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ENTROPIC CURVATURE ON GRAPHS

ALONG SCHRÖDINGER BRIDGES AT ZERO TEMPERATURE.

PAUL-MARIE SAMSON

Abstract. Lott-Sturm-Villani theory of curvature on geodesic spaces has been extended to discrete graph

spaces by C. Léonard by replacing W2-Wasserstein geodesics by Schrödinger bridges in the definition

of entropic curvature [24, 26, 25]. As a remarkable fact, as a temperature parameter goes to zero, these

Schrödinger bridges are supported by geodesics of the space. We analyse this property on discrete graphs

to reach entropic curvature on discrete spaces. Our approach provides lower bounds for the entropic

curvature for several examples of graph spaces: the lattice Zn endowed with the counting measure, the

discrete cube endowed with product probability measures, the circle, the complete graph, the Bernoulli-

Laplace model. Our general results also apply to a large class of graphs which are not specifically studied

in this paper.

As opposed to Erbar-Maas results on graphs [28, 10, 11], entropic curvature results of this paper im-

ply new Prékopa-Leindler type of inequalities on discrete spaces, and new transport-entropy inequalities

related to refined concentration properties for the graphs mentioned above. For example on the discrete

hypercube {0, 1}n and for the Bernoulli Laplace model, a new W2 − W1 transport-entropy inequality is

reached, that can not be derived by usual induction arguments over the dimension n. As a surprising fact,

our method also gives improvements of weak transport-entropy inequalities (see [15]) associated to the

so-called convex-hull method by Talagrand [39].

The paper starts with a brief overview about known results concerning entropic curvature on discrete

graphs. Then we introduce a specific entropic curvature property on graphs (see Definition 1.1), derived

from C. Léonard approach [24, 26, 25], and dealing with Schrödinger bridges at zero temperature.

The main curvature results are given in section 2, with their connections to new transport-entropy

inequalities. The concentration properties following from such transport-entropy inequalities are not

developed in the present paper. For that purpose, we refer to [35] and [15] by Gozlan & al, where the

link between transport-entropy inequalities and concentration properties are widely investigated.

The strategy of proof, presented in section 3, uses the so called slowing-down procedure for Schrödinger

bridges associated to jump processes on discrete spaces pushed forward by C. Léonard. The key theo-

rem of the present paper, Theorem 3.5 (with Lemma 3.1), is derived from this procedure, which consists

of decreasing a temperature parameter γ to 0 in order to construct W1-Wasserstein geodesics on the set

of probability measures on the graph. All the curvature results of this paper are derived from Theorem

3.5. Our strategy also applies for many other graph spaces which are not considered in this paper. The

main goal of this work is to push forward Leonard’s slowing-down procedure to reach entropic cur-

vature on graphs through few significant new results. In a forthcoming paper, one will give sufficient

geometric conditions to reach entropic curvature property on non-specific graphs from Theorem 3.5.
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1. Introduction : Schrödinger bridges for entropic curvature

For any measurable space Y, we noteM(Y) the set of all non-negative measures on Y and P(Y) the

set of all probability measures on Y.

Let (X, d) be a geodesic space equipped with a reference measure m ∈ M(X). According to Lott-

Strum-Villani theory of curvature on geodesic spaces [27, 37, 38, 41], a lower bound K ∈ R on the

entropic curvature of the space (X, d,m) is characterized by a K-convexity property of the relative

entropy along constant speed geodesics of the Wasserstein space (P2(X),W2). Let us precise this

property for the non specialist reader. By definition, the relative entropy of a probability measure q on

a measurable space Y with respect to a measure r ∈ M(Y) is given by

H(q|r) :=

∫

Y
log(dq/dr) dq ∈ (−∞,∞],

if q is absolutely continuous with respect to r and H(q|r) := +∞ otherwise. We refer to [23] for more

details about this definition. The space P2(X) is the set of probability measures with second moment

and W2 is the Wasserstein distance of order 2 on X: namely, for any ν0, ν1 ∈ P2(X),

(1) W2(ν0, ν1) :=

(
inf

π∈Π(ν0,ν1)

"
d(x, y)2dπ(x, y)

)1/2

,

where Π(ν0, ν1) is the set of all probability measures on the product space X × X with first marginal

ν0 and second marginal ν1 (also called transference plans from ν0 to ν1). A path (νt)t∈[0,1] in P2(X) is

a constant speed W2-geodesic from ν0 to ν1 if for all 0 ≤ s < t ≤ 1, W2(νs, νt) = (t − s)W2(ν0, ν1).

