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Motivation

Given a discrete time series

x " px 0 , x 1 , . . . , x N q P pR d q N , where N ě 1 is some arbitrary time horizon, our foremost, and original, motivation stems from the desire to extract features from x that are invariant to time warping.

The precise definition of the latter will be given in Section 4, but Figure 1 illustrates what we mean by time warping: the time series is allowed to "stand still" or to "stutter" (this term is used in [START_REF] Yi | Efficient retrieval of similar time sequences under time warping[END_REF]), which means that x has repetitions of values at consecutive time steps (here at time t " 3).

Remark 1.1. In this section we consider the notationally simpler case d " 1, that is, when x P R N .

Our interest is prompted, on the one hand by the extensive literature on the dynamic time warping (DTW) distance [START_REF] Berndt | Using Dynamic Time Warping to Find Patterns in Time Series[END_REF], a distance on discrete time series that is invariant to time warping. In [START_REF] Yi | Efficient retrieval of similar time sequences under time warping[END_REF] it is stated that "the time warping distance . . . does not lead to any natural features".

Our work aims to provide those missing "natural" features.

On the other hand the following example illustrates where such invariant features will become useful.

Example 1.2. Assume that there is a deterministic time series x P R N which models some "prototype" evolution of a quantity, say the prototype heartbeat in a patient's ECG. This prototype is unknown, but one records a lot of samples of it run at different speeds and contaminated by noise (compare [START_REF] Bigot | Fréchet means of curves for signal averaging and application to ECG data analysis[END_REF]). A model for these observations is then y p q n " x h p q pnq `wp q n , n " 1, . . . , M, " 1, . . . , L. Here L is the number of observations, M ě N is the time horizon we allow the prototype to be "spread out" over, h p q : r1, . . . , M s Ñ r1, . . . , N s are unknown non-decreasing, surjective time changes and w p q n are independent and identically distributed (iid) random walks. The goal is to recover x (up to time warping).

The currently used method [START_REF] Bigot | Fréchet means of curves for signal averaging and application to ECG data analysis[END_REF][START_REF] Jané | Alignment methods for averaging of high-resolution cardiac signals: a comparative study of performance[END_REF][START_REF] Kurtek | Signal estimation under random time-warpings and nonlinear signal alignment[END_REF], consists in first trying to align the different samples, i.e., to estimate the time-changes h p q , and to average afterwards. This seems to work well in regimes where the noise w p q is small (large signal-to-noise ratio), but will break down if this is not the case.

Guided by invariant methods in cryo-EM [START_REF] Bandeira | Estimation under group actions: recovering orbits from invariants[END_REF] we then propose the following procedure.

(1) Calculate features of y p q that do not see time warpings.

(2) Average those features over the independent samples, giving the law of large numbers a chance to cancel out the noise and getting an approximation of the features of x. (3) Invert the averaged features to arrive at a candidate for x. Our approach to Step (1) is new and will be presented in this paper. Step [START_REF] Aguiar | Structure of the Malvenuto-Reutenauer Hopf algebra of permutations[END_REF] and Step (3) will be addressed in future work. A moment's thought reveals that iterated-sums of the increments of x are invariant in the desired sense. For example, the simple sum ř i px i ´xi´1 q or the more complex expressions ÿ i px i ´xi´1 q 2 , ÿ i1ăi2 px i1 ´xi1´1 qpx i2 ´xi2´1 q, ÿ i1ďi2 px i1 ´xi1´1 qpx i2 ´xi2´1 q,

are features of the time series that do not change when warping time, i.e., when repetitions of points, x i " x i`1 " ¨¨¨" x i`j occur in x.

Remark 1.3. To accommodate repetition of points, here we have conveniently written the sum over an unspecified set of time-points. We can think of the sum taken over N `, with x being extended constantly as x N after time N .

However, two questions immediately emerge (A) The three expressions in [START_REF] Aguiar | Combinatorial Hopf algebras and generalized Dehn-Sommerville relations[END_REF] are already linearly dependent (adding the first and second sum gives the third). How to store only linearly independent expressions? (B) Do iterated-sums of increments give all (polynomial) time warping invariants? Regarding the first item, it turns out that the above iterated-sums expressions are reminiscent of quasisymmetric functions [START_REF] Malvenuto | Duality between quasi-symmetric functions and the Solomon descent algebra[END_REF]. Consider the space RxY 1 , Y 2 , Y 3 , . . . y of formal power series in ordered commuting variables Y 1 , Y 2 , Y 3 , . . . . By definition, a power series (of finite degree) Q P RxY 1 , Y 2 , Y 3 , . . . y is a quasisymmetric function if for all n ě 1, all i 1 ă ¨¨¨ă i n , all j 1 ă ¨¨¨ă j n and all α 1 , . . . , α n ě 1, the coefficient of the monomial pY i1 q α1 ¨¨¨pY in q αn in Q is equal to the one of pY j1 q α1 ¨¨¨pY jn q αn . First examples are

ÿ i Y i , ÿ i pY i q 2 , ÿ i1ăi2 Y i1 Y i2 , ÿ i1ďi2 Y i1 Y i2 ,
and we see that the invariants given above follow from the evaluation of these quasisymmetric functions at

Y 1 Þ Ñ x 1 ´x0 , Y 2 Þ Ñ x 2 ´x1 , . . . , Y N Þ Ñ x N ´xN´1 , and Y i Þ Ñ 0 for i ě N `1.
Different linear basis for quasisymmetric functions are known. The one of monomial quasisymmetric functions of [START_REF] Malvenuto | Duality between quasi-symmetric functions and the Solomon descent algebra[END_REF] is indexed by compositions of integers. Anticipating the multidimensional case, we write a composition c 1 `¨¨¨`c k " n as r1 c1 s ¨¨¨r1 c k s, and obtain the correspondence

r1 c1 s ¨¨¨r1 c k s ÐÑ M pc1,...,c k q :" ÿ i1㨨¨ăi k pY i1 q c1 ¨¨¨pY i k q c k .
Quasisymmetric functions are a refinement of symmetric functions and form a commutative unital algebra. The product is just the polynomial product in the power series representation. It amounts to a so-called quasi-shuffle product (see Section 2) in the representation as compositions. For example, the abstract quasi-shuffle product r1s ˚r1 3 sr1 7 s " r1sr1 3 sr1 7 s `r1 3 sr1sr1 7 s `r1 3 sr1 7 sr1s `r1 4 sr1 7 s `r1 3 sr1 8 s corresponds to the concrete product of power series

˜ÿ i Y i ¸¨˜ÿ i1ăi2 pY i1 q 3 pY i2 q 7 ¸" ÿ i1ăi2ăi3 Y i1 pY i2 q 3 pY i3 q 7 `ÿ i1ăi2ăi3 pY i1 q 3 Y i2 pY i3 q 7 `ÿ i1ăi2ăi3 pY i1 q 3 pY i2 q 7 Y i3 `ÿ i1ăi2 pY i1 q 4 pY i2 q 7 `ÿ i1ăi2 pY i1 q 3 pY i2 q 8 .
The latter equality follows by case distinction for sums over the three indexing variables, which amounts to a summation-by-parts formula. The last two terms in the above product reflect the fact that multiplying sums requires the inclusion of sums over diagonal terms.

It is natural to store the iterated-sums invariants of the discrete time series x as a linear map ISSpxq on the quasi-shuffle algebra of compositions, by defining the pairing

xr1 c1 s ¨¨¨r1 c k s, ISSpxqy :" ÿ i1㨨¨ăi k p∆x i1 q c1 ¨¨¨p∆x i k q c k .
Here ∆x i :" x i ´xi´1 for 1 ď i ď N , and as above we extend x constantly, so that ∆x i :" 0 for i ě N `1. From the correspondence between the product of power series and the quasi-shuffle product of compositions mentioned above we deduce that xr1 p1 s ¨¨¨r1 p k s, ISSpxqy ¨xr1 q1 s ¨¨¨r1 q l s, ISSpxqy " xr1 p1 s ¨¨¨r1 p k s ˚r1 q1 s ¨¨¨r1 q l s, ISSpxqy.

Hence, ISSpxq, which we call iterated-sums signature, is an algebra morphism (from the quasi-shuffle algebra to the underlying base field F). Since compositions form a linear basis, this answers Question (A) above -in the case d " 1. We will come back to Question (B) in Section 4.

The commutative algebra of quasisymmetric functions is the free quasi-shuffle algebra over one generator and it is -as we just saw -the correct framework to store iterated-sums for a one-dimensional time-series. The appropriate generalisation of this algebra to arbitrary dimension d ě 1, that is, the free quasi-shuffle algebra over d generators, was carried out by Hoffman [START_REF] Hoffman | Quasi-shuffle products[END_REF].

