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Abstract

In the 1990’s David Schmeidler and Itzhak Gilboa initiated the study of
decision making under uncertainty in a completely new framework, without
states but with data sets as the information on which to build choice behav-
ior. While the first formulations of Case-Based Decision Theory (CBDT)
aimed at applications in economic decision making, this theory which takes
data as a primitive concept provides an alternative foundation for deriving
beliefs and driving the choice of predictions. This opened a new perspective
on old questions in statistics and artificial intelligence. In this review, we
summarize these developments in Case-Based Decision Theory and highlight
the immensely innovative nature of David Schmeidler’s academic work.

Dans les années 1990’s David Schmeidler et Itzhak Gilboa ont intro-
duit un nouvel cadre d’analyse des décisions sous incertitude: les bases des
données se substituent aux états du monde comme primitive du modèle et
informent le choix du décideur. Au début la théorie de décision au cas-par-
cas était orientée principalement vers des applications économiques, mais
ses méthodes se sont avérées aussi pertinentes pour l’analyse des croyances
et des prédictions statistiques. Ceci a ouvert des nouvelles perspectives sur
des questions classiques en statistique et en intelligence artificielle. Dans cet
article, nous passons en revue ces développements et mettons en avance le
caractère extrêmement novateur des travaux académiques de David Schmei-
dler.
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Preface

Few theoretical developments in economic theory are so closely related to the
fruitful cooperation of two researchers as Case-Based Decision Theory to David
Schmeidler and Itzhak Gilboa. David Schmeidler could already look back at a
distinguished academic career when he and his PhD student Itzhak Gilboa em-
barked on a novel approach to analyze decision making under uncertainty. In the
seventies, David Schmeidler’s name was associated with the study of competitive
equilibrium with a continuum of traders (Schmeidler [1969]) and solution concepts
in the context of cooperative game theory (Schmeidler [1972]). In the early eight-
ies, this work paved the way to reconsidering the theory of decision making under
uncertainty with beliefs represented by a subjective probability distribution as in-
troduced by Savage [1954] and challenged by Ellsberg [1961] and Kahneman and
Tversky [1979].

In a seminal contribution (Schmeidler [1989]), David Schmeidler provided a
new paradigm for an alternative type of preference representation, Choquet Ex-
pected Utility (CEU) which spawned off a large number of related representa-
tions. Moreover, one of the most popular alternative representations “Max-min
Expected Utility (MEU) was launched in cooperation with Itzhak Gilboa (Gilboa
and Schmeidler [1989]) almost simultaneously. This earlier work on decision the-
ory studied choice in the classical framework of a well-defined set of states of the
world where the outcomes of actions would depend on the state which was actu-
ally realized. In the behaviorist tradition of revealed preferences that dominates
Economic Theory, preferences over state-contingent outcomes are the primitive
concept. Assumptions on these preferences would characterize both valuations of
outcomes and beliefs as in Savage [1954].

More sensitive than most other decision theorists to the unspecified primitive
concept of states and early on interdisciplinary aware of alternative approaches for
choices in the face of uncertainty in Artificial Intelligence (e.g.,Pearl [1988]), David
Schmeidler and Itzhak Gilboa began to study decision making under uncertainty in
a completely new framework, without states representing the known “unknowns”
but with data sets as the information on which to build choice behavior. From
their previous work however, they maintained the premise of preferences as the
concept on which to build representations.

While the Case-Based Decision Theory (CBDT) (Gilboa and Schmeidler [1995])
which Itzhak Gilboa and David Schmeidler initiated in the nineties and summa-
rized in the “Theory of Case-Based Decisions” (Gilboa and Schmeidler [2002])
still aimed at applications in economic decision making, it became clear that this
theory which takes data as we find it in innumerable data bases as a primitive
concept provides an alternative foundation for deriving beliefs and driving the
choice of predictions. This opened a new perspective on old questions in statistics,
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Bayesianism vs. frequentists, as well as on the algorithmic use of data in Artificial
Intelligence.

There have been a couple of surveys on Case-Based Decision Theory (Guerd-
jikova [2009]) in its original interpretation as a theory about choice over actions. In
the light of the more recent emphasis given to the prediction issue by Gilboa and
Schmeidler [2012] we will focus on this redirection. This seems to be appropriate
for a contribution to David Schindler’s 80th birthday, highlighting his immensely
innovative academic work on fundamental questions.

1 Introduction

In Economic Theory uncertainty about the outcomes of an action is usually mod-
eled as choice over state-contingent outcomes. In this perspective, uncertainty
concerns the particular state occurring from a well-defined and perfectly known
set of “states of the world”. Any action leads to an outcome conditional on the
realized state. It is assumed that the decision maker can rank all actions accord-
ing to a preference order. From these preference over acts1 one can deduce beliefs
– subjective predictions about the ocurrence of the states of the world relevant
to the choice of an action. Savage [1954] provided a set of axioms for a decision
maker’s preferences over actions that are equivalent to the decision maker choosing
the action according to the expected utility criterion with a subjective probability
distribution representing beliefs. This subjective probability distribution can be
viewed as a Bayesian prior distribution over the set of states of the world. If the
situation is repeated one can update these prior distributions in the light of data
generated by observing realized states. Updating a prior distribution in the light
of data seems to be the only role data plays in traditional Economics.

The question of how evidence from data affects decision making, however,
is much broader. Even the primitives of state-contingent decision making, the
“states” which resolve all uncertainty regarding a decision and the actions which a
decision maker considers are likely to be informed by data from past observations.
Hence, it is no exaggeration to say that data sets form the core of economic the-
ory. Statistics and decision theory suggest, however, different approaches for how
to deal with data. Statistics usually presumes a stochastic process and proceeds
to estimate the parameters of the process using observations from a data set. This
method assumes that data is generated by a well-known type of stochastic process
for which only the parameters are unknown.

Decision theory, in contrast, postulates properties of preference relations over
states of the world, or states of nature. In this view, actions induce state-contingent

1Savage [1954] called a state-contingent outcome “act” rather than “action”. We will use
both expressions interchangeably.
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outcomes. Rather than learning a probability distribution over states of the world
by estimating a generating stochastic process, probabilities are derived from pref-
erences and thus describe the subjective perception of uncertainty. In contrast to
statistical theory, decision theory thus does not restrict beliefs to be consistent
with available data. The prior is purely subjective. Consistency is required only,
when beliefs are updated with incoming information2. Only in the special case
when the decision maker is a Bayesian who learns from a prior consistent with
the "true" process both approaches will be consistent and the decision maker will
behave as a statistician who eventually learns the true probability distribution.

