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A methodology is proposed for the design of sampled-data fixed-order decentralised controllers for
Multiple Input Multiple Output (MIMO) Linear Time-Invariant (LTI) time-delay systems. Imperfec-
tions in the communication links between continuous-time plants and controllers arising due to trans-
mission time-delays, aperiodic sampling, and asynchronous sensors and actuators are considered. We
model the errors induced due to the control imperfections using an operator approach leading to a
simple £, stability criterion. A frequency domain-based direct optimisation approach towards con-
troller design is proposed in this paper. This approach relies on the minimisation of cost functions, for
stability and robustness against control imperfections, as a function of the controller or design param-
eters. First, the proposed method towards controller design is applied to generic MIMO LTI systems
with time-delays. Second, when the delay system to be controlled has the structure of a network of
coupled quasi-identical subsystems, we use a scalable algorithm to design identical decentralised con-
trollers through network structure exploitation. Quasi-identical subsystems are identical subsystems
that have non-identical uncertainties or control imperfections. By exploiting the structure, we improve
the computational efficiency and scalability with the number of subsystems. The methodology has
been implemented in a publicly available software, which supports system models in terms of delay
differential algebraic equations. Finally, the eftectiveness of the methodology is illustrated using a
numerical example.

tions, it has been shown in [22] that GPS synchronization
may be vulnerable against malicious attacks. This moti-
vates the study of decentralised sampled-data controllers. To
the best of the authors’ knowledge, this is largely an open
problem. Some problem formulations in the literature are
close to the problem considered in this paper. For exam-
ple, the problem of how large the clock offset between actu-
ator and sensor can be for the centralised control configura-
tion, without compromising the existence of a stabilizing lin-
ear time-invariant controller was already addressed in [43].
Other problem formulations, related to the topic studied in
this paper, include decentralised event triggered control [10]
and decentralised observer-based feedback control for plants
with networked communication (modelled as switched sys-
tems) [4]. In [10], sampling interval is considered to be a
control parameter. In general, sampling intervals could be
arbitrary and cannot be controlled, similar to the case con-
sidered in this paper. The stability analysis of LTI systems
with distributed sensors and aperiodic sampling was dealt
with in [13] and was extended to include static decentralised
controllers and time-varying control computation delays in
[41]. However, designing the decentralised sampled-data

1. Introduction

For large-scale systems, decentralised controllers are
generally preferred over centralised controllers due to their
practicality and costs involved [28, 40]. However, designing
decentralised controllers is challenging since they have to
collectively meet global objectives while acting (and sens-
ing) locally. Time-delays are present in many large-scale
systems as the transfer of energy, material, or information
is usually not instantaneous. Many applications such as
power systems [29, 44] and automated vehicular platoons
[45] could be modelled as interconnected time-delay sys-
tems. For these applications, stability and performance lev-
els may be guaranteed for their (respective) continuous time
system models. However, when implemented digitally, the
information is not available in continuous time [21], the
clocks at the sensors and actuators may not be operating syn-
chronously [21, 26], and the individual sampling sequences
may be aperiodic [3, 23, 46]. For real-world applications,
we can also encounter situations where the local clocks at
the sensor and at the actuator are not synchronized [12, 43].
In general, synchronization of clocks over networks induces

fundamental limitations [14]. For power system applica-
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controllers for time-delay systems is largely an open prob-
lem.

In the literature, sampled-data systems are modelled
as Time-Delay Systems (TDSs) [15, 34], hybrid systems
[10, 37], discrete-time switched systems with varying pa-
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Design of sampled-data controllers for time-delay systems

rameters [11], feedback interconnections of systems [16],
etc. We refer to the recent survey paper of [20] for a general
overview of the topic. In this paper, the case of Linear Time-
Invariant (LTT) systems with time-delays (at state, controlled
input, and measured output) of retarded type is addressed
from a feedback interconnection point of view. We focus on
both stability conditions and design approaches for sampled-
data fixed-order decentralised controllers for LTI systems
with constant delays. For generality, we take into account
several imperfections in control implementation such as ape-
riodic sampling, time-delays, and asynchronous operation of
controllers. Moreover, two types of time-delays are con-
sidered in this paper. First, constant time-delays which
are present in the continuous-time system models. Second,
time-varying delays in the communication network between
plants and controllers.

The main contributions of this paper are three-fold. First,
stability conditions are presented for generic LTI systems
with constant time-delays (at input, output, and state) sta-
bilised by fixed-order decentralised controllers taking into
account control imperfections (induced by the implementa-
tion of the sampled-data controller with feedback delays).
The approach is based on rewriting the closed-loop sys-
tem of the Multiple Input Multiple Output (MIMO) plant
and sampled-data fixed-order controllers as a feedback in-
terconnection of a nominal (continuous time) Delay Dif-
ferential Algebraic Equations (DDAEs) and an uncertainty
block. Then, an input-output £, stability criterion is pro-
posed. All the control imperfections are “absorbed” at the
uncertainty (operator) block in this feedback interconnection
[17, 24, 25].

As a second contribution, we propose to optimise the
controller parameters for robustness against control imper-
fections by minimising the H_, norm of an appropriately
defined transfer function. Additionally, it is shown that the
conservatism of the optimised robustness criterion can be re-
duced by exploiting the structure of the uncertainty block us-
ing “scaling” parameters. The methodology used to design
these parameters is grounded in the frequency domain-based
direct optimisation approach of [9, 18, 32], where objective
functions specifying performance criteria are optimised as
a function of the controller parameters. The adopted fre-
quency domain-based optimisation approach for controller
parameters complements the approach for infinite dimen-
sional systems considered in [2]. This approach is flexible
in exploiting the structure of the controller. Structures such
as decentralised, distributed, overlapping, lower-order, and
PID! controllers can be handled.

As a third contribution and main result of this paper, a
scalable controller design approach is proposed for large-
scale systems composed of quasi-identical subsystems con-
nected through some delayed network. This case is in-
spired from real-world applications of multi-agent systems
and consensus or synchronization problems, for example, an
automated vehicular platoon may be considered as a group of

ISee the recent survey of [38], wherein PID controllers still have a
strong industrial impact.

quasi-identical systems which are communicating through a
network [9, 45]. Moreover, many researchers acknowledge
the need to develop scalable and computationally efficient
algorithms for control that have the following features: dis-
tributed and deployable at large scales, supported by local
decisions and global coordination, and robust against asyn-
chronous operation and inconsistent information [26]. In ap-
plications such as power systems [44] and automated vehicu-
lar platoons [45], controllers are often implemented as algo-
rithms programmed on embedded processors manufactured
by different companies which might work at different tem-
poral frequencies. In this paper, identical subsystems that
have non-identical uncertainties or control imperfections are
considered to be quasi-identical subsystems. The control de-
sign problem is solved for a lower-dimensional system using
network structure exploitation (see [9]) while guaranteeing
stability of the large network.