The aforementioned amounts to saying that iterated-sums signature ISSpxq is an element of the dual space of the quasi-shuffle algebra over d generators. It can therefore be represented as an infinite word series with iterated-sums of the time series x as coefficients. Its compatibility with the quasi-shuffle product together with the fact that the latter can be seen as a deformation of the classical shuffle product [START_REF] Foissy | Deformations of shuffles and quasi-shuffles[END_REF] suggests to consider ISSpxq as a discrete analog of Chen's iterated-integrals signature over continuous curves [START_REF] Chen | Integration of Paths, Geometric Invariants and a Generalized Baker-Hausdorff Formula[END_REF][START_REF] Ree | Lie elements and an algebra associated with shuffles[END_REF]. The latter plays an important role in the theory of controlled ordinary differential equations (ODEs), stochastic analysis and Lyons' theory of rough paths [START_REF] Friz | Multidimensional Stochastic Processes as Rough Paths[END_REF][START_REF] Lyons | Differential equations driven by rough signals[END_REF]. Such a large spectrum of applications reflects the important property of iterated-integrals to provide -in some sense -a complete representation of a curve, so that arbitrary functionals on curves should be well approximated by functions on its signature. There is a caveat though. Iterated integrals are tailor made to approximate functionals that stem from controlled ODEs. But as is quickly realised, this does not mean that the iterated-integrals signature is an optimal representation for other input-output systems. For example, since a controlled ODE -and hence also the signature -cannot see tree-like excursions, the iterated-integrals signature of a one-dimensional path reveals nothing about the path, except for its increment.There are several procedures to circumvent this shortcoming, and to obtain information even about tree-like parts of a curve using signature. These procedures usually consists of lifting the path to a higher-dimensional curve and calculating the signature of it. The aforementioned limitations of the iterated-integrals signature with respect to tree-like paths prompts us to propose instead the use of "discrete time signature" ISSpxq, which, instead of storing iterated-integrals, gathers iterated-sums.

Remark 1.4. For the precise definition of "tree-like" see [START_REF] Hambly | Uniqueness for the signature of a path of bounded variation and the reduced path group[END_REF]; but one can think of a curve that completely "tracks back". In particular in dimension 1, every curve that has coinciding start-and endpoint is tree-like.

The paper is organised as follows. Section 2 recalls the notion of quasi-shuffle Hopf algebra and quasisymmetric functions. In Section 3 we introduce the iterated-sums signature and show its character property with respect to the quasi-shuffle Hopf algebra. Moreover, we show that Chen's property is satisfied, but that Chow's Theorem does not hold. Hence, while mirroring the setup of Chen's iteratedintegrals signature to some extent, interesting differences emerge. It turns out that our description of the iterated-sums signature is nicely related to the work [START_REF] Novelli | Free quasi-symmetric functions and descent algebras for wreath products, and noncommutative multi-symmetric functions[END_REF] on "multidimensional" generalisation of quasisymmetric functions, and we dwell on this briefly in Remark 3.5. In Section 4 we show the iterated-sums signature contains (almost) all time warping invariants. In Section 5 we use a specific Hopf algebra isomorphism, known as Hoffman's exponential, to relate the iterated-sums signature to Chen's iterated-integrals signature (of an infinite-dimensional path). This includes in particular relating the continuous and discrete area operations.

In the following all algebraic structures are defined over a base field F of characteristic zero. The reader is invited to think of the field F as the reals, F " R, or the complex numbers, F " C, throughout.

We denote N :" t0, 1, 2, . . . u and N `:" t1, 2, . . . u. All (co)algebras are (co)unital and (co)associative unless otherwise stated. For details on Hopf algebras the reader is referred to [START_REF] Cartier | A Primer of Hopf Algebras[END_REF][START_REF] Hazewinkel | Algebras, Rings and Modules: Lie Algebras and Hopf Algebras[END_REF][START_REF] Luoto | An Introduction to Quasisymmetric Schur Functions[END_REF][START_REF] Manchon | Hopf algebras and renormalisation[END_REF][START_REF] Reutenauer | Free Lie algebras[END_REF].

Quasi-shuffle Hopf algebra

The notion of quasi-shuffle product appeared first in a 1972 article by Cartier [START_REF] Cartier | On the structure of free Baxter algebras[END_REF]. Its Hopf algebraic relevance was explored in the 1979 paper [START_REF] Newman | The cofree irreducible Hopf algebra on an algebra[END_REF]. Two decades later, Hoffman [START_REF] Hoffman | Quasi-shuffle products[END_REF] provided a comprehensive account of the quasi-shuffle product in a Hopf algebraic framework. Meanwhile, quasi-shuffle products appeared under different names, i.e., modified shuffle product [START_REF] Gaines | The algebra of iterated stochastic integrals[END_REF][START_REF] Li | Algebraic structure of multiple stochastic integrals with respect to Brownian motions and Poisson processes[END_REF], sticky-shuffle [START_REF] Hudson | Hopf-algebraic aspects of iterated stochastic integrals[END_REF][START_REF] Hudson | Sticky Shuffle Product Hopf Algebras and their Stochastic Representations[END_REF], overlapping shuffle [START_REF] Hazewinkel | Generalized Overlapping Shuffle Algebras[END_REF], stuffle and harmonic product [START_REF] Zudilin | Algebraic relations for multiple zeta values[END_REF].

We recall the inductive definition of the quasi-shuffle product following Hoffman [START_REF] Hoffman | Quasi-shuffle products[END_REF]. See also [START_REF] Bruned | Quasi-shuffle algebras and renormalisation of rough differential equations[END_REF][START_REF] Ebrahimi-Fard | The exponential Lie series for continuous semimartingales[END_REF]. Our starting point is the alphabet A " t1, 2, . . . , du, which we augment to a free commutative semigroup, A, by defining a commutative product denoted by square brackets, r´´s : A ˆA Ñ A. For example, the product between the letters 1, 2 P A is written r12s " r21s. Any iteration of the product in A can be simplyfied to an expression containing a single pair of brackets, that is, ri 1 ¨¨¨i n s :" ri 1 r¨¨¨ri n´1 i n ss ¨¨¨s. For instance, r123s " r1r23ss in A. Elements in the tensor algebra T pAq over (the vector space spanned by) A are denoted by words, i.e., we denote the tensor product by concatenation, or juxtaposition of basis elements. The neutral element for this product is the empty word, denoted by e. The augmentation ideal is defined by T `pAq :" ' ną0 A bn such that T pAq " Fe ' T `pAq.

The commutative quasi-shuffle product m ‹ : T pAq b T pAq Ñ T pAq, u ‹ v :" m ‹ pu, vq, is introduced by inductively defining e ‹ u :" u ": u ‹ e, for all u P T pAq, and ua ‹ vb :" pu ‹ vbqa `pua ‹ vqb `pu ‹ vqrabs, [START_REF] Aguiar | Structure of the Malvenuto-Reutenauer Hopf algebra of permutations[END_REF] for u, v P T pAq and a, b P A. For example, 2 ‹ 3 " 23 `32 `r23s and 3 ‹ 4r12s " 34r12s `43r12s `4r12s3 `r34sr12s `4r123s.

The tensor algebra is naturally graded by the length of words, pw 1 ¨¨¨w n q " n for w 1 ¨¨¨w n P T pAq. However, in light of the new product (2), which is not homogenous with respect to the number of letters, we introduce the weight grading on T pAq, denoted | ¨|, by declaring that |e| " 0, |a| " 1 for all a P A and |rpqs| " |p| `|q| for all p, q P A. Finally, for a word w " w 1 ¨¨¨w n P T pAq we define its weight to be |w| " |w 1 | `¨¨¨`|w n |.

Let δ : T pAq Ñ T pAq b T pAq denote the deconcatenation coproduct defined on a nonempty word w " w 1 ¨¨¨w n P T pAq by δpwq :" w b e `e b w `n´1 ÿ i"1

w 1 ¨¨¨w i b w i`1 ¨¨¨w n , (4) 
and δpeq " ebe. It turns T pAq into a connected graded coalgebra, for both the length and weight grading.

For any word w P T `pAq the reduced coproduct is defined by δ 1 pwq :" δpwq ´w b e ´e b w. "Sweedler's notation" will be employed for both coproducts: δpwq ": ř pwq w p1q b w p2q and δ 1 pwq ":

ÿ 1 pwq w p1q b w p2q .
The canonical counit map ε : T pAq Ñ F is defined to be εpλeq " λ P F and zero on T `pAq. In [START_REF] Hoffman | Quasi-shuffle products[END_REF] Hoffman showed the following Theorem 2.1 (Quasi-shuffle Hopf algebra). 1. H qsh " pT pAq, ‹, δ, ε, | ¨|q is a graded, connected, commutative, non-cocommutative Hopf algebra.