Case-based decision theory (CBDT) departs from these approaches since it
takes data as the primitive of the theory. Real-life decision makers are neither
statisticians nor are they perfectly rational and consistent in their preferences.
In particular, they are not a priori endowed with a state space, and a set of
actions that map states into outcomes. Moreover, real-life data are rarely organized
and structured in a way that would allow for straightforward statistical analysis.
Usually, the data collected differ in their accuracy, informativeness, availability and
relevance to the decision at hand. Some observations are rare (possibly unique and
ex-ante unpredictable, e.g., "black swans") and it is not clear how to combine such
rare observations with more frequent common place observations.

Case-based decision theory proposes a method for analyzing decision making
based on data directly, in particular, for situations in which statistical methods
are not applicable. In the case-based decision framework, an agent makes deci-
sions using the relevance (similarity) of past observations from the data set. Given
the evidence in a data set for a problem at hand, possible past outcomes of ac-
tions are weighted according to the similarity (relevance) of the observations in
which they occurred. The action with the best similarity-weighted performance
is chosen. Case-based decision theory provides both practical guidance, as well
as an axiomatic foundation which is important for empirically testing the theory
and for estimating the subjective similarity function. For unstructured data, the
specification of similarity, however, may be subjective and unrelated to the data.

More recently, case-based decision theory has been applied to predictions based
on past observations. In this context, the question of choosing the "correct"similarity
function can be meaningfully addressed and one can study learning of the "cor-
rect" similarity function. From this perspective, a Bayesian can be viewed as a
case-based decision maker who learns the correct similarity function and who holds

2The consistency requirements can vary depending on the specific theory. The axioms of
expected utility theory proposed by Savage [1954] imply dynamic consistency, consequentialism
and Bayesian updating. In contrast, non-additive models use a more restricted set of conditions,
Epstein and Breton [1993] and Ghirardato [2002]. Epstein and Schneider [2003], Pires [2002]
and Hanany and Klibanoff [2009] provide three distinct approaches to establishing consistency
requirements and axiomatizing updating rules for different classes of non-additive models.
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beliefs converging to the true probabilities of events, provided the underlying pro-
cess is compatible with the notion of similarity. More generally, one can study the
conditions under which knowledge of the correct similarity function will be useful
for the decision maker.

Finally, the language of case-based decision theory allows one also to talk about
choices among theories. This meta-view can distinguish between decision makers
relying on Bayesian, or on case-based, or on rule-based reasoning. For example,
one can show that, in the long run, Bayesian predictions carry more weight in
structured environments with low degrees of uncertainty, whereas case-based rea-
soning tends to be more appropriate in complex environments.

In this survey we will proceed as follows. After introducing some leading exam-
ples, we will present the basic framework of case-based decision theory in Section
2. Section 3 will review some of the applications of CBDT to economic problems.
In Section 4 we will focus on the contributions of CBDT to the prediction problem.
Lastly, in section 5, we will discuss CBDT as a mode of reasoning over theories.

1.1 Leading Examples

Before entering the more formal description of the framework, we would like to
indicate the range of applications by discussing some examples illustrating the
scope of decision problems case-based decision theory can address.

Example 1: Job candidates
Consider a CEO who seeks to hire an administrative assistant. The available

acts are the various candidates for the job. The CEO does not know how well each
of the candidates would perform if actually hired. A candidate may turn out to
be unreliable, dishonest or incompetent. Some candidates may be very efficient at
administrative tasks, but unable to deal with customers. Others might be perfect
on the job, but unwilling to travel.

In this example, neither the possible outcomes, nor the states of the world are
naturally implied by the description of the problem. Any attempt to specify these
would require imagining every possible situation in which different characteristics
of the candidate might be relevant and assigning to each such situation for each
candidate an outcome.

A more realistic approach would be to ask each candidate for references, i.e.
for records of past cases of employment when outcomes have been observed. To
determine a utility index for each candidate, the outcomes observed in past cases
are weighted by their relevance (similarity) for the decision at hand. In the basic
model presented below, outcomes and similarity will be combined in order to
determine the support a given past case (recommendation letter) provides for a
candidate.

Example 2: Medical treatment
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A physician examines a patient and registers her medical characteristics (blood
pressure, temperature, age, medical history). The physician considering a particu-
lar treatment and wishes to forecast the likelihood of its success. For information
he has a data-base of patients with characteristics, possibly different from those of
the current patient, who had been treated before. The data-base records also the
outcome (success or failure) for each case.

In this example, the possible outcomes are well-defined. The relevant state
space constructed from a large set of characteristics of a vast set of cases is, how-
ever, very large. Given that most of these states have never been observed, assign-
ing probabilities to events in this state space is, in general, an impossible task.

Therefore, the physician may prefer to use the notion of similarity among past
cases in order to predict the outcome in the current one. The predicted probability
of success in the current case will be the weighted average of success of the treat-
ment in past cases, where weights combine the physician’s subjective similarity
perception with the frequency of cases.

Example 3: Choice between theories
Studying a sequence of data, a scientist has to choose the theory that best

explains these observations. He associates with each observed case and each theory
a numerical value, which identifies the extent to which each observation supports
the theory. Theories are then ranked according to the total support the data
provides for them.

If the value describing the support provided by a given case for a theory is
chosen to be the logarithm of the likelihood of the observation under the theory,
then this method reduces to the maximum log-likelihood criterion.

These examples show that CBDT tries to address decision situations which are
too unstructured and too complex to be addressed by the traditional theory of
decision making under uncertainty.

2 Case-Based Decision Theory

In this section, we will first present the case-based decision theory as introduced in
a series of papers by (Gilboa and Schmeidler [1995, 1997a,b, 2001]) and later in the
book Gilboa and Schmeidler [2002]. Then, we will provide the system of axioms
which characterizes the representation, before introducing some extensions.

2.1 The General Framework

The case-based decision theory (CBDT) as suggested by Gilboa and Schmeidler
[1995] models decision situations, in which neither states of the world, nor proba-
bilities of outcomes can be naturally inferred from the description of the problem.
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Instead, the decision maker (DM) is assumed to have a data base (a memory)
consisting of past cases recording outcomes observed in past circumstances. For a
given decision problem, alternatives are ranked in accordance to their similarity-
weighted performance as recorded in the data.

We will describe the framework following Gilboa and Schmeidler [2002, Chapter
3] 3. The finite set of known cases is denoted by C. The set of known possible
alternatives is given by Y. It is assumed that Y contains at least two alternatives.
A memory M specifies for each case c ∈ C how often this case has been observed
in the data. Hence, a memory is a mapping M : C→ Z+

0 . The order of occurrence
of different cases is not recorded, reflecting the belief that the order of cases does
not matter for the evaluation of acts4. Alternatively, the time component can
be incorporated in the description of the problem. The set M =

{
M : C→ Z+

0

}
denotes the set of all hypothetical memories.

