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cLaboratoire de Physique de l’École Normale Supérieure, ENS, Université PSL,
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1 Introduction

Computing partition functions of integrable vertex models at intermediate lattice size is

a hard problem. For small lattice size, the partition function can be computed simply by

brute force. For large lattice size, where the thermodynamic limit is a good approximation,

various methods are available, including the Wiener-Hopf method [1–3], non-linear integral

equations [4, 5] and a distribution approach [6]. At intermediate lattice size, brute force is

no longer an option, and the thermodynamic approximation is inaccurate. In a previous

work [7], three of the authors developed an efficient method to compute the exact partition

function of the 6-vertex model analytically for intermediate lattice size. They considered

the 6-vertex model at the isotropic point on the torus, i.e. with periodic boundary conditions

in both directions. The method is based on the rational Q-system [8] and computational

algebraic geometry (AG). The algebro-geometric approach to Bethe ansatz was initiated

in [9], with the general goal of exploring the structure of the solution space of Bethe ansatz

equations (BAE) and developing new methods to obtain analytic results in integrable

models. The simplest example for such a purpose is the BAE of the SU(2)-invariant

Heisenberg XXX spin chain with periodic boundary conditions. It is an interesting question

to generalize these methods to more sophisticated cases such as higher-rank spin chains,

quantum deformations and non-trivial boundary conditions.

In the current work, we take one step forward in this direction and consider the parti-

tion function of the 6-vertex model on the cylinder. Namely, we take one direction of the

lattice to be periodic and impose free open boundary conditions in the other direction. This

set-up has several new features compared to the torus geometry already considered in [7].

First of all, to consider open boundary conditions for the vertex model, we put the

model on a diagonal square lattice where each square is rotated by 45◦, as is shown in

figure 1. The partition function on such a lattice can be formulated in terms of a diagonal-

to-diagonal transfer matrix [10], which does not commute for different values of the spectral

parameter. Nevertheless, the R-matrix approach (the so-called Quantum Inverse Scattering

Method) can be applied by reformulating this transfer matrix in terms of an inhomogeneous

double-row transfer matrix [11] with suitable alternating inhomogeneities [12, 13]. It turns

– 1 –
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out that these inhomogeneities depend on the spectral parameter. As a result, the BAE

depend on a free parameter ; hence, the Bethe roots are functions of this parameter, instead

of pure numbers. In general, this new feature makes it significantly more difficult to

solve the BAE. However, in the algebro-geometric approach, there is no extra difficulty,

because the computations are purely algebraic and analytic — there is not much qualitative

difference between manipulating numbers and algebraic expressions. Therefore, the AG

computations can be adapted to cases with free parameters straightforwardly, which further

demonstrates the power of our method.

Secondly, in the torus case, the computation of the partition function can be done in

two directions which are equivalent. For the cylinder case, however, the computations of

the partition function in the two directions or channels are quite different. In the open

channel, we need to diagonalize the transfer matrix corresponding to open spin chains. The

partition function is given by the sum over traces of powers of the open-channel transfer

matrix, similarly to the torus case. In the closed channel, we diagonalize transfer matrices

corresponding to closed spin chains, and the open boundaries become non-trivial boundary

states. The partition function is thus given by a matrix element, between boundary states,

of powers of the closed-channel transfer matrix.

For a given lattice size, the final results should be the same in both channels. Nev-

ertheless, we may consider different limits. In the open (closed) channel, we can take the

lattice size in the open (closed) direction to be finite and let the other direction tend to

infinity. This partial thermodynamic limit has been studied in the torus case [7]. In the

cylinder case, there are two different partial thermodynamic limits (“long narrow straw”

and “short wide pancake”), which we study in detail in this paper. In these limits, it fol-

lows from the Beraha-Kahane-Weiss theorem [14] that the zeros of the partition function

condense on certain curves in the complex plane of the spectral parameter.

The rest of the paper is structured as follows. In section 2, we give the set-up of the

vertex model and its reformulation in terms of a diagonal-to-diagonal transfer matrix. In

sections 3 and 4, we discuss the computation of the partition function in the two different

channels, using Bethe ansatz and algebraic geometry. Section 5 is devoted to some general

discussions on the algebro-geometric computations for the BAE/QQ-relation with a free

parameter. In section 6 we present the partition functions which can be written in closed

forms for any M or N in the two channels. These include M = 1 in the open channel

and N = 1, 2, 3 in the closed channel. In section 7, we compute the zeros of the partition

function close to the two partial thermodynamic limits (i.e., for very large aspect ratios) and

compare them with the condensation curves, which we compute from the transfer matrix

spectra. In appendix A, we give a brief introduction to the basic notions of computational

algebraic geometry which are used in this paper. In appendix B, we give more details on the

algebro-geometric computations. Appendix C to E contain the proofs of some statements

in the main text. We collect explicit exact results in appendix F for small M and N , where

we can perform the computation in both channels and make consistency checks.

Some of the results we obtained are too large to be presented in the paper. They can

also be downloaded from the webpage (576 MB in compressed form):

http://staff.ustc.edu.cn/~yzhphy/integrability.html
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Figure 1. The 6-vertex model on a cylinder. In the open channel, there are 2M + 1 sites in

the horizontal direction with free boundary conditions, and 2N sites in the vertical direction with

periodic boundary conditions.

Figure 2. Diagonal-to-diagonal transfer matrix.

2 Set-up

We consider the 6-vertex model at the isotropic point on a (2M + 1)× 2N medial lattice,

for positive integers M and N . We impose periodic boundary conditions in the vertical

direction, and free boundary conditions in the horizontal direction; the geometry under

consideration is a cylinder, as is shown in figure 1. The partition function on the lattice

can be computed in two different channels.

Open channel. In the open channel, we define the diagonal-to-diagonal transfer matrix

tD(u) = Ř23(u) Ř45(u) · · · Ř2M,2M+1(u) Ř12(u) Ř34(u) · · · Ř2M−1,2M (u) , (2.1)

shown in figure 2; by convention the direction of propagation (the “imaginary time” direc-

tion) is upwards in our figures. The subscripts label the spaces being acted upon, and Ř

is related to the standard R-matrix of the isotropic 6-vertex model by

Řjk(u) = Pjk Rjk(u) , (2.2)

where P is the permutation operator. Written explicitly, the R-matrix is given by

R(u) = u+ iP =


a(u) 0 0 0

0 b(u) c(u) 0

0 c(u) b(u) 0

0 0 0 a(u)

 , (2.3)
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Figure 3. In the closed channel, there are 2N sites in the horizontal direction with periodic

boundary conditions, and 2M + 1 sites in the vertical direction with free boundary conditions.

with the Boltzmann weights

a(u) = u+ i , b(u) = u , c(u) = i . (2.4)

The partition function is given by

Z(u,M,N) = tr
[
tD(u)N

]
. (2.5)

For small values of M and N , the results can be directly computed by brute force from the

definition, for example

Z(u, 1, 1) = 2(u+ 2i)2 ,

Z(u, 1, 2) = 2
(
u4 + 8iu3 − 12u2 − 8iu+ 4

)
, (2.6)

Z(u, 2, 2) = 2
(
u8 + 16iu7 − 76u6 − 184iu5 + 268u4 + 256iu3 − 160u2 − 64iu+ 16

)
.

Closed channel. In the closed channel, the graph is rotated by 90◦ degrees, as shown

in figure 3. The rotated R-matrix which will be denoted by Rc takes the following form

Rc(u) =


b(u) 0 0 0

0 a(u) c(u) 0

0 c(u) a(u) 0

0 0 0 b(u)

 . (2.7)

Notice that this R-matrix does not satisfy the Yang-Baxter equation. In the closed channel,

the partition function is no longer given by a trace, since periodic boundary conditions are

not imposed in the vertical direction. Instead, the open boundary conditions give rise to

non-trivial boundary states in the closed channel. The partition function in the closed

channel is given by

Zc(u,M,N) = 〈Ψ0|U † t̃D(u)M |Ψ0〉 , (2.8)

– 4 –
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where U is the one-site shift operator

U = P12P23 · · ·P2N−1,2N , (2.9)

and t̃D(u) is defined as

t̃D(u) = Řc
12(u) Řc

34(u) · · · Řc
2N−1,2N (u) Řc

23(u) Řc
45(u) · · · Řc

2N−2,2N−1(u) Řc
2N,1(u) , (2.10)

where Řc
ij(u) = PijR

c
ij(u). The boundary state |Ψ0〉 is given by

|Ψ0〉 = |ψ0〉⊗N , |ψ0〉 = | ↑ 〉 ⊗ | ↓ 〉+ | ↓ 〉 ⊗ | ↑ 〉 , (2.11)

where we have used the notation

| ↑ 〉 ≡
(

1

0

)
, | ↓ 〉 ≡

(
0

1

)
. (2.12)

The result for the partition function of course does not depend on how we perform the

computation, so we have

Z(u,M,N) = Zc(u,M,N) . (2.13)

To verify the correctness of our various computations (see below), we have explicitly checked

this identity for small value of M and N .

Our goal is to compute analytic expressions of Z(u,M,N) explicitly for different in-

termediate values of M and N . When both M and N are large, the system can be well

approximated by the computation in the thermodynamic limit. Here we instead focus on

the interesting intermediate case where we keep one of M , N to be finite (namely, the one

that determines the dimension of the transfer matrix) and the other to be large. For finite

M (≤ 10) and large N (around a few hundred to thousands), we perform the computation

in the open channel using (2.5); whereas for finite N and large M , we work in the closed

channel using (2.8). We discuss the computation of the partition function in both channels

from the perspective of Bethe ansatz and algebraic geometry.

3 Partition function in the open channel

In this section, we discuss the computation of the partition function in the open channel

using Bethe ansatz and algebraic geometry. Using this method, we are able to compute

the partition function for finite M ≤ 10 and large N (ranging from a few hundred to

thousands).

3.1 Reformulation and Bethe ansatz

In order to apply the R-matrix machinery, the first step is to re-express the diagonal-to-

diagonal transfer matrix tD(u) (2.1) in terms of an integrable open-chain transfer matrix

with 2M + 1 sites and with inhomogeneities {θj} [11]. Let us define

t(u; {θj}) = traK
+(u)T (2M+1)

a (u; {θj})K−(u) T̂ (2M+1)
a (u; {θj}) , (3.1)

– 5 –
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where the monodromy matrices are given by

T (l)
a (u; {θj}) = Ra1(u− θ1) . . . Ra l(u− θl) ,

T̂ (l)
a (u; {θj}) = Ra l(u+ θl) . . . Ra1(u+ θ1) . (3.2)

For our isotropic problem, the K-matrices are simply K+(u) = K−(u) = I.
The eigenvalues Λ(u; {θj}) of the transfer matrix t(u; {θj}) (3.1), which can be obtained

using algebraic Bethe ansatz [11], are given by

Λ(u; {θj}) =
2(u+ i)

(2u+ i)

2M+1∏
j=1

(u− θj + i)(u+ θj + i)

 K∏
k=1

(u− uk − i
2)(u+ uk − i

2)

(u− uk + i
2)(u+ uk + i

2)

+
2u

(2u+ i)

2M+1∏
j=1

(u− θj)(u+ θj)

 K∏
k=1

(u− uk + 3i
2 )(u+ uk + 3i

2 )

(u− uk + i
2)(u+ uk + i

2)
, (3.3)

where the {uk} are solutions of the BAE

2M+1∏
j=1

(uk − θj + i
2)(uk + θj + i

2)

(uk − θj − i
2)(uk + θj − i

2)
=

K∏
j=1;j 6=k

(uk − uj + i)(uk + uj + i)

(uk − uj − i)(uk + uj − i)
. (3.4)

The key point (due to Destri and de Vega [12]) is to choose alternating spectral-

parameter-dependent inhomogeneities as follows

θj = θj(u) = (−1)ju , j = 1, . . . , 2M + 1 . (3.5)

One can then show [13] that the diagonal-to-diagonal transfer matrix tD(u) is given by1

tD(u) =
1

i2M+1(u+ 2i)
t(u2 ; {θj(u2 )}) , (3.6)

noting that half of the R-matrices become proportional to permutation operators, and the

spin chain geometry is transformed into the vertex one, see figure 4. Specifying in (3.3)–

(3.4) the inhomogeneities as in (3.5), it follows that the eigenvalues ΛD(u) of tD(u) are

given by

ΛD(u) = ΛD,K(u) =
1

i2M+1(u+ 2i)
Λ(u2 ; {θj(u2 )}) (3.7)

= (u+ i)2M
K∏
k=1

(u2 − uk −
i
2)(u2 + uk − i

2)

(u2 − uk + i
2)(u2 + uk + i

2)
, (3.8)

where the {uk} are solutions of the Bethe equations[
(uk − u

2 + i
2)(uk + u

2 + i
2)

(uk − u
2 −

i
2)(uk + u

2 −
i
2)

]2M+1

=
K∏

j=1;j 6=k

(uk − uj + i)(uk + uj + i)

(uk − uj − i)(uk + uj − i)
. (3.9)

1We note that tD(u) does not commute with tD(v).
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Figure 4. The R-matrices with zero argument act as permutation operators depicted with avoiding

lines. This transforms the double-row transfer matrix of the spin-chain geometry into the diagonal-

to-diagonal transfer matrix of the boundary vertex model.

Here k = 1, . . . ,K and K = 0, 1, . . . ,M . Note that the BAE (3.9) depend on the spectral

parameter u, which is an unusual feature.

We observe that tD(u) has su(2) symmetry

[
tD(u) , ~S

]
= 0 , ~S =

2M+1∑
j=1

1
2~σj . (3.10)

The Bethe states are su(2) highest-weight states, with spin

s = sz =
1

2
(2M + 1)−K . (3.11)

For a given value of K, the corresponding eigenvalue therefore has degeneracy

2s+ 1 = 2M + 2− 2K . (3.12)

We conclude that the partition function (2.5) is given by

Z(u,M,N) =
M∑
K=0

∑
sol(M,K)

(2M + 2− 2K) ΛD,K(u)N , (3.13)

where ΛD,K(u) is given by (3.8). Here sol(M,K) stands for physical solutions {u1, . . . , uK}
of the BAE (3.9) with 2M + 1 sites and K Bethe roots. The number N (M,K) of such

solutions has been conjectured to be given by [15]

N (M,K) =

(
2M + 1

K

)
−
(

2M + 1

K − 1

)
. (3.14)

In order to find the explicit expressions for the partition function (3.13), we need to

find the eigenvalues ΛD,K(u). They depend on the values of rapidities which are solutions

of the BAE (3.9). We encounter two difficulties. Firstly, the solution set of the BAE (3.9)

contains some redundancy, since not all solutions are physical; therefore one needs to

impose extra selection rules [15]. Secondly, generally Bethe equations are a complicated

system of algebraic equations, which cannot be solved analytically. What is worse, our

– 7 –
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BAE (3.9) depend on a free parameter u, which means that the Bethe roots are functions

of u, thereby making the BAE even harder than usual to solve.

In order to overcome these two difficulties, we need new tools, namely the rational

Q-system and computational algebraic geometry. These methods have been applied suc-

cessfully in computing the torus partition function of the 6-vertex model [7]. The BAE can

be reformulated as a set of QQ-relations, with appropriate boundary conditions [8]. The

benefit of working with the Q-system is twofold. Firstly, it is much more efficient to solve

the rational Q-system than to directly solve the BAE. Secondly, all the solutions of the

Q-system are physical, so there is no need to impose further selection rules [16, 17]. The

rational Q-system, which was first developed for isotropic (XXX) spin chains with periodic

boundary conditions [8], was recently generalized to anisotropic (XXZ) spin chains and to

spin chains with certain open boundary conditions [17, 18]. We briefly review the Q-system

for open boundary conditions in section 3.2.

