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ON THE ERGODIC THEORY OF TANAKA-ITO TYPE α-CONTINUED FRACTIONS

We show the ergodicity of Tanaka-Ito type α-continued fraction maps and construct their natural extensions. We also discuss the relation between entropy and the size of the natural extension domain.

, this was extended to all α ∈ (0, 1] in case (1). Here, we show that this method also works for α > √ 5-1 2 in case (2). In the sequel, the map T α denotes the second type in the above, except where specified otherwise. Then T α is symmetric w.r.t. 1 2 . Therefore, we can assume that 1 2 ≤ α ≤ 1, and it is easy to extend our results to 0 ≤ α ≤ 1 2 . Since there were no proofs of the existence of the absolutely continuous invariant measure for α >

Introduction and main results

In 1981, two types of α-continued fraction maps were defined by [START_REF] Nakada | Metrical theory for a class of continued fraction transformations and their natural extensions[END_REF][START_REF] Tanaka | On a family of continued-fraction transformations and their ergodic properties[END_REF]: For α ∈ [0, 1],

• the first author considered in [START_REF] Nakada | Metrical theory for a class of continued fraction transformations and their natural extensions[END_REF] the map

(1)

T α (x) = 1 x - 1 x + 1 -α ,
• S. Tanaka and S. Ito [START_REF] Tanaka | On a family of continued-fraction transformations and their ergodic properties[END_REF] studied

(2)

T α (x) = 1 x - 1 x + 1 -α ,
where 0 = x ∈ [α -1, α) and T α (0) = 0. The main aim of these papers was the derivation of the density functions of the absolutely continuous invariant measure by constructing the natural extension of a 1-dimensional continued fraction map as a planar map. For the map [START_REF] Breiman | The individual ergodic theorem of information theory[END_REF], this was successful only for 1 2 ≤ α ≤ and for the ergodicity w.r.t. this measure for α > 1 2 , we give these proofs for all α in [ 1 2 , 1]. In §2, we give some basic properties of T α , in particular that the set of full cylinders generates the Borel algebra (Proposition 1). In §3, we show the existence of the absolutely continuous invariant probability measure µ α for T α by the classical method based on Proposition 1. Then we show its ergodicity.

Theorem 1. There is an ergodic invariant probability measure µ α for the dynamical system ([α -1, α), T α ) which is equivalent to the Lebesgue measure.

Recall that an ergodic measure preserving map Ŝ is the natural extension of an ergodic measure preserving map S if Ŝ is invertible and any invertible extension of S is an extension of Ŝ. We give the natural extension of T α as a planar map

T α (x, y) = 1 x - 1 x + 1 -α , 1 y + 1 x + 1 -α ,
with T α (0, y) = (0, 0), and the natural extension domain

Ω α = n≥0 T n α [α-1, α) × {0} .
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Then dx dy (1+xy) 2 gives an absolutely continuous invariant measure μ of (Ω α , T α ), and we denote by μα the corresponding probability measure. The main problem here is to show that Ω α has positive Lebesgue measure. We show the following theorem, where the density function of µ α is given by 1 μ(Ω α ) y: (x,y)∈Ωα

1 (1 + xy) 2 dy. Theorem 2. For α ∈ (g, 1]
, Ω α has positive Lebesgue measure and thus (Ω α , T α , μα ) is a natural extension of ([α -1, α), T α , µ α ).

We note that the existence of µ α follows directly from the result in §4 but we need the ergodicity proved in Theorem 1 for the concept of a natural extension.

In §5, we give a selfcontained proof that Rokhlin's formula

h(T α ) = [α-1,α)
-2 log |x| dµ α holds for T α (Proposition 6); we refer to [START_REF] Zweimüller | Ergodic properties of infinite measure preserving interval maps with indiferent fixed points[END_REF] for the general case of one dimensional maps. In this paper, we use Propositions 1 and 5 with the Shannon-McMillan-Breiman-Chung theorem; see [START_REF] Breiman | The individual ergodic theorem of information theory[END_REF][START_REF] Chung | A note on the ergodic theorem of information theory[END_REF]. Moreover, we show that