Given a decision problem p, the decision maker has to rank the alternatives
in Y according to a preference order, which depends on the memory M , %p,M .
Since the decision problem p is exogenously given and does not change, we will
suppressed the index p in the notation.

2.2 The Representation

For a given memory M , alternative y is preferred to y′, y %M y′, if and only if∑
c∈C

M (c) v (y, c) ≥
∑
c∈C

M (c) v (y′, c) , (1)

where for each case c, v (y, c) is the degree of support which a single observation
of case c provides for the choice of y. Intuitively, v (y, c) summarizes the decision
maker’s subjective judgment about the desirability of the alternative y based on a
single observation of case c .

In more specific formulations below, the degree of support can be decomposed
into the perceived relevance of case c for the choice of y and the desirability of
the outcome obtained in case c. An evaluation of the alternative y is obtained by
aggregating these coefficients which may be positive or negative across cases, using
the number of occurrences M (c) of each case c as weights. This representation
is unique up to an affine positive transformation, i.e., for any y, c ∈ Y× if v (y, c)
represents the decision maker’s preferences, then so does ṽ (y, c) = λv (y, c) + kc
for any λ > 0 and any (kc)c∈C ∈ RC.

3This framework is very similar to Gilboa and Schmeidler [2003], with the minor difference
that in the former, the set of cases is finite and the data allows for repetition of cases, whereas
in the latter, the set of cases is infinite, repetitions are not allowed, but for each case there is an
infinite number of "equivalent" cases.

4This invariance property appears as an explicit axiom in Billot et al. [2005].
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2.3 Axiomatization

Representations of preferences are difficult, if not impossible, to test in experi-
ments. An axiomatic characterization may reveal testable necessary and sufficient
conditions for observable behavior. Gilboa and Schmeidler [2002, Chapter 3] pro-
vide an axiomatization for the representation (1). They assume that preferences
may depend on the information about cases in the decision maker’s memory or
data set. Hence, a family of preference relations over alternatives (%M)M∈M condi-
tional on the information in (potentially hypothetical) memories in M is a primitive
concept of the theory.

An important property of these preferences concerns the preferential response
to obtaining new information in form of an additional data set. The combination
of two memories, M and M ′ results in a memory M ′′ ∈M defined as the case-wise
sum of observed cases, i.e., M ′′ (c) = M (c) + M ′ (c) for all c ∈ C. Variants of
the following axioms support most axiomatizations of case-based evaluations of
alternatives.

Axiom 1 (Order) For every M ∈M, %M is complete and transitive.

Axiom 2 (Combination) If y %M y′ and y %M ′ y′, then y %M+M ′ y′.

Axiom 3 (Archimedian) If y %M y′, then for every M ′ ∈ M, there exists a
k ∈ N such that y %kM+M ′ y′.

Without Axiom 1 a real-valued representation is impossible.
Axiom 3 states that every evidence which supports y′ more than y can be

outweighed by a sufficient number of repetitions of cases which support y more
than y′. Axiom 3 is a continuity axiom which would be violated if observations
in a memory would render an alternative inferior regardless of any evidence from
observing other cases. For instance, an administrative assistant who has been
dishonest once may never be employed, regardless of how many additional good
recommendations she would present. Similarly, the observation of a single black
swan is sufficient to refute the theory "all swans are white" in favor of the theory
"swans can be of different color".

Axiom 2 is a core axiom of case-based decision theory which makes an assump-
tion on how preferences are affected by the combination of two memories or data
sets. It states that if two separate pieces of evidence support the choice of y more
than that of y′, then so should their combination. In Example 1, if a CEO would
want to hire a candidate based on each of two independent recommendations from
two previous employers, she would not change her mind given the information
in the combined data set. The maximal likelihood approach to the selection of
theories also satisfies Axiom 2: if data-set M implies that theory y has a higher
likelihood than theory y′ and so does data-set M ′, then the combined data-sets
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will also assign a higher likelihood to y than to y′. Axiom 2 is, however, less com-
pelling in the context of hypothesis testing where two memories might both be
too short in order to reject a given null hypothesis, but the combination of these
memories may contain a sufficient number of observations for the hypothesis to be
rejected. As Gilboa and Schmeidler [2002] point out, this is due to the inherent
asymmetry between the null hypothesis, which is assumed valid until evidence to
the contrary, and its rejection. Axiom 2 is also violated if similarity perceptions
depend on experience, see Gilboa and Schmeidler [2003] for examples.

Axioms 1-3 are necessary but not sufficient for the existence of a representation
as in (1), see Gilboa and Schmeidler [2002]. An additional axiom, which is not
necessary, but which together with Axioms 1-3 guarantees (1) is

Axiom 4 (Diversity) For any four distinct alternatives, y1, y2, y3 and y4 ∈ Y,
there exists an M ∈ M such that y1 �M y2 �M y3 �M y4. If |Y| < 4, then
for any ordering of the elements of Y, there is a memory M such that �M

coincides with that ordering.

Axiom 4 rules out the case that an alternative y (weakly) dominates alternative
y′ for all possible memories. It precludes, e.g., lexicographic preferences of the
following type: a CEO working with Japanese clients might feel that it is always
better to hire an assistant who speaks fluent Japanese than an assistant who does
not, regardless of their letters of recommendation. In the context of prediction, it
excludes the possibility that a forecast is always preferred to another one, regardless
of the data.

Axioms 1-4 are sufficient for the existence of the representation and imply its
uniqueness in the sense above5.

2.4 Extensions and Alternative Representations

There are several variations and extensions to the case-based decision model pre-
sented so far. Some of them will be discussed in this subsection. The first two
extensions are useful in the context of predictions and evaluation of theories, the
last one provides additional insights in the context of consumer choice.

2.4.1 Excluding Identical Cases

One might argue that no two cases are exactly identical as, at the very least, they
differ in the time of their occurrence. If one holds this point of view, the previous
framework appears unsatisfactory, since it requires the decision maker to consider

5Furthermore, Axiom 4 imposes an additional linear independence condition on the values
v (y, c) for any four distinct acts, y1...y4, see Gilboa and Schmeidler [2002, Theorem 3.1, p. 67].
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(at least hypothetically) any number of repetitions of any case. In response to this
argument, Gilboa and Schmeidler [2003] consider an infinite set of cases, none of
which can appear more than once in a data-set. A data-set is defined as a finite
subset of the set of cases. Even though each case is unique, the decision maker
is assumed to be able to assign cases to equivalence classes, each of them with
an infinite number of elements. Exchanging a case in the memory for a case in
the same equivalence class leaves the decision maker’s preferences over alternatives
unchanged. In this way, the representation in (1) obtains under the same set of
axioms adapted to take into account the new structure of the set of cases.