The K-convexity property of the relative entropy H(·|m) is expressed as follows: for any ν0, ν1 ∈ P2(X)

whose supports are included in the support of m, there exists a constant speed W2-geodesic (νt)t∈[0,1]

from ν0 to ν1 such that for all t ∈ [0, 1],

H(νt|m) ≤ (1 − t) H(ν0|m) + t H(ν1|m) − K

2
t(1 − t) W2

2 (ν0, ν1).(2)

If such a property holds, one says that the Lott-Sturm-Villani entropic curvature of the space (X, d,m)

is bounded from below by K.
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Property (2) with K = 0 has been discovered by McCann on the Euclidean space (X, d) = (Rd, | · |2)

endowed with the Lebesgue measure [29]. More generally, as a remarkable fact, when X is a Rie-

mannian manifold equipped with its geodesic distance d and a measure m with density e−V with respect

to the volume measure, property (2) is equivalent to the so-called Bakry-Emery curvature condition

CD(∞,K): Ricc + Hess(V) ≥ K (see e.g. [3]). As a consequence, due to the wide range of impli-

cations of this notion of curvature, property (2) has been used as a guideline by Lott-Sturm-Villani to

define curvature on geodesic spaces (see also [1, 2]) and then by different authors to propose entropic

definitions of curvature on discrete spaces : Bonciocat-Sturm [6], Ollivier-Villani on the discrete cube

[34], Erbar-Maas [28, 10, 11], Mielke [30], Léonard [24, 26, 25], Hillion [18, 19] and Gozlan-Roberto-

Samson-Tetali [14].

This paper concerns Léonard entropic approach of curvature in discrete setting, from which we also

recover results from [14] and [18]. In discrete spaces, several other notions of curvature have already

been studied which are not considered in this paper : the coarse Ricci curvature [32, 33], the Bochner-

Bakry-Emery approach with the (Bochner) curvature [7, 20] and the curvature dimension or exponential

curvature dimension inequality [4].

For m as unique invariant probability measure of a Markov kernel on a discrete space X, a first global

entropic approach has been proposed by M. Erbar and J. Maas [28, 10, 11]. The core of their approach is

the construction of an abstract Wasserstein distanceW2 on P(X), that replaces the Wasserstein distance

W2 in (2). This distance W2 is defined using a discrete analogue of the Benamou-Brenier formula for

W2, in order to provide a Riemannian structure for the probability space P(X). Unfortunately, there

is no static definition of W2
2

as a minimum of a cost among transference plans π as in the definition

(1) of W2
2
. Erbar-Maas entropic Ricci curvature definition satisfies a tensorisation property for product

of graphs that allows to consider high dimensional spaces [10]. This definition has been used to get

lower bounds on curvature for several models of graphs : the discrete circle, the complete graph, the

discrete hypercube [28, 10], the Bernoulli-Laplace model, the random transposition model [12, 13],

birth and death processes, zero-range processes [13], Cayley graphs of non-abelian groups, weakly

interacting Markov chains such as the Ising model [9]. The main strategy of all this papers is to prove

an equivalent criterion of Erbar-Maas entropic curvature given in [10], by identifying some discrete

analogue of the Bochner identity in continuous setting.

Finding a minimizer in the definition of W2(ν0, ν1) is known as the quadratic Monge-Kantorovich

problem. By the so-called slowing down procedure, T. Mikami [31] and then C. Léonard [22, 24,

25, 26] show that the quadratic Monge-Kantorovich problem in continuous, but also the W1-Monge-

Kantorovich problem in discrete, can be understood as the limit of a sequence of entropy minimization

problems, the so-called Schrödinger problems.