Turning to the second difficulty, finding all solutions of the BAE (or of the corre-

sponding Q-system) is in general only possible numerically. However, it was realized in [9]

that if the goal is to sum over all the solutions of the BAE/Q-system for some rational

function f({uj}) of the Bethe roots, then it can be done without knowing all the solutions

explicitly. The idea is based on computational algebraic geometry. The solutions of the

BAE/Q-system form a finite-dimensional linear space called the quotient ring. The di-

mension of the quotient ring is the number of physical solutions of the BAE/Q-system. A

basis of the quotient ring can be constructed by standard methods using a Gröbner basis.

Once a basis for the quotient ring is known, one can construct the companion matrix for

the function f({uj}), which is a finite-dimensional representation of this function in the

quotient ring. Taking the trace of the companion matrix gives the sought-after sum. For a

more detailed introduction to these notions and explicit examples in the context of toroidal

boundary conditions, we refer to the original papers [7, 9] and the textbooks [19, 20].

The same strategy can be applied to the open boundary conditions. The new feature

that appears in this case is the dependence on a free parameter u. While this creates extra

difficulty for numerical computations, it does not cost more effort in the algebro-geometric

approach. The reason is that the constructions of the Gröbner basis, the basis for the

quotient ring and companion matrices are purely algebraic; and it does not make much

qualitative difference whether we have to manipulate numbers or algebraic expressions.2

3.2 BAE and Q-system

In this section, we review the rational Q-system for the SU(2)-invariant XXX spin chain

with open boundary conditions [18]. Let us first consider the BAE with generic inhomo-

geneities {θj} (3.4)

L∏
l=1

(uj − θl + i
2)(uj + θl + i

2)

(uj − θl − i
2)(uj + θl − i

2)
=

K∏
k 6=j

(uj − uk + i)(uj + uk + i)

(uj − uk − i)(uj + uk − i)
, (3.15)

2In practice, due to implementations of the algorithm in packages, the efficiencies for manipulating

numbers and algebraic expressions can be different.

– 8 –
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where L = 2M +1. For given value of L and K, we consider a two-row Young tableau with

number of boxes (L−K,K). At each vertex of the Young tableau, we associate a Q-function

denoted by Qa,s. The BAE (3.15) can be obtained from the following QQ-relations

v Qa+1,s(v)Qa,s+1(v) ∝ Q+
a+1,s+1(v)Q−a,s(v)−Q−a+1,s+1(v)Q+

a,s(v) , (3.16)

where f±(v) := f(v ± i
2), and the Q-functions Qa,s(v) are even polynomials of v

Qa,s(v) = v2Ma,s +

Ma,s−1∑
k=0

c(k)a,s v
2k , (3.17)

where Ma,s is the number of boxes in the Young tableau to the right and top of the vertex

(a, s). The boundary conditions are chosen such that Q2,s = 1, Q1,s>K = 1 and

Q0,0(v) =

L∏
j=1

(v − θj)(v + θj) , Q1,0(v) = Q(v) =

K∏
k=1

(v − uk)(v + uk) . (3.18)

Here Q1,0(v) is the usual Baxter Q-function, whose zeros are the Bethe roots. Comparing

to the periodic QQ-relations [8], the main differences are an extra factor v that appears

on the left-hand side of (3.16), and the degree of the polynomial of Qa,s which is twice the

one for the periodic case. More details can be found in section 4.2 of [18].

For the Bethe equations (3.9), corresponding to the alternating inhomogeneities (3.5),

we simply have3

Q0,0(v) =

[(
v − u

2

)(
v +

u

2

)]2M+1

. (3.19)

To solve the Q-system, we impose the condition that all the Qa,s functions are polynomials.

This requirement generates a set of algebraic equations called zero remainder conditions

(ZRC) for the coefficients c
(k)
a,s . In principle, one can then solve the ZRC’s and find Qa,s,

in particular the main Q-function Q1,0. The zeros of Q1,0 are the Bethe roots {uk}, which

are functions of the parameter u.

After finding the Q-functions, the next step is to find the eigenvalues ΛD (3.8), which

in terms of Q-functions are given simply by

ΛD(u) = (u+ i)2M
Q(u2 −

i
2)

Q(u2 + i
2)
. (3.20)

Plugging these into (3.13), we finally obtain the partition function.

3.3 Algebraic geometry

In this subsection, we give the main steps for the algebro-geometric computation of the

partition function:

1. Generate the set of zero remainder conditions (ZRC) from the rational Q-system;

3Recall that the argument of the double-row transfer matrix t in (3.6) is u
2

, rather than u.
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2. Compute the Gröbner basis of the ZRC;

3. Construct the quotient ring of the ZRC;

4. Compute the companion matrix for the eigenvalues ΛD,K(u) (3.8) which will be

denoted by TM,K(u);

5. Compute the matrix power of TM,K(u) and take the trace

Z(u,M,N) =

M∑
K=0

(2M + 2− 2K) tr [TM,K(u)]N . (3.21)

Most steps listed above can be done straightforwardly, adapting the corresponding working

of [7]. The only step that requires some additional work is step 4. The variables of

ZRC are c
(k)
a,s which are coefficients of the Q-functions. From these variables, it is easy to

construct the companion matrix of the Q-function. For fixed M and K, we denote the

companion matrix by QM,K . To find the companion matrix of ΛD, which is essentially the

companion matrix of Λ (3.20) up to some multiplicative factors, the most direct way is to

use homomorphism property of the companion matrix and write

TM,K(u) = (u+ i)2M
QM,K(u2 −

i
2)

QM,K(u2 + i
2)
, (3.22)

where TM,K(u) is the companion matrix for ΛD(u) with fixed M and K. Unfortunately,

this method involves taking the inverse of the matrix QM,K(u+ i
2) analytically, which can

be slow when the dimension of the matrix is large.

We find that a much more efficient way is to use the following TQ-relation

uT

(
u− i

2

)
Q(u) =

(
u+

i

2

)[(
u+

i

2

)2

−
(
z

2

)2]L
Q(u− i) (3.23)

+

(
u− i

2

)[(
u− i

2

)2

−
(
z

2

)2]L
Q(u+ i).

In our case, we need to take L = 2M + 1 and z = u. To solve the TQ relation (3.23), we

make the following ansatz for the two polynomials

T (u) = t2Lu
2L + t2L−1u

2L−1 + · · ·+ t0, (3.24)

Q(u) =u2K + sK−1u
2(K−1) + · · ·+ s0.

Notice that Q(u) is an even polynomial and only even powers of u appear, which is not

the case for T (u). Plugging the ansatz (3.24) into (3.23), we obtain a system of algebraic

equations for the coefficients {t0, t1, · · · , t2L, s0, · · · , sK−1}. In fact, solving these set of

algebraic equations is yet another way to find the Bethe roots. For our purpose, we only

solve the equation partially, namely we view {s0, · · · , sK−1} as parameters and solve {tk}
in terms of {sj}. This turns out to be much simpler since the equations are linear. We

find that tk({sj}) are polynomials in the variables {sj}. From ZRC and algebro-geometric
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computations, we can find the companion matrix of sj which we denote by sj . Replacing

sj by sj and the products by matrix multiplication in tk({sj}), we find the companion

matrix tk = tk({sj}). Then the companion matrix of the eigenvalues of the transfer matrix

is given by

TM,K(u) = t2L u
2L + t2L−1 u

2L−1 + · · ·+ t0. (3.25)

More details on the implementation of the algebro-geometric computations are given in

appendix B.

Using the AG approach, we have computed the partition functions for M up to 6, with

N up to 2048. We also calculated some partition functions with higher M and lower N .

The results for 2 ≤M,N ≤ 6 are given in appendix F.

4 Partition function in the closed channel

In this section, we compute the partition function in the closed channel. There are both

simplifications and complications due to the presence of non-trivial boundary states. In-

deed, the presence of boundary states imposes selection rules for the allowed solutions of

the BAE. Firstly, it restricts to the states with zero total spin. This implies that the length

of the spin chain must be even, which we denote by 2N ; and the only allowed number

of Bethe roots is K = N . In contrast, for the periodic (torus) case [7], one must con-

sider all the sectors K = 0, 1, . . . , N . Moreover, the Bethe roots must form Cooper-type

pairs (4.33), which leads to significant simplification in the computation of the Gröbner

basis and quotient ring.

This simplification comes with a price. Recall that the partition function in the closed

channel takes the form of a matrix element given by (2.8). To evaluate this matrix element,

we need the overlaps between the boundary states and the Bethe states. These overlaps are

a new feature, which is not present in the open channel. They are complicated functions

of the rapidities, which makes the computation of the companion matrix more difficult.

4.1 Reformulation and Bethe ansatz

To compute the expression (2.8) for the partition function in the closed channel, the first

step is to rewrite t̃D (2.10) in terms of integrable closed-chain transfer matrices. To this

end, we observe that Rc(u) (2.7) is related to R(u) by

Rc
12(u) = −σz1 R12(ũ)σz1 = −σz2 R12(ũ)σz2 , (4.1)

where ũ is the ‘crossing transformed’ spectral parameter defined by

ũ = −u− i . (4.2)

The corresponding “checked” R-matrices are therefore related by

Řc
12(u) = −σz2 Ř12(ũ)σz2 . (4.3)

For later convenience, we define

Ṽ (1) = Řc
23(u) Řc

45(u) · · · Řc
2N−2,2N−1(u) Řc

2N,1(u) ,

Ṽ (2) = Řc
12(u) Řc

34(u) · · · Řc
2N−1,2N (u) , (4.4)
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in terms of which t̃D (2.10) is given by

t̃D(u) = Ṽ (2)(u) Ṽ (1)(u) . (4.5)

It follows from (4.3) that

Ṽ (1)(u) = (−1)N Ω(2) V (1)(ũ) Ω(1) ,

Ṽ (2)(u) = (−1)N Ω(1) V (2)(ũ) Ω(2) , (4.6)

where

Ω(1) = σz1σ
z
3 · · ·σz2N−1 , Ω(2) = σz2σ

z
4 · · ·σz2N , (4.7)

and the V (i) are the same as the corresponding Ṽ (i), but with R’s instead of Rc’s:

V (1)(u) = Ř23(u) Ř45(u) . . . Ř2N−2,2N−1(u) Ř2N,1(u) ,

V (2)(u) = Ř12(u) Ř34(u) . . . Ř2N−1,2N (u) . (4.8)

Let us now introduce integrable inhomogeneous closed-chain transfer matrices of length 2N

τ(u; {θj}) = traT
(2N)
a (u; {θj}) ,

τ̂(u; {θj}) = traT̂
(2N)
a (u; {θj}) , (4.9)

where the monodromy matrices are defined in (3.2). Using crossing symmetry

R12(ũ) = −σy1 R
t1
12(u)σy1 , (4.10)

where ‘t1’ stands for transposition in the first quantum space, one can show that

τ(ũ; {θj}) = τ̂(u; {θj}) . (4.11)

The transfer matrices (4.9) can be diagonalized by algebraic Bethe ansatz. We define the

operators A, B, C, D as matrix elements of the monodromy matrix (3.2) as usual

T (2N)
a

(
u− i

2
; {θj}

)
=

(
A(u) B(u)

C(u) D(u)

)
, (4.12)

but note the shift in the spectral parameter. We consider the reference state or

pseudovacuum

|0〉 = | ↑〉⊗2N . (4.13)

The Bethe states and their duals are constructed by acting with B- and C-operators on

the reference state4

|u〉 = B(u1) · · ·B(uK)|0〉 , 〈u| = 〈0|C(u1) · · ·C(uK) . (4.14)

4It should be kept in mind that the Bethe states depend on the inhomogeneities {θj}; in order to lighten

the notation, this dependence is not made explicit.
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Figure 5. The R-matrices with zero argument act as permutation operators depicted with avoiding

lines. This transforms the product of periodic transfer matrices of the spin-chain geometry into the

periodic diagonal-to-diagonal transfer matrix of the vertex model.

These states are eigenstates of the transfer matrix τ(u; {θj}) (4.9)

τ(u; {θj})|u〉 = Λc(u; {θj})|u〉 , (4.15)

with eigenvalues Λc(u; {θj}) given by

Λc(u; {θj}) =

2N∏
j=1

(u− θj + i)

K∏
k=1

u− uk − i
2

u− uk + i
2

+

2N∏
j=1

(u− θj)
K∏
k=1

u− uk + 3i
2

u− uk + i
2

, (4.16)

provided that the rapidities u = {u1, · · · , uK} satisfy the BAE

2N∏
j=1

uk − θj + i
2

uk − θj − i
2

=

K∏
j=1;j 6=k

uk − uj + i

uk − uj − i
. (4.17)

In contradistinction with (3.9) these BAE do not depend on the spectral parameter u, as

is usually the case. The eigenvalues Λ̂c(u; {θj}) of τ̂(u; {θj}) are given by

Λ̂c(u; {θj}) = Λc(ũ; {θj}) , (4.18)

as follows from (4.11).

