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Abstract—Least square (LS) channel estimation employed
in various communications systems suffers from performance
degradation especially in low signal-to-noise ratio (SNR) regions.
This is due to the noise enhancement in the LS estimation process.
Minimum mean square error (MMSE) takes into consideration
the noise effect and achieves better performance than LS with
higher complexity. This paper proposes to correct the LS esti-
mation error using deep learning (DL). Simulation results show
that the proposed DL-based schemes perform better than both
LS and MMSE channel estimation scheme, with less complexity
than accurate MMSE.

Index Terms—Channel estimation; Deep learning, DNN; LS;
MMSE

I. INTRODUCTION

Channel state information is highly relevant for several
applications. For instance, it is employed in wireless physical
layer security [1] [2] for secrete key generation. The channel
knowledge can also be required for indoor localization [3]
[4] to achieve a high accuracy. A reliable estimated channel
response is also very critical for the follow-up equalization,
demodulation, and decoding operations at the receiver which
highly impacts the system performance.

Practical wireless communication systems may encounter
noise imperfections and unknown effects, and these effects
cannot be well captured by classical estimators like preamble-
based least square (LS) estimation. The main drawback of the
LS channel estimation is neglecting the presence of noise in
the estimation process. On the other hand, minimum mean
square error (MMSE) channel estimation scheme provides
better performance, but besides its high computational com-
plexity, it is only useful in the cases where channel and noise
second order statistics are available. Therefore, it is not a
practical estimator.

Recently, deep learning (DL) has drawn attentions for its
great success in computer vision, automatic speech recogni-
tion, and natural language processing [5]. DL-based algorithms
capture better the imperfections in real-world systems. In
addition, they can achieve low computational complexity,
making them very applicable to physical layer applications
of communications, especially channel estimation.

The authors in [6] propose a DL-based channel estimation
scheme, by using deep neural networks (DNN). The proposed
scheme works in three phases: (i) pre-training, to acquire a
desirable DNN weights initialization. (ii) training phase, where
DNN is trained on known data to learn how to estimate the

channel. Finally, (iii) testing phase, where DNN is tested over
unknown data. The proposed scheme requires several inputs
to the DNN, and suffers then from considerable complexity.

In [7], the authors propose a DL-based channel estimation
scheme called ChannelNet, where the channel matrix is esti-
mated using LS, and treated as a 2D low resolution image,
which is mapped to a high resolution image by using super-
resolution convolutional neural network. ChannelNet is highly
competitive with the MMSE channel estimation scheme but
with high computational complexity.

An end-to-end deep learning scheme for a joint symbol
detection and channel estimation is proposed in [8]. The
orthogonal frequency division multiplexing (OFDM) receiver
is replaced by a black box neural network that takes as an input
the received signal, and provides as an output the decoded bits.
The joint estimation and detection model is then represented as
a multi-classification problem and not as a regression problem.
Simulation results show that the proposed DNN has much
better performance than the LS method and is comparable to
the MMSE method.

Inspired by the work done in [8], neural networks were
also used in [9] for channel estimation. The proposed DNN
requires the received signal besides the previously estimated
channels to give better performance than LS.

In this paper, our idea is different, we propose DL-based
channel estimation schemes that achieve better performance
than accurate MMSE, with less complexity, through correcting
LS channel estimation error by means of neural networks.

The rest of this paper is organized as follows. The system
model and the classical preamble-based channel estimation
schemes are presented in Section II. Proposed DL-based chan-
nel estimation schemes are defined and explained in Section
III. Experimental results are given in Section IV. Finally,
Section V concludes the paper.

II. PREAMBLE-BASED CHANNEL ESTIMATION

This section presents the system model used in our study
and then gives an overview about the LS and MMSE channel
estimation techniques.