In this paper, the slowing down procedure, described further, is used to prove entropic curvature

properties of type (2) as X is a graph, endowed with its natural graph distance d = d∼, and with a

measure m, reversible with respect to some generator L. More precisely, in property (2), constant

speed W2-geodesics (νt)t∈[0,1] are replaced by constant speed W1-geodesics where W1 is the Wasserstein

distance of order 1 given by

W1(ν0, ν1) := inf
π∈Π(ν0,ν1)

"
d(x, y) dπ(x, y), ν0, ν1 ∈ P(X).

As explained below, each of these constant speed W1-geodesics, denoted by (Q̂0
t )t∈[0,1] throughout this

paper, is the limit path of a sequence of Schrödinger briges (Q̂
γ
t )t∈[0,1] indexed by a temperature param-

eter γ > 0, as γ goes to zero. We call it Schrödinger brige at zero temperature. In property (2), the

curvature term W2
2
(ν0, ν1) is also replaced by some transport cost Ct(ν0, ν1) that may also depend on the

parameter t ∈ (0, 1). Let Pb(X) denotes the set of probability measures on X with finite support. The

analogue of property (2) on discrete graphs at the focus of this work is the following.



4 PAUL-MARIE SAMSON

Definition 1.1. On the discrete space (X, d,m, L), one says that the relative entropy is C-displacement

convex where C = (Ct)t∈[0,1], if for any probability measure ν0, ν1 ∈ Pb(X), the Schrödinger bridge at

zero temperature (Q̂0
t )t∈[0,1] from ν0 to ν1, satisfies for any t ∈ (0, 1),

H(Q̂0
t |m) ≤ (1 − t)H(ν0|m) + t H(ν1|m) − t(1 − t)

2
Ct(ν0, ν1).(3)

For some of the graphs studied in this paper, the cost Ct(ν0, ν1) is bigger than K W1(ν0, ν1)2 for any

t ∈ (0, 1) with K ≥ 0. In that case one may say that the W1-entropic curvature of the space (X, d,m, L)

is bounded from below by K. Such a property is also a consequence of Erbar-Maas entropic curvature

since W2 ≥ W1 but their property deals with different constant speed geodesics on P(X). Let us

introduce another discrete analogue of the W2-distance:

(4) Wd
2 (ν0, ν1) :=

(
inf

π∈Π(ν0,ν1)

"
d(x, y)

(
d(x, y) − 1

)
dπ(x, y)

)1/2

, ν0, ν1 ∈ P2(X).

For some graphs in this paper, we also get

Ct(ν0, ν1) ≥ K′
(
W2(ν0, ν1)2 −W1(ν0, ν1)

)
≥ K′Wd

2 (ν0, ν1)2,

with K′ ≥ 0. In that case, one may say that the Wd
2
-entropic curvature, of the space (X, d,m, L) is

bounded from below by K′.

In the definition (4) of Wd
2
, the cost d(x, y)(d(x, y) − 1) is zero if x and y are neighbours. Therefore the

optimal transport-cost Wd
2

does not well measure the distance between probabilities with close supports.

Observe that such type of costs also appear in the paper by Bonciocat-Sturm [6] in their definition of

rough (approximate) lower curvature.

In this paper, a C-displacement convexity property is proved for the following discrete spaces : the

lattice Zn endowed with the counting measure (see Theorem 2.2), the discrete hypercube endowed with

product probability measures (see Theorem 2.4), the discrete circle endowed with uniform measure (see

Theorem 2.5), the complete graph (see Theorem 2.3), the Bernoulli-Laplace model (see Theorem 2.6).

For all these graphs, one gets a non-negative lower bound for their W1 or Wd
2

-entropic curvature. In a

forthcoming paper one will present geometric conditions on the space (X, d,m, L) for non-negative W1

or Wd
2
-entropic curvature.

For more comprehension, let us briefly explain the slowing down procedure in its original continuous

setting before considering discrete spaces. Let Rγ be the law of a reversible Brownian motion with

diffusion coefficient γ > 0 on the set Ω of continuous paths from [0, 1] to X = Rd. The coefficient

γ can be also interpreted as a temperature parameter. The measure Rγ ∈ M(Ω) is a Markov measure

with infinitesimal operator Lγ = γ∆ (where ∆ denotes the Laplacian), and initial reversible measure

dm = dx, the Lebesgue measure on Rd.

