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Abstract
We introduce a family of multilayer graph kernels and establish new links between graph convolutional

neural networks and kernel methods. Our approach generalizes convolutional kernel networks to graph-
structured data, by representing graphs as a sequence of kernel feature maps, where each node carries
information about local graph substructures. On the one hand, the kernel point of view offers an
unsupervised, expressive, and easy-to-regularize data representation, which is useful when limited samples
are available. On the other hand, our model can also be trained end-to-end on large-scale data, leading
to new types of graph convolutional neural networks. We show that our method achieves competitive
performance on several graph classification benchmarks, while offering simple model interpretation. Our
code is freely available at https://github.com/claying/GCKN.

1 Introduction
Graph kernels are classical tools for representing graph-structured data (see Kriege et al., 2020, for a survey).
Most successful examples represent graphs as very-high-dimensional feature vectors that enumerate and count
occurences of local graph sub-structures. In order to perform well, a graph kernel should be as expressive
as possible, i.e., able to distinguish graphs with different topological properties (Kriege et al., 2018), while
admitting polynomial-time algorithms for its evaluation. Common sub-structures include walks Gärtner et al.
(2003), shortest paths Borgwardt et al. (2005), subtrees Shervashidze et al. (2011), or graphlets Shervashidze
et al. (2009).

Graph kernels have shown to be expressive enough to yield good empirical results, but decouple data
representation and model learning. In order to obtain task-adaptive representations, another line of research
based on neural networks has been developed recently Niepert et al. (2016); Kipf and Welling (2017); Xu
et al. (2019); Verma et al. (2018). The resulting tools, called graph neural networks (GNNs), are conceptually
similar to convolutional neural networks (CNNs) for images; they provide graph-structured multilayer models,
where each layer operates on the previous layer by aggregating local neighbor information. At the cost of
being harder to regularize than kernel methods, these models are trained end-to-end and are able to extract
task-adaptive features. In a recent work, Xu et al. (2019) show that the class of GNNs based on neighborhood
aggregation is at most as powerful as the Weisfeiler-Lehman (WL) graph isomorphism test, on which the WL
kernel is based Shervashidze et al. (2011), and other types of network architectures than simple neighborhood
aggregation are needed for more powerful features.

Since GNNs and kernel methods seem to benefit from different characteristics, several links have been
drawn between both worlds in the context of graph modeling. For instance, Lei et al. (2017) introduce a class
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of GNNs whose output lives in the reproducing kernel Hilbert space (RKHS) of a WL kernel. In this line of
research, the kernel framework is essentially used to design the architecture of the GNN since the final model
is trained as a classical neural network. This is also the approach used by Zhang et al. (2018a) and Morris
et al. (2019). By contrast, Du et al. (2019) adopt an opposite strategy and leverage a GNN architecture to
design new graph kernels, which are equivalent to infinitely-wide GNNs initialized with random weights and
trained with gradient descent. Other attempts to merge neural networks and graph kernels involve using the
metric induced by graph kernels to initialize a GNN Navarin et al. (2018), or using graph kernels to obtain
continuous embeddings that are plugged to neural networks Nikolentzos et al. (2018).

In this paper, we go a step further in bridging graph neural networks and kernel methods by proposing an
explicit multilayer kernel representation, which can be used either as a traditional kernel method, or trained
end-to-end as a GNN when enough labeled data are available. The multilayer construction allows to compute
a series of maps which account for local sub-structures (“receptive fields”) of increasing size. The graph
representation is obtained by pooling the final representations of its nodes. The resulting kernel extends to
graph-structured data the concept of convolutional kernel networks (CKNs), which was originally designed for
images and sequences Mairal (2016); Chen et al. (2019a). As our representation of nodes is built by iteratively
aggregating representations of their outgoing paths, our model can also be seen as a multilayer extension of
path kernels. Relying on paths rather than neighbors for the aggregation step makes our approach more
expressive than the GNNs considered in Xu et al. (2019), which implicitely rely on walks and whose power
cannot exceed the Weisfeiler-Lehman (WL) graph isomorphism test. Even with medium/small path lengths
(which leads to reasonable computational complexity in practice), we show that the resulting representation
outperforms walk or WL kernels.

Our model called graph convolutional kernel network (GCKN) relies on the successive uses of the Nyström
method (Williams and Seeger, 2001) to approximate the feature map at each layer, which makes our approach
scalable. GCKNs can then be interpreted as a new type of graph neural network whose filters may be learned
without supervision, by following kernel approximation principles. Such unsupervised graph representation is
known to be particularly effective when small amounts of labeled data are available. As in CKNs, our model
can also be trained end-to-end, as a GNN, leading to task-adaptive representations, with a computational
complexity similar to that of a GNN, when the path lengths are small enough.

Notation. A graph G is defined as a triplet (V, E , a), where V is the set of vertices, E is the set of edges,
and a : V → Σ is a function that assigns attributes, either discrete or continous, from a set Σ to nodes in
the graph. A path is a sequence of distinct vertices linked by edges and we denote by P(G) and Pk(G) the
set of paths and paths of length k in G, respectively. In particular, P0(G) is reduced to V. We also denote
by Pk(G, u) ⊂ Pk(G) the set of paths of length k starting from u in V. For any path p in P(G), we denote
by a(p) in Σ|p|+1 the concatenation of node attributes in this path. We replace P with W to denote the
corresponding sets of walks by allowing repeated nodes.

2 Related Work on Graph Kernels
Graph kernels were originally introduced by Gärtner et al. (2003) and Kashima et al. (2003), and have been
the subject of intense research during the last twenty years (see the reviews of Vishwanathan et al., 2010;
Kriege et al., 2020).

In this paper, we consider graph kernels that represent a graph as a feature vector counting the number
of occurrences of some local connected sub-structure. Enumerating common local sub-structures between two
graphs is unfortunately often intractable; for instance, enumerating common subgraphs or common paths is
known to be NP-hard Gärtner et al. (2003). For this reason, the literature on graph kernels has focused on
alternative structures allowing for polynomial-time algorithms, e.g., walks.

More specifically, we consider graph kernels that perform pairwise comparisons between local sub-structures
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centered at every node. Given two graphs G = (V, E , a) and G′ = (V ′, E ′, a′), we consider the kernel

K(G,G′) =
∑
u∈V

∑
u′∈V′

κbase(lG(u), lG′(u′)), (1)

where the base kernel κbase compares a set of local patterns centered at nodes u and u′, denoted by lG(u) and
lG′(u′), respectively. For simplicity, we will omit the notation lG(u) in the rest of the paper, and the base
kernel will be simply written κbase(u, u′) with an abuse of notation. As noted by Lei et al. (2017); Kriege
et al. (2020), this class of kernels covers most of the examples mentioned in the introduction.

Walks and path kernels. Since computing all path co-occurences between graphs is NP-hard, it is possible
instead to consider paths of length k, which can be reasonably enumerated if k is small enough, or the graphs
are sparse. Then, we may define the kernel K(k)

path as (1) with

κbase(u, u′) =
∑

p∈Pk(G,u)

∑
p′∈Pk(G′,u′)

δ(a(p), a′(p′)), (2)

where a(p) represents the attributes for path p in G, and δ is the Dirac kernel such that δ(a(p), a′(p′)) = 1 if
a(p) = a′(p′) and 0 otherwise.

It is also possible to define a variant that enumerates all paths up to length k, by simply adding the
kernels K(i)

path:

Kpath(G,G′) =
k∑
i=0

K
(i)
path(G,G′). (3)

Similarly, one may also consider using walks by simply replacing the notation P by W in the previous
definitions.