2. The antipode α : H qsh Ñ H qsh is given by

αpw 1 ¨¨¨w n q " p´1q n ÿ IPCpnq Irw n ¨¨¨w 1 s. ( 5 
)
Here Cpnq is the set of all compositions of the integer n, i.e., tuples pi 1 , . . . , i p q of positive integers such that i 1 `¨¨¨`i p " n. Given I " pi 1 , . . . , i p q P Cpnq and a word w " w 1 ¨¨¨w n P T pAq of length pwq " n ą 0, we define a new word Irws P T pAq by

Irws :" rw 1 ¨¨¨w i1 srw i1`1 ¨¨¨w i1`i2 s ¨¨¨rw i1`¨¨¨`ip´1`1 ¨¨¨w n s.
Here (as well as later) we are using the suitable convention that ras :" a for all a P A.

Remark 2.2 (Shuffle Hopf algebra). If the semigroup A is trivial, i.e., if rijs " 0 for any letters i, j P A, then the quasi-shuffle product (2) reduces to Chen's commutative shuffle product on T pAq:

vi ¡ wj :" pv ¡ wjqi `pvi ¡ wqj,
for v, w P T pAq and i, j P A. Observe that in this case |w| " pwq for any word and H ¡ " pT pAq, ¡,δ,ε, q is the classical shuffle Hopf algebra over the alphabet A. From ( 5) it follows that the antipode on H ¡ is given by αpi 1 ¨¨¨i n q " p´1q n i n ¨¨¨i 1 . See [46] for a comprehensive account on H ¡ .

Remark 2.3 (A remark on dimensions.

). There is a simple way of computing the Hilbert series Gptq :"

ÿ ně0 t n dim T pAq n
of T pAq, where T pAq n :" Ftw : |w| " nu is the homogeneous (for the weight grading) component of degree n of the quasi-shuffle algebra. It is not hard to see that all such words are of the form Ira 1 ¨¨¨a n s for some composition I " pi 1 , . . . , i p q P Cpnq and letters a 1 , . . . , a n P A, in the notation of Theorem 2.1. In total, in each block of size i 1 , i 2 , . . . , i p we are allowed to put a symmetric monomial of length i j of which there are exactly `d´1`ij ij ˘this is the dimension of the degree-i j part of the symmetric algebra

SpAq. Therefore dim T pAq n " ÿ pi1,...,ipqPCpnq ˆd ´1 `i1 i 1 ˙¨¨¨ˆd ´1 `ip i p ˙.
A simple computation shows that in fact

ˆd ´1 `i i ˙" dpd `1q ¨¨¨pd `i ´1q i! " 1 i! pdq i ,
where the Pochhammer symbol (or rising factorial) appears on the righthand side. It is well known that their exponential generating function equals the hypergeometric function

1 F 0 pd; tq " 1 `8 ÿ i"1 pdq i t i i! " p1 ´tq ´d. Therefore Gptq " 8 ÿ n"0 t n ÿ pi1,...,ipqPCpnq pdq i1 ¨¨¨pdq ip i 1 ! ¨¨¨i p ! " 1 `8 ÿ p"1 ˜8 ÿ i"1 pdq i t i i! ¸p " 8 ÿ p"0 `p1 ´tq ´d ´1˘p " p1 ´tq d 2p1 ´tq d ´1 .
The coeffficients of these Hilbert series can be found in column d of the OEIS sequence A261780.

Define the scalar product x´, ´y : T pAq b T pAq Ñ F for any words u, v P T pAq by xu, vy :" 1 if u " v and zero else. It permits to identify the graded dual of H qsh as word series, i.e., c " ř wPT pAq xw, cyw P T ppAqq ": H qsh , which is a non-commutative (topological) Hopf algebra with concatenation as convolution product, denoted by m ' : H qsh b H qsh Ñ H qsh , c ' c 1 :" m ' pc b c 1 q, and de-quasi-shuffling as coproduct [START_REF] Hoffman | Quasi-shuffle products[END_REF]. In more concrete terms, this means that given two such series c, c 1 P T ppAqq their convolution product c ' c 1 :" m F pc b c 1 qδ : H qsh Ñ F may be written as

c ' c 1 " ÿ wPT pAq ÿ uv"w xu, cyxv, c 1 yw " ÿ wPT pAq xδpwq, c b c 1 yw.
Of particular interest are characters, i.e., algebra morphisms c P H qsh . They satisfy xe, cy " 1 and xu ‹ v, cy " xu, cyxv, cy, for u, v P H qsh . The first property requires that the coefficient xe, cy " 1 and the second is equivalent to c being group-like in H qsh , which means that for u, v

P H qsh xu ‹ v, cy " xu b v, ∆ qsh pcqy " xu b v, c b cy,
where the de-quasi-shuffling coproduct is defined on words by ∆ qsh pwq :"

ÿ u,vPT pAq xu ‹ v, wyu b v.
The set of characters, denoted by G, forms a group with the inverse c ´1 " c ˝α. The corresponding Lie algebra, g Ă H qsh , consists of so-called infinitesimal characters, which map the empty word and any non-trivial product in H qsh to zero. One can define the exponential map as a power series with respect to the convolution product which maps g bijectively to G, i.e., exp ' pf q :" ε `řją0

1 j! f 'j P G.
Because T pAq is a graded connected Hopf algebra, this expression becomes a finite sum when evaluated on homogeneous elements of T pAq, so we do not have to deal with convergence issues. Its inverse is the logarithm, log ' pε `pc ´εqq " ř iě1 p´1q i´1 i pc ´εq 'i P g. Again, the sum applied to any word w P T pAq terminates after |w| terms, as pc ´εqpeq " 0. Notation 2.4. We introduce a particular notation for words in T pAq, which will be useful in the sequel. The convention to identify ras :" a, for a P A, permits to write any word in T pAq as a concatenation of brackets, i.e., w " ru 1 s ¨¨¨ru k s P T pAq, for u 1 , . . . , u k P A.

We come back to the setting of the introductory section with only a single letter, A " t1u. Then, in each degree n, T pAq has a single word of length one, r1 n s P A, and any basis element (or word) is of the form w " r1 k1 sr1 k2 s ¨¨¨r1 kn s for some integers k 1 , . . . , k n ą 0. It is easy to see that then the tuple pk 1 , . . . , k n q is a composition of the integer |w| of length n " pwq. In [START_REF] Hoffman | Quasi-shuffle products[END_REF] Hoffman describes a unital algebra isomorphism Σ between the quasi-shuffle algebra H qsh , for A " t1u, and the algebra QSym of quasisymmetric functions in the ordered set of commuting variables tY i u iPN` [START_REF] Gessel | Multipartite P-partitions and inner products of skew Schur functions[END_REF], defined by taking a word in T pAq to an iterated sum Σ `r1 k1 sr1 k2 s ¨¨¨r1 kn s ˘:" ÿ 1ďi1㨨¨ăin pY i1 q k1 ¨¨¨pY in q kn ": M pk1,...,knq .

(

Here Σpeq " M 0 " 1. Then, the correspondence of the introduction is explicitly given by Σpr1sq ¨Σ`r

1 3 sr1 7 s ˘" ˜ÿ i Y i ¸¨˜ÿ i1ăi2 pY i1 q 3 pY i2 q 7 " ÿ i1ăi2ăi3 Y i1 pY i2 q 3 pY i3 q 7 `ÿ i1ăi2ăi3 pY i1 q 3 Y i2 pY i3 q 7 `ÿ i1ăi2ăi3 pY i1 q 3 pY i2 q 7 Y i3
`ÿ i1ăi2 pY i1 q 4 pY i2 q 7 `ÿ i1ăi2 pY i1 q 3 pY i2 q 8

" Σ `r1sr1 3 sr1 7 s `r1 3 sr1sr1 7 s `r1 3 sr1 7 sr1s `r1 4 sr1 7 s `r1 3 sr1 8 s "

Σ `r1s ‹ r1 3 sr1 7 s ˘,
where the second equality is an example of summation-by-parts for products of iterated sums. The M pk1,...,knq of ( 6) are the monomial quasisymmetric functions, which form a basis for QSym. The Hopf algebra QSym is a generalisation of the classical Hopf algebra Sym of symmetric functions. It was defined and studied by Gessel [START_REF] Gessel | Multipartite P-partitions and inner products of skew Schur functions[END_REF], based on earlier work by Stanley, and plays a rather distinguished role in modern algebraic combinatorics, with ramifications into several other fields of mathematics. Its graded dual is known as the connected graded cocommutative Hopf algebra NSym of noncommutative symmetric functions. The iterated-sums signature corresponding to a one dimensional discrete time series, alluded to in the first section, is an element in NSym. Further below, in Section 3, we consider the multidimensional generalisation of quasisymmetric functions (of level d in the terminology of [START_REF] Novelli | Free quasi-symmetric functions and descent algebras for wreath products, and noncommutative multi-symmetric functions[END_REF]) and its corresponding iterated-sums signature. We close this section by mentioning that Malvenuto's and Reutenauer's Hopf algebra of permutations [START_REF] Malvenuto | Duality between quasi-symmetric functions and the Solomon descent algebra[END_REF] plays an important part in the understanding of the relation between the objects Sym, QSym and NSym. The interested reader is referred to [START_REF] Aguiar | Structure of the Malvenuto-Reutenauer Hopf algebra of permutations[END_REF][START_REF] Aguiar | Combinatorial Hopf algebras and generalized Dehn-Sommerville relations[END_REF] and to [START_REF] Luoto | An Introduction to Quasisymmetric Schur Functions[END_REF] for a readable introduction, including a brief historical overview.

