

Carbon 14 transfer from seawater to the atmosphere through degassing processes in the Bay of Seine (North-West of France)

M. Fontugne, D. Maro, L. Tenailleau, P. Germain, D. Hébert, M. Rozet, C. Noury, C. Hatté, M. Paterne

▶ To cite this version:

M. Fontugne, D. Maro, L. Tenailleau, P. Germain, D. Hébert, et al.. Carbon 14 transfer from seawater to the atmosphere through degassing processes in the Bay of Seine (North-West of France). Radioprotection, 2005, 40, pp.S595-S600. 10.1051/radiopro:2005s1-087 . hal-02504756

HAL Id: hal-02504756 https://hal.science/hal-02504756

Submitted on 18 Feb 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Carbon 14 transfer from seawater to the atmosphere through degassing processes in the Bay of Seine (North-West of France)

M. Fontugne¹, D. Maro², L. Tenailleau³, P. Germain², D. Hébert², M. Rozet², C. Noury¹, C. Hatté¹ and M. Paterne¹

¹Laboratoire des Sciences du Climat et de l'Environnement, UMR 1572-CEA/CNRS, Domaine du CNRS, 91198 Gif-sur-Yvette, France ²Institut de Radioprotection et de Sûreté Nucléaire, Laboratoire de Radioécologie de Cherbourg-Octeville, 50130 Cherbourg-Octeville, France ³Marine Nationale, Groupe d'Études Atomiques, BP. 34, 50115 Cherbourg Naval, France

Abstract. COGEMA La Hague nuclear reprocessing plant is located in the North West of Cotentin peninsula near Cherbourg (France). This nuclear plant releases radioelements in atmosphere and in the English Channel. About 8.5 TBq.year⁻¹ of radiocarbon are released as the liquid wastes through a pipe a few kilometres off sea shore, West of the reprocessing plant. Recent studies in the peninsula show anomalous higher radiocarbon contents in vegetation near the coast that have suggested a supplementary marine contribution through the degassing of the ¹⁴C excess supplied by liquid releases of the nuclear plant. Carbon dioxide partial pressure, ¹⁴C activities were measured in air and sea water in the Bay of Seine and around the COGEMA-La Hague nuclear reprocessing plant during three cruises in 2000 and 2002. Results show clearly that sea is a source of CO_2 and ¹⁴C to the atmosphere. Higher ¹⁴C concentrations in air and water related to the La Hague liquid wastes are clearly recorded. The aim of this paper is to show results of these oceanographic campaigns. Flux between seawater and atmosphere are calculated in the North-West Cotentin and in Bay of Seine.

1. INTRODUCTION

COGEMA La Hague nuclear reprocessing plant is located in the north west of Cotentin peninsula near Cherbourg (France). This nuclear plant releases radio-elements in atmosphere and in the English Channel. Radiocarbon is released to the environment as CO₂ through a 100 metres high chimney and as liquid waste few kilometres off sea shore, west of the reprocessing plant. Atmospheric ¹⁴C releases are estimated to 19 TBq.year⁻¹ [1].

The carbon dioxide is assimilated by plants through photosynthetic processes. Consequently, the ¹⁴C activity of vegetation constitute an integrated record of COGEMA La Hague emissions, during the vegetative period (spring to fall). During 3 years (1997, 1998 and 1999) ¹⁴C measurements in air and in furzes were performed. Measurements of ¹⁴C activity in the chimney plume show a rapid dilution from about 7200 Bq.kg⁻¹ C near the chimney to values ranging between 400 and 900 Bq.kg⁻¹ C at a distance of 4 to 6 km [2]. Outside periods of release ¹⁴C residual value is around 270 Bqkg⁻¹ C. Vegetation around the nuclear plant record these period of release, concentration in bio-indicators like furzes ranging between once and twice the present atmospheric background [2] [3]. Higher ¹⁴C concentrations are observed at the coast suggesting a supplementary marine contribution though the degassing of the ¹⁴C excess supplied by liquid release (8.5 TBq.year⁻¹) through a pipe few kilometres off sea shore, west of the reprocessing plant [1]. The aim of this study is to estimate the ¹⁴C fluxes between seawater and atmosphere in the

north-west Cotentin and in the Bay of Seine.