In all the paper, we use the following notations. For any t ∈ [0, 1], Xt is the projection map

Xt : ω ∈ Ω 7→ ωt ∈ X.

Given Q ∈ M(Ω), the measure Qt := Xt#Q on X denotes the push-forward of the measure Q by Xt, and

for any 0 ≤ t < s ≤ 1, the measure Qs,t := (Xs, Xt)#Q on X×X denotes the push forward of the measure

Q by the projection map (Xs, Xt). For any integrable function F : Ω→ R with respect to Q, one notes

EQ[F] :=

∫

Ω

FdQ.
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The informal result by T. Mikami [31] or C. Léonard [22] is the following: for any absolutely contin-

uous measures ν0, ν1 ∈ P2(X), for any sequences (γk)k∈N of temperature parameters going to zero,

W2
2 (ν0, ν1) = inf

Q∈P(Ω)

{
EQ[c]

∣∣∣∣Q0 = ν0,Q1 = ν1

}

= lim
γk→0

[
γk min

Q∈P(Ω)

{
H(Q|Rγk )

∣∣∣∣ Q0 = ν0,Q1 = ν1

}]
,

where c(ω) :=
∫ 1

0
| .ωt |2dt, if the path ω = (ωt)t∈[0,1] is absolutely continuous (

.
ω denotes its time

derivative), and c(ω) := +∞ otherwise. The first equality is known as the Benamou-Brenier formula

(see [5]). The second equality therefore relates W2 to the so-called dynamic Schrödinger minimization

problems. As a convex minimization problem, for any fixed γ > 0, it admits a single minimizer Q̂γ,

namely

(5) min
Q∈P(Ω)

{
H(Q|Rγ)

∣∣∣∣ Q0 = ν0,Q1 = ν1

}
= H(Q̂γ |Rγ).

As interpretation, the measure Q̂γ is the law of the process with configuration Q̂
γ

0
= ν0 at time t = 0

and Q̂
γ

1
= ν1 at time t = 1, which is the closest one for the entropic distance, to a reversible Brownian

motion with diffusion coefficient γ. As a result (see [31, 22]), the sequence of minimizers (Q̂γk )k∈N
converges to a single measure Q̂0 ∈ P(Ω). For any t ∈ [0, 1], let ν

γ
t := Q̂

γ
t and νt := Q̂0

t . By definition,

(ν
γ
t )t∈[0,1] is a Schrödinger bridge from ν0 to ν1 at fixed temperature γ, and as a main result, as γk goes

to zero, the limit path (νt)t∈[0,1], is a W2-geodesic from ν0 to ν1 (see [24]). Therefore, it is natural to

consider a relaxation of the curvature definition (2) by replacing the geodesic (νt)t∈[0,1] by the bridge

(ν
γ
t )t∈[0,1] and by replacing W2

2
(ν0, ν1) by γH(Q̂γ |Rγ). This idea has been explored in continuous setting

by G. Conforti in [8].

Let us present the discrete analogue of this approach due to C. Léonard [24, 26, 25]. From now on,

the space X is a countable set endowed with the σ-algebra generated by singletons. The set Ω ⊂ X[0,1]

denotes the space of all left-limited, right-continuous, piecewise constant paths ω = (ωt)t∈[0,1] on X,

with finitely many jumps. The space Ω is endowed with the σ-algebra F generated by the cylindrical

sets. In all the paper, by convention, a sum indexed by an empty set is equal to zero.