2.4.2 Ex-Ante Preferences over Alternatives

The theory presented so far implicitly assumes that with no data all alternatives
are considered ex-ante indifferent, i.e., only data determines preferences. This
assumption creates problems when the alternatives are theories ranked according
to their ability to explain the data6. Hence, Gilboa and Schmeidler [2010] adapt
the theory to allow for ex-ante preferences, which are not dependent on a data set
and can be interpreted as an a priori bias with respect to certain theories. For this
adjustment, Axiom 2 has to be relaxed in the following way:

Axiom 2’ (Recombination) If M1, M2, M3 and M4 ∈ M are such that
M1 + M2 = M3 + M4, then there are no y, y′ ∈ Y such that y %M1 y

′, y %M2 y
′,

y′ %M3 y and y′ �M4 y.
This axiom is a generalization of Axiom 2 and ensures that learning is done

"case-by-case". Intuitively, if two data-bases individually support the choice of y
rather than y′, then choosing a subset of cases that supports y′ over y must mean
that the rest of the cases provide support for y that more than compensates for
those in support of y′.

Together with Axioms 1, 3 and 4, this leads to the following representation:
y %M y′, if and only if∑

c∈C

M (c) v (y, c) + w (y) ≥
∑
c∈C

M (c) v (y′, c) + w (y′) , (2)

where the constants w (y) represent the decision maker’s ex-ante ranking over the
alternatives in Y.

2.4.3 Differentiating between Utility and Similarity

In many applications related to consumer choice, it is useful to decompose the
degree of support v into two components: similarity between the action under

6See Gilboa and Schmeidler [2012] and the discussion in Section 5 below.

10



consideration and the case observed and utility of the outcomes recorded in cases.
For this purpose, one assumes that, for a given decision problem p, each case is
represented by the alternative yc ∈ Y and the outcome rc ∈ R registered in case
c: c = (y; r). The set of cases is thus, C = Y × R. The set of memories or data
sets is defined as before. The representation now takes the form: y %M y′, if and
only if UM (y) ≥ UM (y′) with

UM (y) =
∑
c∈C

M (c) [u (rc)− ū] s (y, yc) . (3)

Here u : R→ R is a utility function over outcomes and ū denotes the decision
maker’s aspiration level, i.e., the utility of a neutral outcome, r̄ with u (r̄) = ū. If
all outcomes observed in the memory are neutral, all alternatives are indifferent.
Finally, s : Y ×Y → R is the similarity function defined on alternatives. The value
of the function s reflects the similarity of an alternative y under consideration with
the alternative yc observed in case c. Thus, the support of case c for the choice of
y, v (y, c) is decomposed into a similarity between the pair of alternatives s (y, yc)
and the utility net of the aspiration level obtained in case c, u (rc)− ū.

The concept of an aspiration level can be traced back to Simon [1957]. It for-
malizes the idea of satisficing behavior, i.e., the persistent choice of an alternative,
which meets aspirations, as opposed to alternatives that maximize utility. E.g., a
CEO who has a long memory of cases of satisfactory performance of his current
administrative assistant might prefer to keep his current assistant even after seeing
excellent resumes of other candidates.

The similarity function quantifies the decision maker’s similarity perception
between the choice of act yc observed in the memory and the choice of act y in
the problem at hand. It captures the idea expressed by Hume [1748] that "from
causes which appear similar we expect similar effects". For instance, a candidate
y applying for a position as an administrative assistant at a magazine may present
references yc from her previous occupation with a radio station. Although the
two jobs are not identical, they might be considered similar and, hence, the case
yc could be used to evaluate the candidate for the current position y. Distinct
candidates may also be considered similar.

Gilboa and Wakker [2002] axiomatize (3) by adding to Axioms 1–4, a fifth
axiom which ensures that the relevance of a case depends only on the problem and
the act, but not on the observed outcome. This property will fail if there are cases
in the memory which are assigned different similarity weights depending on the
outcomes observed.
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3 Case-Based Choice: Applications and Experi-

mental Studies

In this section we will briefly review applications of case-based decision theory to
economic problems and report on some experimental studies on this topic.

3.1 Applications

The first applications of case-based decision theory were related to consumer the-
ory. In this context, representation (3), which distinguishes between similarity of
cases and utilities of outcomes, is of particular relevance. Two recurrent issues
concern the long-run optimality of case-based decisions and the possible optimal-
ity of change-seeking behavior. These applications demonstrate that case-based
decisions are usually analyzed in a dynamic context, in which decisions inform
memory, while memory informs decisions. In this dynamic framework, the ques-
tion of "optimal limit behavior" arises naturally.

Gilboa and Schmeidler [2002, Chapter 6] study a repeated decision problem
with deterministic outcomes for each alternative. For a constant, but low aspi-
ration level, a consumer will persistently choose an alternative which satisfies his
aspirations, but does not necessarily maximize his utility. Such behavior captures
the idea of “satisficing behavior” as expressed by Simon [1957]. When the aspira-
tion level is sufficiently high, however, such that no alternatives generates positive
net utility, Gilboa and Pazgal [2001] show that the decision maker will choose
each alternative with a frequency inversely proportional to its (negative) utility
net of the aspiration level7. Such behavior can be interpreted as change-seeking.
Combined with an inertia assumption in the model of Gilboa and Pazgal [2001],
it can explain brand-switching behavior.

Building also on the idea of change-seeking behavior, Aragones [1997] studies
the process of emergence of ideologies, i.e., of parties who adopt the same policy
regardless of the state of the world. This leads to the division of society into
partisan voters, who vote for their preferred ideology, and swing voters, who switch
sides with every election.

More generally, Gilboa and Schmeidler [2002, Chapter 6] show that maximizing
the case-based utility function (3) sequentially allows the decision maker to obtain
a unique optimum in terms of frequencies of choice. The properties of the similar-
ity function play an important role in this process. Positive (negative) similarity

7As Gilboa and Schmeidler [2002, p. 133] note, a high aspiration level need not imply that
the alternatives bring disutility. E.g., a music lover, who prefers to listen to Beethoven and
Mahler alternatingly may very well derive a lot of pleasure from music and eventually maximize
his utility.
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between alternatives makes the choice of the more similar action less (more) de-
sirable than the action chosen before. If acts concern consumption goods, positive
(negative) similarity can be related to the consumption goods being substitutes
(complements) [see Gilboa and Schmeidler, 1997b]. When similarity effects are
strong, consumers may be willing to forego instantaneous utility from desirable
acts which are similar to acts which were chosen in the past and had delivered bad
outcomes, Guerdjikova [2007].

For the case when the aspiration level is adapted towards the latest experienced
outcomes, Gilboa and Schmeidler [2001] show that a case-based decision maker
exhibits path-dependence in his reaction to prices. In particular, a consumer who
derives satisfaction from the perceived value of a good net of its price will exhibit
a lower willingness to buy this good after a single price increase than after several
small price increases resulting in the same final price.