To make contact with t̃D, we again choose alternating spectral-parameter-dependent

inhomogeneities

θj = θj(u) = (−1)j+1u, j = 1, . . . , 2N . (4.19)

The V ’s (4.8) can then be related to the closed-chain transfer matrices (4.9) by

V (2)(u)V (1)(u) = (−1)N τ

(
u

2
;

{
θj

(
u

2

)})
τ̂

(
u

2
;

{
θj

(
u

2

)})
, (4.20)

which is similar to (3.6), see figure 5. In view of the relations (4.6) between Ṽ ’s and V ’s,

we conclude that t̃D (4.5) is given by

t̃D(u) = Ṽ (2)(u) Ṽ (1)(u)

= Ω(1) V (2)(ũ)V (1)(ũ) Ω(1)

= (−1)NΩ(1) τ

(
ũ

2
;

{
θj

(
ũ

2
)

})
τ̂

(
ũ

2
;

{
θj

(
ũ

2

)})
Ω(1) . (4.21)
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The expression (2.8) for the partition function in the closed channel can therefore be

recast as

Zc(u,M,N) = (−1)MN 〈Ψ0|U †Ω(1)

[
τ

(
ũ

2
;

{
θj

(
ũ

2
)

})
τ̂

(
ũ

2
;

{
θj(

ũ

2
)

})]M
Ω(1)|Ψ0〉

= (−1)(M+1)N 〈Φ0|U †
[
τ

(
ũ

2
;

{
θj

(
ũ

2

)})
τ̂

(
ũ

2
;

{
θj

(
ũ

2

)})]M
|Φ0〉 , (4.22)

where |Φ0〉 is the so-called dimer state

|Φ0〉 = Ω(1)|Ψ0〉 = (−1)N Ω(2)|Ψ0〉 = |φ0〉⊗N , |φ0〉 = | ↑ 〉 ⊗ | ↓ 〉 − | ↓ 〉 ⊗ | ↑ 〉, (4.23)

and we have also used the fact that U †Ω(1)U = Ω(2). We now insert in (4.22) the complete-

ness relation in terms of Bethe states (which are SU(2) highest-weight states) and their

lower-weight descendants ∑
K

∑
solc(N,K)

1

N (u)
|u〉〈u|+ . . . = 1 , (4.24)

where solc(N,K) stands for physical solutions u of the closed-chain BAE (4.17) with 2N

sites and K Bethe roots. Moreover, the normalization factor is given by

N (u) = 〈u|u〉 , (4.25)

and the ellipsis denotes the descendant terms. However, these descendant terms do not

contribute to the matrix element (4.22), since the dimer state is annihilated by the spin

raising and lowering operators

S± |Φ0〉 = 0 , where S± = Sx ± iSy , ~S =

2N∑
j=1

1

2
~σj . (4.26)

Moreover, in view of the fact

0 = 〈u|Sz|Φ0〉 = (N −K)〈u|Φ0〉 , (4.27)

the overlap 〈u|Φ0〉 vanishes unless K = N . The matrix element (4.22) therefore reduces to

Zc(u,M,N) = (−1)(M+1)N
∑

solc(N,N)

〈Φ0|U †|u〉〈u|Φ0〉
N (u)

×
[
Λc

(
ũ

2
;

{
θj

(
ũ

2

)})
Λ̂c

(
ũ

2
;

{
θj

(
ũ

2

)})]M
, (4.28)

where the sum runs over all physical solutions of the closed-chain BAE (4.17) in the K = N

sector. We note that the expressions involving the eigenvalues are given by

Λc

(
ũ

2
;

{
θj

(
ũ

2

)})
= (−iu)N

N∏
k=1

−u
2 − uk − i
−u

2 − uk
,

Λ̂c

(
ũ

2
;

{
θj

(
ũ

2

)})
= (−iu)N

N∏
k=1

u
2 − uk + i
u
2 − uk

, (4.29)
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as follows from (4.16) and (4.18). The normalization factor (4.25) is given by the Gaudin

formula [21, 22]

N (u) = (−1)N
N∏
j=1

[(
uj +

ũ

2

)2

+
1

4

]N [(
uj −

ũ

2

)2

+
1

4

]N

×

 N∏
j,k=1 ;j 6=k

uj − uk − i
uj − uk

 detN (Gjk) , (4.30)

where

Gjk = δjk

{
N

[
K 1

2

(
uj −

ũ

2

)
+K 1

2

(
uj +

ũ

2

)]
−

N∑
l=1

K1(uj − ul)

}
+K1(uj − uk) ,

(4.31)

and

Ka(u) =
2a

u2 + a2
. (4.32)

Overlaps similar to 〈u|Φ0〉 have been studied extensively, see e.g. [23–30], see also [31, 32].

The cases of even and odd N must be analyzed separately.

4.2 Even N

Let us first consider even values of N . Interestingly, only Bethe states with “paired” Bethe

roots of the form

{u1 ,−u1 , . . . , uN
2
,−uN

2
} (4.33)

have non-zero overlaps [25, 26]. Such Bethe states have even parity, see (E.5) below. For

such Bethe states, the overlaps are given by (see appendix C)

〈u|Φ0〉 =

(
ũ

2
+
i

2

)N  N
2∏
j=1

1

uj

√
u2j + 1

4


√√√√√detN

2

(
G+
jk

)
detN

2

(
G−jk

)√N (u) , (4.34)

where

G±jk = δjk

{
N

[
K 1

2

(
uj −

ũ

2

)
+K 1

2

(
uj +

ũ

2

)]
−

N
2∑
l=1

K
(+)
1 (uj , ul)

}
+K

(±)
1 (uj , uk) ,

(4.35)

with

K(±)
a (u, v) = Ka(u− v)±Ka(u+ v) , (4.36)

and Ka(u) is defined in (4.32). We remark that, for these states,

detN (Gjk) = detN
2

(
G+
jk

)
detN

2

(
G−jk

)
. (4.37)
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Moreover, we show in appendix D the relation

〈Φ0|U †|u〉 = iN (ũ+ i)−NΛc

(
ũ

2
;

{
θj

(
ũ

2

)})
〈u|Φ0〉 . (4.38)

The matrix element (4.28) therefore reduces to

Zc(u,M,N) =
iN (−1)(M+1)N

22N
(ũ+ i)N

∑
sol(u1,...,uN

2
)

 N
2∏
j=1

1

u2j

(
u2j + 1

4

)
 detN

2

(
G+
jk

)
detN

2

(
G−jk

)
× Λc

(
ũ

2
;

{
θj

(
ũ

2

)})[
Λc

(
ũ

2
;

{
θj

(
ũ

2
)

})
Λ̂c

(
ũ

2
;

{
θj

(
ũ

2

)})]M
,

= 2−2Nu2N(M+1)
∑

sol(u1,...,uN
2
)

 N
2∏
j=1

1

u2j

(
u2j + 1

4

)
 detN

2

(
G+
jk

)
detN

2

(
G−jk

)

×

 N
2∏

k=1

( u
2 − uk + i
u
2 − uk

)( u
2 + uk + i
u
2 + uk

)2M+1

, (4.39)

where we have used (4.29) to pass to the second equality, and the sum is over all physical

solutions of the BAE (4.17) with paired Bethe roots (4.33), see (4.48) below.

4.3 Odd N

For odd values of N , the only Bethe states with non-zero overlaps have one 0 Bethe root,

and all the other Bethe roots form pairs; i.e., the Bethe roots are of the form

{u1 ,−u1 , . . . , uN−1
2
,−uN−1

2
, 0} . (4.40)

Such Bethe states have odd parity, see (E.6) below. The overlaps are now given by

〈u|Φ0〉 = −
(
ũ

2
+
i

2

)N N−1
2∏
j=1

1

uj

√
u2j + 1

4


√√√√√ detN+1

2
(Hjk)

detN−1
2

(
G−jk

)√N (u) , (4.41)

where H is the block matrix

H =

(
G+ 2C

Ct D

)
N+1

2
×N+1

2

, (4.42)

and G± are now the N−1
2 × N−1

2 matrices given by

G±jk = δjk

N
[
K 1

2

(
uj −

ũ

2

)
+K 1

2

(
uj +

ũ

2

)]
−K1(uj)−

N−1
2∑
l=1

K
(+)
1 (uj , ul)


+K

(±)
1 (uj , uk) , j , k = 1, . . . ,

N − 1

2
, (4.43)
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with K
(±)
a (u, v) and Ka(u) defined as before, see (4.36), (4.32). Moreover, in (4.42), C is

an N−1
2 -component column vector, Ct is the corresponding row vector, and D is a scalar,

which are given by

Cj = K1(uj) , j = 1, . . . ,
N − 1

2
,

D = 2NK 1
2

(
ũ

2

)
− 2

N−1
2∑
l=1

K1(ul) . (4.44)

We remark that, for these states,

detN (Gjk) = detN+1
2

(Hjk) detN−1
2

(
G−jk

)
. (4.45)

Moreover,

〈Φ0|U †|u〉 = iN (ũ+ i)−NΛc

(
ũ

2
;

{
θj

(
ũ

2

)})
〈u|Φ0〉 . (4.46)

The matrix element (4.28) now reduces to

Zc(u,M,N) =
iN (−1)(M+1)N

22N
(ũ+ i)N

∑
sol(u1,...,uN−1

2
)

N−1
2∏
j=1

1

u2j

(
u2j + 1

4

)
 detN+1

2
(Hjk)

detN−1
2

(
G−jk

)
× Λc

(
ũ

2
;

{
θj

(
ũ

2

)})[
Λc

(
ũ

2
;

{
θj

(
ũ

2

)})
Λ̂c

(
ũ

2
;

{
θj

(
ũ

2

)})]M
,

= 2−2Nu2N(M+1)
∑

sol(u1,...,uN−1
2

)

N−1
2∏
j=1

1

u2j

(
u2j + 1

4

)
 detN+1

2
(Hjk)

detN−1
2

(
G−jk

)

×

(u+ 2i

u

) N−1
2∏

k=1

( u
2 − uk + i
u
2 − uk

)( u
2 + uk + i
u
2 + uk

)2M+1

, (4.47)

where we have used (4.29) to pass to the second equality, and the sum is over all physical

solutions of the BAE (4.17) with paired Bethe roots (4.40), see (4.53) below.

4.4 BAE and Q-system

We now summarize the BAE and Q-systems in the closed channel. They are special cases

of those for the spin chain with periodic boundary condition with length 2N and magnon

number N .

Even N . For the paired Bethe roots (4.33), the closed-chain Bethe equations (4.17)

reduce to open-chain-like Bethe equations(
uk − ũ

2 + i
2

uk − ũ
2 −

i
2

)N (
uk + ũ

2 + i
2

uk + ũ
2 −

i
2

)N
=

(
uk + i

2

uk − i
2

) N
2∏

j=1;j 6=k

(
uk − uj + i

uk − uj − i

)(
uk + uj + i

uk + uj − i

)
,

(4.48)

– 17 –



J
H
E
P
0
6
(
2
0
2
0
)
1
6
9

where k = 1, . . . , N2 . The corresponding QQ-relations are

Qa+1,s(v)Qa,s+1(v) ∝ Q+
a+1,s+1(v)Q−a,s(v)−Q−a+1,s+1(v)Q+

a,s(v) , (4.49)

where Qa,s(v) are even polynomial functions of v. In particular, the main Q-function is

given by

Q1,0(v) =

N
2∏
j=1

(v − uj)(v + uj) =

N
2∑

k=0

c
(2k)
1,0 v

2k = vN + c
(N−2)
1,0 vN−2 + · · ·+ c

(0)
1,0 . (4.50)

Moreover,

Q0,0(v) =

[(
v − ũ

2

)(
v +

ũ

2

)]N
. (4.51)

Therefore, to obtain the ZRC for this case, we can simply take the ZRC for the generic

periodic case and add the following constraints

c
(2k+1)
1,0 = 0, k = 0, 1, . . . ,

N

2
− 1. (4.52)

Odd N . For odd N , the nonzero paired Bethe roots (4.40) satisfy the open-chain-like

Bethe equations(
uk − ũ

2 + i
2

uk − ũ
2 −

i
2

)N (
uk + ũ

2 + i
2

uk + ũ
2 −

i
2

)N

=

(
uk + i

2

uk − i
2

)(
uk + i

uk − i

) N−1
2∏

j=1;j 6=k

(
uk − uj + i

uk − uj − i

)(
uk + uj + i

uk + uj − i

)
, (4.53)

where k = 1, . . . , (N−1)/2. The corresponding QQ-relations are again given by (4.49), with

Q0,0(v) given by (4.51). The Q-functions are odd polynomials in this case. In particular,

the main Q-function takes the form

Q1,0(v) = v

N−1
2∏
j=1

(v − uj)(v + uj) =

N−1
2∑

k=0

c
(2k+1)
1,0 v2k+1 = vN + c

(N−2)
1,0 vN−2 + · · · c(1)1,0v .

(4.54)

Therefore, to obtain the ZRC in this case, we take the general ZRC for the generic periodic

case and impose the conditions

c
(2k)
1,0 = 0, k = 0, 1, . . . , (N − 1)/2. (4.55)

For both even and odd values of N , we conjecture that the number N (N) of such

physical solutions of the BAE (4.48), (4.53) is given simply by

N (N) =

(
N

bN/2c

)
, (4.56)

where bxc denotes the integer part of x. The first 10 values are given by

{1, 2, 3, 6, 10, 20, 35, 70, 126, 252} , (4.57)

which we checked by explicit computations.
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4.5 Algebraic geometry

The procedure for algebro-geometric computations follows the same steps as in the open

channel. As we mentioned before, the computation of the Gröbner basis and quotient

ring is simpler. The complication comes from computing the companion matrices. The

companion matrix of the transfer matrices Λc(v; {θj(u)}) can be constructed similarly from

the TQ relation

Q(v)T (v − i

2
) =

[(
v +

i

2

)2

− u2
]N
Q(v − i) +

[(
v − i

2

)2

− u2
]N
Q(v + i). (4.58)

The most complicated part is the ratio of determinants in (4.39) and (4.47). These are

complicated functions in terms of rapidities u. As in the open channel, the natural variables

that enter the AG computation are c
(k)
a,s . Therefore, in order to construct the companion

matrices of the ratio of determinants, we need to first convert it to be functions c
(k)
a,s . This

can be done because the ratio of determinants are symmetric rational functions.

Even N . For even N , after expanding the determinant the result can be written in

the form

N(u1, . . . , uN/2)

D(u1, . . . , uN/2)
, (4.59)

where N(u1, . . . , uN/2) and D(u1, . . . , uN/2) are symmetric polynomials in {u21, . . . , u2N/2}.
By the fundamental theorem of symmetric polynomials, they can be written in terms of ele-

mentary symmetric polynomials of {u21, . . . , u2N/2}, which we denote by {s0, s1, . . . , sN/2−1}:

s0 =u21u
2
2 · · ·u2N

2

, (4.60)

...

sN
2
−2 =u21u

2
2 + u21u

2
3 + . . .+ u2N

2
−1u

2
N
2

,

sN
2
−1 =u21 + u22 + . . .+ u2N

2
−1 .

They are related to the coefficients c
(2k)
1,0 in (4.50) as

c
(2k)
1,0 = (−1)

N
2
+ksk , k = 0, 1, . . . ,

N

2
− 1 . (4.61)

Odd N . For odd N , the result can be written as

N(u1, . . . , uN−1
2

)

D(u1, . . . , uN−1
2

)
(4.62)

Similarly, we can do the symmetry reduction and write the result in terms of the elementary

symmetric polynomials

s0 =u21u
2
2 · · ·u2N−1

2

, (4.63)

...

sN−1
2
−2 =u21u

2
2 + u21u

2
3 + . . .+ u2N−1

2
−1u

2
N−1

2

,

sN−1
2
−1 =u21 + u22 + . . .+ u2N−1

2
−1 .
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They are related to the coefficients c
(2k+1)
1,0 in (4.54) as

c
(2k+1)
1,0 = (−1)

N−1
2

+ksk, k = 0, 1, . . . ,
N − 1

2
− 1 . (4.64)

There are two sources of complication worth mentioning. Firstly, computing the deter-

minant explicitly and performing the symmetric reduction is straightforward in principle,

but becomes cumbersome very quickly. It would be desirable to have a simpler form for

these quantities. Secondly, the companion matrix of the quantity 1/D is the inverse of the

companion matrix of D. Computing the inverse of a matrix analytically is also straightfor-

ward, but it has a negative impact on the efficiency of the computations when the dimension

of the matrix becomes large. For the eigenvalues of the transfer matrix, we saw in (3.23)

that the problem of computing inverses can be circumvented by using the TQ-relations.

For the expression of the overlaps, it is not clear whether we can find better means to

compute the companion matrix of the ratio N/D so as to avoid taking matrix inverses.

Using the algebro-geometric approach in the closed channel, we computed partition

functions for N up to 7 and M up to 2048. The results for 2 ≤ M,N ≤ 6 are listed in

appendix F.

5 Algebraic equation with free parameters

In this section, we discuss the Gröbner basis of the ZRC in the closed channel in more

detail. This will demonstrate further the power of the algebro-geometric approach for

algebraic equations, especially for cases with free parameters.

