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Abstract In this paper, we tackle the problem of guaranteed simulation of
Cyber-Physical Systems (CPS), an important model for current engineering
systems. Their always increasing complexity leads to models of higher and
higher dimensions, yet typically involve multiple subsystems or even multiple
physics. Given this modularity, we more precisely explore cosimulation of such
dynamical systems, with the aim of reaching higher dimensions of the simu-
lated systems. In this paper, we present a guaranteed interval based approach
for cosimulation of continuous time systems. We propose an algorithm which
first proves the existence, and returns an enclosure of global solutions, using
only local computations. This mitigates the curse of dimensionality faced by
global (guaranteed) integration methods. Local computations are then real-
ized with a safe estimate of the other sub-systems until the next macro step.
We increase the accuracy of the approach by using an interval extrapolation
of the state of the other sub-systems. We finally propose some possible further
improvements including adaptive macro step size. Our method is fully guar-
anteed, taking into account all possible sources of error. It is implemented in a
C++ prototype relying on the DynIbex library, and we illustrate our approach
on multiple examples of the literature.
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1 Introduction

Context Modern system design involves more and more model based design
[35,45]. In a few words, model based design requires modeling a plant, ana-
lyzing and synthesizing a controller for the plant, simulating the plant and
controller, and finally integrating all these phases by deploying the controller.
Such design process requires strong safety guarantees in each part of the design
process, particularly when the final system in safety critical. Many dynamical
systems are modelled with differential equations, and current controller syn-
thesis methods are performed and applied with computers. Systems involving
physical and software components belong to the class of cyber-physical sys-
tems [37]. In this paper, we present some tools with strong safety guarantees
for the simulation of the plant and controller. The main issue faced with strong
guarantees and formal methods in general is usually the scalability [2,31,30],
meaning that formal methods can only be applied to systems of dimension
much smaller than industrial scale models. In order to overcome this issue,
we prose to apply cosimulation principles in a guaranteed way, so that our
methods get closer to applicability on industrial scale models.

In a cosimulation setting, the global system is divided in (or is composed
of different) sub-systems, for which different simulation units (and possibly
schemes) are used. This type of approaches is particularly appropriate for two
different types of systems:

i) Systems presenting different types of dynamics, such as stiff [29] and
non-stiff [28] dynamics, or multi-physics dynamics such as fluid-structure in-
teraction [13], but one could add linear and nonlinear, symplectic or not, etc. In
this case, they are particularly appropriate because they allow to use e.g. im-
plicit and explicit schemes simultaneously for the different parts of the system,
allowing to spend less time and energy on the easier parts of the simulation.
The fluid-structure interaction [32] is one such interesting example since a fluid
in usually modelled using and Eulerian description, while structures use La-
grangian descriptions. The numerical methods used to simulate both systems
are thus inherently different .

ii) Systems modelled by large scale ordinary differential equations (ODEs),
such as discretized partial differential equation (PDE) models for example used
in structural mechanics computations [48,6]. Often, these models can be de-
composed in sub-problems, for example using domain decomposition methods
[46].

Cosimulation consists in enabling simulation of a coupled system through
the composition of simulators, or simulation units (SUs) [27]. SUs are given
an initial state and an input, and produce an output and a simulation trace.
SUs advance their simulation without exchange of information with the other
SUs for given amounts of time that, in this paper, we call macro steps. They
exchange values of their outputs only at the end of these (macro) steps, usually
called communication times. In order to develop a guaranteed procedure in this
setting, the exchange of information done at communication times is crucial,
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and must contain all the information needed to safely simulate over the next
macro step.

Given an ODE of the form ẋ(t) = f(t, x(t)), and a set of initial values
X0, a symbolic (or “set-valued” since the symbols used here are sets) integra-
tion method consists in computing a sequence of approximations (tn, x̃n) of
the solution x(t;x0) of the ODE with x0 ∈ X0 such that x̃n ≈ x(tn;xn−1).
Symbolic integration methods extend classical numerical integration methods
which correspond to the case where X0 is just a singleton {x0}. The simplest
numerical method is Euler’s method in which tn+1 = tn +h for some step-size
h and x̃n+1 = x̃n + hf(tn, x̃n); so the derivative of x at time tn, f(tn, xn), is
used as an approximation of the derivative on the whole time interval. This
method is very simple and fast, but requires small step-sizes h. More advanced
methods coming from the Runge-Kutta family use a few intermediate compu-
tations to improve the approximation of the derivative. The general form of
an explicit s-stage Runge-Kutta formula of the form x̃n+1 = x̃n + hΣs

i=1biki
where ki = f(tn + cih, x̃n + hΣi−1

j=1aijkj) for i = 2, 3, ..., s. A challenging ques-
tion is then to compute a bound on the distance between the true solution and
the numerical solution, i.e.: ‖x(tn;xn−1)− xn‖. This distance is associated to
the local truncation error (LTE) of the numerical method.