2.1. Half-shuffles. Aiming at understanding the discrete analog of the area operation (to be introduced further below), we take a more refined approach at the quasi-shuffle product by observing that m ‹ may be split into three products, i.e., left and right half-shuffles and a third product ua 9 ą vb :" pua ‹ vqb, ua 9 ă vb :" pu ‹ vbqa, ua ˛vb :" pu ‹ vqrabs, [START_REF] Bruned | Quasi-shuffle algebras and renormalisation of rough differential equations[END_REF] so that u ‹ v " u 9 ă v `u 9 ą v `u ˛v. For instance (c.f. Example 3)

3 9 ą 4r12s " 34r12s `43r12s `r34sr12s

3 9 ă 4r12s " 4r12s3 3 ˛4r12s " 4r123s. (8) 
Noticing the particular relation ua 9 ą vb " vb 9 ă ua which is equivalent to m ‹ being commutative, it is not hard to show that the quasi-shuffle algebra H qsh " pT pAq, ‹q becomes a commutative tridendriform algebra, pT pAq, 9 ă, 9 ą, ˛q, as defined by Loday and Ronco [START_REF] Loday | Trialgebras and families of polytopes[END_REF].

Remark 2.5. A similar splitting holds for the shuffle algebra in Remark 2.2. We can write the shuffle product m ¡ on T pAq as a sum of the two half-shuffles ua ą vb :" pua ¡ vqb, ua ă vb :" pu ¡ vbqa, so that ua ¡ vb " ua ă vb `ua ą vb. Again, we check quickly that the commutativity of the shuffle product is equivalent to ua ą vb " vb ă ua. In fact, the triple pT pAq, ă, ąq is also known as a commutative dendriform or Zinbiel algebra.

2.2. Hoffman's exponential. Shuffle and quasi-shuffle Hopf algebras are more tightly related than Remark 2.2 may adumbrate. Indeed, Hoffman proved in [START_REF] Hoffman | Quasi-shuffle products[END_REF] that H ¡ " pT pAq, ¡,δq and H qsh " pT pAq, ‹, δq are isomorphic as Hopf algebras. We briefly recall this result. Let T pAq be equipped with the commutative shuffle product m ¡ : T pAq b T pAq Ñ T pAq inductively defined by uras ¡ vrbs :" pu ¡vrbsqras`puras¡vqrbs, for u, v P T pAq and a, b P A. The empty word, e, is the unit for this product.

Recall the notation Irws introduced in Theorem 2.1.

Theorem 2.6 (Hoffman's isomorphism). [27] There exists a Hopf algebra isomorphism Φ H : pT pAq, ¡,δq Ñ pT pAq, ‹, δq, given explicitly by the so-called Hoffman exponential

Φ H pwq :" ÿ pi1,...,ipqPCp pwqq 1 i 1 ! ¨¨¨i p ! Irws. ( 9 
)
Its inverse also admits an explicit expression, namely the Hoffman logarithm

Φ ´1 H pwq :" ÿ pi1,...,ipqPCp pwqq p´1q pwq´p i 1 ¨¨¨i p Irws. ( 10 
)
Some examples: Φ H prisq " ris and for the words r1sr2s P T pAq and r1sr23sr4s P T pAq we find Φ H pr1sr2sq " r1sr2s `1 2 r12s

Φ H pr1sr23sr4sq " r1sr23sr4s `1 2 r123sr4s `1 2 r1sr234s `1 6 r1234s 
Φ H pr1s ¡ r2sq " Φ H pr1sr2s `r2sr1sq " r1sr2s `1 2 r12s `r2sr1s `1 2 r21s " r1sr2s `r2sr1s `r12s " Φ H pr1sq ‹ Φ H pr2sq.

In the second example, the terms correspond to the compositions p1, 1, 1q, p2, 1q, p1, 2q and p3q of the integer 3, in that order. Recall that the particular Notation 2.4 for words w " ru 1 s ¨¨¨ru k s P T pAq, for u 1 , . . . , u k P A, is in place. Also, note that the number of letters in each of the terms corresponds to the length of the composition. The reader is referred to [START_REF] Hoffman | Quasi-shuffle products[END_REF][START_REF] Hoffman | Quasi-shuffle products revisited[END_REF] for more details. See also [START_REF] Ebrahimi-Fard | The exponential Lie series for continuous semimartingales[END_REF] for an application in stochastic analysis.

In Section 5 we will show that Φ H is nicely compatible with comparing the iterated-sums signature on one side with the iterated-integrals signature on the other. The following two lemmas are going to be used in Section 5.1, where we address the area operation in the context of the iterated-sums signature.

Lemma 2.7. The image of any nonempty word w " w 1 ¨¨¨w n P T pAq under Hoffman's isomorphism can be split into two parts as follows:

Φ H pwq " Φ H pw 1 ¨¨¨w n´1 qw n `RH pwq, ( 11 
)
where the remainder term R H pwq " ÿ I"pi1,...,ipqPCp pwqq ipą1

1 i 1 ! ¨¨¨i p ! Irws.
The verification of the lemma is left to the reader. This splitting of Hoffman's isomorphism implies the following important result. 

Proof. From Lemma 2.7 and linearity of Φ H , we deduce that Φ H `uprasrbs ´rbsrasq ˘" Φ H purasqrbs ´ΦH purbsqras `RH purasrbsq ´RH purbsrasq.

Since the semigroup A is commutative, for any composition I " pi 1 , . . . , i p q P Cpnq with i p ě 2 we have that

I " urasrbs ‰ " ru 1 ¨¨¨u i1 sru i1`1 ¨¨¨u i1`i2 s ¨¨¨ru i1`¨¨¨`ip´1`1 ¨¨¨u n´2 abs " ru 1 ¨¨¨u i1 sru i1`1 ¨¨¨u i1`i2 s ¨¨¨ru i1`¨¨¨`ip´1`1 ¨¨¨u n´2 bas " I " urbsras ‰ .
Therefore, the equality R H purasrbsq " R H purbsrasq holds, which implies the identity (12).

Iterated-sums signatures

We consider a discrete time series x P pF d q N as an element of

pF d q Nc :" x : N `Ñ F d : D N ě 1 such that x N " x n @n ě N ( ,
the space of infinite time series that are eventually constant, by extending it constantly. In this section we will see that the appropriate algebraic setting for iterated-sums, combined into the map ISSpxq, is that of a character on the quasi-shuffle Hopf algebra H qsh " pT pAq, ‹, δ, ε, | ¨|q over the semigroup A corresponding to the alphabet A " t1, 2, . . . , du, introduced in Section 2.

The following notation for elements in the time series x is put in place:

x j " px r1s j , . . . , x rds j q P F d . Next we define the corresponding time series ∆x " pp∆xq 1 , p∆xq 2 , . . . , p∆xq N q with increments p∆xq n :" x n ´xn´1 P F d , for n ě 1, as entries. The new notation is extended to include all brackets in A by defining x .

Hence, the iterated-sums signature is a word series in H qsh

ISSpxq n,m " ÿ ru1s¨¨¨ru k sPT pAq xru 1 s ¨¨¨ru k s, ISSpxq n,m yru 1 s ¨¨¨ru k s (13) 
with iterated sums over increments of x as coefficients, defined as

xru 1 s ¨¨¨ru k s, ISSpxq n,m y " ÿ năi1ăi2㨨¨ăi k ďm ∆x ru1s i1 ∆x ru2s i2 ¨¨¨∆x ru k s i k . ( 14 
)
For example xr1sr12s, ISSpxq n,m y "

ÿ năi1ăi2ďm ∆x r1s i1 ∆x r1s i2 ∆x r2s i2 .
We extend this definition to all n, m P N by setting xw, ISSpxq n,m y " 0 whenever m ă n.

Remark 3.2. An easy consequence of this definition is that the coefficient xw, ISSpxq n,m y vanishes whenever pwq ą m ´n.

The proof of the following lemma is straightforward.