The remainder of the paper is organised as follows. Sec-
tion 2 introduces the MIMO time-delay plants which are to
be stabilised by sampled-data decentralised controllers. Sec-
tion 3 recasts the problem of maximizing robustness against
the control imperfections to a standard H_, norm optimisa-
tion problem. Section 4 presents the direct optimisation ap-
proach in the frequency domain to optimise robustness (in
terms of H, norm) of the controllers against control im-
perfections. This M norm characterises the maximum al-
lowable uncertainty. Section 4.2 recalls the concept of net-
work structure exploitation and how it may be utilised to
improve computational efficiency in designing decentralised
controllers that are robust (against control imperfections). A
numerical example is presented in Section 5. Finally, some
concluding remarks are given in Section 6.

We use the following notations throughout the paper. N
is the set of all natural numbers. R is the set of all real num-
bers. R” is the n-dimensional real vector space. Z, 7t
and Z~ are the sets of all integers, non-negative integers,
and negative integers, respectively. The Kroneckor product
is denoted by ®. R(A4) is the real part of complex num-
ber A. 6,(G) is the maximum singular value of matrix G.
Ly,(a,b) is the extended L,-space of all square integrable
and Lebesgue measurable functions defined on the interval
(a, b) of appropriate dimension.

2. MIMO plant and decentralised controllers

In many applications, communication of sensor data and
actuation commands are distributed over different communi-
cation channels which may function aperiodically and asyn-
chronously. In this paper, we first consider a generic Mul-
tiple Input Multiple Output (MIMO) continuous time plant
with N € N inputs and outputs, to be controlled by N de-
centralised dynamic controllers. The dynamics of the Lin-
ear Time Invariant (LTI) MIMO plants with constant time-

D. Dileep et al.
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delays considered in this paper are described by

() = Awp£ v, + X0 Ay v, =1, )
+ Zi=] Bwp,i ui(t - Tu,i)’ (1)
v =C, jwt—1,) i=1,..N,

tive of the (instantaneous) state vector y,, u; € R™i is the
i" controlled-input, y; € R™ is the i" measured-output,
v, € R"» is the plant state vector, Ty Tyio Tui > 0 are con-
stant delays, and Ay, 00 Ay, > Cw,,,i’ B, ; are real valued
constant matrices, i = 1,..., N, j = 1,...,m. It has been
shown in [8, 9, 32] that plants of the form (1) can be rewrit-
ten in the general DDAE form with time-delays present only
at the state. Plants of the form (1) can be rewritten in the
DDAE form as

for almost all # > 0, where y, is the right-hand deriva-

E,x,(t) = Ay x,(t)+ Z;-";’l A,ix,(t =)
+ XN B, u), 2)
y;i(®) = Cpl- xp(t), i=1,...,N,

where x, = [y/; yT!y va/,u]T is the augmented (instanta-
neous) state vector, y,, , and y,, ,, are dummy vectors used
for representing output vector y = [y]T,..., yyl" and in-
put vector u = [u{, ...,u]TV]T respectively, and E, may be
singular. Notice that all the time-delays are now associ-
ated with the augmented state vector, that is, {zy, ..., T, } =
{TWJ""’TW,M} U {Ty71,...,Ty7N} V] {Tuvl,...,Tqu}. Then, m
is the number of distinct time-delays present at the state and
m,, is the number of distinct time-delays present at the state,
inputs, and outputs (m, > m). Sections 2.1-2.2 will intro-
duce sampled-data controllers for plants of form (2) and a
related input-output £, stability criterion.

Furthermore, a particular class of systems of form (2) is
also considered, for which the computational efficiency of
the controller design algorithm can be improved. The par-
ticular class of systems consists of “/N” identical subsystems
coupled through a network graph. We consider a network
described by a directed graph G = {V, £, A, } with a set of
nodes V = {1,2,...., N} and a set of edges £ C V X V. The
edge (i, j) € &€ connects from node j € V tonode i € V.
A,y is the adjacency matrix of the corresponding network
structure, with a,y; ; > 0 being the entry at row i and column
Jj. The adjacency matrix is a square matrix with zero diago-
nal elements and its off-diagonal element (a Mi, j) is consid-
ered to be the weight of the corresponding edge (i, j). The
graph G does not need to be strongly connected. We assume
that the associated time-delays and the information exchange
between these subsystems are identical. Then, the particular
class of MIMO systems of form (1) can be rewritten as

ll./pi(t) = AWP,O Wpi(t) + Z;‘nzl All/p,j lI/pi(t - Tl[/,j)
+ Bu,p u(t—7,)+ B, u.,;(t—1,), 3)

v =Cp wult=1), i =1, N,

which corresponds to the nodal dynamics and their intercon-

nection is described by the coupling term

N

(1) = Z ani jWp (0, 4)

=L

where yr,,; is the right-hand derivative of the state vector y,;
corresponding to subsystem i, 7, > 0, T, > 0, 7, > O are
constant delays, and Awp,O’ Au/p, o Cy,p, By,p, B, are real val-
ued constant matrices, i = 1, ..., N. Similar to generic plants
of form (1), plants of form (3)-(4) can also be re-written in

the DDAE form as

- . e N -
E, %,i(1) = Apoxp(®) + X1 5 Oni i FpXp (1)
m T -
+ Zkil Apk xpi(t — T+ Bp u; (), ()
yi(®) =C,x,(), i=1,.,N.

The above system model is also in the most general DDAE
form since E » 1s allowed to be singular. Hence, this system
can also be used to represent subsystems which are delay
coupled with the help of an augmented state vector [9]. The
design of robust (identical) decentralised controllers for such
systems can be made computationally efficient using the net-
work structure exploitation approach developed in [9]. The
corresponding approach will be discussed in Section 4.2.

In this paper, we focus on the (non-identical) control im-
perfections induced by aperiodic and asynchronous sample
and hold functions at the interconnections between sensors,
decentralised controllers, and actuators. However, as we
shall illustrate with an example in Section 5, the adopted ap-
proach based on the small gain theorem trivially extends to
combining other (£,-bounded) uncertainties such as para-
metric uncertainties. That is, for the particular case where
(sub-)systems are coupled in a network, the assumption of
identical subsystems can be relaxed (only the nominal sub-
system models need to be identical) [27]. In the following
subsection, we define the decentralised sampled-data con-
trollers used to stabilize systems of form (1).