Contribution In this paper, we suppose that the system is provided with a
suitable decomposition, and we propose to use SUs that rely on symbolic (set-
valued) Runge-Kutta based integration methods. In this case, the computation
of the LTE is the most time consuming task. For each integration time step, it
requires the computation of the Picard-Lindelöf operator, and its evaluation
on the truncation error. The computation times quickly blow up with the di-
mension of the ODE, and increase exponentially with the order of the scheme,
limiting in practice the dimensions of the ODE to a few dozens, or even less if
the order of the scheme exceeds 4. The Picard-Lindelöf operator merely over-
approximates (bounds) the state of the system over a given time step. This
operator cannot be computed on a full composed (industrial scale) system.
We thus propose to distribute its computation using local computations in
an iterative way, and call this procedure the cross-Picard operator, which is
the main ingredient of guaranteed cosimulation. The cross-Picard operator is
used at communication times to yield over-approximations of the global state
of the system over the next macro-step (using only local computations). Lo-
cal Picard-Lindelöf operators can then be used with safe approximations of
the global state as parameters. Once the cross-Picard operator is established,
further improvements are proposed, such as the use of extrapolation of in-
puts based on interpolation polynomials in order to improve the accuracy of
the cosimulation. This allows to use past macro steps information in order
to improve the input bounding of the next macro step. We also discuss some
practical issues regarding macro step size choice, as well as the initialization
of the cross-Picard computation.
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Related work Computing the solution at discrete times of a linear ODE when
the initial condition is given as a box can be easily done using zonotopes [5,24,
36], and this, because we know exactly the solution of the ODE, and can be
written as an affine transformation. Yet, generally, the exact solution of non-
linear differential equations cannot be obtained, and a numerical integration
scheme is used to approximate the state of the system.

Most of the recent work on the symbolic (or set-valued) integration of
nonlinear ODEs is based on the upper bounding of the Lagrange remainders
either in the framework of Taylor series or Runge-Kutta schemes [3,9,11,14,
15,41,2,19]. Sets of states are generally represented as vectors of intervals (or
“rectangles”) and are manipulated through interval arithmetic [42] or affine
arithmetic [18]. Taylor expansions with Lagrange remainders are also used in
the work of [3], which uses “polynomial zonotopes” for representing sets of
states in addition to interval vectors.

The guaranteed or validated solution of ODEs using interval arithmetic is
studied in the framework of Taylor series in [42,44,38,20], and Runge-Kutta
schemes in [10,23,9,2]. The former is the oldest method used in interval anal-
ysis community because the expression of the remainder of Taylor series is
simple to obtain. Nevertheless, the family of Runge-Kutta methods is very
important in the field of numerical analysis. Indeed, Runge-Kutta methods
have several interesting stability properties which make them suitable for an
important class of problems. The recent work [1] implements Runge-Kutta
based methods which prove their efficiency at low orders and for short simu-
lations (fixed by the sampling period of the controller).

In the methods of symbolic analysis and control of hybrid systems, the way
of representing sets of state values and computing reachable sets for systems
defined by autonomous ordinary differential equations (ODEs) is fundamental
(see for example [25,4]). Many tools using, among other techniques, lineariza-
tion or hybridization of these dynamics are now available (e.g., SpaceEx [22],
Flow* [15], iSAT-ODE [21]). An interesting approach appeared recently, based
on the propagation of reachable sets using guaranteed Runge-Kutta methods
with adaptive step-size control (see [9,33]). An originality of our work is to use
such guaranteed integration methods in a cosimulation framework. This notion
of guarantee of the results is very interesting, because it allows applications in
critical domains, such as aeronautical, military and medical ones.

Cosimulation has been extensively studied in the past years [27,26], and has
been reported in a number of industrial applications (see [26] for an extensive
list domain applications and associated publications). However, most of the
uses and tools developed rely on the FMI/FMU standard [47,7,12], which do
not allow guaranteed simulation. To our knowledge, guaranteed cosimulation
of systems has never been studied, and is the main original contribution of
this paper.

However, compositional principles are close to the ideas we use here. A
recent work [17] proposes to safely simulate nonlinear systems by using hybrid
automata abstractions that can be computed in a decomposed (compositional)
way. Similarly in [16], compositional abstractions are computed, but the ab-
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stractions are performed using relations expressed in linear arithmetic. In [8],
numerical integration is performed locally by using a splitting of the vector
field that can also be performed in a compositional way. Nevertheless, none of
these works perform actual simultaneous simulations, but rather rely on pre-
computations and abstractions. The work closest to guaranteed cosimulation
is the error analysis carried out in [7], even if it does not provide any formal
guarantees.

Organization of the paper In Section 2, we present some notations and prelim-
inaries before introducing the mathematical setting classically used for (guar-
anteed) numerical simulation and for cosimulation. In Section 3, we give the
main ideas that are used in guaranteed Runge-Kutta based integration, as
well as its limits. The main contribution is presented in Section 4, in which
we present the computation of the cross-Picard operator, the cosimulation or-
chestration, as well as the the practical improvements that can be used. We
present some numerical applications issued from the literature in Section 5,
and we conclude in Section 6.

2 Problem setting

2.1 Notations and preliminaries

The simplest and most common way to represent and manipulate sets of values
is interval arithmetic (see [42]). An interval [x] = [x, x] defines the set of reals
x such that x ≤ x ≤ x. IR denotes the set of all intervals over reals. The
diameter or the width of [x] is denoted by w([x]) = x− x.

Interval arithmetic extends to IR elementary operators over R. For in-
stance, the interval sum, i.e., [x1] + [x2] = [x1 + x2, x1 + x2], encloses the
image of the sum function over its arguments. Considering a generic operator
⊕ on R, its interval extension is obtained as follows:

[x1]⊕ [x2] = [min{x1 ⊕ x2, x1 ⊕ x2, x1 ⊕ x2, x1 ⊕ x2},
max{x1 ⊕ x2, x1 ⊕ x2, x1 ⊕ x2, x1 ⊕ x2}]

An interval vector or a box [x] ∈ IRn, is a Cartesian product of n intervals.
The enclosing property basically defines what is called an interval extension
or an inclusion function.

Definition 1 (Inclusion function) Consider a function f : Rn → Rm, then
[f ] :IRn → IRm is said to be an extension of f to intervals if

∀[x] ∈ IRn, [f ]([x]) ⊇ {f(x),x ∈ [x]} .

It is possible to define inclusion functions for all elementary functions such
as ×, ÷, sin, cos, exp, etc. The natural inclusion function is the simplest to
obtain: all occurrences of the real variables are replaced by their interval coun-
terpart and all arithmetic operations are evaluated using interval arithmetic.