As already argued, optimality in the sense of choices maximizing instantaneous
utility is not a general property of case-based decision making. Jahnke et al.
[2005] analyze a production choice problem where firms learn the optimal price,
respectively quality, decision of a monopolist. They show the sensitivity of limit
behavior with respect to the specification of the model of learning.

Gilboa and Schmeidler [1996] describe a process of adaptation of the aspiration
level which in the limit leads to a choice of alternatives maximizing instantaneous
utility. Such a process must (i) update the aspiration level upwards infinitely often
in increasingly larger intervals in order to prevent the decision maker from being
suboptimally satisfied with an inferior alternative and (ii) adapt the aspiration
level to the maximal observed average payoff in order to avoid permanent switching
at an excessively high aspiration level. Guerdjikova [2008] extends this result
to a more general class of similarity functions. Pazgal [1997] applies the same
adaptation rule in the context of strategic interaction and shows that it selects a
Pareto-optimal equilibrium in coordination games.

Several papers embed case-based decisions into a social learning framework.
Gilboa et al. [2015a] show that the standard problem of utility maximization sub-
ject to a budget constraint is NP-complete. As an alternative, they propose that a
consumer might use observations of the behavior of other households as a guideline
for choosing a consumption bundle. For each available observation, the consumer
would identify the closest consumption bundle within his budget set. To arrive at
a choice, the resulting bundles would then be weighed according to the perceived
similarity to each of the households. While the resulting choice can be represented
as a solution of a constrained utility maximization problem with appropriately
chosen constraints, the notion of optimality differs from the classical one.

An important special case of social learning occurs in networks. Blonski [1999]
and Krause [2009b] model social learning in networks using different similarity
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functions to capture differences in social structures. Blonski [1999] examines in
detail how the structure of the network combined with the aspiration level in-
fluences the learning of the optimal alternative. He shows that for a complete
network, the limit choice depends on the aspiration level as well as on the share
of the population choosing the optimal alternative. In the case of a star-shaped
network, the choice of the central element can influence the long-run behavior of
the population. Finally, in a model with δ-neighborhoods, the adoption of the
optimal alternative is increasing in the size of the neighborhood δ, except when
the network becomes complete and multiplicity emerges. Krause [2009b] simulates
the learning process with a random network structure. He shows that for obser-
vations which are independently distributed across individuals, social learning of
the optimal alternative (optimal herding) occurs. However, excessive herding may
occur in scenarios where the information from others is useless [see also Krause,
2009a].

3.2 Experimental studies

Several experimental studies find support for case-based decisions. Grosskopf et al.
[2015] show that memory and similarity considerations play a role in one-shot de-
cisions of a monopolist for allocating production across several markets, especially
when feedback on actual past choices is not available. Ossadnik et al. [2013] find
that in a stylized environment (choice between bets on the color of balls drawn
from an urn with unknown payoffs) case-based reasoning explains behavior in 80%
of the cases compared to max-min, min-max, α-max-min or reinforcement learn-
ing. Nevertheless, in terms of payoffs, modes of reasoning other than case-based
decision theory perform better. Pape and Kurtz [2013] simulate case-based choices
on data from psychological human classification learning experiments. They find
that case-based decisions explains the data better than leading models in psychol-
ogy. They fit the parameters of the model (similarity, memory, aspiration level)
that best explain the data. Bleichrodt et al. [2017] provide a methodology for iden-
tifying the similarity function from experimental data and apply it to predicting
housing prices across regions in the Netherlands. They find that the only predic-
tion of case-based decision theory that can be rejected is the Combination Axiom.
This occurs when similarity has multiple dimensions and predictions might differ
depending on the dimension chosen as dominant. The axiom cannot be rejected
for simpler environments. As Bleichrodt et al. [2017, p. 145] note "[...] such a vio-
lation is similar to the violations of separability over disjoint events (the sure-thing
principle, or independence) found for expected utility, and is equally unsurprising."
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4 Case-Based Predictions

Similar to subjective expected utility theory which neither restricts the decision
maker’s subjective probability distribution nor provides any hint regarding its
shape, the first version of case-based decision theory treats similarity perceptions
as subjective without regard to whether they are in any sense adequate or appro-
priate for the problem under consideration. Indeed, in the context of individual
consumption choice there is little objectivity as to what qualifies as an "opti-
mal" choice for a subject. The definition of rationality in Gilboa and Schmeidler
[2002, pp 17-19] emphasizes the subjectivity of similarity even further: if a decision
maker acts in a way that he considers rational and cannot be persuaded that an
alternative course of action can improve his well-being, he should be considered
rational. The example of "brand-switching" behavior, (Gilboa and Schmeidler
[1997a]), highlights this point: presuming that each alternative has its own in-
trinsic value and that a consumer should consistently choose the brand with the
highest value, an outside observer may deem a consumer irrational who constantly
switches brands. Yet, a consumer who has preferences for variety may prefer con-
suming a good for a certain number of periods and to switch brands once she gets
tired of it. Over time such a strategy may well maximize utility.

In contrast, applying case-based decision theory in the context of predictions
provides a framework where questions about the appropriateness of similarity func-
tions can be meaningfully addressed. If alternatives are different predictions from
which a decision maker has to choose conditional on a data-set, then similarity
influences the likelihood of making a good prediction.

Reinterpreting the cumulative utility in the basic case-based decision model
(Gilboa and Schmeidler [2002, Chapter 3]) as likelihood yields a model of induc-
tive inference (Gilboa and Schmeidler [2003]) which includes well-known statistical
procedures such as maximal likelihood as well as kernel estimation or kernel clas-
sification as as special cases. In a similar vein, Billot et al. [2005] provide a model,
in which the case-based decision maker uses similarity-weighted frequencies of past
observations in order to predict the probability distribution over outcomes.

In this section, we will discuss the two most prominent applications of case-
based decision theory to the problem of prediction Gilboa et al. [2006] and Billot
et al. [2005].

4.1 Case-Based Predictions as Case-Based Decisions
(Gilboa et al. [2006])

When the decision maker has to choose from a set of alternative predictions, as
in Example 2 (Medical treatment) where the physician had to make a diagnosis
and choose the appropriate treatment, a case c = (pc; rc) consists of a vector of
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observable characteristics, pc, and an outcome, the correct diagnosis or prediction
for this case, rc. The decision maker (physician) can use the observable charac-
teristics (of the patient) in order to predict the outcome in the relevant case p.
The preference representation is composed of (i) the similarity s (p, pc) between
characteristics of the case under consideration p and the cases from the data-set pc,
and (ii) the negative of the distance between the prediction under consideration y
and the outcome obtained in the case rc, − (rc − y)2,

Up,M (y) = −
∑
c∈C

M (c) (rc − y)2 s (p, pc) .