2.1. Sampled-data decentralised control

The sampling and actuation sequences for control are
introduced in this section. An overview of the sampled-
data control configuration is shown in Figure 1 and the cor-
responding symbols are defined as follows. The i mea-
sured output (y;(¢)) is sampled according to a sampling se-

quence {s, } kez?: represented using a set of instants, where
s, € (0, ],
i i i
Skt = S+ s (6)

and hﬁc € (0,h;],k € ZF, i =1,..., N. The sampling inter-
vals (h;{) consider imperfections in sampling such as jitters
and data packet dropouts. The sequence of instants at which
the i controller receives the sampled output is denoted by

{,o;C }keZ;’ where

P, =) + 9, (7)

D. Dileep et al..
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Figure 1: The closed-loop system of the decentralised con-
trollers (K;) and the MIMO plant (P) with constant time-
delays and control imperfections. S — H/ and S¢ — Hf rep-
resent the sample and hold functions from the ith sensor to
the it controller and from the it" controller to the i actu-
ator, respectively, i = 1,...,n. {s;}kezg, (P kezss {C;i}kezg’

and {a },c7+ are the corresponding sequences in time when
the sample and hold functions are implemented.

st p s p
k Tk k+1 k+1 y (,)
| »| |« >

Qi i
Yk ‘9/\»+1

Figure 2: A random output signal (y,(r)) is sampled according
to a sampling sequence {S;(}kezgr i = 1,.,N. The signal

available at the i*" controller (§,(1)) is an implementation of

the sampled output (y,(s})) at an interval [p}, ), k ez,
i=1,..,N.

i
pk+1

and 19’]'C € [0,9;], k € 7§, i = 1,..,N. The asynchrony
between sensors and controllers are denoted by 9/, k €

Z(‘)L, i=1,..,N. We consider the sampled-output received
at the controller to be

¥;(0),
yi(s;()’

V10,4,

Veelp,p ) ®)
pk’pk+‘l 9

(1) =

for all k € Z(‘)L, i=1,.., N, see Figure 2. We consider the

dynamics of the i fixed-order controller to be

xci(t) = Aci xci(t) + Bci j}i(t)’

. . ©)
i;(t) = C,ix,;(t) + D ; y;(1),

for almost all ¢+ > 0, where the controller state is de-
noted by x;(f) € R'i, the controller coefficient matrices
A.i» B, C.;, and D, are constant and real valued. The ih
input computed by the controller (;(¢)) is sampled according
to a sequence {C;L}kezg where £ € (0, k1,

Cepr = Ei + K)o (10)

;(/\ u; (1)

S L
\/Ck'” ak+1 k ﬁ,(t)

] > = .

i Wl
k //(+I

Figure 3: A random input signal (4,(f)) computed at the
it controller is sampled according to a sampling sequence
{g/i}kela" i =1,..,N. The signal available at the i*" actua-
tor (u;(1)) is an implementation of the sampled input (#,(¢},))
at an interval la,a,, ). k € Z*,i=1,..,N. The generated
input signal (2,(f)) is the sum of the continuous-time signal
corresponding to the state of the controller (C,;x,(t)) and the
piecewise continuous signal corresponding to the sampled out-
put received at the controller (D, J,(1)).

and ch € (0,51, k € Zg, i = 1,.., N. Asynchrony may
occur when there are time-delays in the feedback or when
controller update instants are different from the sampling in-
stants of the measurements. The controlled-input is imple-

mented at the plant according to actuation instants {a] } ;¢ 7t

where
=+ (11)
and }(}"( € [0,%;], k € Z', i = 1,..N. Here, }{]i(

denote the asynchrony between controllers and actuators
(which includes computation delays in the controllers). The
controlled-input implemented at the plant is

u(y = 4 WO Vi €lo.a). (12)
ui(C;c)a v re [alka alk_'_] )9

forall k € Zar, i=1,.., N, see Figure 3. Now, we consider
the following assumption corresponding to the ordering of
sampling and receiving instants of the closed-loop system
(with control imperfections).

Assumption 1. We assume that the k™ closed-loop control
sequence satisfies

O<si<pl<¢<a,Vkezl i=1,.,N. (13)

The above assumption (similar to that considered in [19, 35])
ensures that the output sampled at the instant s’,'{ from the
sensor is used for the computation of controlled-input at the
instant ¢ ,’c which is implemented at the instant a’k That is,
the actuation data and control data are ordered with respect
to the moments of time when sensor data is transmitted. This
ensures that the control input based on y,-(s‘,lc) can be applied
at time-interval [a‘]'c, a;'c ) kE Za'. Notice that the contrary
case pj > ¢; would violate the causality principle where the
k™ sequence input to the controller is received before the k'
sequence controlled input is computed. Also, the cases p;C >

al or{} > a} correspond to the cases where the k'™ sequence

D. Dileep et al.
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control data is processed before the k" sequence actuation
data is applied. Then, the asynchrony between sensors and
actuators can be described by {11;C } kezts where

m, = d) — s}, (14)
and 11;( e[0,7;], ke Z(‘)L, i=1,..., N. Werecall from As-
sumption 1 that x_;({;) and y;(s,) are the i controller state
information and the measured-output from i" plant, respec-

tively, used for computing #;( ,i). Under Assumption 1, we
have

4;(0) = Cp;x,(0) + D.;3;(0) = Cp;x,;(0) + D,;y;(0),
0;(8) = Coixei(&) + Dy 9i(Ey) (15)
= Ccixci(gli) + Dciyi(sll;)’
k e Z(J)r, i=1,..,N.

Remark 1. The dynamics of PID controller may be repre-
sented in the frequency domain using the transfer function
matrix

sKp

K
Kpip(s)=Kp+ —+ ——,
s 1+ 1,5

where Kp, Ky, Ky are real valued gain matrices, s is the
Laplace variable, and t, is the time constant of the filter ap-
plied to the derivative action [30, 42]. Hence, it is also pos-
sible to represent decentralised PID controllers as (9) with
some structure and tune their matrix gains for robustness
against control imperfections using the approach proposed
in this paper, see [8] for more details.

2.2. A feedback interconnection interpretation

In this subsection, we rewrite the closed-loop system of
(2), (8), (9) and (12) as a feedback interconnection of a nom-
inal system and an uncertainty block. This allows us to use
a simple input-output £, stability criterion, extending the
work of [13, 41] for dynamic controllers for DDAEs. For this
purpose, we represent the piecewise-constant controlled-
input and measured-output in continuous-time using time-
varying errors, that is,

xci(t) = Aci xci(t) + Bci(yi(t) + eli ®), (16)
(1) = (Coix.i(1) + ;1) + D (y;(1) + €5(1)),
forallz >0, i = 1,..., N, where the error signals are
. (0) — y:(¢t A" i
b= { OO VIl an
yi(sp) =y,  Vtelp.m )
—C..x.. i
e;(t) _ Ccvixci(Ol). C.ix., (), Vte [0; a03,
Cc,,-xa-(gk) —-C,x,1, Vte [ak,ak+1),
(18)
. (0) = y.(t Vtelo,d
e'3(t)= yl( l) yz( )’ e[ ;a()l).s (19)
y[(sk)_yl(t)7 VIG [ak’ak+1)’

for all k € Zg, i=1,.. N. Here, e’i (¢) arises due to the
sampled output implemented at the controller, e;(t) arises

i)t

(i) T

Figure 4: A signal y,(r) used to illustrate that the errors e
and e due to sampling need not be same.

due to the sampled controller-state implemented at the in-
put, and €/ (7) arises due to the sampled output implemented

at the input. Notice that | and e} need not be same due

to the transport delay, this is evident in Figure 4. Now we
define the uncertainty operator. For this purpose, consider
z; = [ZII ZIZ]T, z; € L£9,[0,00), w; = [e’A1 ei3 eg]T, w; €
L£,,[0, o), and the (bounded) integral operators A’i, A; and
A’3 on L£,,[0,00),i=1,..., N, such that

el(t) = (Al z; ()
= Jy za(0)do,

" {— /Sik z;1(0)d9,

¢ (1) = (Ahz,,)(0)

Viel0.p), (20
V1€ [P Py

= fy za0)d0,  Vie[0.d). @21
=4 /ctk 2;,(0)d0, V1€ ld),q,,),
ei(n) = (A5z; (1)
= Jy 2100, Vie€[0,d), (22
=4 /;k z;1(0)d0, Vi€ ld).dq,)),

for all k € Z(J)r, i = 1,..,N. Let A, be an (uncertainty)
operator on £,,[0, co) defined by

) (A z;)(®)
wi(0) = A;z)(0) :=| A4z, DO |, i=1,...N, 23)
(AFz;,)(0)

where w;(f) is an exogenous input to the nominal system and
z,;(t) is an exogenous output from the nominal system. We
introduce the following proposition to recast the closed-loop
system as a feedback interconnection of a continuous-time
nominal system and an uncertainty block.