-2 lim n→∞ 1 n log |q α,n (x)| = h(T α )
for almost all x ∈ [α -1, α), where q α,n (x) is the denominator of the n-th convergent of x given by T α ; note that Tanaka and Ito [START_REF] Tanaka | On a family of continued-fraction transformations and their ergodic properties[END_REF] mentioned this fact for α = 1/2. The behavior of the entropy as a function of α will be discussed in the forthcoming paper [START_REF] Carminati | Tanaka-Ito α-continued fractions and matching[END_REF]. In the case of T α defined by [START_REF] Bowen | Bernoulli maps of the interval[END_REF], it was shown in [START_REF] Kraaikamp | Natural extensions and entropy of α-continued fractions[END_REF]Theorem 2] that h(T α )μ(Ω α ) = π 2 /6 for all α ∈ (0, 1], where μ is the invariant measure of the natural extension given by dx dy (1+xy) 2 (without normalization). For T α defined by (2), this does not hold: for α = 1, the maps defined by ( 1) and ( 2) are equal and we have thus h(T 1 )μ(Ω 1 ) = π 2 /6 in both cases; for α = 1/2, the maps defined by (1) and (2) produce the same continued fraction expansions and have thus the same entropy, but Ω 1/2 for (2) is equal to Ω 1/2 ∪ (-Ω 1/2 ) for (1), hence we have h(T 1/2 )μ(Ω 1/2 ) = π 2 /3 in case [START_REF] Breiman | The individual ergodic theorem of information theory[END_REF]. For case (2), we have the following.

Theorem 3. The function α → h(T α ) μ(Ω α ) is a monotonically decreasing function of α ∈ [ 1 2 , 1].

Some definitions and notation

We start with basic definitions. Since we discuss a fixed α, we omit α from the index. We define

a k (x) = 1 T k-1 α (x) + 1 -α , k ≥ 1, when T k-1 α (x) = 0. We put a k (x) = 0 if T k-1 α (x) = 0. Then we have x = 1 a 1 (x) + 1 a 2 (x) + • • • + 1 a n (x) + • • • ,
and the right hand side terminates at some positive integer n if and only if x is a rational number.

As usual we put

(3) p n-1 (x) p n (x) q n-1 (x) q n (x) = 0 1 1 a 1 (x) 0 1 1 a 2 (x) • • • 0 1 1 a n (x)
, when a n (x) = 0. It is well-known that

p n (x) q n (x) = 1 a 1 (x) + 1 a 2 (x) + • • • + 1 a n (x)
and we call pn(x) qn(x) the n-th convergent of the α-continued fraction expansion of x. It is easy to see that T n α (x) is a linear fractional transformation defined by the inverse of (3), where (3) is the same matrix for all x in the same cylinder set of length n. Then we see that [START_REF] Chung | A note on the ergodic theorem of information theory[END_REF] p n (x) = a n (x)p n-1 (x) + p n-2 (x), q n (x) = a n (x)q n-1 (x) + q n-2 (x),

(5)

x = p n-1 (x)T n α (x) + p n (x) q n-1 (x)T n α (x) + q n (x)
, and

x - p n (x) q n (x) = T n α (x) q n (x) • (q n-1 (x)T n α (x) + q n (x))
; here we note that the determinants of all matrices in (3) are ±1.

In general we use the notation p n-1 p n q n-1 q n without x when a 1 , . . . , a n is given without x. For a given sequence of non-zero integers, a 1 , a 2 , . . . , a n , we denote by a 1 , a 2 , . . . , a n the associated cylinder set, i.e.,

a 1 , a 2 , . . . , a n = {x ∈ [α -1, α) : a 1 (x) = a 1 , . . . , a n (x) = a n }.
A sequence a 1 , a 2 , . . . , a n is said to be admissible if the associated cylinder set has an inner point; here we note that any cylinder set is an interval. A cylinder set is said to be full if

T n α ( a 1 , a 2 , . . . , a n ) = [α -1, α).
Because of the definition (3) we see that

q n-1 (x) q n (x) = 1 a n (x) + 1 a n-1 (x) + • • • + 1 a 1 (x)
.

We set

g = √ 5 -1 2 .
Lemma 1. For any cylinder set a 1 , a 2 , . . . , a n , we have

λ( a 1 , a 2 , . . . , a n ) ≤ g -2(n-1) /2,
where λ denotes the Lebesgue measure.