2. EQUIPMENT AND METHOD

2.1 Strategy

In order to estimate ¹⁴CO₂ fluxes across the sea surface water and the atmosphere interface the partial pressure of carbon dioxide (pCO₂) were calculated using measurement of total alkalinity and pH of water. According to Henry's law the difference between pCO₂ in air and water indicates if seawater is a source of CO₂ to the atmosphere. Carbon dioxide fluxes were calculated following equation (1).

$$\Phi(\text{CO}_2) \text{ (mole.m}^{-2}.\text{s}^{-1}) = \text{K. S. } \Delta \text{pCO}_2 \tag{1}$$

K (m.s⁻¹) is the CO₂ transfer coefficient between seawater and atmosphere, S is solubility of CO₂ (mole.m⁻³.atm⁻¹) and ΔpCO_2 (atm) is the difference between partial pressure in water and air. pCO₂ in air was considered as constant mean value of 367 µatm [4] [5] [6] [7]. K is a parameter depending on wind speed and has been calculated by using studies of Liss and Merlivat [8], Tans *et al.*, [9] and Wanninkhof and McGillis [10]. As these K values are slightly different in these three studies we present the three CO₂ flux estimates.

The exchange of CO_2 between the atmosphere and the surface ocean is an equilibrium process, and the nett CO_2 flux is the difference between gas going from water to air and gas going from air to water. Both these fluxes carry ¹⁴C at concentrations appropriate to the medium from where they originate, and the nett ¹⁴C flux is, once again, the difference. The expression for the nett ¹⁴C flux from surface ocean to the atmosphere should be of the form (equation 2).

$$\Phi({}^{14}C) = [{}^{14}C]_0 \Phi_{OA}(CO_2) - [{}^{14}C]_A \Phi_{AO}(CO_2)$$
(2)

Regarding constant factor due to appropriate units use, ¹⁴C fluxes were calculated following equation (3).

$$\Phi(^{14}C) (Bq.km^{-2}.d^{-1}) = 10^9 ([^{14}C]_O .\Phi_{OA} - [^{14}C]_A \Phi_{AO})$$
(3)

where $[{}^{14}C]_{O}$ and $[{}^{14}C]_{A}$ are the ${}^{14}C$ concentrations (Bq.Kg⁻¹C) in the surface ocean and air, respectively, and Φ_{OA} and Φ_{AO} are the CO₂ fluxes (mole.m⁻².s⁻¹) from ocean to air, and air to ocean, respectively.

This method usable if the samples are collected out of the influence of the chimney plume which is easily detectable by the krypton 85 (⁸⁵Kr) content. During ¹⁴C sampling ⁸⁵Kr was measured continuously at a frequency of 1 measurement.s⁻¹ [11]. Consequently the detection of ⁸⁵Kr emitted from the chimney of the reprocessing plant allows air to be sampled for ¹⁴C measurements free of direct contamination coming from the plume of the chimney.

2.2 Techniques

Sea water and air samples were collected simultaneously during two cruises (TRANSAT 1 cruise, February 24-28th, 2002 and TRANSAT 2 cruises, August 27-31st, 2002) around north Cotentin peninsula and Bay of Seine (figure 1).

Figure 1. Location of sampling stations during TRANSAT 1 and TRANSAT 2.

S596

ECORAD 2004

Temperature and salinity of seawater were measured using a SBE 19-03 Seabird equipment and wind direction and speed were recorded. Only for TRANSAT cruises, CO₂ partial pressure in surface sea water were calculated using pH and total alkalinity measurements following "Standard Operating Procedures SOP3 and SOP6" of the US Department of Energy [12]. ¹⁴C activity in air samples were determined using the procedure defined by Maro *et al.*, [13].