According to C. Léonard’s paper [25], the discrete space X is equipped with a metric distance d. This

distance is assumed to be positively lower bounded: for all x , y in X, d(x, y) ≥ 1. The space X is also

the set of vertices of a connected graph G = (X, E) where E ⊂ X × X denotes the set of directed edges

of the graph. G is supposed to be an undirected graph so that for all (x, y) ∈ E, one has (y, x) ∈ E. Two

vertices x and y are neighbours and we note x ∼ y if (x, y) ∈ E. We assume that any vertex x ∈ X has a

finite number of neighbours dx and that supx∈X dx = dmax < ∞. We note V(x) the set of neighbours of

x. The length ℓ(ω) of a piecewise constant path ω = (ωt)t∈[0,1] ∈ Ω is given by

ℓ(ω) :=
∑

0<t<1

d(ωt− , ωt).

In C. Léonard’s paper, the distance is assumed to be intrinsic in the discrete sense (see [25, Hypothesis

2.1]), this means that for any x, y ∈ X,

d(x, y) := inf
{
ℓ(ω)

∣∣∣ω ∈ Ω, ω0 = x, ω1 = y
}
.

In this paper, we only consider the simple case where d = d∼ is the graph distance for which the above

assumptions are fulfilled: d∼(x, y) = 1 if and only if x ∼ y.

A discrete path α of length ℓ ∈ N joining two vertices x and y is a sequence of ℓ + 1 neighbours

α = (z0, . . . , zℓ) so that z0 = x and zℓ = y. In the sequel, we note z ∈ α if there exists i ∈ {0, . . . , ℓ} such

that z = zi, and we note (z, z′) ∈ α if there exists 0 ≤ i < j ≤ ℓ such that z = zi and z′ = z j. The distance

d(x, y) is also the minimal length of a path joining x and y. A discrete geodesic path joining x to y is a
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path of length d(x, y) from x to y. We note G(x, y) the set of all geodesic paths joining x to y, and we

note [x, y] the set of all points that belongs to a geodesic from x to y,

[x, y] :=
{
z ∈ X

∣∣∣ z ∈ α, α ∈ G(x, y)
}
.

At fixed temperature γ > 0, as reference measure on Ω, we consider a Markov path measure Rγ with

generator Lγ defined by for any x, y ∈ X
{

Lγ(x, y) := γd(x,y)L(x, y) for x , y,

Lγ(x, x) := 1 −∑
y∈X,y,x Lγ(x, y),

and initial reversible invariante measure R
γ

0
= m. More precisely, we assume that m is reversible with

respect to L, which means that for any x, y ∈ X
m(x)L(x, y) = m(y)L(y, x).

It implies that m is reversible with respect to Lγ for any γ > 0, and therefore R
γ
t = m for all t ∈ [0, 1].

We also assume that the Markov process is irreducible so that m(x) > 0 for all x ∈ X. Recall that from

the definition of a generator, for any t ≥ 0 and any x, y ∈ X, one has

R
γ

t,t+h
(x, y) = R

γ
t (x)(δx(y) + Lγ(x, y)h + o(h)),

where δx is the Dirac measure at point x. We note Pt, t ≥ 0, the Markov semi-group associated to L,

and P
γ
t , t ≥ 0, the Markov semi-group associated to Lγ, γ > 0. By reversibility, one has for any x, y ∈ X

R
γ

0,t
(x, y) = m(x)P

γ
t (x, y) = m(y)P

γ
t (y, x),

and since the process is irreducible, P
γ
t (x, y) > 0 for all t > 0 and all x, y ∈ X. For any integrable

function f : X → R with respect to P
γ
t (x, ·), we set

P
γ
t f (x) :=

∑

y∈X
f (y) P

γ
t (x, y).

In this paper we only consider generator L satisfying :

(6) L(x, y) > 0 if and only if x ∼ y,

so that P
γ
t = Pγt for all γ, t > 0, but also for any x , y,

d(x, y) = min
{
k ∈ N

∣∣∣ Lk(x, y) > 0
}
.