Proof. For |x| ≤ g, we have

|T ′ α (x)| = 1 x 2 ≥ 1 g 2 . For x ≥ g, we have (T 2 α ) ′ (x) = 1 (x Tα(x)) 2 ≥ 1 g 4 .
Since the cylinder of length 0 has measure 1 and each cylinder of length 1 has measure at most 1/2, this shows the assertion of this lemma.

Proposition 1. The set of full cylinders generates the Borel algebra of

[α -1, α). Proof. Fix n ≥ 1. If (6) T k α ( a 1 , a 2 , . . . , a k ) = [α -1, α) for all 1 ≤ k ≤ n, then (a 1 , a 2 , . . . , a n ) is a concatenation of sequences of the form (a 1 (α), a 2 (α), . . . , a j (α)) or (a 1 (α-1), a 2 (α-1), . . . , a j (α-1)), 1 ≤ j ≤ n.
This implies that the number of admissible sequences satisfying (6) is at most 2 n . We put

B n = (a1,...,an) with (6) a 1 , a 2 , . . . , a n and B = ∞ n=1 B n .
From Lemma 1, we have [START_REF] Nakada | Some strong mixing properties of a sequence of random variables arising from α-continued fractions[END_REF] λ(B n ) ≤ (2g 2 ) -n+1 /4, and then λ(B) = 0 since 2g 2 < 1. Then we see that

λ ∞ n=1 T -n α (B) = 0.
This implies that for a.e.

x ∈ [α -1, α) we have T n α (x) / ∈ B for all n ≥ 1, hence there exists a sequence n 1 < n 2 < • • • (depending on x) such that T n k α ( a 1 (x), a 2 (x), . . . , a n k (x)
) is a full cylinder for any k ≥ 1. This shows the assertion of this proposition.

The following lemma is essential in this paper.

Lemma 2. Let (a 1 , . . . , a n ) be an admissible sequence. If α ∈ [ 1 2 , g], then we have |q n | > |q n-1 |. If α ∈ (g, 1], then we have -1 2 < qn-1 qn < 2, with qn-1 qn ≥ 1 only if a n = 1.
Proof. We proceed by induction on n. Since q 0 = 1,

q 1 = a 1 , |a n | ≥ 2 when α ∈ [ 1 2 , g], a n ≥ 1 or a n ≤ -3 when α ∈ (g, 1]
, the statements hold for n = 1. Suppose that they hold for n -1 and recall that qn qn-1 = a n + qn-2 qn-1 by ( 4).

If α ∈ [ 1 2 , g], then |a n | ≥ 2 gives that | qn qn-1 | > 1; see also [10, Remark 2.1]. Let now α ∈ (g, 1]
. If a n < 0, then we have a n ≤ -3 and a n-1 = 1, thus qn qn-1 < -2. If a n > 0, then we have qn qn-1 > 3 2 when a n ≥ 2, and qn qn-1 > 1 2 when a n = 1. We now define the jump transformation of T α , which we will use to show the existence of the absolutely continuous invariant measure. From Proposition 1, for a.e. x ∈ [α -1, α) there exists n ≥ 1 such that T n α a 1 (x), . . . , a n (x) = [α -1, α). We denote the minimum of those n by N (x). If there is no such n, then we put N (x) = 0. The jump transformation of T α is

• T α : [α -1, α) → [α -1, α), x → T N (x) α (x).
Note that y ∈ a 1 (x), . . . , a n (x) means that a j (y) = a j (x) for all 1 ≤ j ≤ n. Hence we see that N (y) = N (x). Thus there exists a countable partition

J = {J k : k ≥ 1} of [α -1, α) such that each J k is a cylinder set of length N k with • T α (x) = T N k α (x) for x ∈ J k and T j α J k = [α -1, α), 1 ≤ j < N k , T N k α J k = [α -1, α). Obviously, • T α is a piecewise linear fractional map of the form q N k x -p N k -q N k -1 x + p N k -1
for x ∈ J k , and it is bijective from J k to [α -1, α).