The system of algebraic equations we consider depends on a parameter u. This means

that the coefficients of the equations are no longer pure numbers, but functions of u. As

a result, the solutions also depend on the parameter u. As we vary the parameter u, the

solutions also change. One important question is if there are any special values u where the

solution space changes drastically. To understand this point, let us consider the following

simple equation for x whose coefficients depend on the free parameter u

(u2 − 1)x2 + ux− 1 = 0. (5.1)

At generic values of u, this is a quadratic equation with two solutions. However, when

u = ±1, the leading term vanishes and the equation become linear. The number of solutions

becomes one. Therefore at these ‘singular’ points, the structure of the solution space

changes drastically.

A similar phenomena occurs in the BAE of the Heisenberg spin chain. Consider for

a moment the more general XXZ spin chain and take the anisotropy parameter (alias

quantum group deformation parameter) q as the free parameter of the BAE. It is well-

known that the solution space is very different between generic q and q being a root of

unity. The traditional way to see this is by studying representation theory of the Uq(sl(2))

symmetry of the spin chain [33]. A more straightforward way to see this fact is by the

algebro-geometric approach. We can compute the Gröbner basis of the corresponding
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BAE/Q-system and analyze the coefficients as functions of q. We shall discuss this problem

in more detail in a future publication.

Related to the current work, we consider the ZRC in the closed channel for the XXX

spin chain. Here the free parameter is the inhomogeneity u. We want to know whether there

are special singular points of u where the structure of solution space changes drastically.

Recall that from elementary algebraic geometry, the number of solutions equals the linear

dimension of the quotient ring. Furthermore, the quotient ring dimension is completely

determined by the leading terms of the Gröbner basis. Therefore, to this end, we compute

the Gröbner basis explicitly. For N = 3, the ideal can be written as 〈g1, g2, g3〉 where the

elements of the Gröbner basis gi are given by

g1 = 192s31 + (192u2 − 208)s21 − (192u4 + 288u2 − 4)s1 − 192u6 + 48u4 + 60u2 + 9 ,

g2 = s2 ,

g3 = s0 . (5.2)

Here we have chosen the ordering

s0 ≺ s1 ≺ s2. (5.3)

We see from (5.2) that the leading terms are independent of u. This implies that the dimen-

sion of the quotient ring C[s0, s1, s2]/〈g1, g2, g3〉, or equivalently the number of solutions, is

independent of the value of u. Of course, the explicit solutions of the BAE will depend on

the value of u, but there will always be 3 solutions to the ZRC for N = 3 at any value of u.

Similarly, we can write down a slightly more non-trivial example for N = 4. The ideal

is given by 〈g1, · · · , g6〉 where the Gröbner basis elements gi are given by

g1 =11520s30 + (−864− 3840u2 − 13824u4)s20 + (3 + 48u2 + 288u4 + 768u6 + 768u8)s22

+ (−1296 + 1728u2 + 2304u4 − 3072u6)s0s2

+ (−4− 64u2 − 384u4 − 1024u6 − 1024u8)s2

+ (−251− 3632u2 − 1056u4 + 3328u6 − 6912u8)s0

+ (−2− 32u2 − 192u4 − 512u6 − 512u8),

g2 =2304s20s2 − 1536s0s2 + (768 + 3072u2)s20 + (−1− 16u2 − 96u4 − 256u6 − 256u8)s2

+ (−80− 2624u2 − 768u4 + 1024u6)s0 + (−2− 32u2 − 192u4 − 512u6 − 512u8),

g3 =768s0s
2
2 + (−2304 + 1024u2)s0s2 + 1280s20 + (−96− 3840u2 − 1536u4)s0

+ (−3− 48u2 − 288u4 − 768u6 − 768u8),

g4 =48s32 + (−48 + 64u2)s22 − 352s0s2 + (−6− 112u2 − 96u4)s2

+ (16− 576u2)s0 + (3 + 12u2 − 48u4 − 192u6)

g5 = s1

g6 = s3. (5.4)

The leading terms are in boldface letters. We see again these terms are independent of u.

For all the values of N which we compute, this is true. It would be nice to prove this for

general N .
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Therefore from the algebro-geometric computation, we conclude that for any value of

u, there exist solutions with definite parity (parity even/odd for even/odd N). For fixed

N , the number of solutions is the same for any value of u, which has been given in (4.56).

We end this section by the following comment. The conclusion that there always

exist solutions with definite parity for any u is far from obvious from the ZRC or original

BAE. It is also not easy to see this from numerical computations. On the contrary, it is

a straightforward observation from the algebro-geometric computation. This shows again

that algebro-geometric approach is a powerful tool to analyze the solution space of BAE.

6 Analytical results in closed form

In this section, we discuss the analytical results which can be written in closed forms for

arbitrary N and M in the open and closed channel respectively.

6.1 Open channel

We first discuss the open channel. The partition function takes the same form as the

torus case, which is written as the trace of the N -th power of the transfer matrix. If the

eigenvalues of the transfer matrix can be found analytically, we can write down the partition

function for any N . Here by analytical we mean more precisely expressible in terms of

radicals. In the algebro-geometric approach, we first compute the companion matrix of

the eigenvalue of the transfer matrix. The dimension of the companion matrix equals the

number of physical solutions of the open channel BAE/Q-system. The eigenvalues of the

companion matrix give the eigenvalues of the transfer matrices evaluated at each solution.

From Galois theory, if the dimension of the companion matrix is less than 5, the eigenvalues

can be expressed in terms of radicals. Therefore for the values of M where all the companion

matrices have dimension less than 5, we can obtain the analytical expression for any N .

This requirement is only met by M = 1. Already for M = 2, we need to consider the

sectors K = 0, 1, 2, and for K = 1 and 2 the dimensions of the companion matrices are

4 and 6 respectively. For larger M , the dimensions of the companion matrices are even

larger. We give the closed form expression for M = 1 and any N in what follows.

The M = 1 case. We need to consider K = 0, 1. For K = 0, the eigenvalue of the

transfer matrix is given by

ΛD,0(u) = (u+ i)2. (6.1)

For K = 1, the solution of BAE takes the form {u1,−u1}. The companion matrix is

2-dimensional. The two eigenvalues of the transfer matrix in this sector are given by

λ1(u) = − u2

2
− 1− iu

2

√
3u2 + 4 , (6.2)

λ2(u) = − u2

2
− 1 +

iu

2

√
3u2 + 4 .

The closed-form expression of the partition function, taking into account the su(2) multi-

plicities (3.12), is then

Z(u, 1, N) = 4(u+ i)2N + 2
(
λ1(u)N + λ2(u)N

)
. (6.3)
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Let us make one comment on the comparison with the torus case. The closed-form

results have been found up to5 M = 6 in the torus case [7]. There we also used the fact

that certain companion matrices can be further decomposed into smaller blocks, which

implies the existence of non-trivial primary decompositions over the field Q. Physically, this

primary decomposition is related to decomposing the solutions of BAE/Q-system according

to the total momentum. In the cylinder case, however, the total momentum is automatically

zero for all allowed solutions, due to the presence of the boundary. Therefore, further

decomposition according to the total momentum is not possible in the current case.

6.2 Closed channel

The situation is more interesting in the closed channel. The expression for the partition

function is qualitatively different from the torus case, since we have a new ingredient: the

non-trivial overlap between Bethe states and the boundary state. To find the analytical

expressions, we first compute the companion matrices, both for the transfer matrix and

the overlaps. For the values of N where the dimensions of the companion matrices are less

than 5, we can express the final result in terms of radicals for any M . This is satisfied by

N = 1, 2, 3. The dimensions of the companion matrices are 1, 2, 3 respectively. We present

the analytical results for these cases in what follows.

The N = 1 case. This case is somewhat trivial, but we give it here for completeness.

There is only one allowed solution to the BAE, which is {0}. The eigenvalue of the transfer

matrix is given by

Λc = −i(u+ 2i). (6.4)

The contribution from the overlaps only comes from detHjk which is given by

detHjk =
8

u(u+ 2i)
. (6.5)

The partition function is thus given by (4.47).

Z(u,M, 1) =
i(−1)M

4
u (−i(u+ 2i))2M+1 8

u(u+ 2i)
= 2(u+ 2i)2M . (6.6)

The N = 2 case. This is the simplest non-trivial case where N is even. The Bethe

roots take the form {u1,−u1}. There are two such solutions, which can be found straight-

forwardly by directly solving Bethe equations. Let us denote the companion matrices of

Λc
(
ũ
2 , {

ũ
2}
)

by T2(u) and companion matrix of the following factor

1

u1(u21 + 1
4)

detG+
jk

detG−jk
(6.7)

5Note that in the torus case, M denoted the length of the spin chain [7], while here, in the cylinder case,

the length of the spin chain is given by 2M + 1.
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by F2(u). The partition function is given by (4.39)

Z(u,M, 2) = − 1

16
u2 tr

[
T2M+1
2 (u) · F2(u)

]
. (6.8)

Let us denote the eigenvalues of T2(u) and F2(u) by λT,i(u) and λF,i, i = 1, 2 respectively.

They are given by

λT,1(u) = 1− iu−
√

1 + (u+ 2i)(u+ i)2u , (6.9)

λT,2(u) = 1− iu+
√

1 + (u+ 2i)(u+ i)2u

and

λF,1(u) =
32

u2(u+ 2i)2
+

16(u2 + 2iu− 2)
√

1 + (u+ 2i)(u+ i)2u

u2(u+ 2i)2(u4 + 4iu3 − 5u2 − 2iu+ 1)
, (6.10)

λF,2(u) =
32

u2(u+ 2i)2
−

16(u2 + 2iu− 2)
√

1 + (u+ 2i)(u+ i)2u

u2(u+ 2i)2(u4 + 4iu3 − 5u2 − 2iu+ 1)
.

Collecting all the results, the explicit closed-form expression for N = 2 and any M is

given by

Z(u,M, 2) = − 1

16
u2
(
[λT,1(u)]2M+1λF,1(u) + [λT,2(u)]2M+1λF,2(u)

)
. (6.11)

One may check that this agrees in particular with (2.6) for M = 2. We see here that

the eigenvalues take rather complicated forms in terms of radicals whose arguments are

polynomials of u. Nevertheless, the final result is a polynomial, as it should be.

The N = 3 case. This is the simplest non-trivial case where N is odd. The results are

bulky, therefore it is more convenient to write them in terms of smaller building blocks.

To this end, we recall the solution for cubic polynomial equations. Let us consider the

following generic cubic equation

ax3 + bx2 + cx+ d = 0 , (6.12)

where a 6= 0. We define

∆0 = b2 − 3ac, ∆1 = 2b3 − 9abc+ 27a2d (6.13)

and

C =

(
∆1 +

√
∆2

1 − 4∆3
0

2

)1/3

. (6.14)

Then the three solutions of the cubic equation (6.12) are given by

xk = − 1

3a

(
b+ ξk C +

∆0

ξkC

)
, k = 1, 2, 3 (6.15)

where ξ = (−1 + i
√

3)/2.
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For N = 3, the solutions of the Bethe equations take the form {u1,−u1, 0}. There are

three physical solutions. Let us denote the companion matrix of Λc

(
ũ
2 , {

ũ
2}
)

by T3(u) and

the companion matrix of the following factor

1

u1(u21 + 1
4)

detHjk

detG−jk
(6.16)

by F3(u). The partition function is given by

Z(u,M, 3) = − i(−1)3M

64
u3 tr

[
T2M+1
3 (u) · F3(u)

]
, (6.17)

where the trace is over the 3-dimensional quotient ring. One can check explicitly that

T3(u) and F3(u) commute with each other and can thus be diagonalized simultaneously.

Let us denote their eigenvalues by λT,i(u) and λF,i(u), with i = 1, 2, 3. The characteristic

equations of T3(u) and F3(u) take cubic forms

x3 + bTx
2 + cTx+ dT = 0 , x3 + bFx

2 + cFx+ dF = 0 , (6.18)

where the coefficients are rational functions of u. The characteristic equations can be solved

by radicals using (6.15). The relevant quantities are given as follows. For the eigenvalues

of T3(u), we have

aT = 1, bT = 2u2 + 3iu− 2 (6.19)

and

∆T
0 = − 6iu5 + 31u4 + 54iu3 − 41u2 − 12iu+ 4 , (6.20)

∆T
1 = 27iu9 − 216u8 − 684iu7 + 1096u6 + 1035iu5 − 840u4

− 666iu3 + 300u2 + 72iu− 16 .

The eigenvalues {λT,1, λT,2, λT,3} are given by

λT,i(u) = −1

3

(
bT + ξiCT +

∆T
0

ξiCT

)
, i = 1, 2, 3 (6.21)

where CT is defined as in (6.14). For the eigenvalues of F3, we have

aF = 1 , bF = − 512

u3(2i+ u)3
(6.22)

and

∆F
0 =

16384

u6(2i+ u)6
P0(u)

P (u)
, ∆F

1 = − 4194304

u9(2i+ u)9
P1(u)

P (u)
, (6.23)

where

P (u) = 27u10 + 270iu9 − 1125u8 − 2520iu7 + 3345u6 + 2934iu5

− 1875u4 − 420iu3 − 468u2 − 96iu+ 64 ,

P0(u) = 27u10 + 270iu9 − 1395u8 − 4680iu7 + 10680u6 + 16704iu5 (6.24)

− 16608u4 − 7872iu3 − 576u2 − 1536iu+ 1024 ,

P1(u) = 27u10 + 270iu9 − 1530u8 − 5760iu7 + 15360u6 + 29664iu5

− 39648u4 − 33792iu3 + 11520u2 − 6144iu+ 4096 .
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The eigenvalues are given by6

λF,i(u) = −1

3

(
bF + ξi−1CF +

∆F
0

ξi−1CF

)
, i = 1, 2, 3 (6.25)

Finally, combining all the results, the closed form expression is given by

Z(u,M, 3) = − i(−1)3M

64
u3

3∑
i=1

(λT,i)
2M+1λF,i(u) . (6.26)

7 Zeros of partition functions

The study of partition function zeros is a well-known tool to access the phase diagram of

models in statistical physics. The seminal works by Lee and Yang [34] and by Fisher [35]

studied the zeros of the Ising model partition function, respectively with a complex mag-

netic field (at the critical temperature) and at a complex temperature (in zero magnetic

field). But more generally, any statistical model depending on one (or more) parameters

can be studied in the complex plane of the corresponding variable(s). In particular, the

chromatic polynomial with Q ∈ C colors has been used as a test bed to develop a range of

numerical, analytical and algebraic tools for computing partition function zeros and ana-

lyzing their behavior as the (partial) thermodynamic limit is approached [36–42]. Further

information about the physical relevance of studying partition function zeros can be found

in [43] and the extensive list of references in [36].

In the case at hand, we are interested in zeros of the partition function Z(u,M,N) of

the six-vertex model, in the complex plane of the spectral parameter, u ∈ C. As explained

in section 2, the algebro-geometric approach permits us to efficiently compute Z(u,M,N)

close to the partial thermodynamic limits N � M (open channel) or M � N (closed

channel), and more precisely for aspect ratios ρ := N/M of the order ∼ 103 and ∼ 10−3,

respectively.

7.1 Condensation curves

An important result for analyzing these cases is the Beraha-Kahane-Weiss (BKW) theo-

rem [14]. When applied to partition functions of the form (3.13) for the open channel,

respectively (4.39) or (4.47) for the closed channel, it states that the partition function

zeros in the partial thermodynamic limits (ρ → ∞ or ρ → 0, respectively) will condense

on a set of curves in the complex u-plane that we shall refer to as condensation curves.