6 Adrien Le Coënt et al.

More sophisticated inclusion functions such as the centered form, or the Taylor
inclusion function may also be used (see [34] for more details).

Finally, combining the inclusion function and the rectangle rule, an integral
can be bounded as follows:∫ b

a

f(x) dx ∈ (b− a).[f ]([a, b])

2.2 Guaranteed simulation objective

We introduce the Initial Value Problem, which is the main problem we want
to solve.

Definition 2 (Initial Value Problem (IVP)) Consider an ODE with a
given initial condition

ẋ ∈ f(t, x, p) with x(0) ∈ [x0], p ∈ [p], (1)

with f : R+×Rd×Rm → Rd assumed to be continuous in t and d and globally
Lipschitz in x. We assume that parameters p are bounded in [p] (used to rep-
resent a perturbation, a modeling error, an uncertainty on measurement, . . . ).
Solving an IVP consists in finding a function x(t) described by Equation (1)
for all perturbation p lying in [p] and for all the initial conditions in [x0] ⊆ Rd.

Since this problem cannot be solved exactly, numerical schemes are used.
In our case, the Runge-Kutta schemes we use return sets of boxes {[xn]}n that
cover the possible trajectories for a given time interval [0, H]: for all t ∈ [0, H],
x(t) ∈ [xn] for some n (we leave the number of covering boxes arbitrary for
now, see an illustration Figure 1).

We now suppose that the dynamics can be decomposed as follows:

ẋ1 ∈ f1(t, x1, u1) with x1(0) ∈ [x01], u1 ∈ [u1],

ẋ2 ∈ f2(t, x2, u2) with x2(0) ∈ [x02], u2 ∈ [u2],

. . .

ẋm ∈ fm(t, xm, um) with xm(0) ∈ [x0m], um ∈ [um],

L(x1, . . . , xm, u1, . . . , um) = 0,

where the state x is decomposed in m components x = (x1, . . . , xm), for all
i ∈ {1, . . . ,m}, xi ∈ Xi, X1 × · · · × Xm = Rd, and L is a coupling function
between the components. The objective is now to compute, for each component
i ∈ {1, . . . ,m}, sets of boxes {[xki ]}k that cover the possible trajectories of the
state xi. For the remainder of the paper, index i is used to denote the state of
a component.

A standard formalism introduced in [27] defines the behaviour of a contin-
uous time simulation unit Si as:
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Fig. 1 Illustration of the outputs of functions δi. They return boxes covering the trajectories
of their component over the next macro-step. The three black lines are exact trajectories
over the time interval [t, t′]. The red box is [xi]

′, over approximating the state over the whole
time interval. The blues boxes are the {[xki ]′}k, covering the trajectories starting in [xi].

Si = 〈Xi, Ui, Yi, δi, λi, xi(0), ΦUI
〉,

δi : R×Xi × Ui → Xi,

λi : R×Xi × Ui → Yi, or R×Xi → Yi,

xi(0) ∈ Xi,

ΦUi
: R× Ui × · · · × UI → Ui,

(2)

where

– Xi is the state vector space,
– Ui is the input vector space,
– Yi is the output vector space,
– δi(t, xi(t), ui(t)) = xi(t + H) or δi(t, xi(t), ui(t + H)) = xi(t + H) is the

function that instructs the SU to compute a behavior trace from t to t+H,
making use of the input extrapolation (or interpolation) function ΦUi

– λi(t, xi(t), ui(t)) = yi(t) or λi(t, xi(t)) = yi(t) is the output function; and
– xi(0) is the initial state.

We consider that the entire state of each sub-system is returned by each
sub-sustem, so that we can omit the use of functions λi. Furthermore, we need
interval based simulations. For this purpose, we simply modify the δi functions
so that they take intervals of R and boxes of Xi and Ui as inputs, and return
a box and a set of box, such that:

([xi]
′, {[xki ]′}k) := δi([t, t

′], [xi], [ui]),

where [xi]
′ is a box over-approximating the state xi(t) over the time interval

[t, t′] for any input varying in [ui]; and {[xki ]′}k is a set of boxes covering
trajectories starting in [xi] over the same time interval and any input varying
in [ui]. An illustration given in Figure 1 shows these different boxes.

A CT cosimulation scenario with reference cs includes at least the following
information:

S = 〈Ucs, Ycs, D, {Si : i ∈ D}, L〉,

L : (
∏
i∈D

Yi)× Ycs × (
∏
i∈D

Ui)× UUcs
→ Rm, (3)
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where D is an ordered set of SU references, each Si is defined as in Equa-
tion (11), m ∈ N, Ucs is the vector space of input external to the scenario, Ycs
is the vector space of outputs of the scenario, and L induces the SU coupling
constraints, that is, if D = {1, . . . , n}, then the coupling is the solution to
L(y1, . . . , yn, ycs, u1, . . . , un, ucs) = 0̄, where 0̄ denotes the null vector. Note
that, compared to [27], we do not consider approximation functions for inputs
since we provide guaranteed results which cannot be established with such
approximations.

In the following, we suppose that coupling constraints L are explicit, i.e.,
inputs can be written as ui = Ki(y1, . . . , yn, ycs) for all i. In future work,
we plan on generalizing the coupling to arbitrary (algebraic) couplings, using
Differential Algebraic Equation formulations such as in [19].

3 Guaranteed Runge-Kutta schemes

In this section, we describe our approach for validated simulation based on
Runge-Kutta methods [9,2]. The goal being obviously to obtain a solution
of the differential equations describing the modes of the nonlinear switched
systems.