Weisfeiler-Lehman subtree kernels. A subtree is a subgraph with a tree structure. It can be extended
to subtree patterns (Shervashidze et al., 2011; Bach, 2008) by allowing nodes to be repeated, just as the notion
of walks extends that of paths. All previous subtree kernels compare subtree patterns instead of subtrees.
Among them, the Weisfeiler-Lehman (WL) subtree kernel is one of the most widely used graph kernels to
capture such patterns. It is essentially based on a mechanism to augment node attributes by iteratively
aggregating and hashing the attributes of each node’s neighborhoods. After i iterations, we denote by ai the
new node attributes for graph G = (V, E, a), which is defined in Algorithm 1 of Shervashidze et al. (2011) and
then the WL subtree kernel after k iterations is defined, for two graphs G = (V, E , a) and G′ = (V ′, E ′, a′), as

KWL(G,G′) =
k∑
i=0

K
(i)
subtree(G,G′), (4)

where
K

(i)
subtree(G,G′) =

∑
u∈V

∑
u′∈V′

κ
(i)
subtree(u, u′), (5)

with κ(i)
subtree(u, u′) = δ(ai(u), a′i(u′)) and the attributes ai(u) capture subtree patterns of depth i rooted at

node u.

3 Graph Convolutional Kernel Networks
In this section, we introduce our model, which builds upon the concept of graph-structured feature maps,
following the terminology of convolutional neural networks.
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Definition 1 (Graph feature map). Given a graph G = (V, E , a) and a RKHS H, a graph feature map is a
mapping ϕ : V → H, which associates to every node a point in H representing information about local graph
substructures.

We note that the definition matches that of convolutional kernel networks (Mairal, 2016) when the graph
is a two-dimensional grid. Generally, the map ϕ depends on the graph G, and can be seen as a collection of
|V| elements of H describing its nodes. The kernel associated to the feature maps ϕ,ϕ′ for two graphs G,G′,
is defined as

K(G,G′)=
∑
u∈V

∑
u′∈V′

〈ϕ(u), ϕ′(u′)〉H=〈Φ(G),Φ(G′)〉H, (6)

with
Φ(G) =

∑
u∈V

ϕ(u) and Φ(G′) =
∑
u∈V′

ϕ′(u). (7)

The RKHS of K can be characterized by using Theorem 2 in Appendix A. It is the space of functions
fz : G 7→ 〈z,Φ(G)〉H for all z in H endowed with a particular norm.

Note that even though graph feature maps ϕ,ϕ′ are graph-dependent, learning with K is possible as long
as they all map nodes to the same RKHS H—as Φ will then also map all graphs to the same space H. We
now detail the full construction of the kernel, starting with a single layer.

3.1 Single-Layer Construction of the Feature Map
We propose a single-layer model corresponding to a continuous relaxation of the path kernel. We assume
that the input attributes a(u) live in Rq0 , such that a graph G = (V,E, a) admits a graph feature map
ϕ0 : V → H0 with H0 = Rq0 and ϕ0(u) = a(u). Note that this assumption also allows us to use discrete labels
by using a one-hot encoding strategy—that is, four labels {A,B,C,D} are represented by four-dimensional
vectors (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), respectively.

Continuous relaxation of the path kernel. We rely on paths of length k, and introduce the kernel K1
for graphs G,G′ with feature maps ϕ0, ϕ

′
0 of the form (1) with

κbase(u, u′) =
∑

p∈Pk(G,u)

∑
p′∈Pk(G′,u′)

κ1(ϕ0(p), ϕ′0(p′)), (8)

where ϕ0(p) = ϕ0(pi)ki=0 denotes the concatenation of k + 1 attributes along path p, which is an element
of Hk+1

0 , pi is the i-th node on path p starting from index 0, and κ1 is a Gaussian kernel comparing such
attributes:

κ1(ϕ0(p), ϕ′0(p′)) = e−
α1
2

∑k

i=0
‖ϕ0(pi)−ϕ′

0(p′
i)‖

2
H0 . (9)

This is an extension of the path kernel, obtained by replacing the hard matching function δ in (2) by κ1, as
done for instance by Togninalli et al. (2019) for the WL kernel. This replacement not only allows us to use
continuous attributes, but also has important consequences in the discrete case since it allows to perform
inexact matching between paths. For instance, when the graph is a chain with discrete attributes—in other
words, a string—then, paths are simply k-mers, and the path kernel (with matching function δ) becomes
the spectrum kernel for sequences (Leslie et al., 2001). By using κ1 instead, we obtain the single-layer CKN
kernel of Chen et al. (2019a), which performs inexact matching, as the mismatch kernel does (Leslie et al.,
2004), and leads to better performances in many tasks involving biological sequences.

From graph feature map ϕ0 to graph feature map ϕ1. The kernel κ1 acts on pairs of paths in
potentially different graphs, but only through their mappings to the same space Hk+1

0 . Since κ1 is positive
definite, we denote by H1 its RKHS and consider its mapping φpath

1 : Hk+1
0 → H1 such that

κ1(ϕ0(p), ϕ′0(p′)) = 〈φpath
1 (ϕ0(p)) , φpath

1 (ϕ′0(p′))〉H1 .
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For any graph G, we can now define a graph feature map ϕ1 : V → H1, operating on nodes u in V, as

ϕ1(u) =
∑

p∈Pk(G,u)

φpath
1 (ϕ0(p)) . (10)

Then, the continuous relaxation of the path kernel, denoted by K1(G,G′), can also be written as (6) with
ϕ = ϕ1, and its underlying kernel representation Φ1 is given by (7). The construction of ϕ1 from ϕ0 is
illustrated in Figure 1.

u

ϕj(u) ∈ Hj

(V , E , ϕj : V → Hj)

path extraction

kernel mapping

path aggregation

u

u

ϕj+1(u) ∈ Hj+1

u u u

p1 p2 p3

φpath
j+1 (ϕj(p1))

φpath
j+1 (ϕj(p2))

φpath
j+1 (ϕj(p3))

kernel mapping

Hj+1

path aggregation

ϕj+1(u) := φpath
j+1 (ϕj(p1)) + φpath

j+1 (ϕj(p2)) + φpath
j+1 (ϕj(p3))

(V , E , ϕj+1 : V → Hj+1)

Figure 1: Construction of the graph feature map ϕj+1 from ϕj given a graph (V, E). The first step extracts
paths of length k, then map them to a RKHS Hj+1 and the new map ϕj+1 is obtained by local path
aggregation (pooling) of their representations in Hj+1.

The graph feature map ϕ0 maps a node (resp a path) to H0 (resp Hk+1
0 ) which is typically a Euclidean

space describing its attributes. By contrast, φpath
1 is the kernel mapping of the Gaussian kernel κ1, and

maps each path p to a Gaussian function centered at ϕ0(p)—remember indeed that for kernel function
K : X × X → R with RKHS H, the kernel mapping is of a data point x is the function K(x, .) : X → R.
Finally, ϕ1 maps each node u to a mixture of Gaussians, each Gaussian function corresponding to a path
starting at u.

3.2 Concrete Implementation and GCKNs
We now discuss algorithmic aspects, leading to the graph convolutional kernel network (GCKN) model.

The Nyström method. A naive computation of the path kernel K1 can be costly as it requires comparing
all pairs of paths in each pair of graphs. To gain scalability, a key component of the CKN model is the Nyström
method (Williams and Seeger, 2001), which computes finite-dimensional approximate kernel embeddings. We
discuss here the use of such a technique to define finite-dimensional maps ψ1 : V → Rq1 and ψ′1 : V ′ → Rq1

for graphs G,G′ such that for all pairs of nodes u, u′ in V, V ′, respectively,

〈ϕ1(u), ϕ′1(u′)〉H1 ≈ 〈ψ1(u), ψ′1(u′)〉Rq1 .

