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ABSTRACT. In this survey, we are interested in the instability of flame fronts
regarded as free interfaces. We successively consider a classical Arrhenius ki-
netics (thin flame) and a stepwise ignition-temperature kinetics (thick flame)
with two free interfaces. A general method initially developed for thin flame
problems subject to interface jump conditions is proving to be an effective
strategy for smoother thick flame systems. It relies on the elimination of the
free interface(s) and reduction to a fully nonlinear parabolic problem. The
theory of analytic semigroups is a key tool to study the linearized operators.

Dedicated to Michel Pierre on his 70th birthday, in friendship

1. Introduction. Stability analysis of free boundary problems, or equivalently free
interface problems, have been for long a challenging issue (see, e.g., [27, 18]). To
mention a few examples, stability or instability questions related to the Stefan prob-
lem in all its forms have generated considerable interest since the pioneering work
[15] (see, e.g., [19, 20] and the references therein). On the other hand, variational
inequalities is an important class of free boundary problems, that includes the ob-
stacle problem (see [3, 28]). Spectral stability in nonlinear variational inequalities
has been addressed via conical linearization techniques (see [17, 16]).

In combustion theory, instability of propagating premixed flames is a complex
and difficult phenomenon. The basic propagation mode exhibits two main mech-
anisms of destabilization: one due to the thermal expansion of the gas known as
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the hydrodynamic instability, and the thermal-diffusive instability which is a re-
sult of the competition between the exothermic reaction and the heat diffusion.
The thermal-diffusive instability manifests itself by generating a cellular structure,
which in turn exhibits chaotic dynamics (see [29, 30]).

The propagation of premixed flames is usually described by the conventional
diffusional-thermal model with standard Arrhenius kinetics. Formal asymptotic
methods based on large activation energy have allowed simpler descriptions, espe-
cially when the thin flame zone is replaced by a free interface, called the flame front,
which separates burned and unburned gases. At the flame front, the temperature
and mass fraction gradients are discontinuous. In the paper [8] and related works
(see in particular [6, 7, 10, 12, 22, 23, 24]), we presented a method by which the
flame front can be eliminated and, mutatis mutandis, the system reformulated as
a fully nonlinear problems (see [25]). This new formulation has proved effective
for local existence and stability analysis (see above references), and also numerical
simulation (see [2]).

On the other hand, models describing dynamics of thick flames with stepwise
ignition-temperature kinetics have recently received considerable attention (see [4]).
There are differences with the Arrhenius kinetics, for example in the case of zero-
order stepwise kinetics there are two free interfaces. Moreover, at the free inter-
face(s), the temperature and mass fraction gradients are this time continuous. In
this survey, we point out that the general method of [8], which was developed ini-
tially for solving thin flame problems, works equally well on thick flame models
with ignition-temperature kinetics, see [1, 5, 11]. In this respect, the method is
quite general and suitable for a wide range of free-interface problems.

Finally, we note that both free interface problems (Arrhenius and ignition-tem-
perature kinetics) do not fall within the class of Stefan problems, as there is no
specific condition on the velocity of the interface(s). However, at least near planar
fronts, we are able to associate the velocity with a combination of spatial derivatives
up to the second order (second-order Stefan condition, see [9] for a general remark).

The paper is organized as follows: Sections 2 and 3 are respectively devoted to
the Arrhenius kinetics (thin flame) and stepwise ignition-temperature kinetics with
zero-order reaction (thick flame), that we treat in parallel ways, identifying common
ground and differences. As has been said, a main difference is that the stepwise
ignition-temperature model presents two free interfaces, the ignition and the trailing
fronts. Both models admit one-dimensional, planar traveling wave solutions, unique
up to tramnslation. Then, we introduce perturbations of the planar solutions and
interfaces. Following the method of [8], we derive in both cases a fully nonlinear
parabolic problem of the form:

{ Dyu(t,) = Lu+ F(ult,)), t>0,

Pult,) = D (ult.) )

Here, the stepwise kinetics problem presents a substantial difficulty: specifically,
the trailing interface does not satisfy the non-degeneracy condition of [8].

The local existence of a solution to problem (1.1) is obtained in Section 4 through
a fixed point argument which requires to first solve the linearized version of such
a problem. In order to fix the function spaces, one has to take into account the
particular nature of the nonlinearities .%: due to the dependence on traces of second-
order derivatives, if one is interested in classical solutions, then optimal Holder
regularity is needed.
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In Section 5, we study the stability of the null solution of (1.1). In the two
problems under investigation, the spectrum splits into two parts, namely the con-
tinuous spectrum which consists of a parabola in the left-hand plane tangent to the
imaginary axis at the origin, and the point spectrum which is the set of all com-
plex numbers solutions of the so-called dispersion relation. Here too, the stepwise
kinetics problem presents additional difficulties, because the associated dispersion
relation has no algebraic solution, see Theorem 5.2. Finally, instability of the zero
solution of Equation (1.1), and thus of the traveling waves solutions, is established
for both problems; the results are summarized in Theorem 4.2. An important tool
is a result of [21] adapted in Theorem 5.4. However, Theorem 4.2 does not give any
information about the instability of the front. The latter issue is the subject of the
final Section 6, especially Theorem 6.3.

Notation. By R%, we denote the subset of R? with negative first component.
Similarly, for a given ¢ > 0, we denote by Sy the strip R x (—¢/2,¢/2) and by
S, (resp. S;) the subset of S, of elements with positive (resp. negative) first
component. Finally, S denotes the set (R, 00) x (—£/2,£/2).

For i,j,k € N, we write, respectively, D, DJ and D;j to denote the derivative
0'/0t', &7 /07 and 0% /Oy*. We also use the subscripts ¢, x and y to denote deriva-
tives with respect to ¢, x and y. For instance, uy,, denotes the derivative DthDyu.
We use bold style to denote vector valued functions. If uw : D € R? — R™, we de-
note by u1, ..., u, its components. If  is an open subset of R?, then we denote
by C5'(Q;R™) o € (0,1), the usual space of bounded and a-Holder continuous
functions over D and denote by || - [[ce(qrm) the classical norm defined as the
sum of the sup norm and the Holder seminorm. We use the same notation when
a > 1 to denote the set of functions which are continuously differentiable up to the
[a]-th-order such that the derivatives of order [a] are (a — [a])-Holder continuous
over ). Here (and just here), [a] stands for the integer part of a. The norm of
a function u in this space is defined as the sum of sup norms of the function and
its derivatives up to the order a plus the sum of the (o — [])-seminorms of all the
derivatives of order av of w. If I C R is an interval and Q C R? is an open set,
Cba/Q’a (I x ©;R¥) denotes the set of all bounded functions u : I x € x R¥ which
are a-Holder continuous with respect to the parabolic distance of R4t! which is

defined by d((t,z),(s,y)) = /|t —s|+ |z —y|>. Its norm is the sum of the sup-

norm and the a-Hélder norm of w. Similarly, C’;+a/2’2+a(1 x Q;R¥) is the set of

functions u which admit the classical derivatives Diu and D' Dj?u in I x ) for
Y1 + 72 < 2 such that the derivatives Dyu and D' Dj?u, when 71 + 72 = 2 belong

to C/22(I x Q;R¥). The norm of u € C;+a/2’2+a(f x Q;R¥) is the sum of the
sup-norm and all its derivatives plus the sum of the Hoélder seminorms of D;u and
D' Dj?u, when 71 + 72 = 2. Given a scalar function v : I — R, where I is an
interval and z is an interior point of I, we denote by [v],, the jump of v at xy, i.e.,
provided the limits exist,