Lemma 3.3. Let x " px n q ně0 and x 1 " px 1 n q ně0 be two time series, and denote by xx 1 -px n x 1 n q ně0 . Then the increment of the product xx 1 is given by a generalised Leibniz rule p∆xx 1 q n " x 1 n´1 p∆xq n `xn´1 p∆x 1 q n `p∆xq n p∆x 1 q n . More importantly, we have the following: Theorem 3.4.

(1) (Quasi-shuffle identity) For each n ď m, the map ISSpxq n,m : H qsh Ñ F is a quasi-shuffle Hopf algebra character.

(2) (Chen's property) For any three n ă n 1 ă n 2 P N we have

ISSpxq n,n 1 ' ISSpxq n 1 ,n 2 " ISSpxq n,n 2 .
Remark 3.5. 1. Observe that point (i) in Theorem 3.4 amounts to a generalisation of the algebra isomorphism defined in (6) to the multidimensional case, i.e., for an alphabet A " t1, . . . , du. Indeed, defining the map Σ d on H qsh Σ d pru 1 sru 2 s ¨¨¨ru n sq :"

ÿ 1ďj1㨨¨ăjn Y ru1s j1 ¨¨¨Y runs jn , ( 15 
)
where u 1 , . . . , u n P A and for u " ra 

2.

Specialising to F " R, Theorem 3.4 matches the corresponding result for the iterated-integrals signature SpXq of a curve of bounded variation in R B , where B is a (possibly countable) alphabet. The iterated-integrals signature is also called Chen's signature, rough path signature, continuous-time signature or just signature in the literature.

Here, the underlying Hopf algebra is H ¡ " pT pBq, ¡,δ,εq. Indeed (see for example [START_REF] Hairer | Geometric versus non-geometric rough paths[END_REF]),

(1) (Shuffle identity) For fixed s ă t, SpXq s,t is a character on H ¡ , that is for all v, w P H ¡ xv, SpXq s,t y ¨xw, SpXq s,t y " xv ¡ w, SpXq s,t y.

(2) (Chen's property) For s ă u ă t SpXq s,u ' SpXq u,t " SpXq s,t .

Before proving Theorem 3.4 we need the following abstract result, which is a particular case of the setting presented in [42, Section 5.1]. Lemma 3.6. Let M ru1s¨¨¨ru k s pY q :" Σ d pru 1 s ¨¨¨ru k sq denote the level d monomial quasisymmetric functions defined in [START_REF] Dzhumadil'daev | On the speciality of Tortkara algebras[END_REF]. Then, the "generating series" σpY q :" ÿ wPA M w pY q w admits the factorisation

σpY q " ź jě1 ˜ε ´ÿ aPA Y ras j ras ¸´1 " ź jě1 ¨ε `ÿ rusPA Y rus j rus '. (16) 
Let us look at the first few terms in [START_REF] Ebrahimi-Fard | The exponential Lie series for continuous semimartingales[END_REF]:

σpY q " ¨ε `ÿ rusPA Y rus 1 rus '¨ε `ÿ rusPA Y rus 2 rus '¨ε `ÿ rusPA Y rus 3 rus '¨¨" ε `ÿ rusPA `Y rus 1 `Y rus 2 `Y rus 3 `¨¨¨˘rus `ÿ rusrvsPA b2 `Y rus 1 Y rvs 2 `Y rus 1 Y rvs 3
`¨¨¨˘rusrvs `¨¨Ï nstead of elaborating on this lemma, we refer to reference [START_REF] Novelli | Free quasi-symmetric functions and descent algebras for wreath products, and noncommutative multi-symmetric functions[END_REF] for details about multivariable generating series. Note, however, that after evaluating σpY q in Y ras j " ∆x ras j , we obtain ISSpxq and the factorisation (16) takes place in the convolution algebra pT ppAqq, 'q. We further remark that the expansion of the geometric series on the righthand side of the first equality in (16) takes place in A, which explains the summation over A in the second equality. Remark 3.7. Equality (16) bears resemblance to [32, Definition 4.1] (c.f. also [START_REF] Lyons | Sketching the order of events[END_REF]Theorem 32]. We would like to thank Harald Oberhauser (Oxford) for pointing us to these references). At first sight though, only coefficients for words in letters of weight one are considered in the aforementioned reference (e.g. in our notation r1s, r2s, . . . , rds, r1sr1s, r1sr2s, . . . , r1sr1sr1s,. . . ). Preprocessing the underlying time series through a nonlinear function (i.e. a kernel in the terminology of [START_REF] Király | Kernels for sequentially ordered data[END_REF]), one can introduce additional polynomial expressions. But, note that in their setting then nonetheless sums of increments of polynomials appear, whereas in the iterated-sums signature (i.e. in [START_REF] Ebrahimi-Fard | The exponential Lie series for continuous semimartingales[END_REF] evaluated at Y i " ∆x i ) polynomials of increments show up.

The differences between the two approaches may be summarized by saying that increments of polynomials differ from polynomials of increments. Saying this, it is an interesting question how these two approaches could be combined fruitfully. In particular, we hope to investigate the application of kernelization techniques to the iterated-sums signature.

Finally, we would like to mention that the work of Hoffman-Ihara (see Section 5 and [START_REF] Hoffman | Quasi-shuffle products revisited[END_REF], as well as [START_REF] Foissy | Deformations of shuffles and quasi-shuffles[END_REF]) permits to define for any positive integer a linear automorphism of T pAq which gives rise to a family of "feature maps" interpolating between the iterated-sums signature and the iterated-integrals signature. This relates to a modification of ( 16) in the spirit of [START_REF] Király | Kernels for sequentially ordered data[END_REF]Appendix B]. These new feature maps define characters over Hopf algebras equipped with new quasi-shuffle type products. The corresponding family of linear automorphisms define algebra maps between these quasi-shuffle type products and the quasi-shuffle product [START_REF] Aguiar | Structure of the Malvenuto-Reutenauer Hopf algebra of permutations[END_REF]. We postpone the details of this construction to a follow-up paper, and would like to thank the anonymous referee for hinting at this direction.

Proof of Theorem 3.4. 1. We need to show that for words w, w 1 

P T pAq xw ‹ w 1 , ISSpxq n,m y " xw, ISSpxq n,m yxw 1 , ISSpxq n,m y.
We use the recursive definition of the quasi-shuffle product (2) and induction on pwq ` pw 1 q, the base case (i.e., w " e or w 1 " e) being trivial. If u, v P T pAq and a, b P A, define the auxiliary time series 2. The proof of Chen's property can be pursued using a pedestrian approach. However, it also follows from Lemma 3.6. Indeed, we may split the product in the factorisation [START_REF] Ebrahimi-Fard | The exponential Lie series for continuous semimartingales[END_REF] as

σpY q " ź 1ďjďn 1 ˜ε ´ÿ aPA Y ras j ras ¸´1 ' ź jąn 1 ˜ε ´ÿ aPA Y ras j ras ¸´1 .
The desired identity follows upon evaluation at Y ras j " ∆x ras j as in the previous remark.

We note that the iterated-sums signature, ISSpxq n,m , introduced in this work is similar to the discrete Chen(-Fliess) series defined and studied in [START_REF] Gray | Discrete-time approximations of Fliess operators[END_REF] in the context of nonlinear control theory.

This section is closed with an intriguing observation. Up to this point it may seem that iterated-sums signatures, ISSpxq n,m , and Chen's signatures, SpXq s,t (see Remark 3.5), behave in the same way, but as the next example shows this is not at all the case. Recall that End F pH qsh q, the space of linear maps on H qsh , together with the convolution product ψ ˚γ :" m ‹ pψ b γqδ, is a non-commutative algebra with unit ι :" η ˝ε, where η : F Ñ H qsh is the unit map, ηpλq :" λe. Define e :" log ˚pidq " J ´1

2 J ˚J `1 3 J ˚J ˚J `¨¨¨, (17) 
where J :" id ´ι P End F pH qsh q is the projection onto the augmentation ideal T `pAq. It is the adjoint of the classical Eulerian Lie idempotent [START_REF] Reutenauer | Free Lie algebras[END_REF], that is, the concatenation logarithm of the identity map, log ' pidq. Observe that the sum [START_REF] Flint | Discretely sampled signals and the rough Hoff process[END_REF] terminates when evaluated in homogeneous elements since Jpeq " 0, thus it is well defined for arbitrary elements of T pAq. Then, for any character c P T ppAqq and word u P T pAq we have that xu, log ' cy " xepuq, cy, where log ' c P g. Indeed, by definition xepuq, cy " In the third equality we used that c is a character. In the second equality the reduced coproduct is applied

xJ ˚kpuq, cy " xm ‹ pJ b J ˚k´1 qδ 1 puq, cy " x ÿ 1 puq u p1q ‹ J ˚k´1 pu p2q q, cy.