The consequence of such an approximation is that it provides a finite-dimensional approximation Ψ1 of Φ1:

K1(G,G′)≈〈Ψ1(G),Ψ1(G′)〉Rq1 with Ψ1(G)=
∑
u∈V

ψ1(u).
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Then, a supervised learning problem with kernel K1 on a dataset (Gi, yi)i=1,...,n, where yi are labels in R,
can be solved by minimizing the regularized empirical risk

min
w∈Rq1

n∑
i=1

L(yi, 〈Ψ1(Gi), w〉) + λ‖w‖2, (11)

where L is a convex loss function. Next, we show that using the Nyström method to approximate the kernel κ1
yields a new type of GNN, represented by Ψ1(G), whose filters can be obtained without supervision, or, as
discussed later, with back-propagation in a task-adaptive manner.

Specifically, the Nyström method projects points from a given RKHS onto a finite-dimensional subspace
and perform all subsequent operations within that subspace. In the context of κ1, whose RKHS is H1 with
mapping function φpath

1 , we consider a collection Z = {z1, . . . , zq1} of q1 prototype paths represented by
attributes in Hk+1

0 , and we define the subspace E1 = Span(φpath
1 (z1), . . . , φpath

1 (zq1)). Given a new path with
attributes z, it is then possible to show (see Chen et al., 2019a) that the projection of path attributes z
onto E1 leads to the q1-dimensional mapping

ψpath
1 (z) = [κ1(zi, zj)]

− 1
2

ij [κ1(z1, z), . . . , κ1(zq1 , z)]>,

where [κ1(zi, zj)]ij is a q1 × q1 Gram matrix. Then, the approximate graph feature map ψ1 is obtained by
pooling

ψ1(u) =
∑

p∈Pk(G,u)

ψpath
1 (ψ0(p)) for all u ∈ V,

where ψ0 =ϕ0 and ψ0(p) = [ψ0(pi)]i=0,...,k in Rq0(k+1) represents the attributes of path p, with an abuse of
notation.

Interpretation as a GNN. When input attributes ψ0(u) have unit-norm, which is the case if we use
one-hot encoding on discrete attributes, the Gaussian kernel κ1 between two path attributes z, z′ in Rq0(k+1)

may be written
κ1(z, z′) = e−

α1
2 ‖z−z

′‖2
= eα1(z>z′−k−1) = σ1(z>z′), (12)

which is a dot-product kernel with a non-linear function σ1. Then, calling Z in Rq0(k+1)×q1 the matrix of
prototype path attributes, we have

ψ1(u) =
∑

p∈Pk(G,u)

σ1(Z>Z)− 1
2σ1(Z>ψ0(p)), (13)

where, with an abuse of notation, the non-linear function σ1 is applied pointwise. Then, the map ψ1 is build
from ψ0 with the following steps (i) feature aggregation along the paths, (ii) encoding of the paths with a
linear operation followed by point-wise non-linearity, (iii) multiplication by the q1 × q1 matrix σ1(Z>Z)− 1

2 ,
and (iv) linear pooling. The major difference with a classical GNN is that the “filtering” operation may be
interpreted as an orthogonal projection onto a linear subspace, due to the matrix σ1(Z>Z)− 1

2 .

Learning without supervision. Learning the “filters” Z with Nyström can be achieved by simply running
a K-means algorithm on path attributes extracted from training data (Zhang et al., 2008). This is the
approach adopted for CKNs by Mairal (2016); Chen et al. (2019a), which proved to be very effective as shown
in the experimental section.

End-to-end learning with back-propagation. While the previous unsupervised learning strategy con-
sists of finding a good kernel approximation that is independent of labels, it is also possible to learn the
parameters Z end-to-end, by minimizing (11) jointly with respect to Z and w. The main observations
from Chen et al. (2019a) in the context of biological sequences is that such a supervised learning approach
may yield good models with much less filters q1 than with the unsupervised learning strategy. We refer
the reader to Chen et al. (2019a) for how to perform back-propagation with the inverse square root matrix
σ1(Z>Z)− 1

2 .
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Complexity. The complexity for computing the feature map ψ1 is dominated by the complexity of finding
all the paths of length k from each node. This can be done by simply using a depth first search algorithm,
whose worst-case complexity for each graph is O(|V|dk), where d is the maximum degree of each node,
meaning that large k may be used only for sparse graphs. Then, each path is encoded in O(q1q0(k + 1))
operations; When learning with back-propagation, each gradient step requires computing the eigenvalue
decomposition of σ1(Z>Z)− 1

2 whose complexity is O(q3
1), which is not a computational bottleneck when using

mini-batches of order O(q1), where typical practical values for q1 are reasonably small, e.g., less than 128.

3.3 Multilayer Extensions
The mechanism to build the feature map ϕ1 from ϕ0 can be iterated, as illustrated in Figure 1 which shows
how to build a feature map ϕj+1 from a previous one ϕj . As discussed by Mairal (2016) for CKNs, the
Nyström method may then be extended to build a sequence of finite-dimensional maps ψ0, . . . , ψj , and the
final graph representation is given by

Ψj(G) =
∑
u∈V

ψj(u). (14)

Here we discuss two possible uses for these additional layers, either to account for more complex structures
than paths, or to extend the receptive field of the representation without resorting to the enumeration of long
paths.We will denote by kj the path length used at layer j.

A simple two-layer model to account for subtrees. As emphasized in (7), GCKN relies on a repre-
sentation Φ(G) of graphs, which is a sum of node-level representations provided by a graph feature map ϕ.
If ϕ is a sum over paths starting at the represented node, Φ(G) can simply be written as a sum over all
paths in G, consistently with our observation that (6) recovers the path kernel when using a Dirac kernel to
compare paths in κ1. The path kernel often leads to good performances, but it is also blind to more complex
structures. Figure 2 provides a simple example of this phenomenon, using k = 1: G1 and G3 differ by a single
edge, while G4 has a different set of nodes and a rather different structure. Yet P1(G3) = P1(G4), making
K1(G1, G3) = K1(G1, G4) for the path kernel.

1 2

34

(G1)

1 2

34

(G2)

1 2

34

(G3)

1 2 3

413

(G4)

7 K2(G1, G2) = 0

3 K1(G1, G2) > 0

3 K2(G1, G3) > K2(G1, G4)

7 K1(G1, G3) = K1(G1, G4)

Figure 2: Example cases using κ1 = κ2 = δ, with path lengths k1 = 1 and k2 = 0; The one-layer kernel K1
counts the number of common edges while the two-layer K2 counts the number of nodes with the same set of
outgoing edges. The figure suggests using K1 +K2 to gain expressiveness.

Expressing more complex structures requires to break the succession of linearities introduced in (7)
and (10)—much like pointwise nonlinearities are used in neural networks. Concretely, this effect can simply
be obtained by using a second layer with path length k2 = 0—paths are then identified to vertices—which
produces the feature map ϕ2(u) = φpath

2 (ϕ1(u)), where φpath
2 : H1 → H2 is a non-linear kernel mapping. The
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resulting kernel is then

K2(G,G′) =
∑
u∈V

∑
u′∈V′

〈ϕ2(u), ϕ′2(u′)〉H2

=
∑
u∈V

∑
u′∈V′

κ2(ϕ1(u), ϕ′1(u′)). (15)

When κ1 and κ2 are both Dirac kernels, K2 counts the number of nodes in G and G′ with the exact same set
of outgoing paths P(G, u), as illustrated in Figure 2.