Existence of the absolutely continuous invariant measure and ergodicity

We first prove the following. Proposition 2. For any admissible sequence a 1 , . . . , a n , 1 9q 2 n < ψ ′ a1,...,an (y) <

1 g 4 q 2
n holds for all y ∈ T n α a 1 , . . . , a n , where ψ a1,...,an is the local inverse of T n α restricted to a 1 , . . . , a n . Proof. From (5), we see that ψ a1,...,an (y) = p n-1 y + p n q n-1 y + q n and then ψ ′ a1,...,an (y) =

1 (q n-1 y + q n ) 2 for y ∈ T n α a 1 , . . . , a n . If α ∈ [1/2, g], then we have y ∈ [-1/2, g) and thus g 2 < 1 + y q n-1 q n < 1 + g by Lemma 2. If α ∈ (g, 1], then we have y ∈ (-g 2 , 1], with y > 0 if a n = 1, thus 1 2 < 1 + y q n-1 q n < 3.
Proposition 3. There exists an invariant probability measure ν for • T α that is equivalent to the Lebesgue measure.

Proof. For any cylinder set J of length n such that

T n α J = [α -1, α), the size of J is p n-1 (α)T n α (α) + p n (α) q n-1 (α)T n α (α) + q n (α) - p n-1 (α -1)T n α (α -1) + p n (α -1) q n-1 (α -1)T n α (α -1) + q n (α -1)
From Lemma 2 and Proposition 2, this is ∼ q 2 n since the condition on J implies that |a n | ≥ 2. Then there exists a constant C 1 > 1 such that for any measurable set

A ⊂ [α -1, α) C -1 1 λ(A) < λ • T α -m (A) < C 1 λ(A).
By the Dunford-Miller theorem we have that

µ 0 (A) = lim M→∞ 1 M M m=1 λ • T α -m (A)
exists for any measurable subset A. It follows from the above estimate that

C -1 1 λ(A) ≤ µ 0 (A) ≤ C 1 λ(A)
, hence µ 0 is a finite measure which is equivalent to Lebesgue measure. Proof. Suppose that A is an invariant set of • T α with λ(A) > 0. For any ε > 0, there exists a full-cylinder set J of length n such that

λ(A ∩ J) λ(J) > 1 -ε.
Then we see that there exists a constant C 2 > 0 such that

• T α n (A ∩ J) > 1 -C 2 ε and A ⊃ • T α n (A ∩ J).
This shows λ(A) = 1.

We can now prove the ergodicity of T α .

Proof of Theorem 1. We refer to [START_REF] Schweiger | Some remarks on ergodicity and invariant measures[END_REF] for determining the absolutely continuous invariant measure for T α from that of • T α and the fact that the ergodicity of

• T α implies that of T α . Indeed we put (8) µ 0 (A) = ∞ n=0 ν(T -n α A ∩ B n )
which is an invariant measere for T α . Then the porperty

∞ n=1 λ(B n ) < ∞, see (7) 
, ensures the finiteness of the absolutely continuous invariant measure. Hence we have the invariant probability measure µ by normalization of µ 0 . Since µ is equivalent to ν, it is equivalent to the Lebesgue measure λ. Thus from Proposition 4, it is easy to see that T α is ergodic w.r.t. µ.

Corollary 1. The map T α is exact w.r.t. µ, i.e. the σ-algebra ∩ ∞ n=0 T -n α B consists of sets of µ-measures 0 and 1.

Proof. For any interval

I ⊂ [α -1, α), we have lim n→∞ T n α (I) = [α -1, α).
Indeed, from the proof of Proposition 1, we can choose an innner point x of I so that a 1 (x), a 2 (x), . . . , a n (x) is a full cylinder. This shows the assertion of this corollary; see [START_REF] Rokhlin | Exact endomorphisms of Lebesgue spaces (Russian)[END_REF].

Remark. It is possible to show that T α is weak Bernoulli following the idea of the proof by R. Bowen [START_REF] Bowen | Bernoulli maps of the interval[END_REF], and the proof is similar to the case of other α-continued fraction maps; see [START_REF] Nakada | Some strong mixing properties of a sequence of random variables arising from α-continued fractions[END_REF].