In particular, the condensation set cannot comprise isolated points, or areas. By standard

theorems of complex analysis, each closed region delimited by these curves constitutes a

thermodynamic phase (in the partial thermodynamic limit).

6Notice that the powers of ξ in (6.25) are slightly different from (6.21). The reason for this convention

is to make sure that λT
i and λF

i correspond to the same eigenvector. Working directly with characteristic

equations, it is not immediately clear which eigenvalues correspond to the same eigenvector. We establish

the correspondence by making numerical checks. We choose u to be some purely imaginary numbers such

that the arguments in the radicals are real and positive.
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To be more precise, let Λi(u) denote the eigenvalues of the relevant transfer matrix (for

the open or closed channel, respectively) that effectively contributes to Z(u,M,N). For a

given u, we order these eigenvalues by norm, so that |Λ1(u)| ≥ |Λ2(u)| ≥ · · · , and we say

that an eigenvalue Λi(u) is dominant at u if there does not exist any other eigenvalue having

a strictly greater norm. Under a mild non-degeneracy assumption (which is satisfied for the

expressions of interest here), the BKW theorem [14] states that the condensation curves

are given by the loci where there are (at least) two dominant eigenvalues, |Λ1(u)| = |Λ2(u)|.
It is intuitively clear that this defines curves, since the relative phase φ(u) ∈ R defined by

Λ2(u) = eiφ(u)Λ1(u) is allowed to vary along the curve. Moreover, a closer analysis [36]

shows that the condensation curves may have bifurcation points (usually called T-points)

or higher-order crossings when more than two eigenvalues are dominant. They may also

have end-points under certain conditions; see [36] for more details.

A numerical technique for tracing out the condensation curves has been outlined in

our previous paper on the toroidal geometry [7]. It builds on an efficient method for the

numerically exact diagonalization of the relevant transfer matrix, and on a direct-search

method that allows us to trace out the condensation curves. We refer the reader to [7]

for more details, and focus instead on a technical point that is important (especially in

the closed channel) for correctly computing the condensation curves for the cylindrical

boundary conditions studied in this paper.

One might of course choose to obtain the eigenvalues by solving the BAE, either

analytically or numerically. However, the Bethe ansatz does not provide a general principle

to order the eigenvalues by norm. It is of course well known that in many, if not most, Bethe-

ansatz solvable models, for “physical” values of the parameters the dominant eigenvalue and

its low-lying excitations are characterized by particularly nice and symmetric arrangements

of the Bethe roots, and hence one can easily single out those eigenvalues. However, we here

wish to examine our model for all complex values of the parameter u, and it is quite

possible — and in fact true, as we shall see — that there will be a complicated pattern

of crossings (in norm) of eigenvalues throughout the complex u-plain. To apply the BAE

one would therefore have to make sure to obtain all the physical eigenvalues and compare

their norm for each value of u. By contrast, the numerical scheme (Arnoldi’s method)

that we use for the direct numerical diagonalization of the transfer matrix is particularly

well suited for computing only the first few eigenvalues (in norm), so we shall rely on it

here. We shall later compare the computed condensation curves with the zeros of partition

functions obtained using Bethe ansatz and algebraic geometry.

The reader will have noticed that above we have twice referred to the diagonalization

of a “relevant” transfer matrix. By this we mean a transfer matrix whose spectrum con-

tains only the eigenvalues that provide non-zero contributions to Z(u,M,N), after taking

account of the boundary conditions via the trace (2.5) in the open channel, or the sandwich

between boundary states (2.8) in the closed channel. These contributing eigenvalues cor-

respond to the physical solutions in (3.13) for the open channel, or in (4.39) and (4.47) for

the closed channel. A “relevant” transfer matrix is thus not only a linear operator that can

build up the partition function Z(u,M,N), but it must also have the correct dimension,

namely
∑

K N (M,K) given by (3.14) in the open channel, or N (N) given by (4.56) in the
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closed channel. Ensuring this is an issue of representation theory. We begin by discussing

it in the open channel, which is easier.

7.2 Open channel

The defining ingredient of the transfer matrix is the Ř-matrix. Using (2.2)–(2.3), it reads

Ř(u) =


a(u) 0 0 0

0 c(u) b(u) 0

0 b(u) c(u) 0

0 0 0 a(u)

 , (7.1)

with a(u) = u + i, b(u) = u and c(u) = i. The most immediate transfer matrix approach

is to let the diagonal-to-diagonal transfer matrix tD(u) given by (2.1) act in the 6-vertex

model representation, that is, on the space {| ↑〉, | ↓〉}⊗2M+1 of dimension 22M+1.

If we constrain to a fixed magnon number K, the dimension reduces to
(
2M+1
K

)
. This

is larger than N (M,K) given by (3.14), because we have not restricted to su(2) highest-

weight states. Therefore, each eigenvalue would appear with a multiplicity given by (3.12).

Since each eigenvalue actually does contribute to Z(u,M,N), dealing with this naive rep-

resentation provides a feasible route to computing the condensation curves (and this was

actually the approach used in [7]). However, the appearance of multiplicities is cumbersome

and impedes the efficiency of the computations.

7.2.1 Temperley-Lieb algebra

To overcome this problem, notice that in the more general XXZ model with quantum-group

deformation parameter q, the integrable Ř-matrix may be taken as

Ři,i+1(u) = αI + βEi , (7.2)

for certain coefficients α, β depending on u and q. Here I denotes the identity operator

and Ei is a generator of the Temperley-Lieb (TL) algebra. The defining relations of this

algebra, acting on L = 2M + 1 sites, are

EiEi = δEi ,

EiEi±1Ei = Ei , (7.3)

EiEj = EjEi for |i− j| > 1 ,

where i, j = 1, 2, . . . , L−1 and the parameter δ := q+ q−1. A representation of Ei, written

in the same 6-vertex model representation as (7.1), reads

Ei =


0 0 0 0

0 q−1 1 0

0 1 q 0

0 0 0 0

 . (7.4)
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By taking tensor products, one may check that this satisfies the relations (7.3). We can

match with (7.2) by taking

α = u+ i , β = u , q = −1 , δ = −2 . (7.5)

The trick is now that there exists another representation of the TL algebra having

exactly the required dimension N (M,K). The basis states of this representation are link

patterns on L sites with d := L − 2K defects. A link pattern consists of a pairwise

matching of L − d = 2K points (usually depicted as K arcs) and d defect points, subject

to the constraint of planarity: two arcs cannot cross, and an arc is not allowed to straddle

a defect point. We show here two possible link patterns for L = 5 and d = 1 (hence M = 2

and K = 2):

and

(7.6)

The TL generator Ei acts on sites i and i+ 1 by first contracting them, then adding a

new arc between i and i+1. This can be visualized by placing the graphical representation

Ei = on top of the link pattern. If a loop is formed in the contraction, it is removed and

replaced by the weight δ. If a contraction involves an arc and a defect point, the defect

point moves to the other extremity of the arc. If a contraction involves two distinct arcs,

the opposite ends of those arcs become paired by an arc. For instance, the action of E1 on

the two link patterns in (7.6) produces

and δ×
(7.7)

Recall from (3.11) that the spin s associated with the K-magnon sector in the chain of

L = 2M + 1 sites reads s = L
2 −K. The generators Ei can decrease s by contracting a pair

of defects and replacing them by an arc. It is however possible to define a representation

of the TL algebra in which s is fixed, by defining the action of Ei to be zero whenever

there is a pair of defects at sites i and i + 1. In the literature on the TL algebra, these

representations in terms of link patterns with a conserved number of defects are known as

standard modules and denoted Ws. Meanwhile, in TL representation theory, the partition

function in the open channel is no longer written in terms of a trace as in (2.5). Instead it

is written as a so-called Markov trace

Z(u,M,N) = Mtr
[
tD(u)N

]
, (7.8)

which can be interpreted diagramatically as the stacking of N rows of diagrams, followed

by a gluing operation in which the top and the bottom of the system are identified and

each resulting loop replaced by the corresponding weight δ. It is a remarkable fact that

this Markov trace can be computed as a linear combination of ordinary matrix traces over

the standard modules, as follows:

Z(u,M,N) =

M+1/2∑
s=1/2,3/2,...

(1 + 2s)qtrWs

[
tD(u)N

]
. (7.9)
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We have here defined the q-deformed numbers

(n)q =
qn − q−n

q − q−1
= Un−1

(
δ

2

)
, (7.10)

where Up(x) denotes the p-th order Chebyshev polynomial of the second kind. This re-

sult (7.9) can be proved by using the quantum group symmetry Uq(su(2)) enjoyed by the

spin chain in the open channel [44], or alternatively by purely combinatorial means [45].

The factors (1 + 2s)q appearing in (7.9) account for the multiplicities in the problem.

In the limit q → −1 corresponding to the XXX case of interest, the q-deformed numbers

become (n)q = n for n odd, and (n)q = −n for n even. The latter minus sign can be

eliminated at the price of an overall sign change of the partition function (7.9), since only

even n = 1 + 2s occur in the problem. This corresponds to q 7→ −q, so that the quantum

group symmetry Uq(su(2)) becomes just ordinary su(2) in the limit. The multiplicities

then become (1 + 2s)q = 1 + 2s = 2M + 2− 2K, in agreement with (3.11).

In conclusion, we see that not only do the link pattern representations of the TL

algebra lead to the correct dimensions N (M,K), but they also account for the correct

su(2) multiplicities 2M + 2− 2K of eigenvalues in the XXX spin chain.

7.2.2 Results

We have computed the condensation curves by applying the numerical methods of [7] to

the transfer matrix tD(u) given by (2.1). The latter is taken to act on the representation

given by the union of link patterns on L = 2M + 1 sites with K ∈ {0, 1, . . . ,M} arcs and

d = L− 2K defects.

The results for the condensation curves with M = 2, 3, 4, 5 are shown in figure 6. The

curves are confined to the half-space Im u ≤ 0, and they are invariant under changing the

sign of Reu. Therefore it is enough to consider them in the fourth quadrant: Re u ≥ 0,

Imu ≤ 0. The condensation curves display several noteworthy features:

1. Outside the curves and in the enclosed regions delimited by blue curves, the dominant

eigenvalue belongs to the K = M magnon sector (i.e., d = 1 defect in the TL

representation). For the largest size M = 5 there are also enclosed regions delimited

by green curves: in this case the dominant eigenvalue belongs to the K = M − 1

sector (d = 3).

2. The whole real axis forms part of the curve. In fact, when u ∈ R, all the eigenvalues

are equimodular and have norm (u2 + 1)M . Above the real axis (Im u > 0) the

dominant eigenvalue is the unique eigenvalue in the K = 0 sector.

3. There is a segment of the imaginary axis, Re u = 0 and Imu ≤ uc(M) which also

belongs to the condensation curve. Along this segment, the two dominant eigenvalues

come from the K = M sector. For the end-point uc(M) we find the following results:

M 2 3 4 5 6 7

uc(M) −1.091487 −1.065097 −1.050552 −1.041328 −1.034954 −1.030285

4. It seems compelling from these data that

uc(M)→ −1 as M →∞ , (7.11)
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Figure 6. Condensation curves for partition function zeros on a (2M + 1) × 2N cylinder, in the

limit N →∞ (aspect ratio ρ→∞, open channel). The panels show, in reading direction, the cases

M = 2, 3, 4, 5.

with a finite-size correction proportional to 1/M . We also note that at this asymptotic

end-point, u = −i, for all finite M there is a unique dominant eigenvalue which

belongs to the K = M sector and has norm 1, while all other eigenvalues have

norm 0.

5. The remainder of the condensation curve forms a single connected component with

no end-points. It however has a number of T-points that grows fast with M . Notice

that we have taken great care to determine all of these T-points, some of which are

very close and thus hard to distinguish in the figures. To help the reader identifying

them, they have been marked by small crosses.

6. For the leftmost point u? of this connected component (i.e., the point with the small-

est imaginary part) we find the following results:

M 2 3 4 5 6 7

Reu?(M) 0.496489 0.338134 0.258384 0.209593 0.176490 0.152498

Imu?(M) −1.307913 −1.196739 −1.146652 −1.117510 −1.098264 −1.084539

7. It seems compelling from these data that

Reu?(M) → 0 as M →∞ ,

Imu?(M) → −1 as M →∞ , (7.12)
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Figure 7. Comparison between the partition function zeros on a (2M + 1) × 2N cylinder, with

N = 1024, and the corresponding condensation curves in the N → ∞ limit (open channel). The

panels show, in reading direction, the cases M = 2, 3, 4, 5.

both with finite-size corrections proportional to 1/M . We conclude that the leftmost

point of the connected component converges to the same value as the end-point,

namely u = −i. This kind of “pinching” is characteristic of a phase transition [34, 35];

note however that the limit u→ −i of the XXX model is singular and does not present

a critical point in the usual sense.

We now compare the condensation curves with the partition function zeros. The

partition functions Z(u,M,N) were first computed from the algebro-geometric approach,

for M = 2, 3, 4, 5 and N = 1024, which corresponds to a very large aspect ratio ρ ∼ 103.

The zeros of Z(u,M,N) were then computed by the program MPSolve [46][47], which is a

multiprecision implementation of the Ehrlich-Aberth method [48, 49], an iterative approach

to finding all zeros of a polynomial simultaneously.

The resulting zeros are shown in figure 7, as red points superposed on the condensation

curves of figure 6. The agreement is in general very good, although some portions of the

condensation curves are very sparsely populated with zeros; in those cases the zeros are

still at a discernible distance from the curves, in spite of the large aspect ratio. We have

verified that the agreement improves upon increasing ρ.7

7One may notice that some of the roots (in particular for M = 5, in the region 0 < Reu < 1) stray off

the curves in a seemingly erratic fashion. We believe that this is an artifact of MPSolve when applied to

polynomials of very high degree.
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7.3 Closed channel

In the closed channel the Ř-matrix can be inferred from (2.7) and (2.2). It reads

Řc(u) =


b(u) 0 0 0

0 c(u) a(u) 0

0 a(u) c(u) 0

0 0 0 b(u)

 , (7.13)

still with a(u) = u + i, b(u) = u and c(u) = i. However, as we shall soon see, it is

convenient to apply a diagonal gauge transformation D = diag(1,−1) in the left in-space

and the right out-space of Řc; that is, Řc
12 7→ D1 Ř

c
12D1. This has the effect of changing

the sign of c(u) while leaving the partition function unchanged: the gauge matrices square

to the identity at the intersections between Ř-matrices when taking powers of the transfer

matrix t̃D(u) given by (2.10). To complete the transformation, the first and last row of

gauge transformations have to be absorbed into a redefinition of the boundary states 〈Ψ0|
and |Ψ0〉 appearing in (2.8).

7.3.1 Temperley-Lieb algebra

As in the open channel, we can rewrite the Ř-matrix in terms of TL generators (7.4):

Řc
i,i+1(u) = αI + βEi . (7.14)

To match (7.13), with c(u) = −i after the gauge transformation, we must now set

α = u , β = u+ i , q = −1 , δ = −2 . (7.15)

In the closed channel, the TL algebra is defined on L = 2N sites. The goal is now to

find a representation having the same dimension N (N), see (4.56), as the number of phys-

ical solutions appearing in the closed-channel expressions of the partition function, (4.39)

and (4.47). This issue is more complicated than in the open channel.

As a first step, we let the TL generators act on the basis of link patterns, as before.