Proposition 2.1. Closed-loop system (2), (8), (9) and (12)
can be rewritten as a feedback interconnection of a nominal
system in the DDAE form (see Figure 5), using an augmented
state vector x € R",

{Ex(t) = Agx(t) + X7 Ayx(t — 7)) + Buoo),

24
z(t) = Cx(1), @4

D. Dileep et al.
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Vi u YN Uy

27
and
w;(t) = (A;z)(@®), i=1,..,N. (28)

The plant in (24) is another simplified DDAE form of (27)
where z; | (1) = y;(1), z;,() = C.;%,;(®), i = 1,.., N, and
the coefficient matrices in (24) are given by

[A,0 B, 0 0 0 0
0o -1 B, 0 C. D,
& a0 o -1 0o 0 o
Figure 5: The control imperfections in Figure 1 are “absorbed” 1o 0 0o I 0 O0Ff
in the operators A, i=1,...,N. 0 0 B, 0 A, B,
¢, 0 0o 0 0 -I
and an uncertainty operator on L,,[0, o) defined by A, 0.0 0 00
0 00 0 O00O0
) (Ay2))(1) |0 00000
w) =(Az)@) 1= ¢ , (25) 7o 000 0 of
S 0 00000
0
T T , 1.1 T - -
wh(?rew—[w] wN] ,z—[zl zN] ,qndE, A, B, Co [O 00 I 0 O]
C,i=1,...n,are real-valued coefficient matrices. Here, E ’
is allowed to be a singular matrix. B= [O 071 00 O]T ,
Proof. Since the controlled-inputs are piecewise constant C
and there i§ no fee.d-through,‘ ‘t‘he ogtputs Vo = 1,‘...,N, B = [Bp] BPN] o= Sp1 ’
are piecewise continuously differentiable. That is, for any r p C
t, > t; > 0, we can expess y;(t,)—y(t) = /tiz y;(0)dOV i = f’N
1,.., N. Similarly, the functions C,;x.;,i = 1,.., N, are (Ep 000 0 O
also piecewise continuously differentiable, then we can ex- 0 000 0 O
press C,;x,(ty)—C,;x.;i(t]) = /tiz C.ix.;(0)d0,i=1,..,N. E= 0 000 O O ’
Therefore, the errors can be rewritten as Ci: 000 Cy O
0 000 I O
'y i 0000 0 0
l(t) _/Ot yl(e)d97 Vie [09 p())a L i
e = . . . - N _
: = [y 3i(6)6. ViElp.p,,): . 0 D, 0
t . i C. = D. =
. — [ C.ix:(0)d0, Vie[0,d), c » D ,
i — 0 crrrcel ’ 0 0 C 0 D
") {— /C’, C.i%i(0)d0, V1€ldl,d,, ) (26) S N L N
3 :
. ,- [4,, 0 B, 0
() = = Jo ¥:(6)d0,  Vie]o, ay), A, = , B, = ’
3 = [ 00, Vield.ap). K Ay K By |
forall k € %, i = 1,..., N. Then closed-loop system (2) 01D, 0
and (16) can be rewritten in the feedback interconnection By = ’
form of 0 01D,y
. B, 00 0
E5,() = Ay x,(1)+ E;":”l A, ix,(t—1)) B, = ,
+ XN, By u(0), 0 B.ny 00
yi(l) = Cpi xp(t)’ Cpl 0 0
1x,(0) = A x,;()+B,y()+ |B,; 0 0fw@), 0 C,
_ Ca=| i | Cr=
u(t) =C.x,;(O)+ D, y(H)+ |0 [ D,|w®), C 0
0 0 c
y: (¢ .
() = l 5i® ] ,i=1,...,N, N
Cei%ei(1) The proof is complete. o
D. Dileep et al. Page 6 of 16
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Remark 2. Plant (24) is obtained by using the augmented
state vector x = [xguTyuT}szchyT]T, where y,, and y,
are dummy vectors for w and z, respectively, x., =
[le xZN]T, u= [ulT u]T\,]T, and y = [le yJTV]T.
Remark 3. Plant (2) has no exogenous inputs or outputs.
However, it is possible to consider other exogenous inputs
(which will arise in the first line of (27)) or outputs in its
dynamics in addition to the control imperfections. Such a
system can also be recast into the form of (24) with minor
changes in the coefficient matrices, input vector, and output
vector.

Notice that by rewriting the system in the DDAE form (24),
we have enforced all the controller parameters to be con-
tained within A.

3. Stability criterion: generic case

Using the problem described in the previous section as
our motivation, we study the feedback interconnection of a
plant G and an uncertainty block A

z =Gw+f, 29)
w =Az+g,

where f,g € L,,[0,00). The operator G on £,,[0, c0)
describes the input-output map of system (24). In the fre-
quency domain, it is described by the transfer function ma-
trix

my

mm:cuﬂﬂ%—ZAp%rm. (30)

j=1

The operator A is already defined in (25). The feedback
interconnection (29) can represent the decentralised control
system given by (2) and (16), affected by perturbations, rep-
resented by the signals f and g, at the state and with zero
initial condition. Since G is linear and time-invariant, the
induced-£, norm satisfies ||G]|| c, = ||G||Hm. We recall
the small gain theorem that has been adapted from [15] for
our problem setting as follows.

Theorem 3.1. The mapping

=1 o

resulting from the feedback interconnection of (29) has a fi-
nite £5 gain if 1G5y, - 1A1l, <1

We consider a feedback interconnection of the form (29) to
be input-output £, stable when its mapping (31) has a finite
L, gain. Based on Assumption 1, we introduce the following
lemma.

Lemma 3.2. The integral operators Al A;, and Ag satisfy

NASlle, < 7)o =123, i=1,..,N, (32)

where
)/i = /_’ll- + 1(_)1-,
vy =K+ %, (33)
yé = 711' +ﬁl’ = 1,....,N.

Proof. The proof is given in the appendix. |

To determine a condition for input-output stability of the
feedback interconnection of (29), the following lemma is
presented.

Lemma 3.3. The L, gain of the operator A, can be bounded
as follows,

Az, <7 (34)

where

7 = max{4 /(2 + D2y i= 1., N (35)

Proof. The proof follows from Lemma 3.2 and by consider-
ing the worst-case £, gain. O

Combining the above results, a sufficient condition for input-
output stability of the feedback interconnection of (29) is
presented in the following theorem.