Planar natural extension

We consider the planar natural extension map

T α : (x, y) → 1 x - 1 x + 1 -α , 1 y + 1 x + 1 -α ,
with T α (0, y) = (0, 0), and the natural extension domain

Ω α = n≥0 T n α [α-1, α) × {0} . It is well known that Ω 1 = [0, 1] 2 . It is easy to see that Ω α , T α , dx dy (1+xy) 2
is a natural extension of T α if Ω α has positive (two-dimensional) Lebesgue measure; see [START_REF] Kraaikamp | Natural extensions and entropy of α-continued fractions[END_REF]Theorem 1]. The invariance of the measure μ given by dμ = dx dy (1+xy) 2 is proved in the same way as those in [START_REF] Nakada | Metrical theory for a class of continued fraction transformations and their natural extensions[END_REF][START_REF] Tanaka | On a family of continued-fraction transformations and their ergodic properties[END_REF]. The shape of Ω α was determined by Tanaka and Ito [START_REF] Tanaka | On a family of continued-fraction transformations and their ergodic properties[END_REF] for α ∈ [1/2, g]. In particular, we have ( 9)

Ω g = [-g 2 , g 2 ] × [1 - √ 2, 1 √ 2 -1] ∪ [-g 2 , g] × [ 1 √ 2 -1, 2 - √ 2];
see Figure 1. The main purpose of this section is to prove that Ω α has positive measure for α > g.

To this end, we show that Ω α is contained in a certain polygon X α , and then we relate Ω α to Ω g . Lemma 3. Let α ∈ (g, 1) and d = -a 1 (α -1). We have Ω α ⊂ X α with

X α = α-1, T α (α-1) × 1 2- √ 2-d , 1 1- √ 2-d ∪ α-1, α × 1 1- √ 2-d , 2- √ 2 ∪ 1 α -1, α × 2- √ 2, √ 2 .
Proof. We see that T α (X α ) ⊂ X α by determining the images of rectangles

T α α -1, 1 α-d-1 × 1 - √ 2, 2 - √ 2 = α -1, T α (α -1) × 1 2- √ 2-d , 1 1- √ 2-d , T α 1 α-d-1 , 0 × 1 - √ 2, 2 - √ 2 = α -1, α × 1 1- √ 2-d , 0 , T α 0, 1 α+2 × 1 - √ 2, √ 2 = α -1, α × 0, 1 4- √ 2 , T α 1 α+2 , 1 α+1 × 1 √ 2 -1, √ 2 = α -1, α × 1 -1 √ 2 , 2 - √ 2 , T α 1 α+1 , α × 1 √ 2 -1, √ 2 = 1 α -1, α × √ 2 -1, √ 2 ,
and by using that

1 2- √ 2-d = -1 1+ √ 2 = 1 - √ 2 if d = 3, 1 2- √ 2-d ≥ -1 2+ √ 2 = 1 √ 2 -1 if d ≥ 4, T α (α -1) = 1 α-1 + 3 < 1 α+2 if d = 3, and 1 4- √ 2 < √ 2 -1. This implies that Ω α ⊂ X α .
We establish a relation between α-expansions for different α; see also [START_REF] Carminati | Tanaka-Ito α-continued fractions and matching[END_REF].

Lemma 4. Let g ≤ α ≤ β ≤ 1, x ∈ [α -1, α), z ∈ [β -1, β). (1) If x = z or (x + 1)(1 -z) = 1 or (1 -x)(z + 1) = 1, then T β (z) -T α (x) ∈ {0, 1}. (2) If x + z = 0 or (x + 1)(z + 1) = 1, then T α (x) + T β (z) ∈ {0, 1}. ( 3 
) If z -x = 1, then (x + 1)(T β (z) + 1) = 1. (4) If x + z = 1, then      (T α (x) + 1)(1 -z) = 1 if x > 1 α+1 , (1 -x)(T β (z) + 1) = 1 if z > 1 β+1 , T α (x) + 1 T β (z) + 1 = 1 otherwise. Proof. In case (1), we have 1 x -1 z ∈ {-1, 0, 1} or x = z = 0, thus T β (z) -T α (x) ∈ Z. We clearly have T β (z) -T α (x) ∈ (β -α -1, β -α + 1) ⊂ (-1, 2 -g), thus T β (z) -T α (x) ∈ {0, 1}.
In case (2),