A. System Model

Consider a frame that consists of I OFDM sym-
bols. The i-th transmitted OFDM symbol is given by



xi =
1
KF

H
K di ∈ CK×1, where K is the number of sub-

carriers, FK the K-DFT matrix, and di the data symbols.
Considering a cyclic prefix (CP) of length Kcp, the i-th
received OFDM symbol is given by

yi =Hixi + vi ∈ CK×1, (1)

where Hi ∈ CK×K is the channel circular matrix generated
from the channel impulse response hi ∈ CK×1, where
hi[l] = 0, l ≥ L, with L ≤ Kcp stands for the channel delay
spread, and vi ∈ CK×1 the additive white Gaussian noise
with zero mean and variance N0. Thus, by performing DFT
on the received signal we get the relation

Y [k, i] = H̃[k, i]D[k, i] + V [k, i], (2)

where D[k, i] = di [k], H̃[k, i], Y [k, i], and V [k, i] denote
the transmitted data symbol, the frequency domain channel
gain, the received sample, and the noise samples with variance
KN0 respectively of the k-th sub-carrier of the i-th OFDM
symbol. The channel gain is given by H̃[k, i] = FKhi [k].

At the beginning of the frame, a preamble of one or more
OFDM symbols, can be used for channel estimation. Let dp
be the reference symbols transmitted by one OFDM symbol,
the received preamble can then be expressed as

Y [k, p] = H̃[k, p]D[k, p] + V [k, p]. (3)

Thus, to estimate the channel gain, (3) can be expressed in the
matrix form

ỹp = Λph̃p + ṽp ∈ C|Kon|×1. (4)

Here, Kon is the set of allocated sub-carriers with |Kon| active
subcarriers, ỹp = Y [Kon, p], Λp = diag {dp[Kon]}, and h̃p =
H̃[Kon, p] is the frequency domain response of the channel at
the preamble and the allocated subcarriers, which is subject to
estimation.

B. LS Channel Estimation Scheme

Considering that Λp is invertible, the LS channel estimation
using (4) can be simply given by

ˆ̃
hp,LS = Λ−1p ỹp. (5)

Assuming that the channel is static during Kp preambles,
the estimation can be improved by means of averaging over
several preambles, such that

Kp∑
q=1

ỹq =

Kp∑
q=1

Λp

 h̃p +

Kp∑
q=1

vq ∈ C|Kon|×1. (6)

The same preamble can be used, i.e. D[k, q] = D[k, p], q =
1, · · · ,Kp. As a result, the channel gain at the k-th sub-carrier
can be expressed as

ˆ̃
HLS[k, p] =

Kp∑
q=1

Y [k, q]

KpD[k, p]
. (7)

The estimation error variance in this case is given by

E

[
| ˆ̃HLS[k, p]− H̃[k, p]|2

]
=

KpKN0

K2
p |D[k, p]|2 =

KN0

KpEp
. (8)

where Ep = |D[k, p]|2 denotes the power per preamble
symbol. Accordingly, the estimation can be improved by
increasing Kp and/or Ep. The LS is simple and does not
require any knowledge of the channel or the noise statistics,
it can be calculated by means of one multiplication per sub-
carrier. However, this estimator does not benefit from prior
knowledge of the channel model such as the number of taps
and power delay profile.

C. MMSE Channel Estimation Scheme

The MMSE channel estimation [10] can be performed using

WH
MMSE = RhpΛ

H
p

(
ΛpRhpΛ

H
p +Rṽp

)−1

= Rhp

(
Rhp +Λ−1

p RṽpΛ
−H
p

)−1

Λ−1
p .