Theorem 3.4. Assume that the nominal system described
using the transfer function matrix defined in (30) is expo-
nentially stable. Then, the feedback interconnection (29) (as
in Figure 5) is guaranteed to be input-output L, stable if it
satisfies the condition,

-1

- < (16 >’
max 7 < (I1GG,

where the transfer function G(jw) from w to z is defined in
(30) and y; are defined in terms of the sampling interval and
asynchrony bounds in (33) and (35).

Proof. The proof follows directly by virtue of Theorem 3.1
and Lemma 3.3. O

Next, we introduce a less conservative robust stability
condition by exploiting the structure of the operator A. To
do so, we rely on scaling the feedback connection according
to the structure of the block diagonal operator A (see [33,
39] and the references therein for more details). We define
(diagonal) scaling matrices X and X, such that

01 0 01 0
X = X =] .

0 oN 0 oN (36)
S _ 51’,1 0 & _ 6i,112x2 0 P —
5,‘ - [ 5i,2:| > 51 - [ 0 51.,2 B 1= 19 sre N’

and 5,-’.]» e R\ {0}, i=1,...,N, j = 1,2, are scalar pa-
rameters. Notice that X and X have a structure related to

D. Dileep et al.
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A, and X # X because the dimensions of input and out-
put vectors are different. For simplicity of the presentation,
we combine all the scalar parameters in a vector § where
6= [611610 - 0N 5N’2]T. For the block-diagonal oper-
ator considered we have, by definition, X "'AX = A. Due
to the feedback interconnection of (27)-(28), we know that
introducing the scaling matrices does not affect its stability
property. We are now ready to improve the criterion from
Theorem 3.4 using the following proposition.

Proposition 3.5. Assume that the nominal system (30) is ex-
ponentially stable. Then, a sufficient condition for the feed-
back interconnection of (29) to be input-output L, stable is

-1
_ . R R
iegggfmym<u§f||X(6)GUw>X (6)||Hm) .37

For simplicity of the presentation, we define a new (transfer)
function G(jw, §) := XGX '(jw, §).

Remark 4. The values for the scaling parameters (8) in (37)
are determined by solving a non-convex optimisation prob-
lem. This problem will be shown later in Secton 4.1.

4. Controller design

We build on the approach of [9, 18, 32] to directly opti-
mise the robustness against control imperfections (by min-
imising ||G| |Hw) of the nominal time-delay system (24) as
a function of the controller parameters. Notice that an ex-
ponentially stable nominal continuous-time system (24) is
required to initialise the optimisation of objective functions
involving the H , norm. If this is not the case, a prelimi-
nary stabilisation phase is conducted based on optimising the
spectral abscissa. The spectral abscissa (stability) and H
norm (robustness) are, in general, non-smooth non-convex
functions of fixed-order controller parameters [18, 32]. The
work of [18, 32] generalises the one underlying the HIFOO
package (see [5]) and the MATLAB function hinfstruct
(see [1]) from finite-dimensional systems to that consider-
ing time-delay systems.

The vector p contains the tunable parameters of the de-
centralised controllers

A. B

T . -

P =[P ... Pyl wherep,-:vec([ < “]>, (38)
1 N Cci Dci

i =1,..., N. For the special case of static controller (as con-
sidered by [41]), only elements of D,,; exist. In the following
subsections, we describe the objective functions for which
the controller parameters may be optimised.

4.1. Generic case
The spectral abscissa of the nominal system (24) with
w = 0 is defined as follows,

c(p) = sup{R(4) : detM (4, p) =0}, (39)
ieC

where the characteristic matrix

mﬂ
M4, p) = AE = Ay(p) — ) Ae™,

i=1

Note that the dependence of functions on j is only made ex-
plicit in the notation when necessary. The exponential stabil-
ity of the null solution of (24) is determined by the condition
c(p) < 0 (see [32]). We know that the null solution of (24) is
exponentially stable iff c(p) < 0. With respect to the optimi-
sation problem, the objective function is tuned with respect
to the controller parameters (p). To obtain a exponentially
stable system that maximises the exponential decay rate of
the solutions, the controller parameters (in p) are optimised
for the minimum of spectral abscissa, that is, they are ob-
tained by

min c(p). (40)
I;

The transfer function from w to z of the nominal system
represented by (24) is given by

G(s,p) = C(SE — Ay(p) - i A >_1B. (41)
i=1

Given that system (24) is exponentially stable, that is c(p) <
0, the H, norm of the transfer function given in (41) can be
expressed as

1GG e, DIy, = sup 0,(Giw, §). 42)
w€ER
To improve robustness against control imperfections written
in terms of the H{_, norm of (42), controller parameters (in
p) may be optimised by minimising the function

min|G(jo. Pl 43)

Thereby improving the maximum allowable upper-bound for
the sampling intervals and asynchrony for which the closed-
loop system is stable. The objective functions maybe min-
imised using the algorithm in [9, 18], which uses the gradi-
ent based optimisation algorithm HANSO [36] to handle the
non-smooth optimisation problem.

For a less conservative result, it also possible to consider
Proposition 3.5 and simultaneously tune parameters in both
5 and p to minimise

min [1GGiw, B, )| 13- (44)
P
Alternatively, it is possible to consider a two layer (min-min)

optimisation problem, wherein the outer layer tunes p and
inner layer tunes  for minimising the function

min <msin GG, b, 5>||Hm>. (45)
Although optimisation problems (44) and (45) have the same

solution, the numerical implementation may lead to differ-
ent results. Since these optimisation problems are in general

D. Dileep et al.
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Vi u; Vn Uy

Figure 6: The structured MIMO system considered in this
paper. ldentical subsystems P (with constant time-delays at
input, output, and state) connected through some network
(described by the adjacency matrix A,,) are to be stabilised
by identical local (fixed-order) controllers with non-identical
control imperfections.

non-convex, the local minima found may not correspond to
each other. We use the gradient based optimisation algo-
rithm HANSO to solve the optimisation problems of (44)
and (45). We compute gradients for the optimisation prob-
lems using the approach in [18].

4.2. Network structure exploitation

In this section, the special case of structured MIMO plant
asin (5) is considered. Assume that the identical subsystems
are to be controlled using identical fixed-order controllers,
thatis, A,; = A, B, = B.,C,;=C,,and D, = D,V i =
1,...., N in (27), see Figure 6. Let us consider an augmented
(sub-)system state vector x; = [x;l. ul yLoyLxlylvi=
1,..., N, where y,; and y,,; are dummy vectors used to repre-
sent z; and w; respectively. Then, we can rewrite the closed-
loop system of (5) and identical fixed-order controllers using

the state vector x™ = [x] ... xI]as

IQ®E x(t)=U QA+ Ay ® F)x(t)
+ X0 T ® Ay x(t — 1) + I @ Bu(n), (46)
z(t) = I ® C. x(2),

and at the level of uncertainty operator, there is no change
from (25). The coefficient matrices in (46) are

[4,, B, 0 00 0
0 -1 [0 1 D] 0 C D,
i 0 0 —I 0 0 0
0= 0 0 I 0o o}
0 0 [B. 00 0 A B
|G, 0 0 0 0 I
1, 00 000
0 0000 O
i |0 00000
k=fo 00 0 0 Of
0 00000
0 0000 O
"E, 000 0 0]
0 000 0 0
0 000 0 O
E,=|[C 0 :
[0,,] 00 0 [C] 0
00 000 I 0
0 000 0 o0
[F, 0.0 0 0 0] 0]
0 00000 0
= _|0 00000 5 _|I
¢«=fo 0 0 0 0 o] < |of
0 00000 0
[0 00000 u

C,=[0 00 1 0 0.