[V]zg = lim v(z) — lim v(z).
e T—T

I‘)ZO

2. Flame propagation with Arrhenius kinetics (thin flames).

2.1. The diffusional-thermal model. Flames constitute a complex physical sys-
tem involving fluid dynamics, multistep chemical kinetics, as well as molecular and
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radiative transfer. An important parameter is the Lewis number Le, corresponding
to the ratio of thermal and mass diffusivities. The laminar flames of low-Lewis-
number premixtures are known to display diffusive-thermal instability, responsible
for the formation of a non-steady cellular structure (see [30]). However, the cellular
instability may be successfully captured by a model involving only two equations:
the heat equation for the system’s temperature and the diffusion equation for the
deficient reactant’s concentration. In suitably chosen units, the so-called diffusional-
thermal model reads (see, e.g., [13]):

Ty =Tyw + Tyy + w(¥, T), (2.1)
Y =Le ' (Yiu + Vi) — w(Y,T). (2.2)

Here, T is the scaled temperature and Y the scaled concentration of the deficient
reactant. The scaled reaction rate w(Y,T) is given by the Arrhenius law (see [13])

[ BT —1)

w(Y,T) = 2Le B°Y exp <O‘+<1—0’)T)7 (2.3)
where 3 is the dimensionless Zeldovich number, assumed to be large. The normal-
izing pre-exponential factor ensures that the planar flame propagates at speed close
to unity when 8> 1.

Due to the distributed nature of the reaction rate, w, it is still difficult to the-
oretically explore the system (2.1)-(2.3). One, therefore, turns to the conventional
high activation energy limit S — oo, which converts the reaction rate term into a
localized source distributed over a free interface, = £(t,y), the flame front. The
study of a thin flame propagation is thus reduced asymptotically to a free-interface
problem.

2.2. Near-Equidiffusional Flames. To ensure that the free-interface model does
not involve large parameters, one combines the limit of large activation energy
B — oo with the requirement that the product

7= 3801 - Le) (2.4)

remains finite, i.e., the Lewis number Le should be closed to unity. This is the Near-
Equidiffusive Flames model, in short NEF, introduced in [26]. Here, we consider
only the case where ~ is positive, i.e., the case of high mobility of the deficient
reactant. Expanding 7 and Y in a series of powers of f~1, where 3 is the Zeldovich
number, one ends up after some recombinations with the following free-interface
problem for temperature © and enthalpy S (see [13, 14] for further details about
the NEF theory)

Ot z,y) = AO(t, z,y), t>0, z<F(ty), yeR,
o(t,x,y) =1, t>0, z>F(ty), yeR, (25)
Se(t,z,y) = AS(t,z,y) —yAO(t,z,y), t>0, z#F(t,y) yeR

The functions © and S are continuous at the front, whereas their normal derivatives
(say, D,© and D, S) satisfy the following jump conditions at the interface

lim DOt z,y) — lim  DnO(t z,y) = —exp(S(t, F(t,y),y)),

z—F(ty)* z—F(t,y)
li Dn ta ) - tv ) - li Dn ta ) - tv ) .
i | DalS( 2 y) =90z, y)] = | DalS(t2,9) =16 2,y)]

(2.6)
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Further, as x tends to oo, the following conditions are prescribed
@(t7 —OO,ZU) = S(t7 —oo,y) = S(t,oo,y) = 0 (27)

As it is easily verified, this system admits a planar traveling wave solution, with
velocity —1, which reads in the coordinate z = = + t:

z7 S 07 Z? S 07
=] 7 SOy =4 7 7 (2.8)
1, 2>0, 0, 2> 0.

2.3. Derivation of the fully nonlinear problem (Arrhenius kinetics). It is
standard to fix the interface at the origin by setting F(t,y) = —t + s(t,y), & =
— F(t,y) = z — s(t,y). In this new framework:

O, + (1 —5)0 = A0, in (0,00) x (—00,0) x R,
0=1, in (0,00) x (0,00) x R, (2.9)
+ (1 —54)Se =AS —vA0, in (0,00) x R\ {0} xR,

where
As = [1+ (54)*]Dee + Dyy — syyDe — 25, Dg.
The jump conditions (computed at £ = 0) are O]y = [S]op = 0 and
1+ (8y)? [Oclo = — exp(9), [Selo = 7[O¢lo, (2.10)
which follow from (2.6). The main step now is the ansatz (see [8, 23]),
0=0°450%4u;, S=28"+550+uy,
which, taking advantage of the boundary conditions
[©]o = [6°]0 =0, 6510 = [©3]0 = -1,
enables us to express the interface s in terms of the trace of ug at £ =07:
s(t,y) = [ua(t, -, y)] = —ua2(t,07,y), t>0, yeR (2.11)

Replacing (2.11) in (2.9) and (2.10), we obtain a system in the only unknowns uq,
uo. However, it is convenient to rewrite it in the standard form of a system in R2
setting u = (Ul,’U,Q,Ug) where ug(t,&,y) = ua(t, —&,y) for £ <0 and y € R. We get

PBu =9 (u), in (0,00) x R, (2.12)

{ u; = Lu+ Fo(u) —v(+,0,)¥(u), in (0,00) x R?,
where the linear operator £ is given by
ZLv = ZL(v1,v2,v3) = (Avy — Devi, Avg — Devg — yAvy, Avs + Devs),  (2.13)
the linear boundary operator % has three components %,, %, and A3, defined by
Prv =yv1(0,-) — v2(0,-) + v3(0, -),
PBov = yv1(0,) + vD,v1(0,-) — Dyv2(0,-) — Dyvs(0,-), (2.14)
PBsv = v1(0,-) +v3(0,-) — D,v1(0, -),
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Fo(v) = (f1(v), f2(v), f3(v)) with

fi(v) =(Dyv1(0,))?[6g — v1(0,)O¢¢e + Deevr] + Dyyv1(0,-)[Devy — v1(0, -) O]
+ QDy"Ul(O, ')[nyvl - .Dy’l)l( )@55]

f2(v) =(Dyv1(0,))?[Sge = v(0,)Sgee + Degva] + Dy (0, -)[Dgva — v1(0,-)Sge]
+2D,v1 (0, -)[Deyva — Dyv1(0,-)Sge] — v f1(v),

f3(v) =(Dyv1(0, )) Degvs — 2Dyv1(0, ) Deyvs — Dyyv1 (0, ) D3,

on smooth enough functions v : R2 — R3. Finally,

\I/(’U) = (—vl(O, )@25 + Devy, —1}1(0, )ng + D¢wo, —ngg),

and
evs(0,7)

VIt (Dyo1(0, )%

However, the differential system in (2.12) contains Diuy(¢,0,y) in the right-hand
side. The main point is that Equation (2.11) yields Dyuq(t,0,y) = —s:(t,y). The
first equation in (2.12) reads for u; and D,u; small enough:

Dtul(tvay) :A’U(t,f,y) - DEul(tvga y) + (fl(u(t7 ))(gay)
— Dyua(t,0,y)[—ua(t,0,y)e* + Deua(t,€, )],

9 (v) = (0,0,9(v)), g9(v) =1+h(0,-) -

so that if we evaluate it at £ = 0 then we get the formula:

Aul('aoa ) - Dful('aoa ) + fl(u’(t’ B ))
1 —wu1(+0,) + Dyuy(+,0,-) ’

S¢ = — (2.15)
Therefore, the velocity of the interface s is expressed in terms of the trace of first-
and second-order derivatives of u at the interface itself (see [9]).