Theorem 1 further illustrates the effect of using a nonlinear φpath
2 on the feature map ϕ1, by formally

linking the walk and WL subtree kernel through our framework.

Theorem 1. Let G = (V, E), G′ = (V ′, E ′),M be the set of exact matchings of subsets of the neighborhoods
of two nodes, as defined in Shervashidze et al. (2011), and ϕ defined as in (10) with κ1 = δ and replacing
paths by walks. For any u ∈ V and u′ ∈ V ′ such that |M(u, u′)| = 1,

δ(ϕ1(u), ϕ′1(u′)) = κ
(k)
subtree(u, u′). (16)

Recall that when using (8) with walks instead of paths and a Dirac kernel for κ1, the kernel (6) with
ϕ = ϕ1 is the walk kernel. The condition |M(u, u′)| = 1 indicates that u and u′ have the same degrees and
each of them has distinct neighbors. This can be always ensured by including degree information and adding
noise to node attributes. For a large class of graphs, both the walk and WL subtree kernels can therefore be
written as (6) with the same first layer ϕ1 representing nodes by their walk histogram. While walk kernels
use a single layer, WL subtree kernels rely on a second layer ϕ2 mapping nodes to the indicator function of
ϕ1(u).

Theorem 1 also shows that the kernel built in (15) is a path-based version of WL subtree kernels, therefore
more expressive as it captures subtrees rather than subtree patterns. However, the Dirac kernel lacks flexibility,
as it only accounts for pairs of nodes with identical P(G, u). For example, in Figure 2, K2(G1, G2) = 0 even
though G1 only differs from G2 by two edges, because these two edges belong to the set P(G, u) of all nodes
in the graph. In order to retain the stratification by node of (15) while allowing for a softer comparison
between sets of outgoing paths, we replace δ by the kernel κ2(ϕ1(u), ϕ′1(u′)) = e−α2‖ϕ1(u)−ϕ′

1(u′)‖2
H1 . Large

values of α2 recover the behavior of the Dirac, while smaller values gives non-zero values for similar P(G, u).

A multi-layer model to account for longer paths. In the previous paragraph, we have seen that
adding a second layer could bring some benefits in terms of expressiveness, even when using path lengths
k2 = 0. Yet, a major limitation of this model is the exponential complexity of path enumeration, which
is required to compute the feature map ϕ1, preventing us to use large values of k as soon as the graph is
dense. Representing large receptive fields while relying on path enumerations with small k, e.g., k ≤ 3, is
nevertheless possible with a multi-layer model. To account for a receptive field of size k, the previous model
requires a path enumeration with complexity O(|V|dk), whereas the complexity of a multilayer model is linear
in k.

3.4 Practical Variants
Summing the kernels for different k and different scales. As noted in Section 2, summing the kernels
corresponding to different values of k provides a richer representation. We also adopt such a strategy, which
corresponds to concatenating the feature vectors Ψ(G) obtained for various path lengths k. When considering
a multi-layer model, it is also possible to concatenate the feature representations obtained at every layer j,
allowing to obtain a multi-scale feature representation of the graph and gain expressiveness.
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Use of homogeneous dot-product kernel. Instead of the Gaussian kernel (9), it is possible to use a
homogeneous dot-product kernel, as suggested by Mairal (2016) for CKNs:

κ1(z, z′) = ‖z‖‖z′‖σ1

(
〈z, z′〉
‖z‖‖z′‖

)
,

where σ1 is defined in (12). Note that when z, z′ have unit-norm, we recover the Gaussian kernel (9). In our
paper, we use such a kernel for upper layers, or for continuous input attributes when they do not have unit
norm.

Other types of pooling operations. Another variant consists of replacing the sum pooling operation
in (13) and (14) by a mean or a max pooling. While using max pooling as a heuristic seems to be effective
on some datasets, it is hard to justify from a RKHS point of view since max operations typically do not
yield positive definite kernels. Yet, such a heuristic is widely adopted in the kernel literature, e.g., for string
alignment kernels (Saigo et al., 2004). In order to solve such a discrepancy between theory and practice,
Chen et al. (2019b) f proposes to use the generalized max pooling operator of Murray and Perronnin (2014),
which is compatible with the RKHS point of view. Applying the same ideas to graph CKNs (GCKNs) is
straightforward.

Using walk kernel instead of path kernel. One can use a relaxed walk kernel instead of the path kernel
in (8), at the cost of losing some expressiveness but gaining some time complexity. Indeed, there exists a
very efficient recursive way to compute the resulting approximate feature map in (13) for the walk kernel, as
detailed in Appendix C.

4 Model Interpretation
Ying et al. (2019) introduced an approach to interpret trained GNN models, by finding a subgraph of an
input graph G maximizing the mutual information with its predicted label (note that this approach depends
on a specific input graph). We show here how to adapt similar ideas to our framework.

Interpreting GCKN-path and GCKN-subtree. We call GCKN-path our model Ψ1 with a single layer,
and GCKN-subtree our model Ψ2 with two layers but with k2 = 0, which is the first model presented in
Section 3.3 that accounts for subtree structures. As these models are built upon path enumeration, we extend
the method of Ying et al. (2019) by identifying a small subset of paths in an input graph G preserving the
prediction. We then reconstruct a subgraph by merging the selected paths. For simplicity, let us consider a
one-layer model. As Ψ1(G) only depends on G through its set of paths Pk(G), we note Ψ1(P) with an abuse
of notation for any subset of P of paths in G, to emphasize the dependency in this set of paths. For a trained
model (Ψ1, w) and a graph G, our objective is to solve

min
P′⊆Pk(G)

L(ŷ, 〈Ψ1(P ′), w〉) + µ|P ′|, (17)

where ŷ is the predicted label of G and µ a regularization parameter controlling the number of paths to select.
This problem is combinatorial and can be computationally intractable when P(G) is large. Following Ying
et al. (2019), we relax it by using a mask M with values in [0; 1] over the set of paths, and replace the number
of paths |P ′| by the `1-norm of M , which is known to have a sparsity-inducing effect (Tibshirani, 1996). The
problem then becomes

min
M∈[0;1]|Pk(G)|

L(ŷ, 〈Ψ1(Pk(G)�M), w〉) + µ‖M‖1, (18)

where Pk(G)�M denotes the use of M(p)a(p) instead of a(p) in the computation of Ψ1 for all p in Pk(G).
Even though the problem is non-convex due to the non-linear mapping Ψ1, it may still be solved approximately
by using projected gradient-based optimization techniques.
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Interpreting multilayer models. By noting that Ψj(G) only depends on the union of the set of paths
Pkl(G), for all layers l ≤ j, we introduce a collection of masks Ml at each layer, and then optimize the same
objective as (18) over all masks (Ml)l=1,...,j , with the regularization

∑j
l=1 ‖Ml‖1.