Remark 5. Plant (5) has no exogenous inputs or outputs;
however, it is possible to consider other exogenous inputs
or outputs (with identical coefficient matrices) in the nodal
dynamics in addition to the control imperfections. Such a
system can also be recast into the form of (46) with minor
changes in the coefficient matrices, input vector, and output
vector.

According to the complex Schur decomposition theorem
[31], there always exists an unitary matrix 7" such that

Ay =TZT*, A7)

where Z is an upper triangular matrix. Then, by performing
a similarity transformation using ¥ = (" ® I)x and using
the property that some matrices commute (like (T'® I)(I ®
B,) = (I ® B,))(T ® I)) we obtain

2(0) = (T @ DI ® C.)(1). (48)

D. Dileep et al.
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It is clear from above that omitting the transformation by
(T ®I) at input side and (T* ® I) at output side in (48) does
not affect the H_, norm since T is unitary. In this paper, the
control imperfections are considered only at the communi-
cation between controllers and plants. We recall the main
result of authors in [9] which is summarised in the following
theorem.

Theorem 4.1. Let {4,,...,A,n ] denote the spectrum of
Ayy. Also, we consider the group of subsystems

mVl
E%i(0) = (Ac + Ay Fur) %:(0) + Z A, Xt = 7)

) k=l (49)
+ B.w;(t),

z;(t) = Cx;(1), i=1,...,N.

Then, the following results hold:

1. System (46) with w = 0 is exponentially stable if and
only if the system (49) with w; =0 foralli =1, .., N
is exponentially stable. Moreover the spectral ab-
scissa c(p) of (46) satisfies

— &5 A 50
C(P) i {Ill,a?( ]C(pv ul)’ ( )
where

é(D, A,;) = sup{R(A) : detM (4, A, p) = 0}, (51)
AeC

and the characteristic matrix

mn
M (%, Ayis P) 2= AE = Ay o(P)= Ay Fur = Z A,
k=1

(52)
2. If Apy is a normal matrix, then

1GGw. Plly, = max_ NIGGw. 2 Dl (53)

i€{1,..N
where G(jw, A,;, p) is the transfer functions of system
(49) from w; to z,.

Proof. The assertions for the first part of Theorem 4.1 di-
rectly follow from the block-triangular structure of (48), with
(49) appearing as the diagonal blocks, and from the struc-
ture of the associated eigenvalue problem. For the second
part, recall that the Schur complex decomposition and spec-
tral decomposition coincide for normal matrices. We refer
to [9] for the extended version of the proof. O

Corollary 4.2. Assume that A, is normal. Then, a suffi-
cient condition for the feedback interconnection of (29), for
the case where system (24) is structured as in (46), to be
input-output L, stable becomes

Proof. The proof follows from Theorem 3.4 and the latter
part of Theorem 4.1. )

In order to design (more efficiently) identical decentralised
controllers of the form (16) that are robust against control
imperfections, we replace the minimisation objective (40)
with

i ax (P, Agp), 55
min_max (s Agi) (35)
for faster exponential decay rate of the solutions and (43)
with

. GGw, A .. p , 56
it 160 A Pl -

for improving robustness against control imperfections. The
network structure exploitation is performed by transform-
ing the coupling between subsystems to some kind of self-
coupling through A,;. The transformation matrices used to
diagonalise the adjacency matrix must be unitary, which is
satisfied when the adjacency matrix is a symmetric, corre-
sponding to bi-directional coupling, or a circulant matrix.

The decoupling transformation based on Theorem 4.1,
reduces the problem of a large system consisting of N sub-
systems to a parametrised subsystem (of lower dimension)
[9]. Here, the parameters correspond to the eigenvalues of
the adjacency matrix of the network graph through which the
subsystems are connected. Recall that the dominant com-
putational cost of evaluating the spectral abscissa and the
H_, norm amounts to computing the rightmost eigenvalues
of a DDAE and the imaginary axis solutions of an associ-
ated Hamiltonian eigenvalue problem, respectively. In both
cases the number of operations with the algorithms proposed
in [18, 32] and the references therein scales with the cube of
the dimension. That is, the computational complexity (or the
number of operations with the algorithms) for optimising the
spectral abscissa and H, norm of the overall system is re-
duced from the order of (N - n,/)* to N - (n,,)?. Notice that
there is potential to arrive at scalable design methods whose
cost does not depend on the number of subsystems (by han-
dling the eigenvalue parameters as an uncertainty bounded
inreal interval using methods from robust control). This will
be worked out in Section 5.

Notice that using the approach of network structure ex-
ploitation implies that we can no longer reduce conservatism
using the scaling approach presented at the end of Section 3,
since the scaling would not correspond to a unitary transfor-
mation.

S. Numerical example

In this section, we perform simulation-based studies on a
numerical example made up of N identical third-order sub-
systems subject to different network and input perturbations.
This example provides a simple illustration for the systems in
Section 4.2. The simulations are performed using the MAT-
LAB software tool described in [7], which relies on extend-
ing the results in [ 18, 32] towards scalable algorithms for the

ie(l,..N1'" T \ie(l,..,
where
) o -1
G(s, Ay, P) = CC,(M(S, /lai,ﬁ)> B,.
D. Dileep et al.
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design of sampled-data decentralised controllers. We spec-

ify the plant (5) as

-10 0 0 10
X0 =11 0 0] (0+]0 |u () + (0

0 10 0
) N LY (57)

+ 2 apiy|0 1 0fx,(t=02),
000

010 ‘

yi() = lo 0 1]xp,-(l—o.l),1=1,...,N,

where the normal adjacency matrix A,; has the elements

0.5, if |i—j|=1,
vy ={ li=Jl (58)

0, otherwise,

foralli,j = 1,..., N. In (57), there is an additional exoge-
nous input vector €,(r) whose role will be discussed later
on. The above plant is to be controlled by identical dynamic
controllers of the form (9). The third and fourth equations
of (corresponding) system (27) then take the form

= Ax c,+Byl+[B 0 O]w(t)

= C_(,xc,- +D.y; + [0 I DC] w,,i=1,..,N

(59
The exogenous outputs are
() = [_gx,,,(t) Y,(0) = x,(8), i=1,...,N. (60)
L Ll(t)

Notice that closed-loop system (57)-(60) is an example of the
form (46) and hence we can exploit the network structure.
However, we also consider new exogenous inputs (€;(¢)) to
the subsystems in (57) and new exogenous outputs (Y;(#)) in
(60). These terms allow us to consider some additional dis-
turbances to the subsystems, besides the control imperfec-
tions. For example, these terms could provide an insight on
the allowable parametric uncertainties on the plant’s state-
coefficient matrix. Howeyver, it can be easily shown that all
the results presented in the previous sections still carry over
to this situation.