Water samples were collected in glass bottle and poisoned with mercury chloride. In the laboratory, total $O_2(\Sigma O_2)$ was extracted from seawater following the procedure described by Bard et al., [14] and Leboucher et al., [15].

The radiocarbon activity was measured at Laboratoire de Sciences du Climat et de l'Environnement using the Gif Accelerator Mass Spectrometry (AMS) facilities. Results are expressed in $Bq.kg^{-1}$ C (100 pMC is equivalent to 226 $Bq.kg^{-1}$ C). The relative precision varies between 0.5 and 2%.

3. RESULTS AND DISCUSSION

Results are presented in table 1.

64 - 4

Table 1. Distance from the pipe outlet, wind speed at 10m high, surface seawater temperature (SST), salinity and CO_2 partial pressure in sea surface seawater, ¹⁴C activity in seawater and air, during TRANSAT cruises.

Station	-			a n n	~~~		
TRANSAT I	Distance	Wind speed	SST	Salinity	pCO2	[14C]water	[14C]air
	(km)	(m/s)	(°C)	(pm)	(µatm)	(Bq/kg C)	(Bq/kg C)
1	15	12	9.7	33.91	373.4	587.8	238.8
2	22	11	9.8	33.86	378.6		
3	29	12	9.5	33.49	377.1	410.2	239.4
4	30	11	9.5	33.61	386.3		
5	30	10	9.6	33.55	384.1		
6	30	10	9.6	33.42	386		
8	30	10	9.6	33.63	373.5		
9	58	8	8.7	33.01	387.5	378.4	237.1
10	74	12	9.2	33.43	378.5	379.5	239.3
11	82	9	8.8	33.05	402.8		
12	91	9	8.7	32.88	400.7	353.3	236.4
13	99	9	8.6	32.41	416.8		
14	107	10	8.5	32.35	415.3	331.0	236.2
15	115	10	8.5	32.31	419.9		
16	125	10	8.5	32.17	430.3	324.8	241.3
17	138	10	8.5	32.37	421		
18	144	10	8.4	31.26	441.2		242.7
19	143	10	8.4	31.65	448.6		
20	151	10	8.1	25.63	613.6	286.3	236.2
Station							
TRANSAT 2	Distance	Wind speed	SST	Salinity	pCO2	[14C] water	[14C] air
	(km)	(m/s)	(°C)	(pm)	(µatm)	(Bq/kg C)	(Bq/kg C)
1	22.40	7.3	17.9	34.78	465.7	342.5	226.4
5	33.7	6.2	18.0	35.10	422.7	270.7	222.2
7	34.4	3.4	16.7	35.10	424.0		
9	3.6	3.4	17.8	34.89	462.9	706.7	346.4
10	37.7	4.1	17.1	35.06	438.0	281.6	240.9
13	83.4	3.4	17.7	34.90	442.5		
17	175.4	1.8	18.6	34.56	452.0	343.6	262.6
18	151.3	3.1	19.6	29.01	759.0	258.3	243.5
19	152.7	3.9	19.5	22.40	1407.6		
34	144.4	5.5	19.4	31.66	464.3		
36	101.7	4.8	19.6	33.30	402.0		
37	74.0	4.6	18.7	34.35	441.0	351.5	262.2

RADIOPROTECTION

3.1 pCO₂ and ¹⁴C activities

pCO₂ values vary from 373 to 614 μ atm for the TRANSAT 1 cruise data, and between 402 and 1408 μ atm for TRANSAT 2 cruise data. pCO₂ measurements in water show similar high values compared to air during the winter and summer cruises and increase toward Seine River estuary. This indicates CO₂ flux to the atmosphere since mean atmospheric pCO₂ value is 367 μ atm. This results are easily predictable because coastal and shelf and estuarine areas exhibit high biological activity due to the nutrient input near the river mouths and organic matter recycling in the water column [16]. This heterotrophic activity resulting in high degradation rates at the sediment surface and in the water column produces high dissolved CO₂ concentrations [17].