5 Experiments

Table 1: Classification accuracies on graphs with discrete node attributes. The accuracies of other models are
taken from Du et al. (2019). Note that RetGK uses a different protocol, performing 10-fold cross-validation
10 times and reporting the average accuracy.
Dataset MUTAG PROTEINS PTC NCI1 IMDB-B IMDB-M COLLAB
size 188 1113 344 4110 1000 1500 5000
classes 2 2 2 2 2 3 3
avg ]nodes 18 39 26 30 20 13 74
avg ]edges 20 73 51 32 97 66 2458
WL subtree 90.4± 5.7 75.0± 3.1 59.9± 4.3 86.0± 1.8 73.8± 3.9 50.9± 3.8 78.9± 1.9
AWL 87.9± 9.8 - - - 74.5± 5.9 51.5± 3.6 73.9± 1.9
RetGK 90.3± 1.1 75.8± 0.6 62.5± 1.6 84.5± 0.2 71.9± 1.0 47.7± 0.3 81.0± 0.3
GNTK 90.0± 8.5 75.6± 4.2 67.9± 6.9 84.2± 1.5 76.9± 3.6 52.8± 4.6 83.6± 1.0
GCN 85.6± 5.8 76.0± 3.2 64.2± 4.3 80.2± 2.0 74.0± 3.4 51.9± 3.8 79.0± 1.8
PatchySAN 92.6± 4.2 75.9± 2.8 60.0± 4.8 78.6± 1.9 71.0± 2.2 45.2± 2.8 72.6± 2.2
GIN 89.4± 5.6 76.2± 2.8 64.6± 7.0 82.7± 1.7 75.1± 5.1 52.3± 2.8 80.2± 1.9
GCKN-walk-unsup 92.8± 6.1 75.7± 4.0 65.9± 2.0 80.1± 1.8 75.9± 3.7 53.4± 4.7 81.7± 1.4
GCKN-path-unsup 92.8± 6.1 76.0± 3.4 67.3± 5.0 81.4± 1.6 75.9± 3.7 53.0± 3.1 82.3± 1.1
GCKN-subtree-unsup 95.0± 5.2 76.4± 3.9 70.8± 4.6 83.9± 1.6 77.8± 2.6 53.5± 4.1 83.2± 1.1
GCKN-3layer-unsup 97.2± 2.8 75.9± 3.2 69.4± 3.5 83.9± 1.2 77.2± 3.8 53.4± 3.6 83.4± 1.5
GCKN-subtree-sup 91.6± 6.7 76.2± 2.5 68.4± 7.4 82.0± 1.2 76.5± 5.7 53.3± 3.9 82.9± 1.6

We evaluate GCKN and compare its variants to state-of-the-art methods, including GNNs and graph
kernels, on several real-world graph classification datasets, involving either discrete or continuous attributes.
The code used for our experiments is available in Appendix and will be made open-source upon publication.

5.1 Implementation Details
We follow the same protocols as (Du et al., 2019; Xu et al., 2019), and report the average accuracy and
standard deviation over a 10-fold cross validation on each dataset. We use the same data splits as Xu et al.
(2019), using their code.

Considered models. We consider two single-layer models called GCKN-walk and GCKN-path, correspond-
ing to the continuous relaxation of the walk and path kernels respectively. We also consider the two-layer
model GCKN-subtree introduced in Section 3.3 with path length k2 = 0, which accounts for subtrees. Finally,
we consider a 3-layer model GCKN-3layers with path length k2 = 2 (which enumerates paths with three
vertices for the second layer), and k3 =0, which introduces a non-linear mapping before global pooling, as in
GCKN-subtree. We use the same parameters αj and qj (number of filters) across layers. Our comparisons
include state-of-the-art graph kernels such as WL kernel (Shervashidze et al., 2011), AWL (Ivanov and
Burnaev, 2018), RetGK (Zhang et al., 2018b), GNTK (Du et al., 2019) and recent GNNs including GCN (Kipf
and Welling, 2017), PatchySAN (Niepert et al., 2016) and GIN (Xu et al., 2019).

Learning unsupervised models. Following Mairal (2016), we learn the anchor points Zj for each layer
by K-means over 300000 extracted paths from each training fold. The resulting graph representations are
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then mean-centered, standardized, and used within an SVM classifier (11) with squared hinge loss. For each
10-fold cross validation, we tune the bandwidth of the Gaussian kernel (identical for all layers), pooling
operation (local (13) or global (14)), path size k1 at the first layer, number of filters (identical for all layers)
and regularization parameter λ in (11). More details are given in Appendix, as well as a study of the model
robustness to hyper-parameters.

Learning supervised models. Follwing Xu et al. (2019), we use an Adam optimizer (Kingma and Ba,
2015) with the initial learning rate equal to 0.01 and halved every 50 epochs, and fix the batch size to
32. We use the unsupervised model based described above for initialization. We select the best model
based on the same hyperparameters as for unsupervised models, with the number of epochs as an additional
hyperparameter as used in Xu et al. (2019). Note that we do not use DropOut or batch normalization, which
are typically used in GNNs such as Xu et al. (2019). Importantly, the number of filters needed for supervised
models is always much smaller (e.g., 32 vs 512) than that for unsupervised models to achieve comparable
performance.

5.2 Results
Graphs with categorical node labels We use the same benchmark datasets as in Du et al. (2019),
including 4 biochemical datasets MUTAG, PROTEINS, PTC and NCI1 and 3 social network datasets
IMDB-B, IMDB-MULTI and COLLAB. All the biochemical datasets have categorical node labels while none
of the social network datasets has node features. We use degrees as node labels for these datasets, following
the protocols of previous works (Du et al., 2019; Xu et al., 2019; Togninalli et al., 2019). Similarly, we also
transform all the categorical node labels to one-hot representations. The results are reported in Table 1.
With a few exceptions, GCKN-walk has a small edge on graph kernels and GNNs—both implicitly relying on
walks too—probably because of the soft structure comparison allowed by the Gaussian kernel. GCKN-path
often brings some further improvement, which can be explained by its increasing the expressivity. Both
multilayer GCKNs bring a stronger increase, whereas supervising the filter learning of GCKN-subtree does
not help. Yet, the number of filters selected by GCKN-subtree-sup is smaller than GCKN-subtree-unsup (see
Appendix), allowing for faster classification at test time. GCKN-3layers-unsup performs in the same ballpark
as GCKN-subtree-unsup, but benefits from lower complexity due to smaller path length k1.

Graphs with continuous node attributes We use 4 real-world graph classification datasets with
continuous node attributes: ENZYMES, PROTEINS_full, BZR, COX2. All datasets and size information
about the graphs can be found in Kersting et al. (2016). The node attributes are preprocessed with
standardization as in Togninalli et al. (2019). To make a fair comparison, we follow the same protocol as
used in Togninalli et al. (2019). Specifically, we perform 10 different 10-fold cross validations, using the
same hyperparameters that give the best average validation accuracy. The hyperparameter search grids
remain the same as the above protocol. We also use the same protocol to train GNTK models. All the other
settings remain the same as for training graphs with categorical node labels. The results are shown in Table 2.
They are comparable to the ones obtained with categorical attributes, except that in 2/4 datasets, the
multilayer versions of GCKN underperform compared to GCKN-path, but they achieve lower computational
complexity. Paths were indeed presumably predictive enough for these datasets. Besides, the supervised
version of GCKN-subtree outperforms its unsupervised counterpart in 2/4 datasets.

5.3 Model Interpretation
We train a supervised GCKN-subtree model on the Mutagenicity dataset (Kersting et al., 2016), and use our
method described in Section 4 to identify important subgraphs. Figure 3 shows examples of detected subgraphs.
Our method is able to identify chemical groups known for their mutagenicity such as Polycyclic aromatic
hydrocarbon (left), Diphenyl ether (middle) or NO2 (right), thus admitting simple model interpretation.
More details and additional results are provided in Appendix.
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Table 2: Classification accuracies on graphs with continuous attributes. The accuracies of other models
except GNTK are taken from Togninalli et al. (2019). The accuracies of GNTK are obtained by running the
code of Du et al. (2019) on a similar setting.