1 x + 1 z ∈ {-1, 0} or x = z = 0 gives that T α (x)+T β (z) ∈ Z∩[α+β-2, α+β) = {0, 1}. In case (3), we have z = x + 1 ≥ α ≥ g, thus T β (z) = 1 z -1 and (x + 1)(T β (z) + 1) = 1. Finally, in case (4), if x > 1 α+1 , then T α (x) = 1 x -1 and (T α (x)+1)(1-z) = 1. Similarly, z > 1 β+1 implies that (1 -x)(T β (z) + 1) = 1. If x ≤ 1 α+1 and z ≤ 1 β+1 , then x = 1 -z ≥ β β+1 ≥ 1 g+2 ≥ 1 α+2 and z = 1 -x ≥ α α+1 ≥ 1 g+2 ≥ 1 β+2 . We cannot have x = 1 α+2 because this would imply that 0 -g 2 g 2 g α-1 -Tα(α-1)
Tα(α-1)

1 α -1 α 2 - √ 2 0 1 √ 2 -1 1 - √ 2 √ 2 1 -1 √ 2 √ 2 -1 Figure 1.
The natural extension domain Ω g is in grey; for α = 13/20, Ω α is contained in the dashed polygon X α and contains the black rectangle.

α = g = β = z, contradicting that z < β. Similarly, we cannot have z = 1 β+2 . From x ∈ ( 1 α+2 , 1 α+1 ] and z ∈ ( 1 β+2 , 1 β+1 ], we infer that (T α (x) + 1)(T β (z) + 1) = ( 1 x -1)( 1 z -1) = 1. Lemma 5. Let g ≤ α < β ≤ 1, x ∈ [α -1, α), z ∈ [β -1, β), with z -x ∈ {0, 1} or x + z ∈ {0, 1}. Let n ≥ 1 be such that T n-1 α (x) < β β+1 . Then there is some k ≥ 1 such that T k β (z) -T n α (x) ∈ {0, 1} or T n α (z) + T k β (x) ∈ {0, 1}.
Proof. Denote x j = T j α (x) and z j = T j β (z). By Lemma 4 and since

x n-1 < β β+1 < 1 α+1 , we have z k -x n ∈ {0, 1} or x n + z k ∈ {0, 1} or (x n + 1)(z k + 1) = 1 for some k ≥ 1. If (x n + 1)(z k + 1) = 1, then z k-1 -x n = 1 (and k ≥ 2) because 1 -x n-1 = z k-1 ≤ 1 β+1 would contradict x n-1 < β β+1 . Define S(x, y) = {(x, y), (-x, -y), (x + 1, y 1-y ), (1 -x, -y y+1 )}. Lemma 6. Let g ≤ α < β ≤ 1, (x, y) ∈ Ω α , (x, ỹ) ∈ S(x, y), (x n , y n ) = T n α (x, y) for some n ≥ 1. If x ∈ [β -1, β) and y n < 1 -1 √ 2 , then there is some k ≥ 1 such that T k β (x, ỹ) ∈ S(x n , y n ). Proof. Since Ω α ⊂ X α by Lemma 3, y n < 1 -1 √ 2 implies that a n (x) ≥ 3 or a n (x) < 0, i.e., T n-1 α (x) ≤ 1 α+2 < β β+1
. Therefore, by Lemma 5, we have some k ≥ 1 such that

T k β (x) -T n α (x) ∈ {0, 1} or T n α (z) + T k β (x) ∈ {0, 1}.
Considering the associated linear fractional transformations, we obtain that T k β (x, ỹ) ∈ ST n α (x, y). Lemma 6 gives some k ≥ 0 such that T k α (z, 0) ∈ S(x, y), thus S(x, y)∩Ω β = ∅. As each (x, y) ∈ Ω α is the limit of points T n α (z, 0), this proves the lemma.

Lemma 7. Let g ≤ α < β ≤ 1, (x, y) ∈ Ω α with y < 1 -1 √ 2 . Then we have S(x, y) ∩ Ω β = ∅. Proof. Assume first that (x, y) = T n α (z, 0) for some n ≥ 0, z ∈ [α -1, α), and choose z ∈ [β -1, β) such that (z, 0) ∈ S(z, 0). Since y < 1-1 √ 2 ,
From Lemma 7 with α = g, we can easily conclude that Ω β has positive Lebesgue measure, and the following lemma provides rectangles in the natural extension domain.

