess entropy data collapse 

onto a master curve when plotted against the rescaled shear rate 0s Gγη .  The agreement is less 

good for 0.7φ =  and the lowest shear rates.  The poorer agreement here is unknown at this time.  

It may be that the two-body approximation to the excess entropy may be less accurate for these 

conditions.  It is also that the excess entropy scaling fails under these conditions.  It is has been 

noted that systems that become non-ergodic fail the entropy scaling and show lower than expected 

diffusivities compared to the ergodic systems where the scaling works[38]. 
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FIG 4.  (a) Excess entropy ES−  as a function of shear rate *
s Eγη  for SPGs with different volume 

fractions.  (b) Master curve of ES−  as a function of the rescaled shear rate 0s Gγη . 

Using the elastic energy and the excess entropy we can define a “temperature” of the 

sheared suspension based on the thermodynamic relationship ( ) ,
E

N V
T dU dS= .  The values of the 

elastic energy U  as a function of ES−  are fitted to a power-law relationship, and then the 

temperature T  is extracted (see Fig. S1 for U  vs. ES− ).  The values of the temperature T  at 
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different volume fractions and shear rates are shown in Fig. 5.  The temperature T  at low shear 

rates near the yield stress is constant for a given volume fraction and is denoted by yT .  As the 

shear rate increases the temperature of the SPGs increases based on the HB relationship.  

Furthermore, temperature increases with an increase in the volume fraction of the suspensions.  

Using the normalized values of the temperature with respect to the yield temperature (i.e., yT T ) 

and the rescaled shear rate of 0s Gγη , a master curve of the temperature is constructed in Fig. 5b.  

As seen in the figure, the yT T  values follow the HB equation with an exponent of 0.5.  The 

transition temperature between the quasi-static and shear thinning regimes occurs at a shear rate 

of 6
0 5 10s Gγη −≅ ×  in agreement with our previous findings for the flow curves and cage 

relaxation time in these jammed suspensions [22].   

We relate the elastic energy U  and shear stress *Eσ  to the temperature T  in Fig. 6a and 

Fig. 6b, respectively.  As seen in Fig. 6a, the elastic energy shows a universal behavior for all the 

SPGs with different volume fractions, and it increases linearly with the temperature as 

( )1.65 0.10U T= ± .  The shear stress also exhibits a universal linear trend as a function of the 

temperature as ( )1.31 0.05 Tσ = ±  as seen in Fig. 6b.  The linear relationships between energy, 

stress and temperature of SPGs was anticipated in earlier studies [21, 27, 39].  Mohan and 

Bonnecaze [39] used energy as a surrogate for temperature in the expression ( )lnU g− ∇ r  for the 

effective non-equilibrium elastic force acting on a particle in a SPG, analogous to a Brownian 

force [39].  Suspensions of SPGs under sufficiently high shear will transition from a glass 

microstructure to a layered one at sufficiently high shear rates [21, 27].  The transition is an 

activated process following an Arrhenius behavior if one uses stress rather than temperature[21].  
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FIG 5.  (a) Temperature T  as a function of the shear rate *
s Eγη  and (b) master curve of the rescaled 

temperature yT T  as a function of the rescaled shear rate 0s Gγη  for SPGs with different volume fractions.  

The solid lines in (a) shows the HB equation fit to data given by ( )* n

y sT T k Eη γ= +  .  The solid line in 

(b) shows the HB equation fit to data given by ( )0.52
01 301y ST T Gη γ= +  . 
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FIG 6.  (a) Elastic energy U  and (b) shear stress *Eσ  as a function of temperature T  for SPGs with 
different volume fractions.  The solid lines are the linear fit to data.   

 

In order to establish a connection between the dynamics of SPGs and the excess entropy, 

the rescaled diffusion coefficient values are plotted against ES−  in Fig. 7a.  The diffusion 

coefficient increases with an increase in the excess entropy of the SPGs.  A universal exponential 

correlation between the diffusion coefficient and the excess entropy, i.e., ( )2
0 ~ exp E

sD R G Sη α  
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is observed at low values of ES−  with 1.1α ≅ , slightly higher than the value of 1.0 that is typically 

seen.  At low shear rate and excess entropy, which corresponds to the quasi-static regime, the 

diffusion coefficient exhibits a sharp downward turn due to the solid-like nature of SPGs in this 

regime.   