During TRANSAT cruises, ¹⁴C activities in surface water vary between 258.3 to 706.7 Bq.kg⁻¹ C. The highest value corresponds to a station within the plume of the liquid waste near the pipe outlet. All these values are higher than the reference value, 239 Bq.kg⁻¹ C (year 2002). During TRANSAT 1 winter cruise atmospheric values are near the reference value mainly due to the stormy meteorological conditions that induce a greater mixing of the atmosphere. During the TRANSAT 2 summer cruise, ¹⁴C activities in air present a positive correlation with ¹⁴C in surface water, confirming previous results [3][13] and the transfer from the sea.

3.2 Carbon dioxide and ¹⁴C fluxes

3.2.1 TRANSAT 1

 CO_2 fluxes to the atmosphere are calculated from equation 1 using K transfer coefficient given in literature [8] [9] [10]. Carbon fluxes range between few to 911 kg C. km⁻².d⁻¹ (figure 2a). For the high pCO₂ value in seawater, the difference between estimates is high nevertheless the relative differences are constants for high and low water pCO₂ values.

As ¹⁴C fluxes given by equation 3 are proportional to the carbon dioxide fluxes we observe similar difference between estimates (figure 2b). During TRANSAT 1, the highest ¹⁴C flux is encountered near Cherbourg City and the lowest between Cherbourg city and the Seine river estuary. Maximum flux are $6.4 \ 10^5 \text{ Bq.km}^{-2}.\text{d}^{-1}$ for TRANSAT 1.

Figure 2. Variations CO_2 fluxes (a) and ¹⁴C fluxes (b) in surface seawater versus distance from pipe outlet during TRANSAT 1.

3.2.2 TRANSAT 2

Carbon fluxes range between few to 493 kg C. km⁻².d⁻¹ (figure 3a).

Figure 3. Variations CO_2 fluxes (a) and ${}^{14}C$ fluxes (b) in surface seawater versus distance from pipe outlet during TRANSAT 2.

Although water pCO_2 are higher during this cruise the carbon dioxide fluxes are smaller due to the weak wind speed. During this cruise maximum ¹⁴C fluxes values were encountered near Cherbourg city and minimum values near Seine river estuary (figure 3b). Maximum flux are 1.7 10⁵ Bq.km⁻².d⁻¹ for TRANSAT 2.

3.2.3 Annual flux estimate for the Bay of Seine

Following estimates derived from Tans *et al.* model, the mean flux in the Bay of Seine due to COGEMA La Hague liquid wastes would reach 2.3 10⁵ and 3.9 10⁴ Bq.km⁻².d⁻¹ for TRANSAT 1 and 2 respectively. A rough annual estimation would give 216GBq for the 4400 km⁻² of the Bay of Seine, representing less than 3% of the liquid release from COGEMA La Hague nuclear reprocessing plant.

4. CONCLUSION

Simultaneous measurements of CO_2 partial pressure and ¹⁴C activity in air and sea water indicate that the English Channel and Bay of Seine are a source a carbon dioxide to the atmosphere in good agreement with previous studies. ¹⁴C activities decrease from the west to the east according to the dilution of the waste plume of the plant. Estimations of CO_2 and ¹⁴C flux show that a minor part of the ¹⁴C liquid release by industrial activity is recycled to the atmosphere. These estimates are not very accurate due to the variation of CO_2 transfer coefficients propose by different models. However, the ¹⁴C releases in Bay of Seine could provide a good opportunity to perform new experiments in order to get better estimates of CO_2 transfer coefficients between water and atmosphere.

Acknowledgements

The authors thank Messrs Le Bar and Schgier, Mrs Fitamant and her team at COGEMA for helping us during these campaigns. We also thank Messrs Le Bourhis and Henri, captains of the CNRS oceanographic vessel "Côtes de La Manche" and their crews.