Gilboa et al. [2006] axiomatize this rule, using Axiom 1-3 together with a fourth
axiom called Averaging which states that for data sets M in which only a single
set of characteristics p has been observed with different realizations of outcomes
r, a prediction y is preferred to y′ iff y is closer to the average outcome in M ,∑

c∈C M(c)rc∑
c∈C M(c)

.

In the special case of this representation, where the set of outcomes consists
of two elements, R = {0; 1}, and y denotes the decision maker’s belief regarding
the probability of outcome r = 1, these four axioms are equivalent to prediction y
being preferred to prediction y′ iff y is closer to the similarity-weighted average in
M than is y′:

y % My
′ iff (4)∣∣∣∣y − ∑c∈C s (pc)M (c) rc∑

c∈C s (pc)M (c)

∣∣∣∣ ≤ ∣∣∣∣y′ − ∑c∈C s (pc)M (c) rc∑
c∈C s (pc)M (c)

∣∣∣∣
where, for simplicity, we suppress the notation for the characteristics of the current
case: (pc) = s (p, pc).

4.2 Case-Based Probabilities over Outcomes
(Billot et al. [2005])

An interesting application of case-based decision-making concerns the derivation
of probability distributions over outcomes from data. The representation of pref-
erences among predictions in Equation 4 provides a link between information in
the form of data and probabilistic beliefs. This link is further developed by Billot
et al. [2005]8.

8Billot et al. [2005]work with a finite set of outcomes containing at least 3 elements, |R| ≥ 3.
Gilboa et al. [2006] provide an axiomatization for |R| = 2, while Gilboa et al. [2008] extend the
analysis to the case of a continuously distributed random variable.
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Billot et al. [2005] consider a decision maker who wishes to predict the prob-
ability distribution over outcomes. The set of alternatives is the simplex over a
finite set of outcomes R, i.e., Y =∆|R|−1. Billot et al. [2005] assume that the order
in which data arrives is irrelevant. Hence, each data-set can be represented by a
function M ∈M as above.

Rather than applying axioms to a preference relation over predictions, Billot
et al. [2005] directly study the mapping y : M → ∆|R|−1, which associates with
each potential memory M ∈M a prediction y ∈ Y of the decision maker. Instead
of the combination axiom (Axiom 2), Billot et al. [2005] assume a Concatenation
Axiom which requires that for any M ,M ′ ∈M, there exists an α ∈ (0, 1) such that
y (M +M ′) = αy (M)+(1− α) y (M ′). This axiom, together with the requirement
that at least three of the vectors y (M) are linearly independent, ensures that y (M)
can be written as

y (M) (r) =

∑
c∈C s (c) ŷc (r)M (c)∑

c∈C s (c)M (c)
,

where s (c) is the perceived similarity between case c and the current prediction,
and ŷc (r) denotes the probability that the decision maker would have been assigned
to outcome r if the memory consisted of the single case c. Setting ŷc (r) = δr (the
Dirac measure concentrated on outcome r), one obtains the generalization of (4)
to an arbitrary finite set of outcomes as a special case.

This representation allows one to view probabilities as similarity-weighted fre-
quencies. In this context, rationality may be understood as the ability to make
the best possible predictions given the data. In as far as data are generated by
a process which satisfies Hume’s premise that "causes which appear similar" gen-
erate "similar effects", the decision maker’s predictions will be correct in as far
as his similarity judgments are aligned with those governing the data-generating
process.

This result suggests that the case-based decision theory might fully resolve the
issue of obtaining subjective probabilities based solely on data and without an
underlying state-space. This is indeed true, when each observation in the data
is compatible with a single state. Yet, for the case when observations consist of
events, Gilboa and Schmeidler [2002] demonstrate that while predictions can be
represented by a measure, this measure need not be non-negative.

The Concatenation Axiom proposed in Billot et al. [2005] treats frequencies in-
dependently of the number of observations on which they are based. Thus, it does
not matter for the decision maker whether the predicted probability of an outcome
is based on a data set with 10 or with 1000 observations as long as the frequency
of cases is the same. Eichberger and Guerdjikova [2010] modify the Concatena-
tion Axiom by restricting it to data sets with an equal number of observations.
With this modified Concatenation Axiom one obtains a set of similarity-weighted
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frequencies as probability distributions over outcomes. Moreover, the predicted
probabilities vary with the number of observations. This generalization of Billot
et al. [2005] allows one to incorporate ambiguity into case-based predictions and
to model learning processes.

To test the presence of ambiguity in information conveyed by data, Arad and
Gayer [2012] design an experiment in which the precision of the data observed by
subjects varies. They show a dependence between the imprecision of the data and
the ambiguity aversion displayed by the subjects.

A further link between case-based decisions and non-additive probabilities is
provided by Gayer [2010], who shows that the use of similarity to form proba-
bilistic judgments leads to probability-weighting functions, similar to those used
in prospect theory.

4.3 Applications of Case-Based Predictions

The case-based approach to predictions and belief formation has been used in
economic applications. Based on the theoretical work (Gilboa et al. [2006, 2011]),
Gayer et al. [2007] use housing market data in Tel-Aviv to find out whether case-
based reasoning by analogy to similar cases predicts real-estate prices better than
rule-based reasoning. They find this hypothesis confirmed in the rental market
for apartments but not for sales. Lovallo et al. [2012] also compare analogy-based
decisions in two empirical studies and find that case-based predictions make better
forecasts.

Eichberger and Guerdjikova [2013] model decision making under ambiguity
based on available data. Decision makers choose according to an α-max-min rep-
resentation of preferences, in which beliefs combine objective characteristics of
the data (number and frequency of observations) with subjective features of the
decision maker (similarity assessment of observations and perceived ambiguity).

Eichberger and Guerdjikova [2012] study the process of technological adapta-
tion in response to a change in climate conditions. In a model with case-based de-
cision makers, some with optimistic and others with pessimistic attitudes towards
ambiguity, both optimists and pessimists are crucial for a successful adaptation.
Learning is induced by optimists, who are willing to try out new technologies
for which there is little evidence available. Thus, optimists provide the public
good of information, in contrast pessimists guarantee stability since they choose a
technology, once adopted, persistently in the long-run.

For an economy with asset markets where investors have to allocate funds
between a safe and a risky asset, Eichberger and Guerdjikova [2018] study how
ambiguity and ambiguity attitudes affect asset prices when consumers form expec-
tations based on a data set of past observations. In an overlapping generations
economy they describe limiting asset prices depending on the proportion of op-

18



timistic and pessimistic investor types. One can show that, with long memory,
the market does not select for ambiguity neutrality. When perceived ambiguity
is sufficiently small, but positive, only pessimists survive and determine prices in
the long-run. In contrast, with a short one-period memory, equilibrium prices are
determined by Bayesians; yet, the average price of the risky asset is lower than its
fundamental value.