A numerical integration method computes a sequence of values (tn, xn)
approximating the solution x(t;x0) of the IVP defined in Equation (1) such
that xn ≈ x(tn;xn−1). The simplest method is Euler’s method in which tn+1 =
tn + h for some step size h and xn+1 = xn + h× f(tn, xn, d); so the derivative
of x at time tn, f(tn, xn, d), is used as an approximation of the derivative on
the whole time interval to perform a linear interpolation. This method is very
simple and fast, but requires small step sizes. More advanced methods, coming
from the Runge-Kutta family, use a few intermediate computations to improve
the approximation of the derivative. The general form of an explicit s-stage
Runge-Kutta formula, that is using s evaluations of f , is

xn+1 = xn + h

s∑
i=1

biki ,

k1 = f
(
tn, xn, d

)
,

ki = f
(
tn + cih, xn + h

i−1∑
j=1

aijkj , d
)
, i = 2, 3, . . . , s .

(4)

The coefficients ci, aij and bi fully characterize the method. To make Runge-
Kutta validated, the challenging question is how to compute guaranteed bounds
of the distance between the true solution and the numerical solution, defined
by x(tn;xn−1) − xn. This distance is associated to the local truncation error
(LTE) of the numerical method.

To bound the LTE, we rely on order condition [28] respected by all Runge-
Kutta methods. This condition states that a method of this family is of order
p iff the p+ 1 first coefficients of the Taylor expansion of the solution and the
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Taylor expansion of the numerical methods are equal. In consequence, LTE is
proportional to the Lagrange remainders of Taylor expansions. Formally, LTE
is defined by (see [9]):

x(tn;xn−1)− xn =

hp+1

(p+ 1)!

(
f (p) (ξ, x(ξ;xn−1), d)− dp+1φ

dtp+1
(η)

)
ξ ∈]tn, tn+1[ and η ∈]tn, tn+1[ . (5)

The function f (n) stands for the n-th derivative of function f w.r.t. time t that
is dnf

dtn and h = tn+1 − tn is the step size. The function φ : R→ Rn is defined
by φ(t) = xn + h

∑s
i=1 biki where ki are defined as Equation (4).

The challenge to make Runge-Kutta integration schemes safe w.r.t. the
true solution of IVP is then to compute a bound of the result of Equation (5).
In other words, we do have to bound the value of f (p) (ξ, x(ξ;xn−1), d) and the

value of dp+1φ
dtp+1 (η) with numerical guarantee. The latter expression is straight-

forward to bound because the function φ only depends on the value of the step
size h, and so does its (p+ 1)-th derivative. The bound is then obtained using
the affine arithmetic [18,19].

However, the expression f (p) (ξ, x(ξ;xn−1), d) is not so easy to bound as it
requires to evaluate f for a particular value of the IVP solution x(ξ;xn−1) at
an unknown time ξ ∈]tn, tn+1[. The solution used is the same as the one found
in [44,10] and it requires to bound the solution of IVP on the interval [tn, tn+1].
This bound is usually computed using the Banach’s fixpoint theorem applied
with the Picard-Lindelöf operator, see [44]. This operator is used to compute
an enclosure of the solution [x̃] of IVP over a time interval [tn, tn+1], that is
for all t ∈ [tn, tn+1], x(t;xn−1) ∈ [x̃]. We can hence bound f (p) substituting
x(ξ;xn−1) by [x̃]. This general approach used to solve IVPs in a validated way
is called Lohner two step approach [39].

Complexity of LTE computation: The validated computation of the LTE (given
in Eq. (5)) of Runge-Kutta methods can be performed using two different
methods: symbolic differentiation or automatic differentiation (AD). The first
method is based on Frechet derivatives and rooted trees [19] while the sec-
ond exploits automatic differentiation and a weighted directed acyclic graph
[43]. For a Runge-Kutta method of order p and an ODE of dimension d, the
complexities are O(dp) for symbolic method and O(d3p) for AD [43]. A gain
in term of dimension, for example by splitting the problem and using cosim-
ulation, directly impacts the time of LTE computations and then the time of
simulation.

4 Guaranteed cosimulation algorithm

In this section, the main contribution of the paper is presented. We first present
in details the computation of the Picard-Lindelöf operator. The operator being
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too time consuming to compute on industrial case studies, we then present the
cross-Picard operator, which contains a procedure computing an enclosure of
the global state of the system using local Picard-Lindelöf operators. Its com-
putation is realised at communication times in order to over-approximate the
state over the next macro-step. A given SU can then perform safe simulations
until the end of the macro-step, by considering the inputs from the other sub-
systems as bounded perturbations, the bounded set in which they lie being
known from the cross-Picard operator.

4.1 The Picard-Lindelöf operator

Let us consider equation (1) with an initial condition [xT ] and a perturbation
set [p], the guaranteed integration of of such a system on a time interval
[T, T + H] is made possible by over-approximating the state over [T, T + H]
using the Picard-Lindelöf operator. Its construction is detailed in the following.
We first recall the following theorem.

Theorem 1 (Banach fixed-point theorem) Let (K, d) be a complete met-
ric space, given by a set K and a distance function d : K ×K 7→ R, and let
g : K → K be a contraction; that is for all x, y in K there exists c ∈ (0, 1)
such that

d (g(x), g(y)) ≤ c · d(x, y)

Then g has a unique fixed-point in K.

In the context of IVPs and schemes of order p, we consider the space
of continuously differentiable functions Cp+1([T, T +H],Rn) and the Picard-
Lindelöf operator

Pf (x) = t 7→ x+
⋃
p∈[p]

∫ t

T

f(s, x(s), p)ds . (6)

The Picard-Lindelöf operator is used to check the contraction of the solu-
tion on an integration step in order to prove the existence and the uniqueness
of the solution of Equation (1) as stated by the Banach’s fixed-point theorem.
Furthermore, this operator is used to compute an enclosure of the solution of
IVP over a time interval [T, T +H].