The rheology of SPGs is also correlated with the excess entropy by determining three 

viscometric functions, namely the shear viscosity, first and second normal stress coefficients.  The 

shear viscosity is defined as the ratio of yielding part of the shear stress to the shear rate as 

( )d yη σ σ γ= −  , and the first and second normal stress differences are defined as: 2
1 1Nψ γ=   

and 2
2 2Nψ γ=  , respectively.  The rescaled shear viscosity with respect to the solvent viscosity 

d sη η  is plotted as a function of ES−  in Fig. 7b.  The shear viscosity increases with a decrease in 

the excess entropy.  At large ES , the shear viscosity decreases (shear thinning behavior) and shows 

an exponential decay with respect to ES  as ( )~ exp E
d s Sη η β− , where 1.1β α= ≅ .  At smaller 

excess entropy that corresponds to yield behavior, the viscosity significantly increases and deviates 

from the exponential variation at high shear rates The first and second normal stress coefficients 

show the same behavior as a function of the ES .  Note that the transition from the quasi-static 

regime to the shear-thinning occurs at the same excess entropy (close to 9ES− ≅ ) or equivalently 

the same shear rate in all of the macroscopic properties.   
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FIG 7.  Master curve of (a) diffusion coefficient 2
0sD G Rη , (b) shear viscosity, (c) first, and (d) second 

normal stress coefficient as a function of the ES− .  The dashed lines show the linear fits to data at large 
values of ES .   

 

IV. Discussion  

The shear induced diffusivity, dynamic viscosity and normal stress coefficients for different 

volume fractions and shear rates collapse onto master curves of the excess entropy.  However, the 

excess entropy thus far has been determined from detailed measurements of the microstructure, 

which are not often convenient or easily accessible.  Expression of the excess entropy in terms of 

other more easily measurably quantities through an equation of state would be useful. 
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 An equation of state relating the easily measurable shear stress to the excess entropy can 

be constructed from the observations in Fig. 6 that the energy and shear stress are linearly 

proportional to the temperature according to 1.65U T=  and 1.31Tσ = .  From that and 

( ) ,
E

N V
dU dS T= , we find that ( ) ,

1.65 E

N V
d dSσ σ= , which after integration becomes the 

equation of state, 

 lnE E
y

y

S S B σ
σ

− = − − , (7) 

where B  is a constant and E
yS−  is the excess entropy at the yield point.  Thus, the excess entropy 

can be determined from the shear stress flow curve.  Indeed the shear stress follows the prediction 

of eqn. (7) as shown in Fig. 8.  Based on the fit to data E
yS−  is 9.8 ± 0.07 and B  is 1.35 ± 0.09, 

which is close to 1.65 ± 0.10 that can be obtained from the relationships among U , σ  and T .   

We should note that the linear fits in Fig. 6 are not perfect given that it covers almost three orders 

of magnitude of the data, but this form had the highest R2 values of many tested.  Considering 

these uncertainties, the value are of B consistent. 

Figure 7 shows that the diffusivity and normal stress coefficients follow the excess entropy 

scaling.  Thus, from eqn. (7) we can expect these dynamical properties to fall onto a master curve 

of the shear stress normalized by the yield stress.  In Fig. 9a the diffusion coefficient 2
0sD R Gη is 

plotted as a function of the shear stress yσ σ .  The diffusion coefficients of SPGs increase with 

the applied shear stress and show a universal behavior.  Furthermore, the first and second normal 

stress coefficients, ( )2
1 0 sG ηΨ  and ( )2

2 0 sG η−Ψ , plotted against the shear stress in Fig. 9b and 

Fig. 9c also show the collapse onto a master curve.  Thus, from the measurement of the shear stress 

flow curve, the shear diffusivity and the two normal stresses can be determined.  Remarkably, the 
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measurement of any one of the four dynamical properties (i.e., diffusivity, shear stress or viscosity, 

and first and second normal stress coefficients) allows one to determine the other three.  

 

 

FIG 8.  Master curve of the excess entropy ES−  as a function of the shear stress ( )ln yσ σ .  The best fit 
using eqn. (7) to data is shown by the dashed line.   

  

 

FIG 9. (a) Diffusion coefficient 2
0sD R Gη , (b) first normal stress difference ( )2

1 0 sG ηΨ , and (c) second 

normal stress difference ( )2
2 0 sG η−Ψ  as a function of shear stress yσ σ  obtained for SPGs with different 

volume fractions. 
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This interrelationship among the transport coefficients was also found by relating them to 

the microstructural relaxation time for the SPG [22].  This is the time required for a particle to 

escape a cage of surrounding particles when the suspension is sheared.  Indeed the microstructural 

relaxation time for SPGs at different concentrations and shear rates versus the excess entropy all 

collapse onto a single master curve (see Fig. S2 in Supplementary Materials).  Similar results for 

microstructural relaxation times have been observed for equilibrium [8] and sheared Brownian 

suspensions [24].   