Since the boundary states restrict to zero total spin, the only allowed number of Bethe

roots is K = N (see section 4). This implies that the link patterns are free of defects

(d = 0). The transfer matrix t̃D(u) is then given by (2.10) with (7.14), where the TL

generators Ei act on the link patterns as described in section 7.2.1. To reproduce the

partition function (2.8) we also need to interpret the boundary state (2.11) within the TL

representation. The natural object is the quantum-group singlet of two neighboring sites

|ψ0〉TL = q1/2| ↑〉 ⊗ | ↓〉+ q−1/2| ↓〉 ⊗ | ↑〉 , (7.16)

which is represented in terms of link patterns as a short arc joining the neighboring sites.

We should however remember at this stage the gauge transformation that allowed us to

switch the sign of c(u). To compensate this, we need to insert a minus sign for a down-spin

in the second tensorand, to obtain

|ψ̃0〉TL = −q1/2| ↑〉 ⊗ | ↓〉+ q−1/2| ↓〉 ⊗ | ↑〉 , (7.17)

With q = −1, this is proportional to |ψ0〉 of (2.11).
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On the other hand it is easy to check from (7.4) that the TL generator Ei is nothing but

the (unnormalized) projector onto the quantum-group singlet. Therefore, just as Ei = ,

the initial boundary state |Ψ0〉 can be represented graphically by the defect-free link pattern

in which sites 2j−1 and 2j are connected by an arc, for each j = 1, 2, . . . , N . Similarly, the

final boundary state 〈Ψ0| is interpreted as the TL contraction of the corresponding pairs

of sites. With these identifications, we have explicitly verified for small N and M that the

TL formalism produces the correct partition functions, such as (2.6).

With the spin-zero constraint imposed, the TL dimension is thus equal to the number

of defect-free link patterns on L = 2N sites. This is easily shown to be given by the

Catalan numbers

Cat(N) =
1

N + 1

(
2N

N

)
, (7.18)

for which the first 10 values are given by

{1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796} . (7.19)

Although this is smaller than the dimension of the 6-vertex-model representation con-

strained to the Sz = 0 sector, viz.
(
2N
N

)
, it is not as small as (4.56), so further work

is needed.

The transfer matrix and the boundary states are also symmetric under cyclic shifts (in

units of two lattice spacings) of the L = 2N sites. This symmetry can be used to further

reduce the dimension of the transfer matrix. Indeed, after acting with t̃D(u) we project

each link pattern obtained onto a suitably chosen image under the cyclic group ZN . In

this way each orbit under ZN is mapped onto a unique representative link pattern. The

dimension of the corresponding rotation invariant transfer matrix then reduces to [50]

dimZN
(N) =

1

N

∑
m|N

ϕ(N/m)

(
2m

m

)
− Cat(N) , (7.20)

where the sum is over the divisors of N , and ϕ(x) denotes the Euler totient function. The

first 10 values are given by

{1, 2, 3, 6, 10, 28, 63, 190, 546, 1708} . (7.21)

But one can go a bit further, since the transfer matrix and boundary states are also

invariant under reflections. This gives rise to a symmetry under the dihedral group DN .

The dimension of the rotation-and-reflection invariant transfer matrix then becomes [50]

dimDN
(N) =

1

2

(
1

N

∑
m|N

ϕ(N/m)

(
2m

m

)
− Cat(N) +

(
N

bN/2c

))
, (7.22)

of which the first 10 values are

{1, 2, 3, 6, 10, 24, 49, 130, 336, 980} . (7.23)

The process of imposing more and more symmetries and reducing the dimension of

the relevant transfer matrices might be realized at the ZRC level by imposing more and
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more constraints on the Q-functions. Consider the ZRC of a closed spin chain with length

L = 2N and N magnons. The corresponding Bethe states are in the Sz = 0 sector.

In order to restrict to the parity symmetric solutions, we need to impose the condition

Q(u) = Q(−u) for any u. This leads to further constraints to the ZRC and reduces the

number of allowed solutions down to N (N). Since Q(u) is a polynomial of order N , the

constraint Q(u) = Q(−u) can also be imposed by Q(xk) = Q(−xk) at N different values.

Now the main observation is that at certain values of xk, the constraints have a clear

physical meaning. For example, taking x1 = i/2, the constraint Q(i/2) = Q(−i/2) is

equivalent to

Q(−i/2)

Q(+i/2)
=

N∏
k=1

uk + i
2

uk − i
2

= 1, (7.24)

which restricts to the solutions with zero total momentum. It is therefore an interesting

question to see whether the dihedral symmetry can be realized in this way. If so, at which

further value(s) of xk would we need to impose Q(xk) = Q(−xk) ?

We do not presently know if and how one can identify a TL representation whose

dimension equals N (N) =
(

N
bN/2c

)
given by (4.56). It certainly appears remarkable at this

stage that

2 dimDN
(N)− dimZN

(N) = N (N) , (7.25)

as already noticed in [50]. It is also worth pointing out that N (N) can be interpreted

as the number of defect-free link patterns on 2N sites which are symmetric around the

mid-point. We leave the further investigation of this question for future work.

7.3.2 Results

We have computed the condensation curves in the closed channel, using the TL link-pattern

representations identified above, namely using: 1) spin-zero (i.e., defect free) link patterns,

2) spin-zero link patterns with cyclic symmetry ZN , and 3) spin-zero link patterns with

dihedral symmetry.

Figure 8 shows the results using only the spin-zero constraint. In the regions enclosed

by curves of blue color there is a unique dominant eigenvalue, whereas in the regions

enclosed by green (resp. yellow) color the dominant eigenvalue has multiplicity two (resp.

three). Obviously the sought-after representation of dimension N (N) is expected to be

multiplicity-free, so the corresponding condensation curve should be free of green and

yellow branches. Nevertheless, the curves in figure 8 are expected to correctly produce the

condensation curves of partition function zeros for any system described by the transfer

matrix t̃D(u) and with boundary states that impose only the spin-zero symmetry, while

breaking any other symmetry (e.g., by imposing spatially inhomogeneous weights).

Next we show in figure 9 the results using both the spin-zero and the cyclic symmetry

ZN . When compared to figure 8 it can be seen that many branches of the curves are

unchanged. However all of the yellow and some of the green curves have now disappeared,

reflecting the fact that the eigenvalues which were formerly dominant inside the regions

enclosed by green and yellow colors have now been eliminated from the spectrum, since

they do not correspond to ZN symmetric eigenstates. The curves in figure 9 should give

the correct condensation curves for systems having the spin-zero and cyclic symmetries.
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Figure 8. Condensation curves for partition function zeros on a (2M + 1) × 2N cylinder, in the

limit M →∞ (closed channel), for a system exhibiting only spin-zero symmetry. The panels show,

in reading direction, the cases N = 3, 4, 5, 6.

But those with N = 4, 5 should even provide the correct results for the full “Cooper-pair”

symmetry (4.33), since the TL dimension is then equal to the number of physical solutions.

Finally we depict in figure 10 results using the spin-zero and dihedral symmetry DN .

For N = 6 the condensation curve is identical to the one found with cyclic symmetry,

meaning that none of the four eliminated eigenvalues (when going from dimZN
(6) = 28

to dimDN
(6) = 24) was dominant anywhere in the complex u-plane. It should provide

the correct result for the full “Cooper-pair” symmetry (4.33) if the elimination of four

more eigenvalues (going from dimDN
(6) = 24 to N (6) = 20) turned out to be equally

innocuous. The N = 7 curve with dihedral symmetry has only branches corresponding to

multiplicity-free eigenvalues, so it may also apply to the full paired symmetry, although a

greater amount of eigenvalues are redundant in this case.

All the curves contain an end-point ue close to the origin for which we have found the

following results:

N 4 5 6 7 8 9

Reue(N) 0.234690 0.186435 0.154775 0.132364 0.115649 0.102696

Imue(N) −0.057271 −0.045012 −0.037154 −0.031665 −0.027604 -0.024475

It seems compelling from these data that

ue(N)→ 0 as N →∞ , (7.26)

with finite-size correction in both the real and imaginary parts proportional to 1/N .
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Figure 9. Condensation curves for partition function zeros on a (2M + 1) × 2N cylinder, in the

limit M → ∞ (closed channel), for a system exhibiting spin-zero and cyclic symmetry ZN . The

panels show, in reading direction, the cases N = 4, 5, 6, 7.
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Figure 10. Condensation curves for partition function zeros on a (2M + 1)× 2N cylinder, in the

limit M →∞ (closed channel), for a system exhibiting spin-zero and dihedral symmetry DN . The

panels show the cases N = 6, 7.

To finish this section, we now compare the condensation curves with the actual parti-

tion function zeros. This is done for N = 4, 5, 6, 7 in figure 11. For the partition function

zeros, we have M = 2048, except for N = 7 where we have only M = 1024; this ensures an

aspect ratio ρ < 10−2 in all cases. The agreement with the condensation curves appears

excellent, with the possible exception of the bubble-shaped region with −5 < Imu < −2

in the N = 7 case.
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Figure 11. Comparison between the partition function zeros on a (2M + 1) × 2N cylinder, with

M = 2048, and the corresponding condensation curves in the M →∞ limit (closed channel). The

panels show, in reading direction, the cases N = 4, 5, 6, 7.

8 Conclusions and discussions

We have computed the exact partition functions for the 6-vertex model on intermediate

size lattices with periodic boundary condition in one direction and free open boundary

conditions in the other. This work is a natural continuation of a previous work [7] by three

of the authors on the partition function of the 6-vertex model where periodic boundary

conditions were imposed in both directions. The presence of free open boundary conditions

brings new features and challenges. To overcome these challenges, we have further devel-

oped the application of algebro-geometric methods to the Bethe ansatz equations in various

directions. We have incorporated recent developments in integrability such as rational Q-

systems for open spin chains [18] and the exact formulae for overlaps between integrable

boundary states and Bethe states [23–27]. We have also developed powerful algorithms to

perform the algebraic geometry computations, such as the construction of Gröbner bases

and companion matrices, in the presence of a free parameter.

Equipped with these new developments, we obtained the following exact results for

the cylinder partition function Z(u,M,N).

• Open channel. In the open channel, for M = 1, we obtained a closed-form expres-

sion (6.3) valid for any N . For M = 2, 3, 4, 5, 6, we have computed the partition

function for fixed N , both for small values and large values. For small values, we

computed N = 2, 3, 4, 5, 6. These results are given in appendix F. For large values,
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we computed N = 128, 256, 512, 1024, 2048. These results were used to generate the

zeros of partition functions in the partial thermodynamic limit. The exact results

for large N are not suitable to be put in the paper, so we have uploaded them as

supplementary material.8

• Closed channel. In the closed channel, for N = 1, 2, 3, we obtained closed-form

expressions valid for any M . The results are given in (6.6), (6.8) and (6.26), respec-

tively. For N = 4, 5, 6, 7 we have computed partition functions for fixed M , both

for small and large values. For small values of M , we computed M = 2, 3, 4, 5, 6

for N = 4, 5, 6 because for these values we can compare the results in both chan-

nels and make non-trivial consistency checks. For large values of M , we computed

M = 128, 256, 512, 1024, 2048 for M = 4, 5, 6 and M = 128, 256, 512, 1024 for M = 7.

The results for large values of M have been used to obtain the zeros of the partition

function in the closed channel and are uploaded as supplementary material.8

We studied the partial thermodynamic limit of the partition function in both channels

using the exact results. In particular, we computed the zeros of the partition functions in

these limits and found that they condense on certain curves. The condensation curves in

the partial thermodynamic limit can be found by a numerical approach based on the BKW

theorem. This numerical approach has been applied in the torus case and was further

developed in the current context by taking into account the new features, especially in the

closed channel. Comparing the distribution of the zeros obtained from the exact partition

function and the condensation curve obtained from the numerical approach, we found nice

agreement and were able to shed light on several interesting features. The condensation

curves in both the open and closed channels were found to involve very intricate features

with multiple bifurcation points and enclosed regions. We believe that the further study

of these curves might be of independent interest.

There are many other questions which deserve further investigation.

One of the most interesting directions is to compute the partition function for the

q-deformed case. For generic values of q (namely, when q is not a root of unity), Q-systems

for both closed and open chains have been formulated in a recent work [18]. This should

provide a good starting point for developing an algebro-geometric approach, since QQ-

relations are more efficient than Bethe equations and give only physical solutions. It would

presumably be easier to first study the torus case where the relevant Bethe equations are

those of the periodic XXZ spin chain. After that, one could move to the more complicated

cylinder case.

We have focused here on the cylinder geometry with free boundary conditions. The

case of fixed boundary conditions (with two arbitrary boundary parameters) may now also

be in reach, using the new Q-system [51].

From the perspective of algebro-geometric computations, it will be desirable to sharpen

the computational power of our method. For instance, we will try to apply the modern

implements of Faugère’s F4 algorithm [53], which is in general more efficient than Buch-

berger’s algorithm.

8http://staff.ustc.edu.cn/~yzhphy/integrability.html
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A Basic notions of computational algebraic geometry

In this appendix, we give a brief introduction to some basic notions of computational

algebraic geometry which are used in the main text.

A.1 Polynomial ring and ideal

Polynomial ring. Let us start with the notion of polynomial ring which is denoted by

AK [z1, . . . , zn] or AK for short. It is the set of all polynomials in n variables z1, z2, . . . , zn
whose coefficients are in the field K. In our case, the field is often taken to be the set of

complex numbers C or rational numbers Q.

Ideal. An ideal I of AK is a subset of AK such that

1. f1 + f2 ∈ I, if f1 ∈ I and f2 ∈ I,

2. gf ∈ I, for f ∈ I and g ∈ AK .

Importantly, any ideal I of the polynomial ring AK is finitely generated. This means, for

any ideal I, there exists a finite number of polynomials fi ∈ I such that any polynomial

F ∈ I can be written as

F =

k∑
i=1

figi, gi ∈ AK . (A.1)

We can write I = 〈f1, f2, . . . , fk〉. Here the polynomials {fk} are called a basis of the ideal.

A.2 Gröbner basis

As mentioned before, an ideal is generated by a set of basis {f1, . . . , fk}. The choice of the

basis is not unique. Namely, the same ideal can be generated by several different choices

of bases

I = 〈f1, . . . , fk〉 = . . . = 〈g1, . . . , gs〉. (A.2)

Notice that in general k does not have to be the same as s. For many cases, a convenient

basis is needed. For solving polynomial equations and the polynomial reduction problem,

it is most convenient to work with a Gröbner basis.
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We can introduce the Gröbner basis by considering polynomial reduction. A polynomial

reduction of a given polynomial F over a set of polynomials {f1, . . . , fk} is given by

F =
∑

gifi + r, gi ∈ AK (A.3)

where r is a polynomial that cannot be reduced further by any of the fi. The polynomial

r is called the remainder of the polynomial reduction. One important fact is that the

polynomial reduction is not unique for a generic basis {f1, . . . , fk}. As a simple example,

let us take f1 = y2 − 1 and f2 = xy − 1, and consider F (x, y) = x2y + xy2 + y2. The

polynomial reduction of F (x, y) over f1 and f2 can be performed in two different ways

F (x, y) = (x+ 1) f1 + x f2 + (2x+ 1), (A.4)

F (x, y) = f1 + (x+ y)f2 + (x+ y + 1).