This operator, based on the Theorem 1 and defined in Equation (6), allows
one to compute the a priori enclosure [x̃] such that

∀t ∈ [T, T +H], {x(t;x(T )) : x(T ) ∈ [xT ], p ∈ [p]} ⊆ [x̃] .

In its simplest (rectangle) form, the operator is computed as:

Pf ([xT ], [p], [r], H) = [xT ] + f([r], [p])[0, H] . (7)
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Fig. 2 An example of set based simulation for the spring case study.

The Picard-Lindelöf operator with Taylor expansion is given by:

Pf ([xT ], [p], [r], h) = [xT ] +

N∑
k=0

f [k]([xT ], [p])[0, Hk]+

f [N+1]([r], [p])[0, HN+1] .

(8)

If Pf ([xT ], [p], [r], H) ⊂ Int([r]) then f is integrable and {x(t;x(T )) : x(T ) ∈
[xT ], p ∈ [p]} ⊂ [r] for any t ∈ [T, T +H].

In order to ease the reading, in the remainder of the paper, the box [r] that
verifies Pf ([xT ], [p], [r], H) ⊂ Int([r]) is referred to as the Picard box on time
interval [T, T +H], and its computation is denoted by the operator PHX,D for
an initial set X at time t, a disturbance set D, and a time step H.

Once the Picard box is computed, we can safely simulate the system on
time interval [T, T +H] by computing the LTE, and the result is validated for
any disturbance p ∈ [p] on the same time interval.

4.2 Cross Picard operator

The purpose of the cross-Picard operator is to over-approximate the solutions
of all the sub-systems over the next macro-step, using only local computations.
The principle is that we compute local Picard operators, by considering the
inputs coming from the other sub-systems as disturbances, the main issue
being to compute the sets in which these disturbances evolve. To compute these
sets, we start by guessing a rough over-approximation of the solutions over the
next macro-step. From there, the idea is that we consider the inputs ui(t) of the
sub-systems as bounded disturbances, the set in which they are bounded being
constructed from functions Ki and the initial guesses. We then apply local
Picard operators iteratively, until the proof of validity of the approximations
is obtained for all sub-systems.
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More precisely, let us consider a cosimulation scenario S = 〈Ucs, Ycs, D, {Si :
i ∈ D}, L〉 with simulation units Si = 〈Xi, Ui, Yi, δi, λi, xi(0), ΦUI

〉. Let us sup-
pose that the sets of states are non overlapping, i.e. simulation unit Si does
not share any state variables with simulation unit Sj for i 6= j.

Let us denote by [xi,n] the initial state set xi(Tn). Let us denote by [xHi,n]

the over-approximation of xi(t) for t ∈ [Tn, Tn + H]. Let us denote by [uHi,n]
the over-approximation of ui(t) for t ∈ [Tn, Tn + H]. A local Picard operator
can be computed as PH

[xi,n],[uH
i,n]

. In order to prove that [xHi,n] are indeed over-

approximating xi(t) for all i over the next macro-step, the condition to verify
is: PH

[xi,n],[uH
i,n]
⊂ Int([xHi,n]), for all i.

The global Picard box is then approximated by

PH[x1,n]×···×[xm,n]
:= [xH1,n]× · · · × [xHm,n]

which ensures a safe over-approximation of the states over the next macro
time step. We abbreviate its computation by the following operator, that we
denote the cross-Picard operator:

([xH1,n], . . . , [xHm,n]) = PH([x1,n], . . . , [xm,n])

In order to compute such safe approximations of the states over a macro-
step, using only local computations, we perform the following procedure:

– For each i, compute rough guesses [rHi,n] of the sets [xHi,n]

– From {[rHi,n]}i=1,...,m, deduce input box guesses [kHi,n] over-approximating

the inputs ui ∈ Ui on [Tn, Tn +H]: [kHi,n] := Ki([r
H
1,n], . . . , [rHm,n])

– For each i, compute a Picard box PH
[xi,n],[kHi,n]

– While [rHi,n] * PH
[xi,n],[pHi,n]

, for all i, compute [rHi,n] := PH
[xi,n],Ki([rH1,n],...,[r

H
m,n])

The computation of the initial guesses is discussed in Section 4.5. The exact
algorithm is detailed in Algorithm 1.

4.3 Orchestration of simulation units

Once a valid over-approximation of the states is computed, cosimulations can
be performed. The principle of cosimulation orchestration is illustrated in Fig-
ure 3. The main idea is to compute (in a distributed way) safe and accurate
simulations of each sub-system, by considering the other sub-systems as distur-
bances. Sub-systems exchange information every H time units. This exchange
of information is used to update the disturbance set to consider in the next
time step.

The detailed orchestration procedure is given in Algorithm 2.
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Algorithm 1 Computation of the cross-Picard operator
Data: cs = 〈∅, Ycs, D = {1, . . . ,m}, {Si}i∈D, L, ∅〉, a time interval [t, t+H], initial inter-
vals [xi,n] and initial guesses [rHi,n]

Result: {[XH
i ]}i=1,...,m, a set of boxes over-approximating the global state on [Tn, Tn+H]

for i = 1, . . . ,m (in parallel) do
[X̃H

i ] := [rHi,n]

[UH
i ] := Ki([X̃

H
1,n], . . . , [X̃H

1,n])

[XH
i ] := PH

[xi,n],[UH
i ]

while [XH
i ] * [X̃H

i ] for all i do

for i = 1, . . . ,m (in parallel) do

[X̃H
i ] := [XH

i ]

[UH
i ] := Ki([X̃

H
1,n], . . . , [X̃H

1,n])

[XH
i ] := PH

[xi,n],[UH
i ]

return [XH
i ]

S1 : [x1,n] [x1,n+1] [x1,n+2]

S2 : [x2,n] [x2,n+1] [x2,n+2]

[xH1,n]

δ1(Tn, [x1,n], [uH2,n])

[xH2,n]

δ2(Tn, [x2,n], [uH1,n])

[xH1,n+1] [xH2,n+1]

δ1(tn+1, [x1,n+1], [uH2,n+1])

δ2(tn+1, [x2,n+1], [uH1,n+1])

Fig. 3 Orchestration of two guaranteed simulation units between times Tn and Tn + 2H.