In order to compare the results of current simulations of SPGs with other systems, such as 

mono- and bi-dispersed suspensions of hard-spheres, metallic glasses, and Gaussian core fluids [1, 

7, 9-11, 13, 19], the generalized diffusion coefficient *D , which was proposed by Dzugutov [2], 

is determined as follows: 

 * i

i

DD
χ

= , (7) 

where iχ  is the scaling factor, which is defined as:  

 ( ) ( )
1/2

1/2 4

1
4

cN
i j

i B i ij ij ij
j i j

m m
k T x g

m m
χ π ρσ σ

=

 +
=   

 
 , (8) 

where Bk  is the Boltzmann constant, ix  is the mole fraction of component i, ( )ij ijg σ  is the 

magnitude of the pair distribution function between particles i and j determined at the contact, and 

im  is the mass of particle i.  Note that in our case the system of interest is a single component, thus 

2
0 sR Gχ η= .  The generalized diffusion coefficient *D  for mono- and bidisperse hard spheres, 

liquid metals, and SPGs are plotted against ES−  for various systems in Fig. 10.  There appears a 

master curve that includes both the athermal and equilibrium systems.  This means that 
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measurements or predictions of diffusivity from an equilibrium system can be used to predict that 

in an athermal non-equilibrium system at the same excess entropy and vice-versa, provided that 

that both follow the excess entropy scaling.   Similar results are expected for viscosity and other 

transport properties.   

The master curve for diffusivity breaks down for bidisperse hard spheres at moderate to 

low values of the excess entropy.   The deviation occurs even before the diffusivity of the SPGs 

drops dramatically.  The deviation may in part be due to the choice of the scaling for diffusivity.  

The collapse of data for molecular systems has been found to be sensitive to the choice of 

scaling[16], and this may explain the deviation seen with the bidisperse hard spheres.  
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FIG 10. The generalized diffusion coefficient *D  obtained in current simulations of SPGs (filled symbols), 
metals (square and red line) [7, 11], and hard spheres (open and half-filled triangles) [10, 18], as a function 
of ES−  for different systems.   

 

V. Conclusions  

We have shown that the shear-induced diffusivity, dynamic viscosity and first and second normal 

stress coefficients obey an excess entropy scaling.  To the best of our knowledge, this is the first 

time such a scaling has been demonstrated for system that is shear activated with negligible thermal 

forces.  At moderate values of the excess entropy, the normalized diffusivity and viscosity scales 

like 
ESeα  and 

ESe α− , as observed originally by Rosenfeld, Dzugotov and others.  At larger values 

of the excess entropy, near the yielding the stress of the SPGs, the diffusivity approaches zero and 

the viscosity and normal stress coefficients approach infinity as - ES approaches a finite value.  

Interestingly, suitably normalized diffusivities from a variety of equilibrium thermal and the 

athermal sheared SPG system presented here collapse on a universal curve for excess entropy.  

This provides an intriguing connection between equilibrium and non-equilibrium and a possible 

means to predict properties of one from the other. 

 An effective temperature can also be derived for this sheared system from the computed 

relationship between elastic energy and excess entropy.  For the SPGs the temperature scales 

linearly with both the shear stress and elastic energy.  An equation of state can then be derived to 

predict the excess entropy from measurements of shear stress.  This equation of state then allows 

one to predict any transport property (e.g., shear induced diffusivity or normal stresses) from the 

measurement of another (e.g., the shear stress).  

 

 



23 
 

Supplementary materials 

 

See supplementary material for supporting information discussed in the main text.  
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FIG S1.  Elastic energy U  as a function of the ES  for SPGs with different volume fractions.  Dashed 
lines show power-law fits to the data. 
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Microstructural relaxation time: 

We characterize the timescales that particles spend in their cage using the incoherent intermediate 
scattering function (ISF): 

     
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( , ) exp 0

N

s j j
j

F i
N

 


    k k r r , (S1) 

where k  is a spatial wave vector and N is the total number of the particles in the simulation.  We 
compute the ISF at different volume fractions and shear rates at a wave vector 4.0kR  , which is 
close to the position of the first peak of the structure factor and corresponds to the cage size.  At 
all volume fractions, the decay of the ISF is nearly exponential, and we can determine a 
microstructure relaxation time c  from  ( , ) 1 /s cF k e  . See ref. [1] for details and discussion. 

 

FIG S2.  Microstructural relaxation time c non-dimensionalized by the shear rate.   

References 

[1] Khabaz, F., M. Cloitre, and R.T. Bonnecaze, Particle Dynamics Predicts Shear Rheology of 
Soft Particle Glasses. J. Rheol.  (submitted), 2019. 