As we can see, the remainders are r1 = 2x+ 1 and r2 = x+ y + 1 respectively. Therefore

for a generic basis, the remainder of the polynomial is not well-defined. A basis of an ideal

{g1, . . . , gs} is said to be a Gröbner basis if the polynomial reduction is well-defined in the

sense that the remainder is unique. Now we move to the more formal definition of the

Gröbner basis.

Monomial ordering. To define a Gröbner basis, we first need to define monomial orders

in the polynomial ring. A monomial order ≺ is specified by the following two rules

• If u ≺ v then for any monomial w, we have uw ≺ vw.

• If u is non-constant monomial, then 1 ≺ u.

Some commonly used orders are lex (Lexicographic), deglex (DegreeLexicographic) and

degrevlex (DegreeReversedLexicographic).

Leading term. Once a monomial order ≺ is specified, for any polynomial f , we can

define the leading term uniquely. The leading term, which is denoted by LT(f), is defined

as the highest monomial of f with respect to the monomial order ≺.

Gröbner basis. A Gröbner basis G(I) of an ideal I with respect to the monomial order

≺ is a basis of the ideal {g1, . . . , gs} such that for any f ∈ I, there exists a gi ∈ G(I) such

that LT(f) is divisible by LT(gi). A Gröbner basis for a given ideal with a monomial order

can by computed by standard algorithms such as Buchberger algorithm [52] or the F4/F5

algorithms [53]. For an ideal I, given a monomial order ≺, the so-called minimal reduced

Gröbner basis is unique.

A.3 Quotient ring and companion matrix

Quotient ring. Given an ideal I, we can define the quotient ring AK/I by the equivalence

relation: f ∼ g if and only if f − g ∈ I.

Polynomial reduction and Gröbner basis provide a canonical representation of the

elements in the quotient ring AK/I. Two polynomials F1 and F2 belong to the same element
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in the quotient ring AK/I if and only if their remainders of the polynomial reduction are

the same. In particular, f ∈ I if and only if its remainder of the polynomial reduction

is zero. This gives a very efficient method to determine whether a polynomial f is in the

ideal I or not.

Dimension of quotient ring. To our purpose, the dimension of the quotient ring is

important. Consider a system of polynomial equations of n variables

f1(z1, . . . , zn) = · · · = fk(z1, . . . , zn) = 0, (A.5)

we can define the ideal and the quotient ring as

I = 〈f1, . . . , fk〉, QI = C[z1, . . . , zn]/〈f1, . . . , fk〉. (A.6)

One crucial result is that the linear dimension of the quotient ring dimKQI equals the

number of the solutions of the system (A.5). Therefore, if the number of solutions of the

polynomial equations (A.5) is finite, QI is a finite dimensional linear space. Let G(I) be

the Gröbner basis of the ideal I. The linear space is spanned by monomials which are not

divisible by any elements in LT[G(I)].

Companion matrix. Another important notion for our applications is the companion

matrix. The main idea is that we can represent any polynomial f ∈ AK as a matrix in the

quotient ring which is a finite dimensional linear space. More precisely, let (m1, . . . ,mN )

be the monomial basis of AK/I, which can be constructed by the Gröbner basis G(I).

Given any polynomial, we can define an N ×N matrix as follows

1. Multiply f with one of the basis monomials mi, perform the polynomial reduction

with respect to the Gröbner basis G(I) and find the remainder ri. It is clear that ri
sits in the quotient ring AK/I.

2. Since ri is in the quotient ring, we can expand it in terms of the basis (m1, . . . ,mN ),

namely ri = cijmj . In terms of formulas, we can write

[f ×mi]G(I) =
∑
j

cijmj (A.7)

where [F ]G(I) means the remainder of the polynomial reduction of F with respect to

the Gröbner basis G(I).

3. The companion matrix of f is defined by

(Mf )ij = cij . (A.8)

Properties of companion matrix. Let us denote the companion matrix of the poly-

nomials f and g by Mf and Mg. It is clear that Mf = Mg if and only if [f ] = [g] in AK/I.

Furthermore, we have the following properties

Mf+g = Mf +Mg, Mfg = MfMg = MgMf . (A.9)
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If Mg is an invertible matrix, we can actually define the companion matrix of the rational

function f/g by

Mf/g = MfM
−1
g . (A.10)

The companion matrix is a powerful tool for computing the sum over solutions of the

polynomial system (A.5). As we mentioned before, the dimension of QI equals the number

of solutions of (A.5). Let us denote the N solutions to be (~ξ1, . . . , ~ξN ). Then we have the

following important result

N∑
i=1

f(~ξi) = TrMf . (A.11)

B More details on AG computation

In this section, we summarize the algorithm of our algebra-geometry based partition func-

tion computation for this paper.

• We first compute the Gröbner basis and quotient ring linear basis of the TQ rela-

tion equations (3.23) and QQ relation equations (4.51). Note that the TQ and QQ

relations contain the free parameter u. It is possible to compute the corresponding

Gröbner basis analytically in u via sophisticated computational algebraic-geometry

algorithms, like “slimgb” in the software Singular [54].

However, we find that it is more efficient to set u to some integral value, and compute

the Groebner basis. The computation is done with the standard Gröbner basis com-

mand “std” in Singular. In this approach, we maximize the power of parallelization

since the Groebner basis running time for different values of u is quite uniform.

• Then we compute the power of companion matrices (TM,K)N . Although from the

Gröbner basis it is straightforward to evaluate (TM,K)N , TM,K is usually a dense

matrix and the matrix product is a heavy computation. Instead, we postpone the

matrix computations to the end, and evaluate the polynomial power FN first. Here

F is the corresponding polynomial of TM,K . After each polynomial multiplication

step, we divide the polynomial by the ideal’s Gröbner basis to save RAM usage by

trimming high-degree terms. To speed up the computation, we apply the binary

strategy, i.e., FN = FN/2FN/2. After FN is calculated, a standard polynomial divi-

sion computation provides the companion matrix power (TM,K)N . So the partition

function for a particular u value is obtained.

• In previous steps, u is set as an integral number. To get the analytic partition

function in u, we have to repeat the computation, and then interpolate in u. We

know that for both the closed and open channel partition functions, the maximum

degree in u is 2MN . Hence, we compute the partition function with 2MN+1 integer

values. These results are then interpolated to the analytic partition function in u.

The interpolation is carried out with the Newton polynomial method.
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The whole computation is powered by our codes in Singular. The parallelization is

implemented in the Gröbner basis and companion matrix power steps, for different integer

values of u’s. The interpolation step is not parallelized, although it is also straightforward

to do so in the future.

We remark that through the computations, the coefficient field is chosen to be the

rational number field Q. We observe that the resulting analytic partition function contains

large-integer coefficients, so finite-field techniques may not speed up the computation.

C The overlap (4.34)

The overlap (4.34) can be deduced from results in the paper by Pozsgay and Rákos [27]

(based on [23, 24]), to which we refer here by PR. Their R-matrix is given by PR (2.6),

which has the same form as ours (2.3), except with

a(u) = sinh(u+ η) , b(u) = sinh(u) , c(u) = sinh(η) . (C.1)

Moreover, they work with the “quantum monodromy matrix” given by PR (2.33)

TQTM (u) = R2N,0(u− η + ω)R2N−1,0(u− ω) . . . R2,0(u− η + ω)R1,0(u− ω)

=

(
A(u) B(u)

C(u) D(u)

)
. (C.2)

By choosing

ω =
η

2
− u , (C.3)

scaling the variables as

u 7→ ε u , η 7→ iε , (C.4)

and keeping the leading order in ε, our shifted monodromy matrix T̂
(2N)
a (u− i

2 ; {θj(u)}) (3.2)

with alternating inhomogeneities (4.19) can be obtained.

In order to relate the generic boundary states PR (2.36)–(2.38) to the dimer state, the

boundary parameters in PR (2.15) can be chosen as follows

α→∞ , β = 0 , θ = 0 , (C.5)

so that the K-matrices are proportional to the identity matrix. In this limit, the overlap

PR (3.4) together with PR (3.3) gives our overlap (4.34).

D The relation (4.38)

We show here that the relation (4.38) follows from two simpler lemmata.

Lemma 1:

〈Φ0|U † =

(
i

2v − i

)N
〈Φ0|τ(v; {θj(v)}) . (D.1)
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This lemma follows from the observation

τ(v; {θj(v)}) = iNR12(2v)R34(2v) . . . R2N−1,2N (2v)P2N−3,2N−1 . . . P3,5 P1,3 , (D.2)

together with

〈Φ0|R12(2v)R34(2v) . . . R2N−1,2N (2v) = (2v − i)N 〈Φ0| , (D.3)

and

〈Φ0|P2N−3,2N−1 . . . P3,5 P1,3 = (−1)N 〈Φ0|U † . (D.4)

Taking the scalar product of (D.1) with transfer-matrix eigenvectors |u〉 (which are

constructed using B-operators with alternating inhomogeneities {θj(v)}) and setting v = ũ
2 ,

we obtain

〈Φ0|U †|u〉 =

(
i

ũ− i

)N
〈Φ0|τ

(
ũ

2
;

{
θj

(
ũ

2

)})
|u〉

=

(
i

ũ− i

)N
Λc

(
ũ

2
;

{
θj

(
ũ

2

)})
〈Φ0|u〉 . (D.5)

Lemma 2: the following relation is valid off shell

〈Φ0|u〉 =

(
2v − i
2v + i

)N
〈u|Φ0〉 . (D.6)

See e.g. (3.3) in [27], with (C.3) and (C.4).

For our case, with v = ũ
2 , we have

〈Φ0|u〉 =

(
ũ− i
ũ+ i

)N
〈u|Φ0〉 . (D.7)

Inserting (D.7) in the r.h.s. of (D.5), we obtain

〈Φ0|U †|u〉 =

(
i

ũ+ i

)N
Λc

(
ũ

2
;

{
θj

(
ũ

2

)})
〈u|Φ0〉 , (D.8)

which coincides with (4.38).

E Parity of states with paired Bethe roots

Following [55, 56], the parity operator Π in the closed channel (length 2N) is defined by

ΠXn Π−1 = X2N+1−n , (E.1)

where Xn is any operator at site n ∈ {1, 2, . . . , 2N}, and is given by

Π = P1,2N P2,2N−1 . . . PN,N+1 , (E.2)
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hence Π = Π−1 = Π†. The parity operator has a simple and beautiful action on the

B-operator, namely

ΠB(u) Π = −B(−u) , (E.3)

while the reference state (4.13) remains invariant under parity

Π |0〉 = |0〉 . (E.4)

It follows from (E.3) and (E.4) that Bethe states (4.14) corresponding to the paired Bethe

roots (4.33) (even N) are eigenstates of parity with eigenvalue +1

Π|u1 ,−u1 , . . . , uN
2
,−uN

2
〉 = |u1 ,−u1 , . . . , uN

2
,−uN

2
〉 . (E.5)

Similarly, Bethe states corresponding to the paired Bethe roots (4.40) (odd N) are eigen-

states of parity with eigenvalue −1

Π|u1 ,−u1 , . . . , uN−1
2
,−uN−1

2
, 0〉 = −|u1 ,−u1 , . . . , uN−1

2
,−uN−1

2
, 0〉 . (E.6)

The dimer state |Φ0〉 (4.23) is an eigenstate of parity with eigenvalue (−1)N

Π|Φ0〉 = (−1)N |Φ0〉 , (E.7)

which is consistent with the fact that the overlaps 〈Φ0|u〉 are nonzero only for Bethe states

with paired Bethe roots (4.33), (4.40).

F Exact partition functions

In this appendix, we list all the exact partition functions for 2 ≤M,N ≤ 6 apart from the

simple ones that have already been given in the main text (2.6). For these values of M

and N , the partition function can be computed in both channels. As a consistency check,

computations in the two channels give the same result, as it should be.

F.1 N = 6

Z6,6 = 2u72 + 288iu71 − 14328u70 − 414000iu69 + 8317584u68 + 127125504iu67 (F.1)

− 1559236944u66 − 15897457728iu65 + 138130609500u64 + 1041934800608iu63

− 6921377423424u62 − 40952806081344iu61 + 217832067312960u60

+ 1049571874084608iu59 − 4610142527559840u58 − 18559041008388480iu57

+ 68788394401561470u56 + 235662122430397008iu55 − 748761418763439296u54

− 2212828011779983200iu53 + 6098355792769470156u52

+ 15707717731534712832iu51 − 37888459151633760240u50

− 85733900199121648320iu49 + 182272478003908656432u48

+ 364591770627856882608iu47 − 686967220132168504248u46

− 1220600244357970313168iu45 + 2047050659153089585764u44

+ 3243098453976454684320iu43 − 4857133424214480178560u42
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− 6881082470938635503328iu41 + 9226096556900912648334u40

+ 11712585761982875838624iu39 − 14083587268444001339280u38

− 16044127855808638420656iu37 + 17319816398521272862676u36

+ 17719150885149621701664iu35 − 17180252444447853950520u34

− 15786443250650483906112iu33 + 13745313212235461309790u32

+ 11338458117413798884752iu31 − 8858516711168371303152u30

− 6552673143433555176576iu29 + 4587036228059022522828u28

+ 3037167694581592157600iu27 − 1900876723794459666576u26

− 1123749410112064351008iu25 + 626974446577452175698u24

+ 329820882193355585184iu23 − 163410941489958322920u22

− 76159342969170112944iu21 + 33342588484553082888u20

+ 13690734769961746560iu19 − 5263022902673709824u18

− 1890408224237932800iu17 + 633003570392541120u16

+ 197095658448168960iu15 − 56899838812276224u14

− 15180285240013824iu13 + 3728675863226880u12

+ 839585772859392iu11 − 172442609104896u10 − 32118023696384iu9

+ 5386833271296u8 + 806617128960iu7 − 106666801152u6 − 12280172544iu5

+ 1206835200u4 + 98304000iu3 − 6340608u2 − 294912iu+ 8192

Z5,6 = 2u60 + 240iu59 − 10200u58 − 247760iu57 + 4106064u56 + 50944128iu55 (F.2)

− 501290288u54 − 4069332864iu53 + 28034725284u52 + 167372075712iu51

− 879568749504u50 − 4117046950656iu49 + 17320477694784u48

+ 65956540414464iu47 − 228627359471520u46 − 724727457569280iu45

+ 2108994608155482u44 + 5652786955676832iu43 − 13995089127459600u42

− 32084625043816128iu41 + 68261467147861284u40 + 135034284911783616iu39

− 248788374633283104u38 − 427529707088463360iu37

+ 686116309138082856u36 + 1029410431077285360iu35

− 1445199354794151720u34 − 1899914808354007664iu33

+ 2340240191331772812u32 + 2702070900176216160iu31

− 2925317019312145664u30 − 2970027518108113056iu29

+ 2827960377154344960u28 + 2525039773174991216iu27

− 2113704343901047104u26 − 1658217850739230320iu25

+ 1218539894552498448u24 + 838213811707493088iu23

− 539306661016030248u22 − 324234959917029984iu21

+ 181939121823624930u20 + 95158509487089840iu19

− 46317104213610216u18 − 20941877029818960iu17 + 8777163928275864u16
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+ 3401716413897600iu15 − 1215689053318848u14 − 399309726257280iu13

+ 120092906906976u12 + 32925815343360iu11 − 8187331182336u10

− 1835366381568iu9 + 368278769664u8 + 65577553920iu7 − 10251309056u6

− 1387327488iu5 + 159490560u4 + 15134720iu3 − 1136640u2 − 61440iu+ 2048

Z4,6 = 8u48 + 336iu47 − 7728u46 − 123856iu45 + 1484064u44 + 13860000iu43 (F.3)