Plugging (2.15) in (2.12), we get the following fully nonlinear parabolic problem
for u

{ut(t,g,w Lu(t, & y) + (F(ult,)(&y), t>0, £<0, yeR,

(Bul(t, ) (y) =9 (ult,"))(y), t>0, y €R,
(2.16)
with

_ Au(0,) = Devi (0,) + (1 (0)(0,) o,
1 —21(0,-) + Dev1(0, ) L)

on smooth enough functions v : R2 — R3.

3. Flame propagation with stepwise temperature kinetics (thick flames).
Models with stepwise ignition-temperature kinetics (see [4]) are substantially differ-
ent from those arising in conventional thermo-diffusive combustion with the stan-
dard Arrhenius kinetics at large Zeldovich number. Here, we are going to focus on
a zero-order stepwise kinetics model, see [11] for a model with stepwise ignition-
temperature kinetics and a first-order reaction.
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3.1. Zero-order stepwise kinetics model. For the zero-order stepwise kinetics
(see [1, 4, 5]), the model reads (compare to (2.1)-(2.3)):

Yy =Le ' (Yoo +Yyy) - W(Y,T),
where the reaction rate W(T,Y) is given by

A, if T>60; and Y >0,

W(T,Y) = (32)
0, if T'<#; andfor Y =0.

Here, 0 < 6; < 1 is the ignition temperature and A > 0 is a normalizing factor.
For the first-order stepwise kinetics, the reaction rate is more standard and reads
W(T,Y)= AYH(T —0,), where H stands for the Heaviside function (see [4],[11]).

There are two principal differences with Arrhenius kinetics. The first one is that
the reaction zone is of order unity, while in the case of Arrhenius kinetics the reaction
zone is infinitely thin. This fact suggests to refer to traveling fronts for stepwise
temperature kinetics as thick flames, in contrast to thin flames arising in Arrhenius
kinetics. The second, even more important difference, is as follows. In the case
of Arrhenius kinetics (see Section 2), there is a single interface separating burned
and unburned gases. In contrast to that, in case of zero-order ignition-temperature
kinetics given by (3.2), there are two interfaces: the ignition interface where T = ©;
and the trailing interface being defined as a largest value of x where concentration
is equal to zero.

Denoting by © = F(t,y) the ignition interface and by * = G(t,y) the trailing
interface, the model that we consider in this section, set in the strip Sy = R x
(—£/2,£/2) of R?, is the following one:

Ti(t,z,y) = AT (t,z,y), x < G(t,y),

Y(t,z,y) =0, x < G(t,y),

Ti(t,z,y) = AT(t,z,y) + A, G(t,y) <z < F(t,y),

Yi(t,z,y) = LeflAY(t,x,y) — A, G(t,y) <z < F(ty), (3:3)
Ti(t,x,y) = AT(t,x,y), x> F(t,y),

Y, (t,z,y) = Le 'AY (t,z,y), x> F(t,y),

where the functions T and Y are continuous across the interfaces for ¢ > 0 and their
normal derivatives are continuous as well at the interfaces.

This system admits a one-dimensional traveling wave (planar) solution (7°,Y?)
which propagates with constant positive velocity V (see [4, Section 4]).! It is
convenient to choose the normalizing factor A = 1/R in such a way that V = 1,
where the positive number R = R(6;) is given by:

,R=1—¢F 0<0, <1.

IThe attentive reader will have noticed that the flame front moves here from —oo to oo, while
in Section 2 it propagates from oo to —ooj; it is just a matter of convention.
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With this choice, the traveling wave solution reads as follows in the coordinate
z=x—1:

1, 2z <0,
T°(2) = 1+1727€7, 0<z<R,
R
f;eft—=, z > R.
0, z <0,
e~ _ 14 Lez
YO(Z) _ T7 0<z<R,
1_eLeR
1+m, ZZR

3.2. Derivation of the fully nonlinear problem (stepwise kinetics). As in
Subsection 2.3, we look for solutions close to the traveling wave solution and we
transform system (3.3) into an equivalent system set in a fixed domain. There are
some differences and some additional difficulties, one of those is the presence of two
moving boundaries as already outlined. We list here below the steps to be followed
to get to the final system.

(1) Pree interfaces as small perturbations of the interfaces of the traveling wave: we
write F' and G in the form

G(t7y):g<t’y)7 F(t’y):R+f(tay)7

with f and g smooth and small enough.

(2) Cut-off function: we introduce a smooth function 5 : R — R, which is compactly
supported in (—24,25) and equals one in (-4, J) for some § > 0.

(3) New coordinates: we replace the a variable with the new variable ¢ defined by
x=t+&+ o(t,&,y), where

o(t,§,y) = B(&)g(t,y) + B(E — R) f(t,y).

In the new systems of variables (t,£,y), the trailing front is fixed at £ = 0, whereas
the ignition front is fixed at £ = R.
(4) New unknowns: In the spirit of Subsection 2.3, we introduce the ansatz:

T(t,&y) =TO(€) + o(t, &, y)T(E) + u(t, &, y), (3.4)
Y(t,&y) = Y°(€) + o(t, &, )Y (€) + v(t, €, y),

which can be interpret of a sort of Taylor expansion of (T,Y) around the traveling
wave solution (T°,Y?). Functions v and v play the role of a remainder and for
stability issues we can assume that v and v are “sufficiently small” in a sense still
to be made precise.

Expanding (1+0¢) ™' = 1—0¢ + (0¢)%(1+0¢) ', after a long but rather straightfor-
ward computations, we can determine the differential equations for the unknowns
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uw and v in the new variables (¢, &,y). They read as follows:
uy =ug+Autoy(1+ 0¢) (0T + ue) — (1+ o) > 0ee(1 + 05) (0Tge + ue)
— (1+ 06) " [(0c + 0yy) (0T + ue) + 20, (0, Tx + uey)]
+ (14 06) 2 [20y 06y (0T, + ug) + (0 — 08)(0Tgee + Tee + uge)
— 20¢ (0TS — 02T + uge)], (3.6)
in (0,00) x (R\ {0, R}) x (—£/2,£/2),
v =ve + Le ™' Av + 04 (14 0¢) ' (0YeE + ve)
—Le ' (14 0¢) P oee(1 + 07) (0Ye: + ve)
- Leil(l + 95)71 [(Le O¢ + ny)(é’ygog + ve) + QQy(QyY{% + véy)]
+Le ™ (1 + o) 7 [20y 06y (0¥t + ve) + (0 — 02)(0¥ege + Yeg + vee)

— 20¢(0Vgge — 0, Yee + vee), (3.7)
in (0,00) x [(0, R) U (R, 0)] x (—£/2,£/2),
v=0 in (0,00) x (—00,0) x (—£/2,£/2). (3.8)

The right-hand sides of the previous two equations contain the function g, so
that they depend on the functions f and g. To get rid of these terms, we argue as
follows.