4.4 Learning the Similarity Function and Second-Order In-
duction

For situations, in which the data are indeed generated by an underlying similarity
function, Gilboa et al. [2006], Lieberman [2010] and Gilboa et al. [2011] develop a
method for estimating the parameters of the similarity function from data.

Second-order induction, i.e., learning the correct similarity has also been dis-
cussed more generally in the literature. For the case of i.i.d. data containing
numerous observations and relatively few explanatory variables, Argenziano and
Gilboa [2019] show that the learning process converges to a unique limit. However,
when observations are few and there are many explanatory variables, the process
has a non-unique limit and determining the correct similarity function is compu-
tationally hard, Argenziano and Gilboa [2019]. Similarly, Aragones et al. [2005]
prove that identifying analogies in a data set is an NP-hard problem.

These findings can explain the use of counterfactuals, Tillio et al. [2013], fact-
free learning, as well as the role of precedent in situations involving strategic
interaction, Argenziano and Gilboa [2018].

5 Case-Based Reasoning about Theories

So far, we showed that the Case-Based Decision Theory provides a model for
making choices and generating predictions in decision situations for which the
Savage state-space model is not well adapted. Furthermore, case-based learning
can lead to optimal decisions in the limit, either by appropriately adapting the
aspiration level or by learning the appropriate similarity function. More recently,
case-based decision making has been applied to the problem of inductive inference
over theories.

5.1 The Need for Subjectivity

The general representation in (1) allows for a reinterpretation of the similarity
function as a likelihood of a case in the light of a theory. When choosing among
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theories y, one may take the similarity between a theory y and a case c as a likeli-
hood relation. Setting v (y, c) = log p (c | y) to be the logarithm of the probability
of observation c given theory y implies that the decision maker chooses the theory
with the maximal likelihood given the data (see Gilboa and Schmeidler [2003]).
While this specification closes the gap between case-based and statistical reason-
ing, it turns out that this decision rule need not lead to optimal choices in the
limit.

In this spirit, in 2012, Gilboa and Samuelson consider a decision maker who
applies the maximum likelihood rule in order to sequentially reject theories which
do not fit the data. The remaining theories can then be used to make a prediction.
When the set of potential theories is sufficiently rich, however, the maximum
likelihood rule performs no better than chance: the decision maker always finds
a large set of theories that match the data, and, thus, have maximal likelihood.
Yet these theories differ in their description of the future and may lead to wrong
predictions. Thus, Gilboa and Samuelson [2012] argue for a subjective ex-ante
ordering on the set of theories, which may serve as a tie-breaker when several
theories have maximal likelihood. In Gilboa and Schmeidler [2010] such an ordering
and a set of axioms are provided which leads to the representation (2). The
coefficients w (y) of this representation can be interpreted as the ex-ante subjective
evaluation of theory y.

Gilboa and Schmeidler [2010] suggest to interpret these coefficients as a measure
of the simplicity of the theory in the spirit of Akaike’s information criterion (Akaike
[1974]), or Kolmogorov’s complexity measure (minimal length of the program to
generate the theory’s prediction, Kolmogorov [1965]), or the minimal length of
description9, Rissanen [1978]. Among the theories with maximal likelihood for the
observed sample, the decision maker chooses the "simplest" one according to the
adopted criterion. Another possible interpretation is that of a Bayesian prior10,
with weights equal to the logarithm of the initial probability assigned to each
theory.

Gilboa and Samuelson [2012] build on this idea and study the conditions nec-
essary for learning the best theory. They find that the purely objective data-based
criterion of maximum likelihood does not ensure optimal learning in the long run,
neither in the deterministic nor in the stochastic case. Two forces may inhibit
learning: (i) the decision maker may be using the correct theory together with
other theories, thus, making wrong predictions on average; or (ii) the decision
maker may discard the correct theory, e.g., in a stochastic setting, the maximum
likelihood criterion will, eventually, almost surely reject the correct theory.

9Gilboa and Schmeidler [2010, p. 1766] discuss some of the problems that arise when mea-
suring the complexity of a theory.

10Note however, that the axiomatization does not fix the prior in a unique way [see Gilboa
and Schmeidler, 2010, p. 1766].
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In a deterministic setting, introducing a subjective order ensures continued
learning when the set of theories with maximal likelihood is not a singleton. A
sufficient condition for this result requires a subjective order with finite better
sets. This condition is quite intuitive, since it will restrict the decision maker
to choose from a finite set if there are multiple theories with maximal likelihood.
Subsequently, the decision maker can explore this set further. If one of the theories
in this set is correct, it will continue to be of maximal likelihood and will be chosen
eventually, while the incorrect ones will be rejected. In contrast, if none of the
theories in this set are correct, an alternative theory will eventually gain maximal
likelihood and the set will be discarded in favor of an other indifference class.
This process will, eventually, converges to the choice of the correct theory [see
Proposition 3.2 in Gilboa et al., 2015b, p. 59].

In the stochastic setting, an interesting result obtains when preferences over
theories y are represented by the average11∑

c∈CM (c) v (y, c)∑
c∈CM (c)

+ αw (y) ,

where v (y, c) = log p (c | y) as before. The parameter α is the weight assigned
to the subjective preference (i.e., complexity considerations or the ex-ante prior).
As α → 0, Gilboa and Samuelson [2012] show that the limit probability for the
decision maker’s prediction being correct converges to the probability under the
correct theory.

In the special case of a Bayesian decision maker, who starts with a prior prob-
ability on the set of theories and uses this rule as a subjective order, either lexico-
graphically in the deterministic case or with a vanishing weight in the stochastic
case, optimal learning obtains.

The case-based decision theory challenges Bayesian reasoning and in particular
its requirement for subjective assessment of probabilities even in the absence of
data or in disregard of available data. Interestingly, the result of Gilboa and
Samuelson [2012] shows that a certain amount of subjectivity is necessary for
successful learning.

5.2 Choosing Between Different Modes of Reasoning

Gilboa and Samuelson [2012] treat the case in which theories, while making differ-
ent predictions, are all of the same type: they assign a probability to a sequence
of observations. Gilboa, Samuelson and Schmeidler (2013) relax this condition:
rather than theories, they consider conjectures, i.e., predictions that the history

11The average is taken so as to avoid that the likelihood of a theory converges to 0 as the
number of observations increases
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at a given time will belong to a certain event. Such conjectures can be assigned
weights using a credence or belief function12.