Dataset ENZYMES PROTEINS BZR COX2
size 600 1113 405 467
classes 6 2 2 2
attr. dim. 18 29 3 3
avg ]nodes 32.6 39.0 35.8 41.2
avg ]edges 62.1 72.8 38.3 43.5
RBF-WL 68.4± 1.5 75.4± 0.3 81.0± 1.7 75.5± 1.5
HGK-WL 63.0± 0.7 75.9± 0.2 78.6± 0.6 78.1± 0.5
HGK-SP 66.4± 0.4 75.8± 0.2 76.4± 0.7 72.6± 1.2
WWL 73.3± 0.9 77.9± 0.8 84.4± 2.0 78.3± 0.5
GNTK 69.6± 0.9 75.7± 0.2 85.5± 0.8 79.6± 0.4
GCKN-walk-unsup 73.5± 0.5 76.5± 0.3 85.3± 0.5 80.6± 1.2
GCKN-path-unsup 75.7± 1.1 76.3± 0.5 85.9± 0.5 81.2± 0.8
GCKN-subtree-unsup 74.8± 0.7 77.5± 0.3 85.8± 0.9 81.8± 0.8
GCKN-3layer-unsup 74.6± 0.8 77.5± 0.4 84.7± 1.0 82.0± 0.6
GCKN-subtree-sup 72.8± 1.0 77.6± 0.4 86.4± 0.5 81.7± 0.7

GCKN

Original

Figure 3: Motifs extracted by GCKN on the Mutagenicity dataset.
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Appendix

This appendix provides both theoretical and experimental material and is organized as follows: Appendix A
presents a classical result, allowing us to characterize the RKHS of the graph kernels we introduce. Appendix B
provides additional experimental details that are useful to reproduce our results and additional experimental
results. Then, Appendix C explains how to accelerate the computation of GCKN when using walks instead
of paths (at the cost of lower expressiveness), and Appendix D presents a proof of Theorem 1 on the
expressiveness of WL and walk kernels.

A Useful Result about RKHSs
The following result characterizes the RKHS of a kernel function when an explicit mapping to a Hilbert space
is available. It may be found in classical textbooks (see, e.g., Saitoh, 1997, §2.1).

Theorem 2. Let Φ : X → F be a mapping from a data space X to a Hilbert space F , and let K(x, x′) :=
〈Φ(x), ψ(x′)〉F for x, x′ in X . Consider the Hilbert space

H := {fz ; z ∈ F} s.t. fz : x 7→ 〈z,Φ(x)〉F ,

endowed with the norm
‖f‖2

H := inf
z∈F

{
‖z‖2
F s.t. f = fz

}
.

Then, H is the reproducing kernel Hilbert space associated to kernel K.

B Details on Experimental Setup and Additional Experiments
In this section, we provide additional details and more experimental results. In Section B.1, we provide
additional experimental details; in Section ??, we present a benchmark on graph classification with continuous
attributes by using the protocol of Togninalli et al. (2019); in Section B.2, we perform a hyper-parameter
study for unsupervised GCKN on three datasets, showing that our approach is relatively robust to the
choice of hyper-parameters. In particular, the number of filters controls the quality of Nyström’s kernel
approximation: more filters means a better approximation and better results, at the cost of more computation.
This is in contrast with a traditional (supervised) GNN, where more filters may lead to overfitting. Finally,
Section B.3 provides motif discovery results.

B.1 Experimental Setup and Reproducibility
Hyperparameter search grids. In our experiments for supervised models, we use an Adam opti-
mizer (Kingma and Ba, 2015) for at most 350 epochs with an initial learning rate equal to 0.01 and
halved every 50 epochs with a batch size fixed to 32 throughout all datasets; the number of epochs is selected
using cross validation following Xu et al. (2019). The full hyperparameter search range is given in Table 3
for both unsupervised and supervised models on all tasks. Note that we include some large values (1.5 and
2.0) for σ to simulate the linear kernel as we discussed in Section 3.3. In fact, the function σ1(x) = eα(x−1)

defined in (12) is upper bounded by e−α + (1− e−α)x and lower bounded by 1 + α(x− 1) by its convexity at
0 and 1. Their difference is increasing with α and converges to zero when α tends to 0. Hence, when α is
small, σ1 behaves as an affine kernel with a small slope.
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Table 3: Hyperparameter search range
Hyperparameter Search range
σ (α = 1/σ2) [0.3; 0.4; 0.5; 0.6; 1.0; 1.5; 2.0]
local/global pooling [sum, mean, max]
path size k1 integers between 2 and 12
number of filters (unsup) [32; 128; 512; 1024]
number of filters (sup) [32; 64] and 256 for ENZYMES
λ (unsup) 1/n× np.logspace(-3, 4, 60)
λ (sup) [0.01; 0.001; 0.0001; 1e-05; 1e-06; 1e-07]

Computing infrastructure. Experiments for unsupervised models were conducted by using a shared CPU
cluster composed of 2 Intel Xeon E5-2470v2 @2.4GHz CPUs with 16 cores and 192GB of RAM. Supervised
models were trained by using a shared GPU cluster, in large parts built with Nvidia gamer cards (Titan
X, GTX1080TI). About 20 of these CPUs and 10 of these GPUs were used simultaneously to perform the
experiments of this paper.

B.2 Hyperparameter Study
We show here that both unsupervised and supervised models are generally robust to different hyperparameters,
including path size k1, bandwidth parameter σ, regularization parameter λ and their performance grows
increasingly with the number of filters q. The accuracies for NCI1, PROTEINS and IMDBMULTI are given
in Figure 4, by varying respectively the number of filters, the path size, the bandwidth parameter and
regularization parameter when fixing other parameters which give the best accuracy. Supervised models
generally require fewer number of filters to achieve similar performance to its unsupervised counterpart.
In particular on the NCI1 dataset, the supervised GCKN outperforms its unsupervised counterpart by a
significant margin when using a small number of filters.

B.3 Model Interpretation
Implementation details. We use a similar experimental setting as Ying et al. (2019) to train a supervised
GCKN-subtree model on Mutagenicity dataset, consisting of 4337 molecule graphs labeled according to their
mutagenic effect. Specifically, we use the same split for train and validation set and train a GCKN-subtree
model with k1 = 3, which is similar to a 3-layer GNN model. The number of filters is fixed to 20, the same as
Ying et al. (2019). The bandwidth parameter σ is fixed to 0.4, local and global pooling are fixed to mean
pooling, the regularization parameter λ is fixed to 1e-05. We use an Adam optimizer with initial learning
equal to 0.01 and halved every 50 epochs, the same as previously. The accuracy of the trained model is
assured to be more than 80% on the test set as Ying et al. (2019). Then we use the procedure described
in Section 4 to interpret our trained model. We use an LBFGS optimizer and fixed µ to 0.01. The final
subgraph for each given graph is obtained by extracting the maximal connected component formed by the
selected paths. A contribution score for each edge can also be obtained by gathering the weights M of all the
selected paths that pass through this edge.