Algorithm 2 Cosimulation orchestrator for autonomous systems
Data: cs = 〈∅, Ycs, D = {1, . . . ,m}, {Si}i∈D, L, ∅〉, a macro-step H
Result: A cosimulation trace given as a set of boxes
n := 0
Tn := 0
[xi,n] := xi(0) for i = 1, . . . ,m
while True do

Compute ([xH1,n], . . . , [xHm,n]) := PH([x1,n], . . . , [xm,n])

for i = 1, . . . ,m (in parallel) do
[uHi,n] := Ki([x

H
1,n], . . . , [xH1,n])

Advance simulation ([xi,n+1], {[xki,n+1]}k) := δi([tn, tn+1], [xi,n], [uHi,n])

tn+1 := tn +H
n := n+ 1

return {[xi,n], {[xki,n]}k}n

Complexity discussion Let us recall that, for a Runge-Kutta method of order
k and an ODE of dimension d, the complexities for computing the LTE are
O(dk) for symbolic differentiation and O(d3k) for automatic differentiation
[43]. When the system is decomposed in two components of dimension d1 and
d2 with d = d1 + d2 and d1 = O(d/2) and d2 = O(d/2), the complexities
become, for each SU, respectively O(d

p

2k
) and O(d23k). The first one is divided
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by two with a simple Euler scheme. We however need to compute the cross-
Picard operator, which adds an iterative computation before each macro-step.

4.4 Guaranteed interval extrapolation

The guaranteed extrapolation relies on an interpolation of the previous time
steps. As stated in Section 3, function ΦUi

is the input function, it is given as an
input to system i. In other words, inputs ui(t) is replaced by a function ΦUi(t).
The simplest approach is to consider ΦUi(t) constant on the next macro-step
[Tn, Tn+1]. In order to yield more accurate results, a classical approach (see
[7]) is to build a extrapolation function based on interpolation polynomials:

ΦUi,n(t) =

k∑
l=0

ui(Tn−l)

k∏
p=0
p 6=l

t− Tn−p
Tn−l − Tn−p

= ui(t) +O(Hk+1) (9)

In order to yield guaranteed results using such an approach, the formula
has to be extended to interval values, and the remainder in O(Hk+1) has to

be bounded. This remainder is given by 1
(k+1)!u

(k+1)
i (ξt)

∏k
i=0(t − Tn−k) for

some ξt ∈ [Tn, Tn+1]. The exact interpolation is then given by:

ΦUi,n(t) =

k∑
l=0

ui(Tn−l)

k∏
p=0
p 6=l

t− Tn−p
Tn−l − Tn−p

+
1

(k + 1)!
u
(k+1)
i (ξt)

k∏
i=0

(t− Tn−k)

Inputs ui(t) being given by functions Ki, an interval bounding the deriva-

tives u
(k+1)
i can be evaluated exactly from the global Picard box. Recall that

for all i,
ui(t) = Ki(x1(t), . . . , xm(t))

The k-th derivative of ui can be evaluated exactly, either by hand if Ki is
simple enough, or using a higher chain formula [40] of the form:

uki (t) = k!
∂r1+···+rmKi

∂xr11 . . . ∂xrmm

s∏
j=1

m∏
l=1

1

mjl!

[
1

pj !
x
(pj)
i

]mjl

where multi indexes r, m, and p are given in [40]. In any case, the derivative

in the remainder only depends, numerically, on derivatives x
(pj)
i (ξt), which

can fortunately be evaluated (symbolically) in DynIbex [1,19]. In the end,

we have a safe over-approximation of u
(k)
i (t) for any t ∈ [Tn, Tn+1], that we

denote by [u
(k),H
i,n ] We thus have the following guaranteed interval formula for

extrapolating the inputs over the next macro-step:

[ΦUi,n](t) =

k∑
l=0

[ui,n−l]

k∏
p=0
p 6=l

t− Tn−p
Tn−l − Tn−p

+
1

(k + 1)!
[u

(k),H
i,n ]

k∏
i=0

(t−Tn−k) (10)
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The orchestration of simulation units using such an extrapolation is given in
Algorithm 3.

Algorithm 3 Cosimulation orchestrator for autonomous systems with extrap-
olation

Data: cs = 〈∅, Ycs, D = {1, . . . ,m}, {Si}i∈D, L, ∅〉, a macro-step H, an order of interpo-
lation k
Result: A cosimulation trace given as a set of boxes
n := 0
Tn := 0
[xi,n] := xi(0) for i = 1, . . . ,m
while True do

Compute ([xH1,n], . . . , [xHm,n]) := PH([x1,n], . . . , [xm,n])

for i = 1, . . . ,m (in parallel) do
for j = 1, . . . , k do

Evaluate [x
(j),H
i,n ]

for i = 1, . . . ,m (in parallel) do
[ui,n] := Ki([x1,n], . . . , [x1,n])

Compute [ΦUi,n]

Advance simulation ([xi,n+1], {[xki,n+1]}k) := δi([tn, tn+1], [xi,n], [ΦUi,n])

tn+1 := tn +H
n := n+ 1

return {[xi,n], {[xki,n]}k}n

4.5 Practical improvements

Adaptive time step Guaranteed simulation can sometimes be overly conserva-
tive, it leads to simulations in the shape of trumpets (such as Figure 5(b)), one
of the main disadvantages is that it can sometimes fail to compute a Picard
box. In this case, a smaller time step makes it easier to compute the Picard box.
An adaptive time step is already used for local computations [19]. Algorithm
4 implements an adaptive macro-step guaranteeing that the simulation al-
ways succeeds. In this implementation, the computation ([xH1,n], . . . , [xHm,n]) :=

PH([x1,n], . . . , [xm,n]) is limited to a given number of iterations, after which a
boolean marker SUCCESS is set to 1 or 0 depending of the the computation
of a valid Picard box or not.