(9)

Here, Rhp = E
[
h̃ph̃

H
p

]
, Rvp = E

[
ṽpṽ

H
p

]
∈ C|Kon|×|Kon|

are the channel and the noise autocorrelation matrices, re-
spectively. For additive white Gaussian noise (AWGN) and
a preamble that fulfils ΛH

p Λp = EpI , we have

WH
MMSE = Rhp

(
Rhp +

KN0

Ep
I

)−1

Λ−1
p . (10)

Thus, the MMSE channel estimation is given by

ˆ̃
hp,MMSE = Rhp

(
Rhp +

KN0

Ep
I

)−1

Λ−1
p ỹp. (11)

When Kp preambles are used, the effective power becomes
KpEs. Note that the MMSE can be seen as a correction of
the LS estimation ˆ̃

hp,LS = Λ−1p ỹp. The channel autocorre-
lation matrix can be expressed by means of the eigenvalue
decomposition Rhp

= UHΣpU , and therefore,

ˆ̃
hp,MMSE = UHΣp

(
Σp +

KN0

Ep
I

)−1

U
(
h̃p + εLS

)
, (12)

where εLS denotes the LS error. The MMSE estimation error
εMMSE =

ˆ̃
hp,MMSE − h̃p is given by

εMMSE = UH

[
Σp

(
Σp +

KN0

Ep
I

)−1

− I

]
Uh̃p

+UHΣp

(
Σp +

KN0

Ep
I

)−1

UεLS.

(13)

Accordingly, the bias is given by

E [εMMSE] = U
H

[
Σp

(
Σp +

KN0

Ep
I

)−1

− I

]
Uh̃p, (14)

and the error autocorrelation matrix is expressed as

E
[
εMMSEε

H
MMSE

]
= UH

[
Σp

(
Σp +

KN0

Ep
I

)−1

− I

]2
ΣpU

+UHΣ2
p

(
Σp +

KN0

Ep
I

)−2

U
KN0

Ep
.



TABLE I
PROPOSED DNN SPECIFICATIONS.

Parameter Values
DNN1 (hidden layers; neurons per layer) (1; Kon)
DNN2 (hidden layers; neurons per layer) (1; 2 Kon)
DNN3 (hidden layers; neurons per layer) (2; Kon)
DNN4 (hidden layers; neurons per layer) (2; 2 Kon)
Activation function fa(x) = max(0, x)
Number of epochs 500
Batch size 32
Optimizer ADAM
Loss function MSE
Learning rate 0.001

Therefore, the average error is given by

eMMSE =
1

|Kon|
trace

{
E
[
εMMSEε

H
MMSE

]}
=

1

|Kon|

|Kon|−1∑
q=0

Σp[q, q]

Σp[q, q] +
KN0
Ep

KN0

Ep
≤ KN0

Ep
= eLS.

(15)

The estimation error of MMSE is less than that of the LS, and
the gap depends on the non-zero singular values of the channel.
Although MMSE is a biased estimator, the bias approaches
zero at high SNR.

We conclude from this section that LS estimator is simple,
but its performance is poor at low SNRs. On the other
hand, MMSE allows more accurate estimation but it is more
computationally complicated than LS. As can be observed in
(11), MMSE performs additional processing on top of LS to
reduce the average estimation error. In general, the MMSE
estimation requires complexity of order O(|Kon|3). However,
assuming the knowledge of the channel autocorrelation matrix
Rhp

= UHΣpU , this leads, following (12), to a complexity
of 2|K2

on|+2|Kon| complex multiplications instead of O(|Kon|)
as for LS. This motivates us to investigate the application of
machine learning approaches in order to enhance further the
channel estimation, while maintaining lower complexity than
MMSE.

Note that there are several approximations of MMSE with
lower performance and less complexity requirements than the
original MMSE. However, we only consider in this paper the
accurate MMSE, and we show that our DNN approaches give
better performance with lower complexity.

III. PROPOSED DL-BASED CHANNEL ESTIMATION
SCHEMES

In this section, a brief overview of the concept of DNN is
first provided. Then, we describe the architecture and learn-
ing mechanism of the proposed DNN schemes for channel
estimation.

A. DNN Overview

DL uses representation learning, also known as feature
learning, to map input features to an output predicted val-
ues. This mapping process occurs inside multiple connected
layers, each containing multiple neurons. Each neuron is a

mathematical processing unit which, combined with all other
neurons, learns the relationship between the input features and
the output.