Lemma 8. Let α ∈ (g, 1), d = -a 1 (α -1), b = ⌊T α (α -1) + α⌋. We have Y α ⊂ Ω α , with Y α = α -1, b -T α (α -1) × 1 d+ √ 2-1-b , 1 d+ √ 2-2-b ∪ α -1, α × 1 d+ √ 2-2-b , √ 2 -1 .
Proof. Let (x, y) ∈ Ω g \ Ω α with y < 0. Then Lemma 7 gives that (-x, -y) ∈ Ω α or (x + 1, y

1-y ) ∈ Ω α or (1 -x, -y y+1 ) ∈ Ω α . We have thus (-x, -y) ∈ Ω α when |x| < 1 -α, (1 -x, -y y+1 ) ∈ Ω α when x > 1 -α. If x ≤ α -1 and y < 1 2- √ 2-d , then we also have (-x, -y) ∈ Ω α because x + 1 ≥ g and y 1-y < 1 1- √ 2-d imply that (x + 1, y 1-y ) /
∈ Ω α by Lemma 3. From Lemma 3 and equation ( 9), we get that

[-g 2 , g]× 1- √ 2, 1 2- √ 2-d ∪(T α (α-1), g]× 1 2- √ 2-d , 1 1- √ 2-d \(g 2 , g]× 1- √ 2, 1 √ 2 -1 ⊂ Ω g \Ω α .
Considering points (x, y) with x < 1α in this union of rectangles, we obtain that

α -1, g 2 × 1 d+ √ 2-2 , √ 2 -1 ∪ α -1, max{α -1, -T α (α -1)} × 1 d+ √ 2-1 , 1 d+ √ 2-2 ⊂ Ω α . If d ≥ 4, then points (x, y) with x > 1 -α and y ≥ 1 √ 2 -1 provide that g 2 , α × 1 d+ √ 2-3 , √ 2 -1 ∪ g 2 , min{α, 1 -T α (α -1)} × 1 d+ √ 2-2 , 1 d+ √ 2-3 ⊂ Ω α .
By distinguishing the cases T α (α -1) < 1α, i.e., b = 0, and T α (α -1) ≥ 1α, i.e., b = 1, we get that Y α ⊂ Ω α . (Note that Ω α is a closed set.) Since for α ∈ (g, 1) we have d ≥ 3, with b = 0 if d = 3, Lemma 8 shows in particular that [START_REF] Tanaka | On a family of continued-fraction transformations and their ergodic properties[END_REF] α -1, min{α,

1 1-α -3} × 1 -1 √ 2 , √ 2 -1 ⊂ Ω α (with 1 1-α -3 > α -1)
. Theorem 2 is a direct consequence of this inclusion.

Entropy

From [START_REF] Tanaka | On a family of continued-fraction transformations and their ergodic properties[END_REF], we obtain the following proposition.

Proposition 5. There exists a positive constant C 3 such that

C -1 3 λ(A) < µ α (A) < C 3 λ(A) for any measurable set A ⊂ [α -1, α).
Proof. By Proposition 1, we have a full cylinder a 1 (x), . . . , a n (x) ⊂ α -1, min{1α, 1 1-α -3} . Then there exists a real number y 0 and a positive number η such that

T n α a 1 (x), . . . , a n (x) × 1 -1 √ 2 , √ 2 -1 = [α -1, α) × [y 0 , y 0 + η].
This shows that there is a positive constant C ′ 3 such that ξ(x) > C ′ 3 , where

ξ(x) = 1 μ(Ω α ) y: (x,y)∈Ωα 1 (1 + xy) 2 dy
is the density of µ α . On the other hand, since Ω

α ⊂ [α -1, α] × [1 - √ 2, √ 2 
], we can find C ′′ 3 such that ξ(x) < C ′′ 3 . Altogether, we have the assertion of this proposition. Let h(T α ) denote the entropy of T α with respect to the invariant measure µ α . The following shows that Rokhlin's formula holds, as mentioned at the end of §3. Proposition 6. For any 0 < α ≤ 1, we have

h(T α ) = - [α-1,α) log x 2 dµ α (x) and h(T α ) = 2 lim n→∞ 1 n log |q n (x)| for a.e. x ∈ [α -1, α).
Proof. Choose a generic point x ∈ [α -1, α) so that • there exists subsequence of natural numbers (n k ) k≥1 such that a 1 (x), . . . , a n k (x) is a full cylinder for any k ≥ 1,