(6) Writing o in terms of u and (the {-derivative of ) v: the derivative Tgo(R) does
not vanish at the interface + = R and gives rise to a kind of transversality or

non-degeneracy condition (see [8]). In particular, since TQ(R) = —b;, evaluating
Equation (3.4) at £ = R, we deduce that
f(ty) =07 u(t, R,y), t € (0,00), y € (=£/2,£/2). (3.9)

The trailing interface has a different nature with respect to the ignition interface.
Indeed, since T2(0) = Y,.2(0) = 0, the non-degeneracy condition of [8] is not verified
and this prevents us from writing g in terms of v or v. On the other hand, Tgo(OJr) =
—R~! and Y,g% (07) = R7!Le, so that they do not vanish. So, we can write

g(t,y) = —RLeflvg(t, 0t y), t € (0,00), ye(—£/2,£/2). (3.10)
It thus follows that
o(t,&,y) = 0, " B(§ — R)u(t,R,y) — RLe ' B(Hw(t, 07, y). (3.11)

Although the front g could be eliminated, the method used in Subsection 2.3,
which has been introduced in [8], is not applicable since g is related to the derivative
of v and not to v. To overcome this difficulty, we look at the problem satisfied by
u and w = ve. Differentiating equation (3.7), at least at a formal level so far, is not
complicated, due to the fact that p is independent of £ and, in fact, it turns out
that w solves the equation

wy =wg + Le 'Aw + or(1+ gg)_l(gYé%E + we)
—Le ' (1+ 0¢) Poee(1+ 07)(0Yere + we)
—Le (14 0¢) "t [(Le 0g + 0yy) (0Yeke + we) + 20y (0 Yire + wey)]
+Le (1 + 0¢) "?[204 06y (0Ygke + we) + (0 — 02)(0Y(kee + Yeke + vece)
— 20¢(0Vezee — 0y Yeee + wee)]
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in (07 OO) X [(Ov R) U (Ra OO)] 28 (76/27 6/2)3
(7) Elimination of o from the right-hand side of the equation for u and w: differ-
entiating (3.11) with respect to & and y is easy, so we skip the details. On the
other hand, the right-hand sides of (3.6) and (3.7) depend also on g;, which in its
turn depends on the traces at £ = R and £ = 0 of the t-derivative of v and w,
respectively. To get rid of the ¢-derivative of u, we evaluate (3.6) at £ = RT. Since
all the derivatives of ¢ with respect of ¢ vanish and taking (3.11) into account, we
get
Ut (ta R7 y) :uf (ta R+7 y) + Au(t7 R+a y) - oi_luyy (t7 R7 y)uf (ta R+a y)
+0; M (t, Ry y)[ult, Ry y) + ug(t, RT )]
- 291_11’6’1/ (ta R7 y)ufU (t’ R+a y)
+07(uy (t, R, y))?[uee(t, R y) — u(t, R,y) — 0]
— 07 u(t, R, y)uyy(t, R, y).
Since u and v are small perturbations of the traveling wave solutions, we can assume
that 1 — 0; *(u(t, R, y) + ug(t, RT,y)) is positive, so that
wr(t, Ryy) =[1 = 0:" " (ult, R,y) + ug(t, RY,y))] "
x {ug(t, RY,y) + Au(t, BT, y) — 07 uyy (t, R, y)ue(t, R, y)
— 07 u(t, Ry y)uyy (t, R, y) — 205 'uy (¢, R, y)ue, (t, RT,y)
+ 91'_2(7'@ (tv R, y))z[uff (tv R+7 y) - u(t7 R, y) - 92]} (3'12)

Arguing similarly, differentiating and evaluating (3.7) at * = 0%, we get

wi(t,07,y) = {Lewe(t,07,y) + Aw(t, 07, y)
+ RLe™ ! [wyy(t, 0t y)(Lew(t,0",y) + we (¢, 0t,y))
+ 2wy (¢, 07, y)we, (¢, 07, y)]
+ R?Le ™ (wy (t,07,y))?

x [~Le*w(t, 07, y) + R™'Le® + wee(t,07,y))}
x [Le + R(Lew(t, 0%, y) +we(t,07,9))] " (3.13)
(8) Interface conditions for u: since T°, Y° belong to C*(R) and T and Y, in the
original variables ¢, x and y, are continuous at the ignition and trailing fronts, with
continuous normal derivatives, it turns out that in the new unknowns t,&,y, the

derivatives T and Y are continuous at { = 0 and & = R. Thus, from (3.4) we
deduce that

fo(tv '7y)]50 = [Tfo(t? ')]fo + p(t,&),y)[Tg(t, ')]50 + [u(tv '7y)]§05

where & € {0,R}, ie., [u(t,,y)lo = [u(t,-,y)]Jg = 0 for t € (0,00) and y €
[—£4/2,¢/2].

Differentiating (3.4) and (3.5) for £ # R, and taking the jumps across £ = R, it can
be easily shown that

[u§<t7 '7y)]R = _R_lf(ta y>7 [’UJ(t, '7y)]R = R_lLef(ta y)
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for ¢ € (0,00) and y € (—£/2,£/2). Using (3.9) and (3.10), we obtain the two jump
conditions for ug at the fronts, which are
U(ta R, y) + oiR[uf(ta ) y)]R =0, Le[uf(ta R y)]R + [w(tv K y)}R =0

for t € (0,00) and y € (—€/2,£/2).

(9) The missing jump conditions: to recover the last two missing conditions at the
trailing and ignition fronts, we differentiate (3.5) twice in a neighborhood of x = 0
and take the trace at x = 0*. Condition (3.10) allows us to get

Y‘EE(O+7£a y) = Le R_l + Lew(t70+ay) + wf(t70+7y)~ (314)

We now eliminate ®¢¢ from the left-hand side of (3.14). For this purpose, we observe
that, for £ positive and sufficiently small, the equation for Y in the variables ¢, £
and y reduces to

Y; =Y + Le 'AY 4+ Le 'g2Vee — 2Le g, Ve, — R
+ (90 — Le'gyy)Ye
Computing the limit as £ tends to 0 gives
Yee(t,07, R)[1 + (95 (t,9))*] = Le R™".

Finally, taking advantage of (3.10) and (3.14) we get the additional interface con-
dition at the trailing interface

Lew(t,07,y) + we(t,07,y) = Le R {[1 + R’Le*(wy (¢,0",1))*] "' — 1}.

The condition at the ignition interface & = R can be obtained in a similar way.
More precisely, (i) one differentiate (3.5) twice with respect to & and takes the jump
at ¢ = R (taking (3.9) into account), (ii) then one computes directly the jump at
£ = R of Y¢¢. Putting everything together, in the end one gets the condition

Le [w(ta 'ay)]R + [wﬁ(tv '7y)]R = _LeR_l{[l + 9;2(uy(taR7 y))Q]—l - 1}'

Combining all the previous steps, we conclude that the pair u = (u,w) satisfies
the nonlinear problem

Du(t, ) = Lu+ F(u(t,-)), t>0,
{ Bu(t,) =G (ult,")) (319)
where

Lv = (Avy + Dy, Le 'Avy + D,vs), (3.16)
v1(0F,) =1 (07, )
vi(RF, ) —vi(R™,)
Le[Dgv1 (07, ) — Dyui (07, -)] + w2 (0T, )

o — | Leva(0T,-) + Dyua (07, ) ., (3.17)

1
5Wa(RT, ) +02(R7, ) + 0:R[Dyva(RT, ) = Dy (R, )]
Le[D,v1(R*,-) — Dyvi(R™, )] + v2(RY,-) —ve(R™, )
Le[ve(RT, ) —va(R™, )] + Dyva(RT, ") — Dyva(R™,-)

on smooth functions v = (v1,v2). We denote by %, (j = 1,...,7) the seven
components of the operator Z.