RADIOPROTECTION

References

- [1] COGEMA., Surveillance trimestrielle de l'environnement de la Hague. Rapport Hag. 055000120013 (2000), 84p.
- [2] Fontugne M, Maro D, Baron Y, Hatté C, Hébert D, Douville E. Source and distribution of radiocarbon in the vicinity of La Hague nuclear reprocessing plant: Part I Terrestrial environment. *Radiocarbon* 46 (2004), 826-830.
- [3] Fontugne M., Maro D., Baron Y., Hatté C., Hébert D. and Douville E., Identification of sources and distribution of radiocarbon in the vicinity of La Hague nuclear reprocessing plant, *Radioprotection* 37, C1 (2002) 1271-1276.
- [4] Copin-Montégut G, 1996. Chimie de l'eau de mer. Institut Océanographique, Paris: 319p.
- [5] Boehme SE, Sabine CL, Reimers CE. 1998. CO₂ fluxes from a coastal transect : a time-series approach. *Marine chemistry* 63: 49-67.
- [6] Frankignoulle M, Borges AV. 2001. European continental shelf as a significant sink for atmospheric carbon dioxide. *Global biogeochemical cycles* 15 (3): 569-76.
- [7] Keir RS, Rehder G, Frankignoulle M.,2001. Partial pressure and air-sea flux of CO₂ in the Northeast Atlantic during September 1995. *Deep Sea Research Part II: Topical Studies in Oceanography*, 48, (14-15): 3179-89.
- [8] Liss PS, Merlivat L. 1986. Air-sea exchange rates: introduction and synthesis. In: The Role of Air-Sea exchange in Geochemical Cycling, P. Buat-Ménard (ed.), D. Reidel: 113-27.
- [9] Tans PP, Fung IY, Takahashi T.,1990. Observational Constraints on the Global Atmospheric CO₂ Budget. Science 247: 1431-38.
- [10] Wanninkhof R, McGillis WR. 1999. A cubic relationship between air-sea CO₂ exchange and wind speed. *Geophys. Res. Letters* 26(13): 1889-92.
- [11] Maro D, Crabol B, Germain. P, Baron Y, Hébert D, Bouisset P. 2002. A study of the near field atmospheric dispersion of emission at height: Comparison of Gaussian plume models (Doury, Pasquill-Briggs, Caire) with krypton-85 measurements taken around La Hague nuclear reprocessing plant,. *Radioprotection* 37(C1): 1277-82.
- [12] DOE, 1994. Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water. Version 2, A. G. Dickson & C. Goyet (eds). ORNL/CDIAC-74.
- [13] Maro D, Fontugne M, Hatté C, Hebert D, Rozet M. Source and distribution of radiocarbon in the vicinity of La Hague nuclear reprocessing plant: Part II Marine environment. *Radiocarbon* 46 (2004), 831-839.
- [14] Bard E, Arnold M, Ostlund HG, Maurice P, Monfray P, Duplessy JC. 1988. Penetration of bomb radiocarbon in the tropical Indian Ocean measured by means of accelerator mass spectrometry. *Earth Planet. Sci. Lett.*, 87: 379-89.
- [15] Leboucher V, Orr J, Jean-Baptiste P, Arnold M, Monfray P, Tisnerat-Laborde N, Poisson A, Duplessy JC. 1999 Oceanic Radiocarbon between Antarctica and south africa along WOCE section I6 at 30°E. Radiocarbon 41: 51-73.
- [16] Savoye N, Aminot A, Tréguer P, Fontugne M, Naulet N, Kérouel R. 2003. Dynamics of particulate organic matter δ^{15} N and δ^{13} C during spring phytoplankton blooms in a microtidal ecosystem (Bay of Seine, France). *Marine Ecology Progress Series* 255: 27-41.
- [17] Abril G. 1999. Dynamique du carbone dans les estuaires européens : processus de minéralisation et transfert continent-océan-atmosphère. Thèse de doctorat, Université de Bordeaux I: 173-209.

S600