DL algorithms are complex mathematical structures with
several processing layers that can separate the features or
representations of data, into various abstraction layers. In
supervised learning, a DNN sequentially passes the input
feature data from the neurons in one layer to the neurons
in the next layer during a process that is repeated many
times. At each step, information is extracted and passed to
the next layer. Each neuron accepts weighted inputs from
multiple other neurons. These inputs are summed and passed
to an internal activation function, and a hyper parameter is
chosen to optimize the model’s performance. Once information
has passed through all layers, as described above, the model
generates an output which is compared with the real label
value.

let L be the number of hidden layers and the output layer of
a DNN, with Nl nodes each, where 1 ≤ l ≤ L. Let us consider
layer 0 is the input layer with N0 nodes. Each artificial neuron
or node located at the n-th position such that 1 ≤ n ≤ Nl of
the l-th layer takes as an input y(l−1) ∈ RNl−1×1 weighted
by a vector ω(l,n) ∈ RNl−1×1, completed by a bias b(l,n), and
applies an activation function f

(l,n)
a , producing the output

y(l,n) = f (l,n)
a

(
b(l,n) + ω(l,n)Ty(l−1)

)
. (16)

The output of all the nodes of layer l can be expressed as

y(l) = f (l)
a

(
b(l) +Ω(l)y(l−1)

)
, (17)

where Ω(l) ∈ RNl×Nl−1 is the weight matrix between layer
l − 1 and layer l, with Ω(l)[n, :] = ω(l,n)T , b(l) ∈ RNl×1

is the bias vector, and f (l)
a represents the stacking of the Nl

activation functions.
The training procedure of DNN aims to find the best

weights and biases that approximate a non-linear function
for a classification or a regression task. After choosing a
network architecture and initializing the weights, we first apply
a forward propagation to get y(L). An error representing how
different is y(L) from its actual value in the training set, is
calculated according to a suitable loss function JΩ,b. This
error is then minimized through an optimization method e.g.
gradient descent with backpropagation.

B. Proposed DNN Schemes for Channel Estimation

The aim of the proposed DNN is to learn the error of the
LS channel estimation in order to correct the LS estimated
channel over one preamble (p = 1), by minimizing a cost
function JΩ,b

(
H̃,y

(L)
ˆ̃HLS

)
, where y(L)

ˆ̃HLS
is the output of the DNN

when the input is the LS estimated channel ˆ̃HLS, and H̃ is
the ideal channel. First of all, LS channel estimation is applied
to the received preamble. Then, we process the LS estimate
to separate the real and imaginary parts, resulting in 2|Kon|
inputs for the DNN. At the end of the training, the corrected
LS channel estimate y(L)

ˆ̃HLS
at the output layer is processed



TABLE II
CHANNEL MODEL.

Discrete delay (ns) 0 1 2 100 101 102 200 201 300 301 400 401
Average path gain (dB) 0 0 0 -9.3 -9.3 -9.3 -20.3 -20.3 -21.3 -21.3 -28.8 -28.8
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Fig. 1. NMSE Performance of DNN1 trained at different SNR values.
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Fig. 2. NMSE Performance of different DNN architectures trained at
SNR= 30 dB.

again to get back |Kon| complex valued records. Input data
is normalized to have a zero mean and unit variance, since
differences in the scales across input variables may increase
the difficulty of the training in the problem being modeled. It
is worth mentioning that at the end of the training phase, we
only save the weights of the epoch having the highest training
and validation accuracy, instead of averaging the weights over
all the epochs. The loss function used in our proposed DNN
is mean squared error (MSE), with ADAM as an optimizer.
The used activation function is rectified linear unit (ReLU),
i.e. fa(x) = max(0, x), in all layers except the output layer,
where no activation function is used which does not limit the
value of the output.

Four DNN architectures with different number of hidden
layers and number of nodes per hidden layer are proposed as
summarized in Table I.

IV. SIMULATION RESULTS AND ANALYSIS

In this section, normalized mean square error (NMSE)
simulations, followed by a computational complexity analysis
are presented to evaluate the performance of the proposed DL-
based channel estimation schemes.