Computation of the initial guess We discuss here the computation of the initial
guesses of Algorithm 1. More precisely: for each i, compute rough guesses [rHi,n]

of the sets [xHi,n].
Several heuristics are possible for this. The first and simplest one is to take

the previous Picard box [xHi,n−1] and inflate it of some given percentage ε :

[rHi,n] := [xHi,n−1 − ε%, xHi,n−1 + ε%],
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Algorithm 4 Cosimulation orchestrator for autonomous systems with extrap-
olation and adaptative macro-step

Data: cs = 〈∅, Ycs, D = {1, . . . ,m}, {Si}i∈D, L, ∅〉, a macro-step H, an order of interpo-
lation k
Result: A cosimulation trace given as a set of boxes
n := 0
Tn := 0
tn+1 := H
[xi,n] := xi(0) for i = 1, . . . ,m
while True do

Compute ([xH1,n], . . . , [xHm,n]) := PH([x1,n], . . . , [xm,n])

if SUCESS then
for i = 1, . . . ,m (in parallel) do

for j = 1, . . . , k do

Evaluate [x
(j),H
i,n ]

for i = 1, . . . ,m (in parallel) do
[ui,n] := Ki([x1,n], . . . , [x1,n])

Compute [ΦUi,n]

Advance simulation ([xi,n+1], {[xki,n+1]}k) := δi([tn, tn+1], [xi,n], [ΦUi,n])

tn+1 := tn +H
n := n+ 1

else
H := H/2

return {[xi,n], {[xki,n]}k}n

and hope that it is inflated enough to obtain PH
[xi,n],[uH

i,n]
⊂ Int([xHi,n]), for all i.

A more conservative possibility is to compute it as an inflation of the union
of the previous Picard box and the current one:

[rHi,n]temp := [xHi,n−1] ∪ PH[xi,n],Ki([rH1,n],...,[r
H
1,n])

,

and

[rHi,n] = [rH temp
i,n − ε%, rH temp

i,n + ε%].

Finally, the most conservative way to compute it is to ensure that an over-
approximation of [xHi,n] is obtained. It can be done in an iterative way as
follows:

– Initialize

[rHi,n]temp := [xHi,n−1] ∪ PH[xi,n],Ki([rH1,n],...,[r
H
1,n])

,

– For m iterations, compute:

[rHi,n]temp := PH[xi,n],Ki([rH1,n]
temp,...,[rHm,n]

temp),

– Return

[rHi,n] = [rHi,n]temp.

Just as in [2], m iterations are used to ensure that the growth of the input
sets have propagated to all the dimensions.
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5 Numerical examples

The algorithms presented here are implemented in a C++ prototype relying
on the DynIbex library [1]. Note that, in this prototype, the cosimulations
are not performed in a parallel manner, but in a sequential one. On a given
macro-step, the different simulation units compute their simulation step one
after the other. Parallel executions of the DynIbex library is one of our future
plans. The computation times given in the following are performed on a Intel
Core i5-4430 associated to 8GB of RAM, running on Ubuntu 18.04 LTS.

5.1 Double mass-spring-damper oscillator

We consider a double mass-spring-damper oscillator considered in [27]. A figure
of the system is given in Figure 4.

m1 m2
cc

dc
x2x1

c1

d1

c2

Fig. 4 Illustration of the two mass-spring-damper system.

The dynamics of the system is given by the following system of equations:
ẋ1 = v1

m1v̇1 = −c1x1 − d1v1 + cc(x2 − x1) + dc(v2 − v1)

ẋ2 = v2

m2v̇2 = −cc(x2 − x1)− c2x2 − dc(v2 − v1)

(11)

with the initial conditions x1(0) = x2(0) = v1(0) = v2(0) = [1, 1] (a point
interval).

The system is divided in two sub-systems of state (x1, v1) and (x2, v2) re-
spectively. The coupling is realised with a displacement-displacement approach
as follows:

K1(x1, v1) = (x1, v1),

K2(x2, v2) = (x2, v2).
(12)

Simulations of the system are depicted in Figure 5 and 6. These simulations
are performed with a simple Heun scheme in Figure 5 for illustration purposes.
The macro-step is set to H = 0.05 in order to amplify the accuracy gains
obtained with extrapolation. In Figure 6, an 4th order Runge-Kutta scheme
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is used, with a macro-step H = 0.01. For both cosimulations, the cross-Picard
operator took between 13 and 14 iterations to compute when using macro-steps
of size H = 0.05, and 8 to 9 iterations for macro-steps of size H = 0.01. The
cosimulation with extrapolation is performed with an interpolation of order 3
in both macro-step cases.

(a) (b) (c)

Fig. 5 Guaranteed simulations of the spring case study using a Heun scheme with toler-
ance 10−6 and macro-step H = 0.05: (a) global simulation; (b) cosimulation with constant
extrapolation; (c) cosimulation with guaranteed extrapolation based on interpolation.