Conjectures can be classified into several categories. Bayesian conjectures refer
to a single state and can be verified at each history. Case-based conjectures do
not have this property: rather, they condition their prediction on observing certain
characteristics at two separate time periods, upon which the outcomes in these two
periods are predicted to be identical. Thus, case-based conjectures refer to events
rather than single states. Clearly, unless the specific characteristics have indeed
been observed on the relevant path, a case-based prediction cannot be verified.
Finally, rule-based conjectures relate the value of the observed characteristic at a
given time t to the observed value of the outcome at that same time. They have
an "if...then"-structure. Similarly to case-based predictions, they can be vacuous,
when they only apply to certain characteristics, but not to others. They can also
encompass events.

Theories or models can now be represented as combinations of conjectures
of various types, where the weight of each conjecture is defined by the credence
function. As information accumulates, some conjectures are rejected and assigned
a weight of 0, whereas the weight assigned to the unrefuted ones is updated. Thus,
the paper presents a general framework allowing to explore the decision process of
a decision maker who employs different types of conjectures to form beliefs.

5.2.1 Bayesianism versus Case-Based Reasoning

Gilboa et al. [2013] then ask which type of conjectures retain positive weights in the
long-run. Under the condition that for the set of Bayesian conjectures, the ratio
of credences assigned to histories of the same length is bounded by a term that is
polynomial in time, and a similar constraint for the set of case-based conjectures,
the authors show that case-based reasoning will prevail with the credence assigned
to Bayesian conjectures converging to 0. The clue to this result lies in the fact that
the number of Bayesian conjectures increases exponentially with time, whereas the
number of case-based conjectures is polynomial in time. Thus, under the restriction
imposed on the weights assigned on conjectures of a given type, on almost every
history, the weight of the Bayesian conjectures consistent with this history declines
exponentially, whereas that of the case-based ones drops polynomially. In the limit,
the decision maker attributes all weight to case-based predictions.

Interestingly, the same result applies even for the case of an i.i.d. process, for
which the decision maker knows the probability distribution of the outcome con-

12A belief function, through its Möbius inverse, specifies a probability function on a σ-algebra
of events. In the special case, where only singletons are assigned a strictly positive probability,
the belief function is an additive probability, see Dempster [1967], Shafer [1967] and Jaffray
[1989].
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ditional on the observed characteristic and uses this distribution to determine the
relative weight of the Bayesian conjectures. As long as the decision maker assigns
a strictly positive credence to case-based reasoning (and the relative weights of
case-based conjectures are bounded polynomially as above), in the limit he will
reason in a case-based fashion, assigning all the weight to case-based conjectures.
This result holds even if the decision maker’s Bayesian beliefs are correct. More-
over, the decision maker will be conscious of this transition towards case-based
reasoning. Notably, case-based reasoning prevails when the decision maker faces
a "large" (exponentially increasing with time) number of Bayesian conjectures,
among which he cannot meaningfully discriminate. If, in contrast, the decision
maker assigns a credence close to one to a single state and the state is indeed
realized, then Bayesian reasoning will remain dominant.

This result illustrates the difference between the notion of Bayesian conjectures,
which are interested in predicting the exact history and can thus be refuted based
on a final number of observations and the standard notion of a theory (also used
in the stochastic setting of Gilboa and Samuelson [2012], which concerns the limit
distribution of a process and cannot be rejected with certainty based on finite
histories13.

5.2.2 Cases versus Rules

Gayer and Gilboa [2014] use a similar approach to compare rule-based and case-
based conjectures. Rules correspond to deterministic theories in the language of
Gilboa and Samuelson [2012] and thus make a prediction for every period. Thus,
for each history a theory is either "refuted" or "unrefuted". Case-based reasoning
is modeled as in Gilboa et al. [2013] by assigning a strictly positive credence to
all simple case-based conjectures. When the process is exogenous, and the true
state is one, on which some theory described by a rule is never refuted, case-based
reasoning is eventually assigned 0 credence and the decision maker learns the rule
corresponding to the correct theory.

Defining three types of states: those on which the weight on case-based predic-

13In particular, although the theory that the probability of a coin landing heads is 1
2 might

be correct and the decision maker might know this, the Bayesian conjecture for time t has to
be more specific than this and explicitly state the t-period sequence of heads and tails. But the
number of such sequences consistent with a limit frequency of 1

2 increases exponentially with
t and only a single one is consistent with the actually observed history. At the same time, a
case-based conjecture only requires the decision maker to state whether the outcome at t will be
the same (or distinct) from that at time t′ < t. The number of such conjectures for time t is
(t−1)(t−2)

2 , which is a quadratic expression in t. The assumption imposed by Gilboa, Samuelson
and Schmeidler (2013) on the weights of different case-based conjectures imply that the weight
of the correct case-based conjecture based on the outcome at t−1 converges to 0 at a rate, which
is at most polynomial. This gives the desired result.

23



tions is higher than that of rule-based from some time on, the reverse type, and
the type of states on which neither mode of reasoning dominates in the long-run,
Gayer and Gilboa [2014] show that all three types of states are dense. Never-
theless, in a measure-theoretic sense14, case-based models will accrue a weight of
1 over time. This result is based on arguments similar to those establishing the
predominance of case-based reasoning in the presence of Bayesian conjectures.

In contrast, when the decision maker is predicting an endogenous process, in
which observations depend on the agent’s predictions, only rule-based theories will
be assigned a strictly positive mass in the limit.

6 Conclusion

The theory of case-based decision making originated as an alternative to the ap-
proach based on state-contingent outcomes (act) proposed by Savage [1954]. Mod-
eling all possible contingencies in an uncertain situation amounts to knowing all rel-
evant factors which might influence the outcome of an action under uncertainty. In
Savage’s theory, uncertainty is allowed to affect only the likelihood of events which
are known to be relevant. This explains the well-known difficulties of Bayesian
theory when updating on data which are inconsistent with the states.

One of the surprising recent developments in case-based decision theory points
to its potential to deal with unforeseen contingencies. Gilboa et al. [2017] study
a model of decision-making under uncertainty where the agent evaluates possi-
ble actions both by their case-based similarity and a set of “scenarios” affecting
outcomes. “Scenarios” are similar to states in determining the outcomes of an ac-
tion, yet they need not be mutually exclusive nor need they completely determine
outcomes. Instead, the authors appeal to observable ”eventualities” which link
scenarios to the data of cases.

These new developments relate state-contingent outcomes in the spirit of Sav-
age [1954] with the case-based theory of Gilboa and Schmeidler [2002]. Indeed,
this new approach may help to bridge some of the inconsistencies between objec-
tive data and subjective “scenarios” involved in “unforeseen contingencies” and
“undefined updates”. Moreover, these new developments may be of practical use
for pattern recognition techniques in Artificial Intelligence and Deep Learning, an
application of case-based reasoning which we did not review in this survey (see
e.g. Hüllermeier [2007]).

14In general, the concepts of dense and meager sets are orthogonal to measure-theoretic con-
cepts, see Marinacci [1994] for an extensive discussion of the issue.
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