The nonlinear functions .% and ¢ have the same structure as the corresponding
operators in Subsection 2.3, even if their expression are much more complicated (we
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refer the reader to [1] for the expression of the such nonlinearities). The two main
features of such operators are the following:

(i) they are quadratic at zero;
(ii) function .# (v) depends also on the traces of second-order derivatives of v at
¢=0and ¢ =R.

Remark 3.1. In the same way as in Subsection 2.3, in view of Equation (3.11)
for o; together with formulae (3.12)-(3.13), the velocities of interfaces f and g are
expressed in terms of traces of first- and second-order derivatives of u (see [9]).

4. Local existence and function spaces. The local existence of a solution
to problems (2.16) (Arrhenius kinetics) and (3.15) (stepwise kinetics) is obtained
through a fixed point argument which requires to first solve the linearized version
(at zero) of the above problems. In order to fix the function spaces where to study
such linearized problems, one has to take into account the particular nature of the
nonlinearities .%. Working with classical solutions to problems (2.16) and (3.15), it
comes out that optimal Holder regularity is needed, due to the dependence of the
previous nonlinearity on traces of second-order derivative of the unknown. Thus, for
problem (2.16), one deals with the Holder spaces Xg, X, X7 and Xoy, (o € (0, 1)),
which are defined as follows:

Xy is the set of all functions u € C,(R?;R3) such that wu(-,y) vanishes as x
tends to —oo, for all y € R;

X, is the set of all functions u € Cg*(R?;R?) such that u(-,y) vanishes as
tends to —oo, for all y € R;

X7 is the set of all functions u € C}(R?;R3) such that u(-,y) vanishes as z
tends to —oo, for all y € R;

Xo44 is the set of all functions u € CZT*(R2;R?) such that the components
of u(-,y) and its first- and second-order derivatives vanish as = tends to —co
for each y € R.

Here, Xy and X, are endowed with the norm of C’b(@; R?) and cy (R%;R3), re-
spectively, whereas X; and X1, are endowed with the norm of C} (RZ;R3) and
C2T(R2 ;R?), respectively.

On the other hand, when one deals with problem (3.15), the spaces Xo, X, X1
and Xoy, are defined as follows:

X is the set of all pairs f = (f1, f2) such that (i) fi € Cy(S, ;R)NC([0, R] x
[—€/2,0/2];R) N Cy(Spr; R), (ii) fo € Co([0, R] x [—£/2,€/2];R) N Cyp(SE;R),
(iif) (-, =€/2) = f;(,£/2) for j = 1,2;

X, is the set of all pairs f = (f1, f2) such that (i) f1 € C5*(S, ; R)NC*((0, R) x
(—€/2,£/2); R)NCE(Ser; R), (ii) fo € C2((0, R) x (—£/2,£/2); R)NCE(SF; R),
(ii) (-, —€/2) = f;(,£/2) for j = 1,2; o

X is the set of all pairs f = (f1, f2) such that (i) f1 € CL (S, ;R)NCL([0, R] x
(/2,620 R) N CL (S ), (i) fo € (0, B) x [~/2.0/25R) N C} (SFE ),
(i) £, —£/2) = £5(£/2) and V£, —£/2) = V£, ¢)2) for j = 1,2

Xo.  denotes the set of all pairs f = (f1, f2) such that D f = (D7 f;, D7 f5) €
Xo, DVf;(-,—£/2) = D f;(-,£/2) for each |y| < k, j = 1,2.
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The previous spaces are endowed with the norms
2

1Fllxo = fill o, 57y + 221(||fj||C([O,R]><[—l/2,£/2];R) +ille, 57 2)
iz

2
1F1x0 = 1fillop (s + 2 (filloso.mx—e/2.e21m) + I fill oo s )
j=1

2
1F 1l = il 5y + Zl(”fj||C1([O,R]><[—Z/2,£/2];R) + 1 ill oy 57wy
iz

£l X0 = D ID Flloo + D 1D Fllx-

[vl<2 lv|=2
Also, some parabolic Holder spaces are needed. In the case of problem (2.16),
for T € (0, 00] they are defined as follows:
Zoj2,o(T) is the set of functions u € CZ?/Q’Q((O,T) x R?;R3) such that
u(+,-,y) = 0 vanishes as £ tends to —oo for all y € R;
Zi4as2,2+a(T) is the set of all functions u € C’;+a/2’2+a((0,T) x R2;RR?)
such that D} DI*Dj*u(t,-,y) vanishes as { tends to —oo for every t € [0, 77,
y€Rand 2y +72 + 93 < 2.
Such spaces are endowed, respectively, with the norm of CS/Z’Q((O,T) x R?;R?)
and Cp P72 ((0,T) x R2; R®).
The corresponding spaces in the case of problem (3.15) are defined as follows:
Zoj2,0(T) is the set of all pairs f = (f1, f2) such that f, : [0,7] x Sy = R,

fa : [0,T] x Sf = Rand sup [[f(t,-,)lx., sup [f1(&9)llcerzor)
tG(O,T) (E’y)ese

and  sup || f2(+, &, 9)l|carz((0.1)) are all finite;
(&yesS
214 a/2.2+0(T) denotes the space of all the pairs f such that D D*Dje f

belongs to 2, /2, (T) for every v1,72,73 > 0 such that 2vy; 4 vo 4+ 73 < 2.

These are Banach spaces with the norms

[fllx, o0y = sup [[F(t - )lx, + sup [[fi(z,9)llcer2 0,1y
te(0,T)

(&y)eSe
+ sup  [[f2(, & 9l corzo,))
(&y)est
Hf|"%f1+oc/2,2+o¢(T) = Z HDlegzD;]yd‘fH‘%a/Za(T)'
2v1+y2+73<2

The theory of analytic semigroup is a very useful tool to study the linearized
problems associated to (2.16) and (3.15), and prove optimal Schauder estimates for
the solution of those problems.

The main steps in this direction are the following:

(1) one proves that in both the two problems under consideration, a suitable re-
alization L of the linear operator .£ (defined in (2.13) and (3.16)), whose domain
contains functions w such that u = 0 (where the operator Z is defined in (2.14)
and (3.17)), generates an analytic semigroup in Xy (where now we need to consider
complex-valued functions);



14 CLAUDE-MICHEL BRAUNER AND LUCA LORENZI

(2) one characterizes the interpolation spaces of order /2 and 14+«/2 (say Dy, («/2,00)
and Dr,(1 4+ «/2,00) as spaces of Holder continuous functions.

Such realizations are defined as follows. In the case of problem (2.12),?