First, we consider system (57)-(60) to be a small network
with three subsystems (N = 3). To illustrate the instability
that may be caused due to the control imperfections in Figure
7, we use a second-order controller K, whose coefficient
matrices are

] 24639 —0.9459
— 103
4= 10 [ 2796 —2.2546]’
_ 0.0660  —0.4056
—103.
B.=10 [ 02102 01232] 1)

7.8543  1.0195],

=107 [
= 10° - [-0.2953

1.0865] ,

| ) X,(1)

—_
[
|

(s | ! ! .

Time (s)

(a) Continuous time system stabilised by the second-
order controller K, with no control imperfections. The
spectral abscissa of the closed-loop system is -2.050.

100 T T
—e xﬂ(t)
50 |-
O |
—50 | |
-100 : .
0 0.5 1 1.5

Time (s)

(b) The closed-loop system is unstable when control im-
perfections are introduced.

Figure 7: Simulation of the closed-loop system (57) and K,
when N = 3, for the initial value x,(0) = 1,x,(0) =1V i=
1,2,3. For clarity of presentation, we use only e3Tx1,2, where e;
is the 3™ column vector of the identity matrix.

for each of the three subsystems in (57). The spectral ab-
scissa of the closed-loop system of (57) and K, is -2.050,
when N =3, w; =0, Q; =0, i =1,2,3. For the pur-
pose of illustration, controller K, was selected in such a way
that the H_ norm of the transfer function resulting from the
corresponding closed-loop system was high.

We obtain a new controller K by minimising the H
norm of the transfer function of the system in (57)-(60),
when N = 3, from

= [w] wy w; Q Q) Q1"
to
5= [ZT T T YT YT YT]T
to 9.93 using the network structure exploiting algorithm.
That is, a feedback interconnection of (57)-(60) and any
bounded uncertainty operator with an induced-L£, norm less

than 9% is input-output £, stable. For example, in addition
to the control imperfections, closed-loop system (57)-(60),
when N = 3, is also input-output £, stable for any (non-

identical) perturbation on the subsystem’s state (x ;) coeffi-

cient matrices which has an induced-£, norm less than #

D. Dileep et al.
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25 1 xn®
— X, (?)
X, (1)
T ——Xx,(0)
7xp3(t)
ch(t)

15 20 25
Time (s)

Figure 8: The closed-loop system of plant (57) and K with
control imperfections, when N = 3, is stable even though it
is slower than K,. The spectral abscissa of plant (57) and
K when @ = 0 is -0.3569. The upper-bounds for sampling
intervals and asynchrony used in this simulation were defined
to satisfy (54) (to verify the result presented in the previous
section) and were identical to that used for the simulation of
Figure 7b.

—uy ()
— (1)
ua(l)
—h®
— hO
P30

Time (s)

Figure 9: The input signals (received at plant) and output
signals (received at controllers) corresponding to the plant (57)
and K with control imperfections (using the settings same as
Figure 8), when N = 3.

We observe that the H , norm corresponding to (only) con-

trol imperfections, when N = 3, from w = [w{ wg wg]T
toz = [z? z!' zI'NT while we assume Q, = 0, i = 1,2,3, in

(57)-(60) is equal to 5.81. The H_, synthesis controller K
has the coefficient matrices

i - [o8100 —00109) 5 [-2.9243  1.8633

¢ |-03745 —4.5357|" T¢ T |-4.0221 —4.0900"

C.=[0.0524 0.5468], D, =[-0.6876 —-0.4615].
(62)

The simulation results for initial conditions of x,,(t)) = 1,
x.i(tg) = 1,i=1,2,3, to < 0 are presented in Figures 8-9,
where 1 is used to represent a matrix or vector of appropri-
ate dimension having all elements equal to 1. Note that the
control imperfections (or the upper-bounds for the sampling
intervals and asynchrony) were ensured to be the same (5]7)
for obtaining results using K, in Figure 7 and using K 1n
Figures 8-9 (see [7] for details on the software and numeri-
cal data used for the example).

Additionally, we note that the conservatism in these re-
sults was not negligible in simulations. Therefore, we aim at
reducing the conservatism using the approach of Section 4.1.

Table 1
The H,, norms computed for the closed-loop system of (57)-
(60), when N > 3, from (= [w] ... wy, Q ... QL]"]") to
2(= [le Z-I]\—[ YIT YL]T) with K in (64) using the network
structure exploitation approach.

N | H,, norm

10 11.8721
50 12.8393
100 | 12.8770
300 | 12.8885
500 | 12.8895

For this purpose, the scaling parameters (5,»’]., i=1,2,3,j=
1,2 1n (36)) are optimised using “1” (no scaling) as their ini-
tial value while not exploiting the network structure. Among
other experiments, the “scaled" H_, norm as in (45), when
N =3, from w to z was minimised (by tuning only §) from
5.81 to 4.86 for the plant (57) and controller K in (62).

Suppose now that system (57)-(60) has a large number
of subsystems (/N > 3), while retaining the same topology,
then the general approach proposed in Section 4.1 becomes
computationally cumbersome. The eigenvalues (4,;) of A,
in (58) can be expressed as

A, = cos(i ),i=1,...,N, (63)

_r
N +1
thatis, A,; € [-1,1] Vi = 1,..., N. Therefore, an increase
in the number of subsystems (/) results in a denser distri-
bution of the eigenvalues (4,,) in the interval [—1, 1]. This
allows us to extend the scalable algorithm for the design of
stabilising controllers described in [6]. More precisely, 4,
is interpreted as an uncertain parameter confined to the in-
terval [—1, 1] and the worst case value of the H_, norm is
optimised over this interval (solving a min-max optimisation
problem) to obtain a controller K whose coefficient matrices
are

i - [-74310 09451 o [-3.5450  1.8700

¢ |-1.7851 —6.9873|" "¢ [-2.2913 —4.4404|"

C.=[-2.8900 15787], D, =[-3.3538 —0.0728].
(64)

K guarantees an upper bound on the H_, norm (from i to 2)
of 12.89, which is independent of the number of subsystems
N in (57)-(60) and asymptotically exact as N — oo (see
Table 1). Simulation based studies were also performed for
the closed-loop system of (57)-(60), when N = 500, with
K in (64). Also, the sampling instants and delays were de-
fined to satisfy the criterion in (54). The simulation results
for the initial condition of x,(tg) = 1, x.(tp) = 1, i =
1,...,500, ¢, <0, are presented in Figures 10-11. For sim-
plicity of the presentation, simulation results of only three
subsystems (i = 1,250, 500) are shown in Figures 10-11.

D. Dileep et al.
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— x,,[(t)
— x4 ()
X50(0)
— Xe50(0)
— Xp500(2)
Xes00(f)

0 2 4 6 8 10
Time (s)

Figure 10: The closed-loop system of plant (57) and K with
control imperfections, when N = 500, is stable. The upper-
bounds for sampling intervals and asynchrony used in this sim-
ulation were defined to satisfy (54) (to verify the result pre-
sented in the previous section).