Now, if

x is an arbitrary time series, for its iterated-sums signature this means that

xr1 2 s, log ' ISSpxqy " xr1 2 s, ISSpxqy " ÿ j ´∆x r1s j ¯2 ě 0.
Therefore, the image of the logarithm of iterated-sums signatures only reaches a certain subset of the Lie algebra of infinitesimal characters on H qsh . This is in contrast to Chen's iterated-integrals signature, for which Chow's Theorem [START_REF] Friz | Multidimensional Stochastic Processes as Rough Paths[END_REF]Theorem 7.28] holds, showing that any character over the shuffle Hopf algebra may be realised as the Chen signature of a piecewise linear path. The implications of this observation will be studied in a forthcoming paper. Still, the following positive statement on the linear span of iterated-sums signatures holds.

Lemma 3.8. For every n ě 1, span F tproj ďn ISSpxq : x P pF d q Nc u " proj ďn H qsh .

Remark 3.9. The corresponding result for iterated-integrals signatures was shown in [13, Lemma 3.4], which is sometimes useful for proving statements about the underlying algebra that are easily verified when tested against signatures.

Proof. Fix n ě 1 and let P 1 , . . . , P L , ordered in some way, be the quasisymmetric monomial functions with degree smaller or equal to n. By [42, Section 5.1] they are independent as elements of the space of formal power series. This implies that, for some m ě 1 large enough, evaluating at Y m " py 1 , . . . , y m , 0, 0, . . .q, the expressions P 1 pY m q, . . . , P L pY m q are independent as elements of Fry 1 , . . . , y m s. Denote Y p q m " ´yp q 1 , . . . , y p q m , 0, 0, . . . 

¯, " 1 
P L ´Y p1q m ¯PL ´Y p2q m ¯. . . P L ´Y pLq m ¯‹ ‹ ‹ ‹ ‹ ‹ ' .
A fortiori, also the columns must be independent in R. Hence, the columns must be independent for some realisation of the Y p q . This finally implies that we can find x p q P pF d q m`1 , " 1, . . . , L such that the columns of ¨P1 `∆x p1q ˘P1 `∆x p2q ˘. . . P 1 `∆x pLq P2 `∆x p1q ˘P2 `∆x p2q ˘. . . P 2 `∆x pLq .. . . . . . . . . . .

P L `∆x p1q ˘PL `∆x p2q ˘. . . P L `∆x pLq ˘‹ ‹ ‹ ' , are independent.
Here, as before, we extend the x p q constantly to an element of pFq Nc .

Invariants

In the previous section, we defined the iterated-sums signature, following the introduction. We now return to our original motivation, and first put the concept of "time warping" in a precise mathematical framework. For each index n ě 0 we define an operator acting on sequences by repeating once the value at time n. More precisely, given a time series, x, we define τ n pxq as the time series given by τ n pxq j :"

# x j j ď n x j´1 j ą n .
Observe that with this definition we have τ n pxq n " τ n pxq n`1 " x n , and the rest of the values are unchanged save for a time shift after time n.

Definition 4.1. We call a functional F : pF d q Nc Ñ F invariant to time warping if F ˝τn " F for all n ě 1.

From applications to data analysis, such as, e.g., moment corrections, we are mostly interested in polynomial invariants, i.e., invariant functionals that can be expressed by considering only polynomial expressions in a time series. Definition 4.2. We call F : pF d q Nc Ñ F polynomial, if for all N ě 1, F px 0 , . . . , x N , 0, 0, . . . q is a polynomial in the x i , and the polynomial degree is uniformly bounded in N .

From the factorisation (16) in Lemma 3.6 it follows that for any word w P T pAq the coefficient xw, ISSpxqy is a polynomial invariant in this sense. It turns out these are all the polynomial invariants, if we additionally demand invariance with respect to space translation of the entire series. Lemma 4.3. Let F be polynomial, invariant to both time warping and space translations. Then: F is realised as a quasisymmetric function.

Proof. We do the one-dimensional case, d " 1, to avoid notational clutter. By translation invariance, for any N ě 1, F px 0 , x 1 , . . . , x N , 0, 0, . . .q " F p0, x 1 ´x0 , x 2 ´x0 , . . . , x N ´x0 , 0, 0, . . .q. Now, by assumption, this is a polynomial in x 1 ´x0 , x 2 ´x0 , . . . , x N ´x0 , hence it is a (different) polynomial in x 1 ´x0 , x 2 ´x1 , x 3 ´x2 , . . . , x N ´xN´1 . Therefore, F can be realised as a formal power series of bounded degree: there is F P FxY 1 , Y 2 , . . . y of bounded degree such that for x P pF d q Nc we have that F pxq " F p∆xq.

It remains to show that F is quasisymmetric. Let n ě 1, i 1 ă ¨¨¨ă i n and α 1 , . . . , α n ě 1. We show that the coefficient of the monomial Y α1 i1 ¨¨¨Y αn in in F is equal to the one of Y α1 1 ¨¨¨Y αn n . Indeed: by using repeatedly the invariance to time warping, we get that for all x P R n , F p∆x 1 , ∆x 2 , . . . , ∆x n , 0, 0, . . .q " F p0, . . . , 0, ∆x 1 lo omo on i1 , 0, . . . , 0, ∆x 2 lo omo on i2 , 0, . . . , 0, ∆x n lo omo on in , 0, . . .q.

Hence, both sides coincide as polynomials. So that the coefficient of Y α1 i1 ¨¨¨Y αn in and Y α1 1 . . . Y αn n must coincide. This finishes the proof.

Hoffman's isomorphism and signatures

In this section we relate the iterated-sums signature of a time series with the usual iterated-integrals signature of the piecewise linear interpolation of an associated infinite dimensional time series.

Starting again with the extended alphabet A, we build the tensor algebra T pAq and define the shuffle product ¡ : T pAq b T pAq Ñ T pAq inductively by uras ¡ vrbs :" pu ¡ vrbsqras `puras ¡ vqrbs. Recall Hoffman's isomorphism [START_REF] Hoffman | Quasi-shuffle products[END_REF] defined in Theorem 2.6, which shows that H ¡ " pT pAq, ¡,δq and H qsh " pT pAq, ‹, δq are isomorphic as Hopf algebras. Next we compute explicitly the image by the iterated-integrals signature S of a linear path.

The following lemma is an immediate extension of [START_REF] Friz | Multidimensional Stochastic Processes as Rough Paths[END_REF]Example 7.21] to a countable index set.

Lemma 5.1. Consider a countable set B and let z t " z 0 `at for some z 0 , a P R B and all t P r0, 1s.

Then for w " w 1 ¨¨¨w n P T pBq xw, Spzq s,t y " pt ´sq pwq pwq! pwq ź j"1 a wj .

At the level of the tensor algebra this simply means that Spzq s,t " exp ' ppt ´sqaq. An analogue of this result holds for discrete signatures, which follows from Lemma 3.6, i.e., Chen's property. Lemma 5.2. Let x " p0, v, v, . . . q be a time series having a single non-zero increment v " pv r1s , . . . , v rds q P R d . Then xw, ISSpxqy " # pv r1s q k1 ¨¨¨pv rds q k d , w " r1 k1 ¨¨¨d k d s 0, else .

Now we look for a relation between the iterated-integrals signature and the iterated-sums signature. For this, let x " p0, x 1 , x 2 , . . . q be a time series and consider the (infinite dimensional!) path X " pX a : a P Aq where, for a " r1 k1 ¨¨¨d k d s P A, the component path X a is the linear interpolation of the time series

n Þ Ñ n ÿ j"1 ∆x a j " n ÿ j"1 p∆x r1s j q k1 ¨¨¨p∆x rds j q k d . ( 18 
)
Theorem 5.3. We have xΦ H pwq, ISSpxqy " xw, SpXqy.

Remark 5.4. We note that the iterated-integrals signature of the d-dimensional path consisting in the piecewise linear interpolation of x is not enough to obtain ISSpxq. Instead, the theorem shows that the iterated-integrals signature of the piecewise linear interpolation of the infinite dimensional time series [START_REF] Foissy | Deformations of shuffles and quasi-shuffles[END_REF] is sufficient.

Proof. Without loss of generality let the interpolation of ( 18) happen at the time points 0, 1, 2, . . . , N . Then, by Chen's property,

SpXq " exp ' pX 1 q ' exp ' pX 2 ´X1 q ' ¨¨¨' exp ' pX N ´XN´1 q.
We first investigate what happens for a single time step. Let a word w " ra 1 s ¨¨¨ra p s P T pAq be given, and write a i " r1 " xΦ H pwq, ISSpxq j´1,j y.