{ D(L) = {u € X; NW2P(R%;C?) : Luc Xy, Bu=0at z=0},

Lu=Zu, ue D(L),

whereas, in the case of problem (3.15), D(L) is the set of all functions u € X such

that (i) u;(-,—€/2) = u;(-,¢/2) for j = 1,2, (ii) denoting by u’i and ug the periodic

extension, with respect to the variable y, of the functions u; and s, it holds that
ut € C}((—00,0] X R;C) N, oo W2P((—00,0] x R;C);

p<oo "'loc

ul,ub € C1([0, R x R; C)NCL([R, 00) X R; C) N, oo WEP((Ry \{R}) xR; C),

p<oo ' loc

(iii) Lu € Xy and Bu = 0. Moreover, Lu = Zu for every u € D(L).
Then, the theory of analytic semigroup applies and allows to show the following
result.

Proposition 4.1. Fiz o € (0,1) and T > 0. Then the following properties are
satisfied:
Linearized bl : (1+a)/2,1+a
problem (2.16): For every f € 24 2,0, ¥ € Cy ([0,T] x R)
and ug € Xaotq, satisfying the compatibility conditions
Frug = Baug = 0, PBzug = 1(0,),

the Cauchy problem

Diu(t,-, ) = Lu(t, )+ f(t,-,-), tel[0,T],

P1(u(t,-,-)) =0, te 0,7,

By(ult,-,-)) =0, te 0,7, (4.1)
PBs(ult,-,-) =v(t,), te[0,7],

u(07 ) = Uy,

admits a unique solutionw € Z1a/221a(T). Moreover, there exists a positive
constant C, independent of data and uw such that

[l 2o omra(m < CUFl 2 00 + [wollxs 0 + 10l cararzacao,mxr))-
(4.2)
Linearized problem (3.15): Forevery f € 22,0, %1,%2 € C+a)/2,14a((0, T)x
(—£/2,£/2)) and ug € Xoyo, which satisfy the compatibility conditions
«@Uo = (0,070,1#1’ 0; 071/]2) %](EUO(Oa ) + f(oa )) = 07 ] = 17 2
and the conditions f(0,-,—£/2) = £(0,-,¢/2), DVug(-,—¢/2) = DVug(-,£/2),
DY (-, ~£/2) = Dy un(-,4/2) and Dy (-, ~£/2) = Dy n (-, £/2) for ev-
ery multi-index v with length at most two and j = 0,1, the Cauchy problem
Dtu(tv'v') :gu(t77)+f(taa)a te [OaT]a

Bi(u(t,-,-)) =0 tel0,7], 1=0,1,2,3,5,6,
Ba(u(t,,)) = 1(t,-), t €[0,T], (4.3)
%7(u(ta'a')) :7/}2(t7’)7 te [OaT]a

u(0, ) = wuyo,

2Here, X consists of complex-valued functions.
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admits a unique solution u € 214 4/2.240(T) such that
D21D32u(t7'7_£/2) :Dng;2u(taa£/2)7 le [O7T}7 M+ 2.

Moreover, there exists a positive constant C, independent of data and w such
that

||u||%1+a/2,2+a(T)
2

sc(nfngga/z,am Tlhtolxsn + 3 |wj||c<1+a>/z,1+a((o7wH/u/z))).
j=1

(4.4)

To face the nonhomogeneous boundary conditions, one needs to introduce some
suitable so-called “lifting operators”, i.e. suitable operators A’ with the following
properties:

e in the case of problem (2.16), such operator maps Cy*(R) into X,41 and
BINY = BN =0, BoNY =,

for each function ¢ € Cf'(R);
e in the case of problem (3.15), such operator maps C([—£/2, £/2]; R?) into Xo 4
and

‘%NQ/} = (070707w1a0707w2)-

Using this lifting operator, one can write the solution w to problem (4.1) in the
form

t t
u(ta ) = etLUO +/ e(tis)L[f(Sa ) JrfNT/f(Sa )]dS - L/ e(tis)LNQZ)(Sv )dS (45)
0 0

and the solution to problem (4.3) in the form

t t
u(t,) = efug + / eI f(s, ) + LNP(s, )]ds — L / e IEN Y (s, -)ds,

0 0
(4.6)
for t € [0,7]. These two formulas are a variant of the well-known Balakrishnan
formula used to write the solution of a homogeneous (at the boundary) problem
using the semigroup e’ generated by the realization L of the operator . mentioned
above. Such formulas will be extremely important in the analysis of the stability of
the traveling wave solutions, which will be addressed in Section 5.
In view of Proposition 4.1 and using in particular estimates (4.2) and (4.4) to-
gether with the fact that % and ¢ are quadratic at zero, one can quite easily prove
the following result.

Theorem 4.2 (Theorem 3.1 in [12] and Theorem 5.1 in [1]). Fiz any T > 0 and

a € (0,1). There exist p, po > 0 such that the following properties are satisfied.

Problem (2.16): For every ug € Xopro with |[uol/x,,., < po and satisfying the
compatibility conditions

PBrug = Boug =0, PBaug = g(UQ), :@1(.;?11@ + 9(11,0)) =0,

problem (2.16) admits a unique solution u € 2144/2.2+0(0,T) such that
U(O) = ugy and ||u||%l+a/2,2+a(07T) < p.
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Problem (3.15): For each ug € Xoyo with ||ug|x,,, < po and satisfying the
compatibility conditions

Bug =Y (w),  Bi(Lug + F(ug)) = Bo(Lug + F (ug)) =0,
DV (-, —£/2) = DVuq(-, £/2)

for each multi-index v with length at most two, problem (3.15) admits a unique
solution w € 211 a/2,24a(T) with u(0,-) = ug. Moreover, ||UH%1+@/2,2+@(T) <
p-

5. Instability of the traveling wave solutions. The change of variables and
unknowns that we have performed in Subsections 2.3 and 3.2 changed the traveling
wave solutions to problems (2.5)-(2.6) and (3.3) into the null solution to problems
(2.16) and (3.15), respectively. So, to study the stability of the traveling wave
solution to problem (2.5)-(2.6) (resp. (3.3)), it suffices to study the stability of the
null solution to problem (2.16) (resp. (3.15)). This latter issue is strongly related
to the location of the spectrum of the operator L. So, a deep analysis of (L) is
required. In both the two problems under investigation, the spectrum splits into
two parts: the so-called continuous spectrum and the point spectrum. The former
consists of a parabola in the left-hand plane which is tangent to the imaginary axis
at the origin, the latter is the set of all the admissible complex numbers A, solutions
of the so-called dispersion relation (see, e.g., [29, Section 5]) between wavenumber
k, A, and a real parameter, hereafter v or Le.

The dispersion relation associated with problem (2.16) is not difficult to set and
to analyze. In fact, it reads:

N (s el O
D(]C, )\7’}/) = 7"2(1 27’1) 1_ 27”1 - 0;
where
1+ V1 +4)+4k2
7“1:7"1(](?,)\): ha At Ak ; 7“2:7"2(]€,A):1—7"17 (51)

2

k € R and ~ is a physico-chemical parameter (see (2.4)).

It can be checked that, for v > 1, it defines implicitly a real-valued function
k + A(k), defined in the interval [0,271/y — 1] with K = K(v) > 0, it is positive
in (0,271, —1) and vanishes at 0 and at 271/ — 1. Moreover, k — A(k) is
increasing in (0, k.) and decreasing in (k.,27*y/y — 1), where k. is defined by

- (3 () (1)

In particular, the following result holds true.