—uy (1)
— tp50(1)
us0o(1)
— 5@
o .)7250(0
Ps00(D)

Time (s)

Figure 11: The input signals (received at plant) and output
signals (received at controllers) corresponding to the plant (57)
and K with control imperfections (using the settings same as
Figure 10), when N = 500.

6. Conclusion

In this paper, an approach to design stabilising decen-
tralised controllers for generic MIMO plants which are ro-
bust against control imperfections (due to sampling and de-
lays) and other input disturbances was proposed. The closed-
loop system (with control imperfections) was rewritten as a
feedback interconnection of a continuous-time closed-loop
system and a bounded (integral) operator. The continuous-
time closed-loop systems are modelled using DDAEs, which
are flexible in modelling interconnected systems. Spar-
sity constraints are enforced in the parameterisation pro-
cess within the optimisation to ensure that decentralised con-
trollers are obtained.

The closed-loop system (with the sampled-data decen-
tralised controllers) was rewritten as a feedback interconnec-
tion of a continuous-time closed-loop system and a bounded
(integral) operator. This approach allowed us to use a a sim-
ple input-output £, stability criterion based on the small
gain theorem. Additionally, we proposed a method to re-
duce some conservativeness in the result, which exploits the
structure of the operator. Furthermore, the computational
efficiency of the controller design algorithm is significantly
improved in the case of structured MIMO plant, wherein the
plant is composed of quasi-identical subsystems, at the price

that the local controllers need to be identical and the scaling
approach to reduce conservatism is not applicable anymore.

A frequency domain-based direct optimisation technique
is proposed in this paper for controller design. Hence, issues
related non-convexity and non-smoothness of the optimisa-
tion problem in general (especially for H{_, norm) are carried
over from the centralised setting. We use the special algo-
rithm HANSO to handle the non-smoothness. With respect
to the non-convexity, the algorithm converges to local op-
tima which may not global. This is mitigated by using suf-
ficiently large number of randomly generated (or user spec-
ified) starting points for the optimisation problem.

A. Upper-bound for the operators

In this section of Appendix, we present the preliminary
lemmas required to prove Lemma 3.2 followed by the proof
itself. First, we generalise the proof of Lemma 1 in [41]. For
this purpose, we define new sequences {b; },c, where

by, = b, + b, | €Z. (65)

by € (0,6b] , and 6b; € (0,6b], | € Z, 6b € R*. Also, the
sequences {¢; };c7 satisty

¢ = bl + 5Cl, INS Z, (66)

where ¢, € [0,6c] VI € Z, 6c € RT. Also, we define
a general bounded integral operator A on £,,(—0c0, co) that
operates on the input based on the above sequences, that is

(1) = (A({by, ¢; }1e2)2)(0)

! (67)
I=/ 2(0)d0, VteEc,cy) lEZ.
by

We abuse the notation for the operator as shown above, for
A({b;, c;},e7), to generalise it for any two sets of sequences
that satisfy the above conditions as {b;},c, and {c;};cz.
Now we prove the following lemma for this general oper-
ator.

Lemma A.1. The operator A({b;,¢;},e7) has an L, in-
duced norm which is upper-bounded by 6b + éc, that is,

[1A({b, ¢, }152)”52 < &b+ é¢

Proof. By definition, we have
'
w(t) = / 2(6)do, VteElc,cpy) le”. (68)
by

Then by virtue of Jensen’s inequality, we can write

t T t
w(:)Tw(r):< / 2(0)d0> ( / 2(0)d0>,
by by
t
<(@t-b) / 210)2(0)d0, V1 € [¢},cppy),
by

!
< (6b+ 6¢) 2T(0)2(0)do, Vi € ler, crpn)s
by
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(69)
since we know that 7 € [¢;, ¢y 1)

<éc <éb
——
t— bl < Ciy1 — bl+1 +bl+1 - b[ Vit € [CI7CI+1)’ le”.
Substituting § = ¢ + p in the above equation and using the
factt € [¢;, ¢y 1), We get

2T (t+p)2(t+p)dp. (70)
(6b+6¢)

W) () < (8b+6¢) /
Integrating both the sides with respect to ¢ in (70), we get

/ ” @) (t)dt

< (8b+ b¢) / ( / 2Tt + p)a(r + p)dp) d, (71)
(6b+6¢)

[s+]
< (6b+ 6¢) / ( / 2Tt + p)ar + p)dt) dp,
—(6b+6c) —00

where 6 =t + p, since §# — oo ast — oo and § — —oo as
t - —oo, then we have

/ ” D) i (r)de

(72)
< (8b + 8¢) / < / AT(G)Z(G)dG)
(8b+5¢)
Consequently, we have
@117, < (6b+ e (1211, (73)
hence proved. o

The idea underlying the proof of Lemma 3.2 is that the oper-
ators on £,,[0, oo) considered in this paper can be seen as a
special case of the operators on £,,(—00, 00) considered by
[41]. To illustrate this, we define the new sequences {§; Ve
in time to satisfy

§,,=8+h,1€Z i=1,.,N, (74)

l+1

where §¢ = s Vk € 7', and h’ S (O,ili]Vl € 7. Also,

k 0’
the sequences { a7 satisty

ay=8+f,leZ i=1,.,N, (75)

where a”]'C = a Vk € Z()’ '71 0,71V € Z, and
@, <0V eZ . Using Lemma A.1, we know that

HAUS) @ ez, < By + i,

for any input (with finite energy) to the operator. We define
two new operators, an extension operator D : L£,,[0, ) —
L,,(—00, co0) such that

. ) 2@, Vi€, 00),
(A 1= {0, V1€ (~0,0), 70

and a restriction operator R : L,,(—00,00) — L£,,[0,00)
such that Z(r) = (R2)(t) := 2(t) Vt € [0, o), then, we have
the following lemma.

Lemma A.2. The following relation holds true,
(AL2)(1) = (RA({(3). 4} } 1) D). (17

Proof. For the case when ¢ € [&i_l,
0< &6 then using (76) we have

t Z Vi 4i
Dx@yip = { Jo 1O VIE€10.4).
01 V te [a_17 0),

&6), we know that ﬁi_l <

(78)

'*I

.1

Using the fact that éj <0V e Z, we also have

(A({3}, 4} }1e2) D)

_ /A; Dz(6)de, Vte[a' A;_H), IEZ(J;U{—I},
0, Vte (—oo,ai_l).
(719)
Then we can rewrite (79) using (78) as
(A({8),4)}1e2)D2)(1)
/Sﬁc z(0)dg, Vite [a ak+1) kez?, (80)
fo Z(0)do, Vre]0, ao),
0, Vit e (—00,0),
hence proved. °

Proof of Lemma 3.2. From Lemmas A.l and A.2, we di-
rectly have

1A% e, < [|A((3],a aYieze, < b+,

or ||Ag||£2 < yé, i = 1,...,N. Similarly, using Lemma
A.1 and slightly modifying Lemma A.2 (by changing the
sequences in (74)-(75) accordingly), it can also be shown
that ||A’1||£2 < yi and ||A’2||,32 < yé, i=1,..,N.Hence,
Lemma 3.2 has been proved. o
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