(a) (b) (c)

Fig. 6 Guaranteed simulations of the spring case study using a RK4 scheme with toler-
ance 10−8 and macro-step H = 0.01: (a) global simulation; (b) cosimulation with constant
extrapolation; (c) cosimulation with guaranteed extrapolation based on interpolation.

5.2 Industrial 11-room house heating case study

This case study, proposed by the Danish company Seluxit, aims at control-
ling the temperature of an eleven rooms house, heated by geothermal energy.
The continuous dynamics of the system is the following:

d

dt
Ti(t) =

n∑
j=1

Adi,j(Tj(t)− Ti(t)) +Bi(Tenv(t)− Ti(t)) +Hv
i,j .vj (13)

The temperatures of the rooms are the Ti. The matrix Ad contains the
heat transfer coefficients between the rooms, matrix B contains the heat
transfer coefficients between the rooms and the external temperature, set to
Tenv = 10◦C for the computations. The control matrix Hv contains the effects
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of the control on the room temperatures, and the control variable is here de-
noted by vj . We have vj = 1 (resp. vj = 0) if the heater in room j is turned
on (resp. turned off). We thus have n = 11 and N = 211 = 2048 switching
modes.

Note that the matrix Ad is parametrized by the open of closed state of the
doors in the house. In our case, the average between closed and open matrices
was taken for the computations. The controller has to select which heater to
turn on in the eleven rooms. Due to a limitation of the capacity supplied by
the geothermal device, the 11 heaters cannot be turned on at the same time.
In our case, we limit to 4 the number of heaters that can be on at the same
time.

We choose to simulate the system on a given (random) sequence of switched
modes, for a time horizon T = 150 and initial conditions Ti(0) = [20, 21] for
all i = 1, . . . , 11. We compare the computation time and final area covered
at final time in Table 1. The cosimulations with extrapolation are performed
with an interpolation of order 3.

Scheme Computation time (s) Final area (m2)
HEUN 7,96 0.2165

co-HEUN 5,95 0.2407
co-HEUN-interp 27,05 0.2335

RK4 27,60 0.1821
co-RK4 17,87 0.1932

co-RK4-interp 122,17 0.1854

Table 1 Simulation results for the 11-room case study.

5.3 Discussion

In the first case study, the system has to be expressed as a system of dimen-
sion 5 (taking the time as a fifth variable, which derivative is equal to 1).
The subsystems are expressed as systems of dimension 3. Thus, in terms of
computation time, given the low dimension of the example, no gains are made,
since the cross-Picard operator iterations take most of the simulation time. We
however notice a substantial accuracy improvement using the extrapolation of
inputs, which is, unsurprisingly, consistent with the results of [7].

In the second case study, given the sequential implementation of this pro-
totype, the computation times show encouraging results, and the accuracy of
the methods is comparable. The dynamics of this example being contractive,
we observe a good accuracy for all the different methods since they all manage
to capture the contractive behaviour of the system. However, the interpolation
does not show interesting time gains in this case. Higher dimensions and more
complex dynamics seem to be more appropriate for using this approach.

In conclusion, given the complexity of the LTE computation, our recom-
mendations would be to use cosimulation for systems of dimensions exceeding
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6. The interpolation should be used only if the time horizon to consider is long
enough to observe significant growth of the box areas.

6 Conclusion and Future works

In this paper, a guaranteed cosimulation method is proposed. The main in-
gredient of our approach is the cross-Picard operator, which allows to com-
pute, using only local computations, a (safe) over-approximation of the global
state of the system. The cross-Picard operator itself relies on the possibility
of considering bounded perturbations. Given a sub-system, its safety is veri-
fied by considering the other sub-systems as bounded perturbations, so that
an over-approximation is determined, and, by iterating over the sub-systems,
verifying that all the sub-systems do stay in their bounded (perturbation) set.
Cosimulation then allows to update to perturbation sets to consider over the
macro-steps. These sets can furthermore be replaced by a guaranteed extrapo-
lation function, allowing to improve the accuracy of the method, substantially
in some cases, marginally in others. The cosimulation algorithm thus has to
be properly chosen in accordance to the case-study. Some practical details
are presented, such as the adaptive macro-step which ensures the success of
the procedure, as well as some pre-computations fastening the cross-Picard
operator computation. Numerical applications are presented, showing the ap-
plicability of the method on an industrial case study.

Our future work will be devoted to the parallel implementation and dis-
tribution of a tool containing the presented methods, as well as applications
to more case studies. We would also like to apply these methods to other
domains, such as control synthesis. Since guaranteed simulation (or reachabil-
ity analysis) is required in several symbolic and guaranteed control synthesis
methods, we would like to implement our method in one of these tools, pos-
sibly with compositional principles as well, in order to get closer to industrial
scale applications with such methods.
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Lebeltel, Rodolfo Ripado, Antoine Girard, Thao Dang, and Oded Maler. SpaceEx:
Scalable verification of hybrid systems. In Computer Aided Verification, volume 6806
of LNCS, pages 379–395. Springer, 2011.

23. Karol Gajda, Ma lgorzata Jankowska, Andrzej Marciniak, and Barbara Szyszka. A sur-
vey of interval Runge–Kutta and multistep methods for solving the initial value prob-
lem. In Parallel Processing and Applied Mathematics, volume 4967 of LNCS, pages
1361–1371. Springer Berlin Heidelberg, 2008.

24. Antoine Girard. Reachability of uncertain linear systems using zonotopes. In Hybrid
Systems: Computation and Control, 8th International Workshop, HSCC 2005, Zurich,
Switzerland, March 9-11, 2005, Proceedings, pages 291–305, 2005.

25. Antoine Girard. Reachability of uncertain linear systems using zonotopes. In Hybrid
Systems: Computation and Control, pages 291–305. Springer, 2005.
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