Therefore, we have shown the claim for a single time step. Now, since Φ H is a Hopf algebra map, the statement of the theorem is equivalent to showing that Φ HpISSpxqq " SpXq, where Φ H is the adjoint of Hoffman's isomorphism. Since Φ H is an algebra morphism, we calculate Φ HpISSpxq 0,N q " Φ HpISSpxq 0,1 q ' ¨¨¨' Φ HpISSpxq N ´1,N q " SpXq 0,1 ' ¨¨¨' SpXq N ´1,N " SpXq 0,N .

So the result is valid for the full signature.

Finally, we show a consistency result. where the supremum is taken over all partitions π of r0, 1s.

Given such a partition π " tt 0 " 0 ă t 

p∆xpπq i j q ki ď N ÿ j"1 d ź i"1 |∆xpπq i j | ki " N ÿ j"1 d ź i"1 X i tj ´Xi tj´1 ki " N ÿ j"1 X tj ´Xtj´1 k1`¨¨¨`k d ď X 1 sup j"1,...,N X tj ´Xtj´1 k1`¨¨¨`k d ´1
which vanishes in the limit since X is uniformly continuous on r0, 1s. Now suppose w " w 1 a for some w P T pAq and a P A. We have 3 cases pdX i u1 dX j u2 ´dX j u1 dX i u2 q ": AreapX i , X j q s,t , represents (two times) the signed area (or Lévy area) between the curves u Þ Ñ X i u and u Þ Ñ X j u for u P rs, ts, and the cord between the points pX i s , X j s q and pX i t , X j t q. We abstract this operation to the shuffle algebra by using the notion of half-shuffles introduced in Section 2.1. In fact, one verifies that at this level the area operation may be represented in terms of half-shuffle operations as ij ´ji " i ą j ´j ą i ": areapi, jq, so that in particular AreapX i , X j q s,t " xareapi, jq, SpXq s,t y.

We extend this by defining area operations on H ¡ " pT pAq, ¡,δq and H qsh " pT pAq, ‹, δq. Definition 5.6. The area map area : H ¡ b H ¡ Ñ H ¡ is defined by areapu, vq :" u ą v ´v ą u.

Next, the discrete analogue is given in terms of the first half-shuffle product in [START_REF] Bruned | Quasi-shuffle algebras and renormalisation of rough differential equations[END_REF]. Definition 5.7 (Discrete area). The discrete area map area : H qsh b H qsh Ñ H qsh is defined by areapu, vq :" u 9 ą v ´v 9 ą u.

We compare the two areas by considering the words u " r3s and v " r4sr12s. Then areapr3s, r4sr12sq " r3sr4sr12s `r4sr3sr12s ´r4sr12sr3s, areapr3s, r4sr12sq " r3sr4sr12s `r4sr3sr12s `r34sr12s ´r4sr12sr3s

as follows from Example 8. Both area and area can be iterated. We now make this precise: define D 1 " D 1 :" F A, the vector space spanned by the set A. Then, inductively define vector spaces

D n`1 :" span F tareapD n`1´m , , D m q : m ď nu D n`1 :" span F tareapD n`1´m , , D m q : m ď nu. We finally set D :" à ně1 D n , D :" à ně1 D n .
Neither the area nor the discrete area operations are associative. One can show, however, that area satisfies a fourth-order relation, known as tortkara, introduced by Dzhumadil'daev in the 2007 paper [START_REF] Dzhumadil | Zinbiel algebras under q-commutators[END_REF]. In [START_REF] Dzhumadil'daev | On the speciality of Tortkara algebras[END_REF] the image of iterated applications of the area map is characterised. (Compare also [START_REF] Reizenstein | Iterated-Integral Signatures in Machine Learning[END_REF]Theorem 28]). From Lemma 2.7 and Lemma 2.8 we deduce the following morphism property of Hoffman's isomorphism with respect to area and area. Theorem 5.9. Φ H : D Ñ D is a tortkara morphism, i.e., for ϕ, ψ P D Φ H pareapϕ, ψqq " areapΦ H pϕq, Φ H pψqq. Remark 5.10. 1. Note that Φ H is not a (quasi-)half-shuffle morphism. Only the anti-symmetrisation to area respectively area is nicely compatible with it.

2. The set D (the set of "areas-of-areas") is known to generate T pAq as a shuffle-algebra, see [START_REF] Diehl | Areas of areas generate the shuffle algebra[END_REF]. Applied to iterated-integral signatures this means that all their information is already contained in areas-of-areas. The area operation pX, Y q Þ Ñ AreapX, Y q has an immediate geometric interpretation, whereas the operation of integration pX, Y q Þ Ñ ş X dY . 1 Moreover, the area operation is related to antisymmetrised lead-lag correlation in time series analysis, see [START_REF] Diehl | Invariants of multidimensional time series based on their iterated-integral signature[END_REF]Section 3.2]. We refer to [START_REF] Diehl | Areas of areas generate the shuffle algebra[END_REF]Section 6] for more applications.

Proof. By Dzumadil'daev's theorem (Theorem 5.8) it suffices to prove the claim for the case when ϕ " uprasrbs ´rbsrasq and ψ " vprcsrds ´rdsrcsq. We first observe that in this case the area operation can be written more explicitly: areapϕ, ψq " ϕ ą ψ ´ψ ą ϕ " pϕ ¡ vrcsqrds ´pϕ ¡ vrdsqrcs ´pψ ¡ urasqrbs `pψ ¡ urbsqras.

Each of these terms can be further expanded into three terms. For example, the first one equals pϕ ¡ vrcsqrds " pϕ ¡ vqrcsrds `puras ¡ vrcsqrbsrds ´purbs ¡ vrcsqrasrds.

In total there are 12 terms, the remaining 9 terms are ´pϕ ¡ vrdsqrcs " ´pϕ ¡ vqrdsrcs ´puras ¡ vrdsqrbsrcs `purbs ¡ vrdsqrasrcs ´pψ ¡ urasqrbs " ´pψ ¡ uqrasrbs ´pvrcs ¡ urasqrdsrbs `pvrds ¡ urasqrcsrbs pψ ¡ urbsqras " pψ ¡ uqrbsras `pvrcs ¡ urbsqrdsras ´pvrds ¡ urbsqrcsras.

For each of these terms we can find exactly one other term such that their sum is of the form wprxsrys ´rysrxsq, for rxs, rys P tras, rbs, rcs, rdsu, and thus by Lemma 2.8 the image of this sum has the form Φ H pwrxsqrys ´ΦH pwrysqrxs. To summarise, the image Φ H pareapϕ, ψqq is a linear combination of 6 terms, each of them having the form Φ H pwrxsqrys ´ΦH pwrysqrxs. Now, if we pick any rxs P tras, rbs, rcs, rdsu there are exactly three terms containing rxs as the last letter. For example, for ras these terms are Φ H ´pvrcs ¡ urbsqrds ¯ras `ΦH ´pψ ¡ uqrbs ¯ras ´ΦH ´pvrds ¡ urbsqrcs ¯ras " Φ H pψ ¡ urbsqras, where the last identity is easy to check using that ψ " vprcsrds ´rdsrcsq. Applying a similar argument to all letters we see that 

Conclusion

In this work we have ' introduced a new set of features for multidimensional time series consisting in iterated sums (Section 3); ' shown that these features are invariant to time warping and that these in fact are all the (polynomial) invariants in this sense (Section 4); ' described a Hopf algebraic framework to compute these features (Section 2); ' shown how this setting mirrors the one of iterated-integrals in some aspects and differs in others (Section 2).

There are several possible generalisations of our work.

' Let f, g : F Ñ F be such that f p0q " gp0q " 0. Then iterated-sums of the form ÿ i1ăi2 f p∆x i1 qgp∆x i2 q, are also invariant to time warping (and analogously for higher order iterated-sums). These are, in general, not polynomial in the time series anymore, but might still be relevant for certain applications. For smooth f, g this should be related to the expansion of nonlinear functionals on stochastic word series [START_REF] Curry | Algebraic structures and stochastic differential equations driven by Lévy processes[END_REF], but the non-smooth case (for example f pxq " x, gpxq " |x|) is particularly interesting. ' Multi-parameter data. An object of interest are for example "images" I : r0, N s ˆr0, N s Ñ R and the time warping invariance becomes an invariance to stretching of the image.

We are also interested in exploring the possible applications of these invariants in data science.

' Retrieval of similar time series, invariant to time warping: see [START_REF] Yi | Efficient retrieval of similar time sequences under time warping[END_REF] (and references therein), where it is stated that "the time warping distance . . . does not lead to any natural features". The invariants presented in our work should provide those missing features, but a mathematical rigorous proof of this statement is left for future work. ' Statistical inference in problems involving unknown time warping, as in Example 1.2. ' Time series clustering: the features of this work can be used to cluster time series according to their "shape", i.e., independent of time warping. Sometimes a "prototype" for each cluster is looked after, see for example [START_REF] Petitjean | A global averaging method for dynamic time warping, with applications to clustering[END_REF]. In this case -as in the previous point -reconstruction of a time series from an (averaged) iterated-sums signature would be necessary. A detailed study of this ostensibly hard problem is left for future research.