Theorem 5.1 (Theorem 4.1 of [12]). For~y > 1, let Ao = A(kc). Then, the interval
[0, ] consists of eigenvalues of L. Moreover, the halfplane {\ € C : ReA > A} is
contained in the resolvent set of the operator L.

On the other hand, the (reduced) dispersion relation associated with problem
(3.15) is more involved; we have infinitely many functions

D(k, A, Le) = exp (f(Le 11— Xp(M) — Yk()\,Le))> —146,RX;(\) =0, (5.2)
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where

Xe(A) = V1I+4X+ 4,
Yi(\, Le) = v/Le® + 4ALe + 4\, (5.3)
g = 4m2k2072,
for each k € NU {0}. Here, the real parameter is the Lewis number Le € (0,1).
Any solution A of the equation D(k, A\, Le) = 0 defines an eigenvalue of operator L.
The analysis of (5.2) is not easy at all and its solutions can not be determined

explicitly. The strategy to overcome such a difficulty relies on the use of the implicit
function theorem and leads to the following theorem.

Theorem 5.2 (Corollary 6.4 in [1]). For fized ignition temperature 0; € (0,1) and
width € sufficiently large, there exists a critical value of the Lewis number Le. €
(0,1) such that, whenever 0 < Le < Le,., the spectrum of the operator L contains
elements with positive real parts. Moreover, the part of o(L) in the right halfplane
{A € C: Re) > 0} consist of 0 and a finite number of eigenvalues.

We sketch here below the main points to obtain the proof of such a theorem.

(1) As a first step, one proves that there exists ¢o(;) such that, for all £ > £o(6;)
there exists a maximal integer K such that the equation D(k,A,Le) = 0 has a
unique root Le, = Le.(k) € (0, 1) for every k € {1,...,K}. Moreover,

0 < Leo(K) < - < Leo(2) < Leg(1).

(2) Under the assumptions of the previous point, one then proves that there exist
A« € (0,4/A1) and a decreasing, continuously differentiable function ¢ : (0, Le.) —
(0, Ax) such that D(1, g(Le), Le) = 0 for all Le € (0,Le.(1)). This is the point where
the implicit function theorem is used, thanks to the fact that the function D(1,-, )
is smooth in [0, v/A1] x [0, Le.(1)].

(3) Finally, we set Le. = Le.(1).

Remark 5.3. As Theorems 5.1 and 5.2 show, the part of the point spectrum in
the right-halfplane contains a real interval in the case of problem (2.12), whereas it
consists of a finite number of (possibly complex) eigenvalues in the case of problem
(3.15).

To prove the pointwise instability result for both the two problems, the following
adaption of a result in [21, p.105] plays a crucial role.

Theorem 5.4 (Lemma 6.5 in [1]). Let X be a complex Banach space, r > 0 and, for
everyn € N, let S, : B(0,7) C X — X be a bounded operator. Then the following
properties are satisfied.

() If Sp(x) = Mz + O(||z||P) as ||z]| — 0, for some p > 1 and some bounded
linear operator M on X with spectral radius p > 1, then the origin is unstable,
i.e., there exist ¢ > 0 and, for any § > 0, xy € B(0,6) and ng € N (depending
on 0) such that the sequence xg,...,Tp,, where , = Sp(xp_1) for any n =
1,...,ng, is well defined and ||z,,| > C.

(ii) In addition to the assumptions in (i), assume that there exists an eigenvector
u of M with eigenvalue A\ € C such that |[\|P > p and that there exists ' € X’
such that ' (u) # 0. Then, there exist ¢ > 0 and, for any § > 0, xo € B(0,9)
and ng € N (depending on ) such that the sequence xg, ..., Zn,, where x, =
Sp(Xp—1) for anyn=1,...,ng, is well defined and |x'(xn,)| > c|z’(u)].
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The idea would be to apply such a theorem with X being the set of all admissible
initial data for problems (2.12) and (3.15), i.e., the sets

{u € Xoi0:0(0,y) —ve(0,y) #1fory e R,
PBiug = Boug = 0, PBaug = g(uo), Bl(f’u,o + yuo) = 0}

{u € Xopa tult, Ryy) +ue(t, R, y) # 0;, R(Lew(t,07,y) +we(t, 07, y)) # —Le,
for £ € [—£/2,€/2], YGuo = G(ug), B;j(Luo+ Fuy) =0, j=1,2}

and the operator S,,, defined by S, (ug) = w(n,up,n — 1), where u(n, -, ug,n — 1)
denotes the solution to problem

Dtu(tv ) = f(u(t, )) + <9\(u(ta ))a t>n—1,
B(u(t,-)) =9 (ult,")), t>n-—1,
u(n—1,-) = ug

Since the problem is autonomous, by Theorem 4.2 this problem has a solution
defined in a time-interval [n — 1,n — 14 T,,] for every n € N and the infimum of the
sequence (T,) is positive.

However this choice is not admissible since both the two previous sets (let us
denote them by )) are not Banach spaces due to the compatibility conditions which
are of nonlinear type. The trick to overcome this problem consists in showing
that the intersection of ) with a sufficiently small neighborhood of the origin (in
Xo+a) is the graph of a smooth function defined in a neighborhood of 0 of the
interpolation space D (1 + a/2,00). Then, Theorem 5.4 will be applied taking as
X the interpolation space Dr, (1 + «/2,00).

To prove that ) is the graph of a smooth function, the crucial step is the definition
of a suitable projection on the space Xoi,. Such a projection is defined through
a right-inverse of the operator u — Gu = (% 1u, Bou, Bsu, $B1.Lu) (resp. of the
operator u — Cu = (Bu, $1u, Bou)) defined on Xay,, let us denote it by ..
Setting P = I — M%. It turns out that P projects onto the kernel of the operator
%€, which, in fact, coincides with the interpolation spaces Dp, (1 + «/2, 00).

Lemma 5.5 (Lemma 4.4 in [12] and Lemma 4.7 in [1]). For 0 < o < 1 there exists
a neighborhood Q of 0 in Xoy, such that & N is the graph of a smooth function
®: B(0,p) C D(Ly) = (I — P)(Xata) for a suitable p > 0. Moreover ®'(0) = 0.

To prove the lemma it suffices to observe that the nonlinear function 7 :

B(0,7) C Xoyq — Yy, defined by
H(u) = (PBu — Y (u), B1(Lu+ Z(u)),
if we are dealing with problem (2.12), and
H(u) = (Bu — 9 (u), B1(Lu+ F(u), Bo(ZLu+ F(u))),

otherwise, where r > 0 is chosen sufficiently small such that .% is well defined in
B(0,r). Then F is smooth and F’(0) = % is an isomorphism from (I — P)(X24a)
to Y,. Applying the implicit function theorem one can conclude the proof.