− 104403144u42 − 652530240iu41 + 3461257458u40 + 15858754400iu39

− 63627652560u38 − 225943164384iu37 + 716128871152u36

+ 2039662782720iu35 − 5249124545904u34 − 12261248086848iu33

+ 26092620286092u32 + 50742484822368iu31 − 90406264918472u30

− 147877208599872iu29 + 222439906309668u28 + 308118607243360iu27

− 393433500079944u26 − 463456204858080iu25 + 503911508965434u24

+ 505852778886192iu23 − 468842183109432u22 − 401107676795728iu21

+ 316601908242108u20 + 230384778687264iu19 − 154393257821456u18

− 95159659506624iu17 + 53851823641602u16 + 27924428347584iu15

− 13235329354320u14 − 5716979185248iu13 + 2242521937456u12

+ 795411629952iu11 − 253808103360u10 − 72409421696iu9 + 18332792928u8

+ 4082245632iu7 − 790647936u6 − 131353344iu5 + 18380160u4

+ 2105344iu3 − 190464u2 − 12288iu+ 512

Z3,6 = 2u36 + 144iu35 − 3240u34 − 41760iu33 + 371556u32 + 2500704iu31 (F.4)

− 13426440u30 − 59457600iu29 + 222050034u28 + 710461408iu27

− 1970740872u26 − 4783539888iu25 + 10235477796u24 + 19420445664iu23

− 32825856240u22 − 49607005056iu21 + 67208955660u20

+ 81794924496iu19 − 89535239664u18 − 88204716144iu17

+ 78198825096u16 + 62348094624iu15 − 44646023160u14

− 28655915040iu13 + 16442440386u12 + 8405591184iu11 − 3811764096u10

− 1524747232iu9 + 534186864u8 + 162405504iu7 − 42326208u6

− 9318528iu5 + 1700640u4 + 249600iu3 − 28800u2 − 2304iu+ 128

Z2,6 = 2u24 + 96iu23 − 1488u22 − 12464iu21 + 67908u20 + 267360iu19 (F.5)

− 818024u18 − 2043648iu17 + 4286358u16 + 7635536iu15 − 11600448u14

− 15070368iu13 + 16767884u12 + 15970080iu11 − 12994512u10

− 9014240iu9 + 5311314u8 + 2637792iu7 − 1094360u6

− 375504iu5 + 103512u4 + 22016iu3 − 3648u2 − 384iu+ 32

F.2 N = 5

Z6,5 = 2u60 + 240iu59 − 10140u58 − 248000iu57 + 4185570u56 + 53344848iu55 (F.6)

− 542357480u54 − 4562838000iu53 + 32597238180u52 + 201557883000iu51
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− 1094433249708u50 − 5278042287600iu49 + 22813265943960u48

+ 89030269264680iu47 − 315622898284860u46 − 1021614345486960iu45

+ 3032155944987750u44 + 8282078769490080iu43 − 20883263266224960u42

− 48740210535148320iu41 + 105537643218985020u40 + 212434648891515000iu39

− 398192299717983780u38 − 696081663569207040iu37

+ 1136284932112092120u36 + 1734011186676432768iu35

− 2476033587009228660u34 − 3310802034120343280iu33

+ 4148085867425363430u32 + 4871950812684428040iu31

− 5365880829686871812u30 − 5543013568038622320iu29

+ 5370865405192114860u28 + 4880969524493532440iu27

− 4159536448109346180u26 − 3322896661947378912iu25

+ 2487244973239722900u24 + 1743350380048456200iu23

− 1143361265067321060u22 − 700989597010688640iu21

+ 401316693215927490u20 + 214260526736194800iu19

− 106515303269030220u18 − 49218120113100480iu17 + 21095469547685670u16

+ 8367142598539080iu15 − 3062728016717700u14 − 1031401068624240iu13

+ 318402566218770u12 + 89734056144240iu11 − 22976204056848u10

− 5314648800960iu9 + 1103026376160u8 + 203688568320iu7

− 33111380480u6 − 4671793152iu5 + 561016320u4 + 55685120iu3

− 4362240u2 − 245760iu+ 8192

Z5,5 = 2u50 + 200iu49 − 6800u48 − 133600iu47 + 1816720u46 + 18696280iu45 (F.7)

− 153516300u44 − 1041341760iu43 + 5980862700u42 + 29622561920iu41

− 128320692620u40 − 491601126800iu39 + 1680469080490u38

+ 5162580577360iu37 − 14337030631180u36 − 36164934863280iu35

+ 83189622229650u34 + 175077243069600iu33 − 338033265929600u32

− 600140879412320iu31 + 981612780573350u30 + 1481512519939600iu29

− 2065877195101300u28 − 2664254653480000iu27 + 3180146358121680u26

+ 3515139558674328iu25 − 3599034368401500u24 − 3413530724251600iu23

+ 2998653880187200u22 + 2438862766979800iu21 − 1835361722793380u20

− 1276908650973200iu19 + 820389106281650u18 + 486066456229800iu17

− 265119363721020u16 − 132847449311520iu15 + 61002271510150u14

+ 25593377506000iu13 − 9776149068460u12 − 3385803508640iu11

+ 1057993826450u10 + 296565427400iu9 − 74059916520u8 − 16339593600iu7

+ 3151663680u6 + 524266240iu5 − 73811200u4 − 8550400iu3

+ 780800u2 + 51200iu− 2048
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Z4,5 = 2u40 + 160iu39 − 4440u38 − 69280iu37 + 728000u36 + 5674392iu35 (F.8)

− 34874340u34 − 176140320iu33 + 752228880u32 + 2769883720iu31

− 8912697344u30 − 25297249440iu29 + 63775686230u28

+ 143577146200iu27 − 289901804220u26 − 526881584016iu25

+ 864503010900u24 + 1283718138360iu23 − 1728451887060u22

− 2113229980800iu21 + 2348251006860u20 + 2372768013000iu19

− 2180177662980u18 − 1820882530080iu17 + 1381238400930u16

+ 950393607264iu15 − 592143230220u14 − 333299096320iu13

+ 168978930950u12 + 76875351000iu11 − 31236020084u10 − 11269764880iu9

+ 3584938290u8 + 996761760iu7 − 239659680u6 − 49170048iu5 + 8454080u4

+ 1185280iu3 − 130560u2 − 10240iu+ 512

Z3,5 = 2u30 + 120iu29 − 2340u28 − 25120iu27 + 182970u26 + 1000824iu25 (F.9)

− 4342200u24 − 15435600iu23 + 45931380u22 + 116188080iu21 − 252735000u20

− 476824800iu19 + 785325960u18 + 1134545880iu17 − 1442491140u16

− 1617100080iu15 + 1599383250u14 + 1395092760iu13 − 1072037820u12

− 724305120iu11 + 428924070u10 + 221637600iu9 − 99319260u8 − 38260800iu7

+ 12523890u6 + 3435384iu5 − 774840u4 − 139840iu3

+ 19680u2 + 1920iu− 128

Z2,5 = 32u20 + 320iu19 − 1760u18 − 7680iu17 + 28560u16 + 87696iu15 (F.10)

− 218880u14 − 446160iu13 + 747090u12 + 1031120iu11 − 1177868u10

− 1117760iu9 + 880230u8 + 572520iu7 − 306660u6

− 134064iu5 + 46290u4 + 12240iu3 − 2480u2 − 320iu+ 32

F.3 N = 4

Z6,4 = 2u48 + 192iu47 − 6432u46 − 125344iu45 + 1695768u44 + 17380704iu43 (F.11)

− 142071744u42 − 957909984iu41 + 5456197416u40 + 26727665408iu39

− 114171998592u38 − 430010518272iu37 + 1440779616064u36

+ 4325994981888iu35 − 11709940237824u34 − 28718431904256iu33

+ 64075191370944u32 + 130502828494848iu31 − 243315793126400u30

− 416238684174336iu29 + 654563752915968u28 + 947664700456960iu27

− 1264641410790912u26 − 1556980053712896iu25 + 1769626440158208u24

+ 1857530670661632iu23 − 1801001830855680u22 − 1612788643440640iu21

+ 1333448855969280u20 + 1017287720361984iu19 − 715462372579328u18

− 463315439579136iu17 + 275828260637184u16 + 150674393284608iu15

− 75348310695936u14 − 34399109013504iu13 + 14290811226112u12

+ 5382179758080iu11 − 1829435990016u10 − 558255153152iu9
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+ 151954421760u8 + 36599955456iu7 − 7720648704u6 − 1406828544iu5

+ 217178112u4 + 27590656iu3 − 2752512u2 − 196608iu+ 8192

Z5,4 = 2u40 + 160iu39 − 4512u38 − 72352iu37 + 789416u36 + 6439584iu35 (F.12)

− 41590944u34 − 220803168iu33 + 988466328u32 + 3799026688iu31

− 12701096768u30 − 37309082496iu29 + 97056390560u28 + 225028607488iu27

− 467409758976u26 − 873387327744iu25 + 1472970252384u24

+ 2247880822272iu23 − 3110257952256u22 − 3907451351040iu21

+ 4461712923648u20 + 4633176305664iu19 − 4376312765952u18

− 3759173240832iu17 + 2934531772416u16 + 2079427166208iu15

− 1335273784320u14 − 775224616960iu13 + 405738771968u12

+ 190745063424iu11 − 80192927744u10 − 29991620608iu9 + 9914835456u8

+ 2874777600iu7 − 723861504u6 − 156229632iu5 + 28375040u4 + 4218880iu3

− 491520u2 − 40960iu+ 2048

Z4,4 = 2u32 + 128iu31 − 2720u30 − 33088iu29 + 275920u28 + 1721920iu27 (F.13)

− 8468640u26 − 33967296iu25 + 113839344u24 + 324510720iu23

− 797262912u22 − 1704729984iu21 + 3195196320u20 + 5276663040iu19

− 7705800576u18 − 9976315392iu17 + 11469719520u16 + 11721735168iu15

− 10651210752u14 − 8600710656iu13 + 6162514560u12 + 3908175360iu11

− 2185631232u10 − 1072522752iu9 + 458877312u8 + 169820160iu7

− 53830656u6 − 14436352iu5 + 3218944u4 + 581632iu3

− 81920u2 − 8192iu+ 512

Z3,4 = 2u24 + 96iu23 − 1536u22 − 13376iu21 + 76656u20 + 321984iu19 (F.14)

− 1060064u18 − 2847552iu17 + 6375696u16 + 12024320iu15 − 19217088u14

− 26146944iu13 + 30396896u12 + 30257664iu11 − 25802112u10 − 18824192iu9

+ 11701920u8 + 6151680iu7 − 2706944u6 − 984576iu5 + 290688u4 + 68096iu3

− 12288u2 − 1536iu+ 128

Z2,4 = 2u16 + 64iu15 − 576u14 − 2912iu13 + 9928u12 + 24864iu11 − 47840u10 (F.15)

− 71968iu9 + 85176u8 + 80128iu7 − 60608u6 − 36480iu5

+ 16864u4 + 5888iu3 − 1536u2 − 256iu+ 32

F.4 N = 3

Z6,3 = 2u36 + 144iu35 − 3672u34 − 54720iu33 + 566172u32 + 4421808iu31 (F.16)

− 27359952u30 − 138421152iu29 + 585564318u28 + 2106246952iu27

− 6526250244u26 − 17601308640iu25 + 41667849936u24 + 87178071096iu23

− 162100318500u22 − 269073694512iu21 + 400109679918u20 + 534347671248iu19

− 642039336300u18 − 694728826992iu17 + 677171433726u16 + 594340399176iu15
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− 469220702148u14 − 332676139248iu13 + 211359220146u12 + 119998562832iu11

− 60673432464u10 − 27204293440iu9 + 10758322656u8 + 3726162432iu7

− 1119674880u6 − 288110592iu5 + 62295552u4 + 10997760iu3

− 1511424u2 − 147456iu+ 8192

Z5,3 = 2u30 + 120iu29 − 2544u28 − 30784iu27 + 254340u26 + 1570464iu25 (F.17)

− 7633440u24 − 30170016iu23 + 99104634u22 + 274915920iu21 − 652019508u20

− 1335239136iu19 + 2379520968u18 + 3712304088iu17 − 5091867900u16

− 6157254672iu15 + 6573306816u14 + 6196463352iu13 − 5152840800u12

− 3772407312iu11 + 2424284226u10 + 1362333816iu9 − 666211176u8

− 281734272iu7 + 102169152u6 + 31401216iu5 − 8038656u4

− 1669120iu3 + 268800u2 + 30720iu− 2048

Z4,3 = 8u24 + 168iu23 − 1920u22 − 15344iu21 + 91506u20 + 418992iu19 (F.18)

− 1508768u18 − 4370976iu17 + 10394316u16 + 20622512iu15 − 34552644u14

− 49294128iu13 + 60175370u12 + 62991480iu11 − 56528844u10 − 43384016iu9

+ 28353042u8 + 15688800iu7 − 7297568u6 − 2825088iu5 + 896448u4

+ 227840iu3 − 44544u2 − 6144iu+ 512

Z3,3 = 2u18 + 72iu17 − 828u16 − 5328iu15 + 22914u14 + 71568iu13 − 170652u12 (F.19)

− 321264iu11 + 488124u10 + 605480iu9 − 614664u8 − 509040iu7 + 341826u6

+ 184392iu5 − 78840u4 − 26304iu3 + 6624u2 + 1152iu− 128

Z2,3 =2u12 + 48iu11 − 348u10 − 1264iu9 + 2934u8 + 4968iu7 (F.20)

− 6420u6 − 6192iu5 + 4338u4 + 2224iu3 − 816u2 − 192iu+ 32

F.5 N = 2

Z6,2 = 2u24 + 96iu23 − 1704u22 − 17936iu21 + 131208u20 + 717696iu19 (F.21)

− 3057152u18 − 10408704iu17 + 28851648u16 + 66013184iu15 − 126014976u14

− 202398720iu13 + 275340800u12 + 318861312iu11 − 315426816u10

− 266989568iu9 + 193300992u8 + 119365632iu7 − 62486528u6 − 27439104iu5

+ 9934848u4 + 2883584iu3 − 638976u2 − 98304iu+ 8192

Z5,2 = 2u20 + 80iu19 − 1160u18 − 9840iu17 + 57240u16 + 245376iu15 − 806208u14 (F.22)

− 2081664iu13 + 4300128u12 + 7203584iu11 − 9888512u10 − 11208704iu9

+ 10543104u8 + 8245248iu7 − 5351424u6 − 2863104iu5 + 1245696u4

+ 430080iu3 − 112640u2 − 20480iu+ 2048

Z4,2 = 2u16 + 64iu15 − 720u14 − 4640iu13 + 20080u12 + 62592iu11 − 145856u10 (F.23)

− 260224iu9 + 361824u8 + 397312iu7 − 347264u6 − 241920iu5 + 133504u4

+ 57344iu3 − 18432u2 − 4096iu+ 512

Z3,2 = 2u12 + 48iu11 − 384u10 − 1696iu9 + 4848u8 + 9600iu7 (F.24)

− 13632u6 − 14208iu5 + 11040u4 + 6400iu3 − 2688u2 − 768iu+ 128
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