More results. More motifs extracted by GCKN are shown in Figure 5 for the Mutagenicity dataset. We
recovered some benzene ring or polycyclic aromatic groups which are known to be mutagenic. We also found
some groups whose mutagenicity is not known, such as polyphenylene sulfide in the fourth subgraph and
2-chloroethyl- in the last subgraph.
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Figure 4: Hyperparamter study: sensibility to different hyperparameters for unsupervised and supervised
GCKN-subtree models. The row from top to bottom respectively corresponds to number of filters q1, path
size k1, bandwidth parameter σ and regularization parameter λ. The column from left to right corresponds
to different datasets: NC11, PROTEINS and IMDBMULTI.
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C O Cl H N F Br S P I Na K Li Ca

Figure 5: More motifs extracted by GCKN on Mutagenicity dataset. First and third rows are original graphs;
second and fourth rows are corresponding motifs. Some benzene ring or polycyclic aromatic groups are
identified, which are known to be mutagenic. In addition, Some chemical groups whose mutagenicity is not
known are also identified, such as polyphenylene sulfide in the fourth subgraph and 2-chloroethyl- in the last
subgraph.
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C Fast Computation of GCKN with Walks
Here we discuss an efficient computational variant using walk kernel instead of path kernel, at the cost of
losing some expressive power. Let us consider a relaxed walk kernel by analogy to (8) with

κ
(k)
base(u, u′) =

∑
p∈Wk(G,u)

∑
p′∈Wk(G′,u′)

κ1(ϕ0(p), ϕ′0(p′)), (19)

using walks instead of paths and with κ1 the Gaussian kernel defined in 9. As Gaussian kernel can be
decomposed as a product of the Gaussian kernel on pair of nodes at each position

κ1(ϕ0(p), ϕ′0(p′)) =
k∏
j=1

κ1(ϕ0(pj), ϕ′0(p′j)),

We can obtain similar recursive relation as for the original walk kernel in Lemma 2

κ
(k)
base(u, u′) = κ1(ϕ0(u), ϕ′0(u′))

∑
v∈N (u)

∑
v′∈N (u′)

κ
(k−1)
base (v, v′). (20)

After applying the Nyström method, the approximate feature map in (13) becomes

ψ1(u) = σ1(Z>Z)− 1
2 ck(u),

where for any 0 ≤ j ≤ k, cj(u) :=
∑
p∈Wj(G,u) σ1(Z>j ψ0(p)) and Zj in Rq0(j+1)×q1 denotes the matrix

consisting of the j + 1 last columns of q1 anchor points. Using the above recursive relation (20) and similar
arguments in e.g.Chen et al. (2019b), we can show cj obeys the following recursive relation

cj(u) = bj(u)�
∑

v∈N (u)

cj−1(v), 1 ≤ j ≤ k, (21)

where � denotes the element-wise product and bj(u) is a vector in Rq1 whose entry i in {1, . . . , q1} is
κ1(u, z(k+1−j)

i ) and z(k+1−j)
i denotes the k+ 1− j-th column vector of zi in Rq0 . In practice,

∑
v∈N (u) cj−1(v)

can be computed efficiently by multiplying the adjacency matrix with the |V|-dimensional vector with entries
cj−1(v) for v ∈ V.

D Proof of Theorem 1
Before presenting and proving the link between the WL subtree kernel and the walk kernel, we start by
reminding and showing some useful results about the WL subtree kernel and the walk kernel.

D.1 Useful results for the WL subtree kernel
We first recall a recursive relation of the WL subtree kernel, given in the Theorem 8 of Shervashidze et al.
(2011). Let us denote byM(u, u′) the set of exact matchings of subsets of the neighbors of u and u′, formally
given by

M(u, u′) =
{
R ⊆ N (u)×N (u′)

∣∣∣ |R| = |N (u)| = |N (u′)|∧

(∀(v, v′), (w,w′) ∈ R : u = w ⇔ u′ = w′) ∧ (∀(u, u′) ∈ R : a(u) = a′(u′))
}
. (22)

Then we have the following recursive relation for κ(k)
subtree(u, u′) := δ(ak(u), a′k(u′))

κ
(k+1)
subtree(u, u′) =

κ
(k)
subtree(u, u′) max

R∈M(u,u′)

∏
(v,v′)∈R

κ
(k)
subtree(v, v′), ifM(u, u′) 6= ∅,

0, otherwise.
(23)

We can further simply the above recursion using the following Lemma
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Lemma 1. IfM(u, u′) 6= ∅, we have

κ
(k+1)
subtree(u, u′) = δ(a(u), a′(u′)) max

R∈M(u,u′)

∏
(v,v′)∈R

κ
(k)
subtree(v, v′).

Proof. We prove this by induction on k ≥ 0. For k = 0, this is true by the definition of κ(0)
subtree. For k ≥ 1,

we suppose that κ(k)
subtree(u, u′) = δ(a(u), a′(u′)) maxR∈M(u,u′)

∏
(v,v′)∈R κ

(k−1)
subtree(v, v′). We have

κ
(k+1)
subtree(u, u′) = κ

(k)
subtree(u, u′) max

R∈M(u,u′)

∏
(v,v′)∈R

κ
(k)
subtree(v, v′)

= δ(a(u), a′(u′)) max
R∈M(u,u′)

∏
(v,v′)∈R

κ
(k−1)
subtree(v, v′) max

R∈M(u,u′)

∏
(v,v′)∈R

κ
(k)
subtree(v, v′).

It suffices to show

max
R∈M(u,u′)

∏
(v,v′)∈R

κ
(k−1)
subtree(v, v′) max

R∈M(u,u′)

∏
(v,v′)∈R

κ
(k)
subtree(v, v′) = max

R∈M(u,u′)

∏
(v,v′)∈R

κ
(k)
subtree(v, v′).

Since the only values can take for κ(k−1)
subtree is 0 and 1, the only values that maxR∈M(u,u′)

∏
(v,v′)∈R κ

(k−1)
subtree(v, v′)

can take is also 0 and 1. Then we can split the proof on these two conditions. It is obvious if this term is
equal to 1. If this term is equal to 0, then

max
R∈M(u,u′)

∏
(v,v′)∈R

κ
(k)
subtree(v, v′) ≤ max

R∈M(u,u′)

∏
(v,v′)∈R

κ
(k−1)
subtree(v, v′) = 0,

as all terms are not negative and κ(k)
subtree(v, v′) is not creasing on k. Then max

R∈M(u,u′)

∏
(v,v′)∈R

κ
(k)
subtree(v, v′) = 0

and we have 0 for both sides.

D.2 Recursive relation for the walk kernel
We recall that the k-walk kernel is defined as

K(G,G′) =
∑
u∈V

∑
u′∈V′

κ
(k)
walk(u, u′),

where
κ

(k)
walk(u, u′) =

∑
p∈Wk(G,u)

∑
p′∈Wk(G′,u′)

δ(a(p), a′(p′)).

The feature map of this kernel is given by

ϕ
(k)
walk(u) =

∑
p∈Wk(G,u)

ϕδ(a(p)),

where ϕδ is the feature map associated with δ. We give here a recursive relation for the walk kernel on the
size of walks, thanks to its allowance of nodes to repeat.

Lemma 2. For any k ≥ 0, we have

κ
(k+1)
walk (u, u′) = δ(a(u), a′(u′))

∑
v∈N (u)

∑
v′∈N (u′)

κ
(k)
walk(v, v′). (24)
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Proof. Noticing that we can always decompose a path p ∈ Wk+1(G, u), with (u, v) the first edge that it passes
and v ∈ N (u), into (u, q) with q ∈ Wk(G, v), then we have

κ
(k+1)
walk (u, u′) =

∑
p∈Wk+1(G,u)

∑
p′∈Wk+1(G′,u′)

δ(a(p), a′(p′))

=
∑

v∈N (u)

∑
p∈Wk(G,v)

∑
v′∈N (u′)

∑
p′∈Wk(G,v′)

δ(a(u), a′(u′))δ(a(p), a′(p′))

= δ(a(u), a′(u′))
∑

v∈N (u)

∑
v′∈N (u′)

∑
p∈Wk(G,v)

∑
p′∈Wk(G′,v′)

δ(a(p), a′(p′))

= δ(a(u), a′(u′))
∑

v∈N (u)

∑
v′∈N (u′)

κ
(k)
walk(v, v′).