A. NMSE Performance

The channel delay and power profile of the channel used in
our simulations are defined in Table II. The total number of
sub-carriers for an OFDM symbol is equal to K = 64 where
only |Kon| = 52 sub-carriers are activated. The performance
of the proposed DL-based channel estimation schemes are
benchmarked against LS and accurate MMSE.

We can first see from Fig. 1 that the DNN performance
highly depends on the SNR considered in the training. The

training performed at the highest expected SNR value (which
we consider here equal to 30 dB) provides the best perfor-
mance. In fact, when the training is performed at a high SNR
value, the DNN is able to learn better the channel, because
in this SNR range the impact of the channel is higher than
the impact of the noise. Thanks to the good generalization
properties of DNN, it can still estimate the channel even if
the noise is increased i.e. low SNR values. Training at a very
high SNR (e.g. 50 dB considered here) still gives a good
performance, with slightly more errors than SNR = 30 dB.
Therefore, even if we do not know exactly the highest expected
SNR value, we can consider a very high value to be at the safe
side, and we can still get a good estimation performance.

It is clearly shown from Fig. 2, that our proposed chan-
nel estimation method based on different DNN architectures
outperform both classical LS and accurate MMSE channel
estimation schemes. This shows that the DNN was able to
learn higher order statistics of the channel than the order two
used in MMSE.

It is worth mentioning that if we train the same DNN on
different SNR values, the DNN will not learn meaningful
behavior, therefore we have fixed the SNR value for each
trained DNN.

B. Computational complexity analysis

The online computational complexity of deep neural net-
works can be represented by the number of multiplications
needed to compute the activation of all neurons (vector
product) in all network layers. The transition between the l-
th and (l − 1)-th layers requires NlNl−1 multiplications for
the linear transform. The additional operations in DNN are
simple, which include the sum of bias and comparisons in the



activation functions. Therefore, the total number of real-valued
multiplications in DNN network is given by

Nmul =

L∑
l=1

Nl−1Nl, N0 = 2|Kon|, NL = 2|Kon|. (18)

Accordingly, the number of real-valued multiplications re-
quired for the different proposed DNN architectures are as
follows, DNN1 (4|Kon|2), DNN2 (8|Kon|2), DNN3 (5|Kon|2),
DNN4 (12|Kon|2). In the case of general accurate MMSE the
complexity is of order |Kon|3 complex multiplications, which
is equivalent to 4|Kon|3 real-valued multiplications. Thus, with
a computational complexity between MMSE and the simple
LS, the DNN approaches achieve significant performance gain
in terms of accuracy.

It is worth mentioning that if we assume a prior knowledge
of the channel autocorrelation matrix, the MMSE complexity
becomes of order 8|Kon|2, given that the SNR estimation is
available. Moreover, if the SNR is fixed, then the MMSE
estimation matrix can be pre-calculated and made available at
the receiver. In this case, the complexity of MMSE becomes
of order 4|Kon|2 real-valued multiplications similar to DNN1.
However, the accuracy of DNN1 is still appealing. Moreover,
the DNN1 training for a single SNR is sufficient, but the
accuracy of MMSE depends on the SNR values, and thus
frequent update of the MMSE matrix is required with respect
to the SNR changes.

V. CONCLUSION

This paper presents novel deep learning based channel
estimation schemes, based on correcting LS channel estimation
error resulting from noise enhancement on the transmitted
OFDM frames. First, classical channel estimation schemes
have been surveyed and compared. After that, the proposed
DL-based channel estimation methods are discussed and eval-
uated for different SNR values. Unlike MMSE channel esti-
mation scheme, the proposed scheme do not require specific
channel statistics knowledge, making it more suitable to real
case scenarios. Simulation results reveal that the proposed
channel estimation schemes outperform accurate MMSE chan-
nel estimation with less computational complexity. The future
work will consider investigating DL-based schemes for chan-
nel estimation and tracking in high mobility scenarios.
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