We close with some open questions. At the end of Section 3 we showed that an equivalent of Chow's theorem does not hold for the iterated-sums signature ISSpxq.

' Can we understand tISSpxq : x P pF d q Nc u as a semi-algebraic set? (Compare [START_REF] Amendola | Varieties of signature tensors[END_REF] for the investigation of the image of iterated-integrals signatures as algebraic sets.) ' For x P pF d q N denote by Ð Ý

x the time series run backwards. Then (as might surprise readers familiar with Chen's signature) ISSp Ð Ý

x q ' ISSpxq ‰ ε. What are the implications?

' The lead-lag procedure of [START_REF] Flint | Discretely sampled signals and the rough Hoff process[END_REF] lifts a discrete time series of dimension d to a piecewise smooth curve of dimension 2d. Since the resulting iterated-integrals signature is invariant to time warping as well as space translations, and is polynomial in the original time series, by Lemma 4.3 it must be contained in the iterated-integrals signature ISSpxq. Conversely, is the signature of the resulting 2d curve enough to recover the iterated-sum signature? This would give a finite dimensional smooth curve whose iterated-integrals signature contains the invariants presented in this paper (compare Theorem 5.3 for an infinite dimensional smooth curve doing the job).
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 1 Figure 1. Example of time warping in the case of a discrete time series in d " 1 dimensions.
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 28 Let u P T pAq and a, b P A. Then Φ H `uprasrbs ´rbsrasq ˘" Φ H purasqrbs ´ΦH purbsqras.

Definition 3 . 1 . 1 xra 1

 3111 The iterated-sums signature of the time series x is the two-parameter family pISSpxq n,m | 0 ď n ď m P Nq of linear maps from T pAq to F such that ISSpxq n,n " ε, and defined recursively by xe, ISSpxq n,m y :" 1, and for a 1 ¨¨¨a p P T pAq xra 1 s ¨¨¨ra p s, ISSpxq n,m y :" s ¨¨¨ra p´1 s, ISSpxq n,j´1 y∆x raps j

  s k :" xuras, ISSpxq n,n`k y, s 1 k :" xvrbs, ISSpxq n,n`k y for 0 ď k ď m ´n, and zero else. Observe that the incrementsp∆sq k " xu, ISSpxq n,n`k´1 y∆x ras n`k , p∆s 1 q k " xv, ISSpxq n,n`k´1 y∆x rbs n`k .By the induction hypothesis we then gets 1 k´1 p∆sq k " xu, ISSpxq n,n`k´1 yxvrbs, ISSpxq n,n`k´1 y∆x ras n`k " xu ‹ vrbs, ISSpxq n,n`k´1 y∆xras n`k , and similarly s k´1 p∆s 1 q k " xuras, ISSpxq n,n`k´1 yxv, ISSpxq n,n`k´1 y∆x rbs n`k " xuras ‹ v, ISSpxq n,n`k´1 y∆x rbs n`k . Also, by a similar argument we also have p∆sq k p∆s 1 q k " xu ‹ v, ISSpxq n,n`k´1 y∆x ras n`k ∆x rbs n`k . Finally, we summate these relations by using Lemma 3.3 to get xuras, ISSpxq n,m yxvrbs, ISSpxq n,m y " m´n ÿ k"1 ∆pss 1 q k " xpu ‹ vrbsqras `puras ‹ vqrbs `pu ‹ vqrabs, ISSpxq n,m y " xuras ‹ vrbs, ISSpxq n,m y.

1 puq

 1 xu p1q b ¨¨¨b u pkq , c bk y " ´εq 'k y " xu, log ' cy.
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 55 Let X : r0, 1s Ñ R d be a continuous path of finite variation, meaning that sup π ÿ rs,tsPπ X t ´Xs ă 8

( 1 )" 1 |xw 1 ,|xw 1 ,xw 1 , 1 0

 111111 w 1 P T pAzAq: in this case, no matter what a is, we have |xw, ISSpxpπqq 0,N y| ď N ÿ jISSpxpπqq 0,j y||∆xpπq a j | ISSpxpπqq 0,j´1 y| Ñ 0 as |π| Ñ 0, by the induction hypothesis. (2) w 1 P T pAq and a P AzA: the same argument as before gives that the corresponding entry in ISSpxpπqq vanishes in the limit. (3) w 1 P T pAq and a P A: again by definition we have xw, ISSpxpπqq 0,N y " ISSpxpπqq 0,j´1 ypX a tj ´Xa tj´1 q which converges to the Young (or Riemann-Stieltjes) integral ż xw

Theorem 5 . 8 (

 58 [START_REF] Dzhumadil'daev | On the speciality of Tortkara algebras[END_REF] Theorem 2.1]). The space D is spanned by the set A Y t uprasrbs ´rbsrasq : a, b P A, u P T pAq u.

  1 ¨¨¨a l s P A we have set

	Y j rus	:" Y j ra1s	¨¨¨Y j ra l s	,
	we obtain a quasi-shuffle algebra isomorphism into the algebra of quasi-symmetric functions of level d,
	as introduced by Novelli and Thibon in [42]. For the sake of briefness we only remark that
	xw, ISSpxqy " Σ d pwq	Y	r1s 1 "∆x	r1s 1 ,...,Y 1 "∆x rds	rds 1 ,Y 2 "∆x r1s	r1s 2 ,...

  k i 1 ¨¨¨d k i d s P A, i " 1, . . . , p. According to Lemma 5.1, In other words, K m is the number of times the letter m P t1, . . . , du is repeated in w. Now the only term in Φ H pwq containing a single letter is 1 p! r1 K1 ¨¨¨d Kd s, i.e., the full "contraction".

	xw, exp ' pX j ´Xj´1 qy "	1 p!	∆x	ra1s j	¨¨¨∆x	raps j	"	1 p!	p∆x	r1s j q K1 ¨¨¨p∆x	rds j q Kd "	1 p!	∆x	r1 K 1 ¨¨¨d K d s j	.
	where K m :" k 1 m `¨¨¨`k p m . Then, by Lemma 5.2,														
	xΦ H pwq, ISSpxq j´1,j y " x	1 p!	r1 K1 ¨¨¨d Kd s, ISSpxq j´1,j y	
					"	1 p!	r1 K 1 ¨¨¨d K d s ∆x j		

  1 ă ¨¨¨ă t N ´1 ă t N " 1u, define xpπq by xpπq j " X tj . Then Proof. We use induction on the length pwq. If pwq " 1 and w " i P A, then xi, ISSpxpπqq 0,N y " If, on the other hand, w " a P AzA then a " r1 k1 ¨¨¨d k d s with k 1 `¨¨¨`k d ě 2.

		ÿ	pxpπq i t ´xpπq i s q " X i 1	´Xi 0 "	ż 1	dX i s
		rs,tsPπ				0
	which is independent of π. Therefore				
		N	d	
		ÿ	ź	
	|xa, ISSpxpπqq 0,N y| "			
		j"1	i"1	
				#	
	lim |π|Ñ0	xw, ISSpxpπqq 0,N y "	xw, SpXq 0,1 y w P T pAq 0 w R T pAq	.

  It is well known that for the iterated-integrals signature certain linear combinations of the entries have a precise geometric interpretation. Indeed, for any i, j P A

	Therefore, we have that
	lim
	ij
	xij ´ji, SpXq s,t y "
	său1ău2ăt

1 

, SpXq 0,s y dX a s " xw, SpXq 0,1 y. |π|Ñ0 xw, ISSpxpπqq 0,N y " xw, SpXq 0,1 y if w P T pAq, and vanishes otherwise. 5.1. The area operation.

Φ

  H pareapϕ, ψqq " Φ H pψ ¡ urbsqras ´ΦH pψ ¡ urasqrbs ´ΦH pϕ ¡ vrdsqrcs `ΦH pϕ ¡ vrcsqrds " ´ΦH pψq ‹ Φ H purbsq ¯ras ´´Φ H pψq ‹ Φ H purasq ¯rbs ´´Φ H pϕq ‹ Φ H pvrdsq ¯rcs `´Φ H pϕq ‹ Φ H pvrcsq ¯rds " Φ H pϕq 9 ą ´ΦH pvrcsqrds ´ΦH pvrdsqrcs ¯´Φ H pψq 9 ą ´ΦH purasqrbs ´ΦH purbsqras " Φ H pϕq 9 ą Φ H pψq ´ΦH pψq 9 ą Φ H pϕq " areapΦ H pϕq, Φ H pψqq.

The authors would be hard-pressed to explain the latter to a non-mathematician, whereas the former can be explained by a simple drawing.
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