This relation also provides us a recursive relation for the feature maps of the walk kernel

ϕ
(k+1)
walk (u) = ϕδ(a(u))⊗

∑
v∈N (u)

ϕ
(k)
walk(v),

where ⊗ denotes the tensor product.

D.3 Discriminative power between walk kernel and WL subtree kernel
Before proving the Theorem 1, let us first show that the WL subtree kernel is always more discriminative
than the walk kernel.

Proposition 1. For any node u in graph G and u′ in graph G′ and any k ≥ 0, then d
κ

(k)
subtree

(u, u′) = 0 =⇒
d
κ

(k)
walk

(u, u′) = 0.

This proposition suggests that though both of their feature maps are not injective (see e.g. Kriege
et al. (2018)), the feature map of κ(k)

subtree is more injective in the sense that for a node u, its collision set
{u′ ∈ V |ϕ(u′) = ϕ(u)} for κ(k)

subtree, with ϕ the corresponding feature map, is included in that for κ(k)
walk.

Furthermore, if we denote by κ̂ the normalized kernel of κ such that κ̂(u, u′) = κ(u, u′)/
√
κ(u, u)κ(u′, u′),

then we have

Corolary 1. For any node u in graph G and u′ in graph G′ and any k ≥ 0, d
κ

(k)
subtree

(u, u′) ≥ d
κ̂

(k)
walk

(u, u′).

Proof. We prove by induction on k. It is clear for k = 0 as both kernels are equal to the Dirac kernel on the
node attributes. Let us suppose this is true for k ≥ 0, we will show this is also true for k + 1. We suppose
d
κ

(k+1)
subtree

(u, u′) = 0. Since κ(k+1)
subtree(u, u) = 1, by equality (23) we have

1 = κ
(k+1)
subtree(u, u′) = κ

(k)
subtree(u, u′) max

R∈M(u,u′)

∏
(v,v′)∈R

κ
(k)
subtree(v, v′),

which implies that κ(k)
subtree(u, u′) = 1 and maxR∈M(u,u′)

∏
(v,v′)∈R κ

(k)
subtree(v, v′) = 1. Then δ(a(u), a′(u)) = 1

by the non-growth of κ(k)
subtree(u, u′) on k and it exists an exact matching R? ∈M(u, u′) such that |N (u)| =

|N (u′)| = |R?| and ∀(v, v′) ∈ R?, κ(k)
subtree(v, v′) = 1. Therefore, we have d

κ
(k)
walk

(v, v′) = 0 for all (v, v′) ∈ R?

by the induction hypothesis.
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On the other hand, by Lemma 2 we have

κ
(k+1)
walk (u, u′) = δ(a(u), a′(u′))

∑
v∈N (u)

∑
v′∈N (u′)

κ
(k)
walk(v, v′)

=
∑

v∈N (u)

∑
v′∈N (u′)

κ
(k)
walk(v, v′),

which suggest that the feature map of κ(k+1)
walk can be written as ϕ(k+1)

walk (u) =
∑
v∈N (u) ϕ

(k)
walk(v). Then we have

d
κ

(k+1)
walk

(u, u′) =

∥∥∥∥∥∥
∑

v∈N (u)

ϕ
(k)
walk(v)−

∑
v′∈N (u′)

ϕ
(k)
walk(v′)

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑

(v,v′)∈R?
ϕ

(k)
walk(v)− ϕ(k)

walk(v′)

∥∥∥∥∥∥
≤

∑
(v,v′)∈R?

‖ϕ(k)
walk(v)− ϕ(k)

walk(v′)‖

=
∑

(v,v′)∈R?
d
κ

(k)
walk

(v, v′) = 0.

We conclude that d
κ

(k+1)
walk

(u, u′) = 0.
Now let us prove the Corollary 1. The only values that d

κ
(k)
subtree

(u, u′) can take are 0 and 1. Since
d
κ̂

(k)
walk

(u, u′) is always not larger than 1, we only need to prove d
κ

(k)
subtree

(u, u′) = 0 =⇒ d
κ̂

(k)
walk

(u, u′) = 0,
which has been shown above.

D.4 Proof of Theorem 1
Note that using our notation here, ϕ1 = ϕ

(k)
walk

Proof. We prove by induction on k. For k = 0, we have for any u ∈ V and u′ ∈ V ′

κ
(0)
subtree(u, u′) = δ(a(u), a′(u′)) = δ(ϕ(0)

walk(u), ϕ(0)
walk(u′)).

Assume that (16) is true for k ≥ 0. We want to show this is also true for k + 1. As the only values that the δ
kernel can take is 0 and 1, it suffices to show the equality between κ(k+1)

subtree(u, u′) and δ(ϕ(k+1)
walk (u), ϕ(k+1)

walk (u′))
in these two situations.

• If κ(k+1)
subtree(u, u′) = 1, by Proposition 1 we have ϕ(k+1)

walk (u) = ϕ
(k+1)
walk (u′), and thus δ(ϕ(k+1)

walk (u), ϕ(k+1)
walk (u′)) =

1.

• If κ(k+1)
subtree(u, u′) = 0, by the recursive relation of the feature maps in Lemma 2, we have

δ(ϕ(k+1)
walk (u), ϕ(k+1)

walk (u′)) = δ(a(u), a′(u′))δ

 ∑
v∈N (u)

ϕ
(k)
walk(v),

∑
v′∈N (u′)

ϕ
(k)
walk(v′)

 .

By Lemma 1, it suffices to show that

max
R∈M(u,u′)

∏
(v,v′)∈R

κ
(k)
subtree(u, u′) = 0 =⇒ δ

 ∑
v∈N (u)

ϕ
(k)
walk(v),

∑
v′∈N (u′)

ϕ
(k)
walk(v′)

 = 0.
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The condition |M(u, u′)| = 1 suggests that there exists exactly one matching of the neighbors of u
and u′. Let us denote this matching by R. The left equality implies that there exists a non-empty
subset of neighbor pairs S ⊆ R such that κ(k)

subtree(v, v′) = 0 for any (v, v′) ∈ S and κ(k)
subtree(v, v′) = 1

for all (v, v′) /∈ S. Then by the induction hypothesis, ϕ(k)
walk(v) = ϕ

(k)
walk(v′) for all (v, v′) /∈ S and

ϕ
(k)
walk(v) 6= ϕ

(k)
walk(v′) for all (v, v′) ∈ S. Consequently,

∑
(v,v′)/∈S ϕ

(k)
walk(v)− ϕ(k)

walk(v′) = 0. Now we will
show

∑
(v,v′)∈S ϕ

(k)
walk(v) − ϕ(k)

walk(v′) 6= 0 since all neighbors of either u or u′ have distinct attributes.
Then

‖
∑

v∈N (u)

ϕ
(k)
walk(v)−

∑
v′∈N (u′)

ϕ
(k)
walk(v′)‖

=‖
∑

(v,v′)∈R

ϕ
(k)
walk(v)− ϕ(k)

walk(v′)‖

=‖
∑

(v,v′)∈S

ϕ
(k)
walk(v)− ϕ(i)

walk(v′)‖ > 0.

Therefore, δ
(∑

v∈N (u) ϕ
(k)
walk(v),

∑
v′∈N (u′) ϕ

(k)
walk(v′)

)
= 0.
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