• -lim n→∞ 1 n log µ α ( a 1 (x), . . . , a n (x) ) = h(T α ), • -lim N →∞ N n=0 log(T α x) 2 = -[α-1,α) log x 2 dµ α . For each n k , we see that (11) λ( a 1 (x), . . . , a n k (x) ) = p n-1 • α + p n q n-1 • α + q n - p n-1 • (α -1) + p n q n-1 • (α -1) + q n .
From Proposition 5, we have

lim k→∞ 1 n k log µ α ( a 1 (x), . . . , a n k (x) ) = lim k→∞ 1 n k log λ( a 1 (x), . . . , a n k (x) ).
Then by the mean-value theorem and (11) there exists

y 0 ∈ [α -1, α) such that h(T α ) = -lim k→∞ 1 n k log ψ ′ a1(x)•••an k (x) (y 0 ) .
From Proposition 2, we see

h(T α ) = -lim k→∞ 1 n k log ψ ′ a1(x)•••an k (x) (y)
for any y ∈ [α -1, α). So we can choose y = T α (x). Then

ψ ′ a1(x)•••an k (x) (y) = 1 (T n k α ) ′ (x) holds.
Consequently by the choice of x and the chain rule we have the first assertion of this proposition. The second assertion also follows from Proposition 2.

Finally, we establish the monotonicity of the product h(T α )μ(Ω α ).

Proof fo Theorem 3. For each α ∈ [1/2, g], we have h(T α ) = π 2 6 and μ(Ω α ) = -2 log g. Let now g ≤ α < β ≤ 1, d = -a 1 (α -1), b = ⌊T α (α -1) + α⌋. Set

X α,β =      max{1-β, 1 β-1 + d + 1}, α × 1 1- √ 2-d , 1 - √ 2-d ∩ Ω α if T α (α-1) = α-1, max{α-1, 1 β-1 + d}, T α (α-1) × 1 2- √ 2-d , 1 1- √ 2-d ∩ Ω α if α-1 < T α (α-1) ≤ 1-β, max{1-β, 1 β-1 + d}, T α (α-1) × 1 2- √ 2-d , 1 1- √ 2-d ∩ Ω α if T α (α-1
) > 1-β. Note that X α,β ⊂ X α \ X β , and we have μ(X α,β ) > 0 because of (10) together with T α (Ω α ) ⊂ Ω α ,

T α ([α -1, x] × [1 - √ 2, 2 - √ 2]) = [T α (x), T α (α -1)] × [ 1 2- √ 2-d , 1 1- √ 2-d ] for all x ∈ (α -1, 1 α-d-1 ],
and, in case T α (α -1) = α -1,

T α ((α -1, x] × [1 - √ 2, 2 - √ 2]) = [T α (x), T α (α -1)) × [ 1 1- √ 2-d , 1 - √ 2-d ] for all x ∈ (α -1, 1 α-d-2
]. Let ϕ(x, y) = (-x, -y) if T α (α -1) ∈ (1α, 1β], (1x, -y y+1 ) otherwise. Then we have μ(ϕ(X α,β )) = μ(X α,β ) and, by Lemma 8, ϕ(X α,β ) ⊂ Ω β . Let T α be the first return map of T α on X α,β , and let T β be the first return map of T β on ϕ(X α,β ). For (x, y) ∈ X α,β , we have, by Lemma 6, T k β ϕ(x, y) ∈ S T α (x, y) for some k ≥ 1, thus T k β ϕ(x, y) = ϕ T α (x, y), hence ϕ T α (x, y) = T m β ϕ(x, y) for some m ≥ 1. This implies that h( T β ) ≤ h( T α ). Abramov's formula gives that h( T α ) = μ(Ω α ) μ(X α,β ) h(T α ) and h( T β ) = μ(Ω β ) μ(ϕ(X α,β )) h(T β ), thus μ(Ω β ) h(T β ) ≤ μ(Ω α ) h(T α ).

Proposition 4 .

 4 The map • T α is ergodic w.r.t. the Lebesgue measure.