Now, for each n € N we can apply the operator S,, : B(0,p) C Dp(1+a/2,00) —
Dp(1+ a/2,00) by setting

SnuO = Pu(nv LU+ (I)(’LLO)J”L - 1)

Note that £, % are independent of ¢ and the nonlinear operators .% and ¢ depend
on t only through the unknown function w. Therefore, the uniqueness of the solution
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of the initial value problem, associated with problem (2.16) (resp. (3.15)), implies
that u(n, -, up+ ®(up),n—1) = u(l,-,up+ ®(up),0) (see Theorem 4.2). Thus, the
function S, ug is the projection along P(Xa,) of the value at ¢ = 1 of the solution
to problem (2.12) (resp. (3.15)) with initial condition (at ¢ = 0) u(0,-) = wuo,
ie., Spup = Pu(l,-,ug + ®(up),0) := Tou. To apply Theorem 5.4(i) one needs
to show that there exist a linear operator M and an exponent p > 1 such that
Sp(x) + Mz + O(||z||P) as x tends to 0. In fact, in our case, we can take p = 2.
Indeed, using formulas (4.5) and (4.6) it is immediate to check that
1

Toug = Toug =¢“ug + P e(lfs)L[f(u(s, ) + ZLNg(u(s,-)]ds
0

1
- PL/ eI Ng(u(s,-))ds
0
if we are dealing with problem (2.12) and

1
Thuo = Toug =e"ug + P/o eI (u(s, ) + LN (91(u(s, ), g2(u(s, -))lds

—L/ eI=ILN (g1 (u(s, ), g2 (u(s, -))ds
0

otherwise. It has to be noticed that Pe’(ug + ®(uo)) = el ug since uy belongs
to Dr(1 + «/2,00), which is invariant under the action of the operator L since P
commutes with e, and ®(ug) € (I — P)(Dr(1 + a/2,00)), so that Pel®(ug) = 0.

Since the functions %, g, g4 and gy are quadratic at zero, a direct computation
reveals that the integral terms in the previous two formulas are quadratic at zero
as well. It turns out that the splitting S,uo = Mug + O(||lug||?) holds true if one
takes M = el.

We summarize the result so far obtained in the following theorem.

Theorem 5.6 (Corollary 4.5 in [12] and Theorem 6.6 in [1]). Fiz a € (0,1) in
Lemma 5.5. Then, the following properties are satisfied.

Problem (2.16): For v > 1, the null solution to problem (2.16) is unstable in the
Xoya-norm.

Problem (3.15): Under the assumptions of Theorem 5.2, for each Le € (0, Le,)
the null solution of problem (3.15) is unstable in the Xo,-norm.

6. Instability of the fronts. The instability result of Theorem 5.6 is rather weak
because the C?*“-norm of the space Xo,, is a very heavy norm. In particular, it
does not give any information about the instability of the front: it could happen
that [|u(t,-)| x,,. is far from 0 for some ¢t but s(t,-) = —v(t,0,-) stays small for
every t.

To prove that also the front is pointwise unstable, we take advantage of the
second part of Theorem 5.4.

For this purpose, a deeper analysis of the part of the spectrum of L which lies in
the right-halfplane is required. In the case of problem (2.12), things are a bit easier
and one can show the following result.

Proposition 6.1 (Theorem 4.1 in [12]). Fiz v > 1. Then, for each A = A(k) €
[0,\;] (see Theorem 5.1), there exists a corresponding eigenfunction of the form
w(&,y) = u.(&)g(y) for every (z,y) € R:, where function g is any solution to the
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ordinary differential equation g" = —k*g, whereas the function Wy = (Us 1, Us 2, Us 3)
is defined by

u*vl(g) = €T1§’
g
u*,2(£) = _1 _ 27,1

Uy 3(§) = —roe” 28,

€S (r} — k%) + (v —r2)e™s,

for every £ <0, where r; =rj(k,w), j =1,2, are defined in (5.1).
In the case of problem (3.15), one can prove the following.

Proposition 6.2 (Theorem 6.6 in [1]). Under the assumptions of Theorem 5.2,
there exists an eigenvalues A of operator L, whose modulus equals the spectral ra-
dius of the operator M = el. In particular, for every yo € R, there exists an
eigenfunctions w. such that u.1(RT,y0) # 0 and u.2(0%,y0) # 0. It suffices to

take wy, = (us1e1(- — 207 yg)), us 2e1 (- — 2wl 1yp))), where
X1+HT)R(92,RX1_1) e eu;rR
6“‘1+R—6”1+R € + eufR_el/fRe

. (
U*,l(f) =en 5X(foo,O] (5)—’_ (e

0; Re(X1i+n R x| .
e#;rR _ el/er e EX[R’OO) (§)7

”n)X(O,R) €3]

_ Le(Le + uf)e”;rRXl
(e B — evi Ry,
+ (1= e F)dret X (r,00) (6),

for every £ € R, where, X1 and Yy are defined in (5.3), whereas

Uy ,2(§) =

(456 et Y

1 1672 Le 1672
+ + _ 2
vy fizlz 144X+ 2 p12j:\/Le + 4LeX + P
Fix yo € R. Applying Theorem 5.4, with
Problem (2.12): 2'(u) = —u2(0, o), for every u and taking as u an eigenfunction
corresponding to the eigenvalue r = e“< of the operator e’ such that g(yg) # 0;
Problem (3.15): z'(u) = —u2(0,yo), for every u and taking as u the eigenfunction

in Proposition 6.2, corresponding to an eigenvalue of L such that |A| equals the
spectrum radius of L, to prove the instability of the trailing interface; 2'(u) =
—u1 (R, o), for every u and taking as u the eigenfunction in Proposition 6.2,
corresponding to an eigenvalue of L such that |A| equals the spectrum radius
of L, to prove the instability of the ignition interface,

we can prove the instability of the front for both the two problems. We summarize
such a result in the following theorem.

Theorem 6.3 (Corollary 4.8 in [12] and Theorem 6.6 in [1]). The following prop-
erties are satisfied.

Problem (2.16): Fiz~y > 1. Then the front of the planar travelling wave solution of
problem (2.5)-(2.7) is pointwise unstable, i.e., there exists a positive constant
C’ such that for every yo € R and for every p > 0 there exist ug € Xoy o with
luollxsr < p, and ng € N such that, |s(ng,uo)(yo)| > C".
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Problem (3.15): Fiz 0 < 6; < 1 and the ¢ sufficiently large. Then, for each Le €

7.

(0,Le.) both the trailing and the ignition interfaces of the planar travelling
wave solution to problem (3.3) is unstable, i.e., there exists a positive constant
C’ such that for each yo € R and § > 0 there exist ug,uy € B(0,0) C Xota
and no,n§ € N depending on § such that min{|f(no,yo)|, |lg(n§, yo)|} > C".

Conclusion. In this paper, we have considered two classes of free-interface prob-

lems in combustion theory describing the propagation of premixed flames:

(

(i) the conventional diffusional-thermal models with standard Arrhenius kinetics
(see [13]): at the flame front, i.e. the free interface, the temperature and mass
fraction gradients are discontinuous (thin flame);

ii) models describing dynamics of thick flames with stepwise ignition-temperature
kinetics have recently received considerable attention (see [4]). There are dif-
ferences with the Arrhenius kinetics: in the case of zero-order stepwise kinetics
there are two free interfaces; the temperature and mass fraction gradients are
this time continuous.

We have shown that in both classes the instability of the traveling wave solution

can be addressed by the method of [8] initially developed for solving problems with
discontinuous gradient at the interface. The velocity of the front is associated with a
combination of spatial derivatives up to the second-order. Subsequently, the system

is

reformulated as a fully nonlinear problem (see [25]) and the theory of analytic

semigroups is then a key tool to study the linearized operators. We also observed
that the non-degeneracy (or transversality) condition in [8] may be circumvented
by differentiating at least partially the system.

of

il

We point out that this method is quite general and may apply to other gamuts
problems that involve a finite number of free interfaces or free boundaries.
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