Let ν0, ν1 ∈ P(X) with respective densities h0 and h1 according to m. In Léonard’s paper [25], The-

orem 2.1 ensures that under some assumptions (see [25, Hypothesis 2.1]), at fixed temperature γ > 0,

the minimum value of the dynamic Schrödinger problem (5) is reached for a single probability mea-

sure Q̂γ which is Markov. This Markov property implies that the measure Q̂γ has density f γ(X0)gγ(X1)

with respect to Rγ, where f γ and gγ are non-negative functions on X satisfying the following so-called

Schrödinger system
{

f γ(x) P
γ

1
gγ(x) = h0(x),

gγ(y) P
γ

1
f γ(y) = h1(y),

∀x, y ∈ X.(7)

Since f γ is non-negative and f γ , 0, by irreducibility one has P
γ
t f γ > 0 for all t > 0, and for the same

reason, P
γ
t gγ > 0 for all t > 0. As a consequence, if ν0 and ν1 have finite support, then the Schrödinger

system (7) implies that f γ and gγ have also finite support.

According to [26, Theorem 6.1.4.], from the Markov property, the law at time t of the Schrödinger

bridge at fixed temperature γ, Q̂
γ
t , is given by: for any z ∈ X,

(8) Q̂
γ
t (z) = P

γ
t f γ(z)P

γ

1−t
gγ(z)m(z) =

∑

x,y∈X
m(z)P

γ
t (z, x)P

γ

1−t
(z, y) f γ(x)gγ(y).
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Let us present another expression for Q̂
γ
t . First, by reversibility, one has

∑

z∈X
m(z)P

γ
t (z, x)P

γ

1−t
(z, y) = m(x)P

γ

1
(x, y) = R

γ

0,1
(x, y).

Therefore, setting

(9) ν
γ
t

x,y
(z) :=

m(z)P
γ
t (z, x)P

γ

1−t
(z, y)

m(x)P
γ

1
(x, y)

=
P
γ
t (x, z)P

γ

1−t
(z, y)

P
γ

1
(x, y)

=
P
γ

1−t
(y, z)P

γ
t (z, x)

P
γ

1
(y, x)

,

and

π̂γ(x, y) := Q̂
γ

0,1
(x.y) = R

γ

0,1
(x, y) f γ(x)gγ(y),

we get

Q̂
γ
t (z) =

∑

x,y∈X
ν
γ
t

x,y
(z) π̂γ(x, y), z ∈ X.

Actually, for any x, y ∈ X, (ν
γ
t

x,y
)t∈[0,1] is the Schrödinger bridge joining the Dirac measures δx and δy.

The path (Q̂
γ
t )[0,1] is therefore a mixing of these Schrödinger bridges, according to the coupling measure

π̂γ ∈ Π(ν0, ν1).

Using the Schrödinger system (7), the measure π̂γ can be rewritten as follows,

π̂γ(x, y) = ν0(x)
gγ(y)P

γ

1
(x, y)

P
γ

1
gγ(x)

= ν1(y)
f γ(x)P

γ

1
(y, x)

P
γ

1
f γ(y)

.

For any ν ∈ P(X), let supp(ν) denote the support of the measure ν, supp(ν) := {x ∈ X | ν(x) > 0}. The

measure π̂γ admits the following decomposition,

π̂γ(x, y) = ν0(x) π̂γ→(y|x) = ν1(y) π̂γ←(x|y),

where π̂γ→ and π̂γ← are the Markov kernel defined by, for any x ∈ supp(ν0),

π̂γ→(y|x) :=
gγ(y)P

γ

1
(x, y)

P
γ

1
g(x)

,

and for any y ∈ supp(ν1),

π̂γ←(x|y) :=
f γ(x)P

γ

1
(y, x)

P
γ

1
f γ(y)

.(10)

In order to fulfil this presentation, recall that the static Schrödinger minimization problem associated

to R
γ

0,1
is to find the minimum value of H(π|Rγ

0,1
) over all π ∈ Π(ν0, ν1). Theorem 2.1. by C. Léonard

[25] ensures that under Hypothesis 2.1 of its paper, this minimum value is the same as the one of the

dynamic Schrödinger minimization problem. Moreover it is reached for π̂γ = Q̂
γ

0,1
∈ P(X × X) and

therefore

inf
π∈Π(ν0,ν1)

H(π|Rγ
0,1

) = H(̂πγ|Rγ
0,1

) = H(Q̂γ |Rγ).

As in the continuous case, let us now apply the slowing down procedure. As the temperature γ

decreases to zero, the jumps of the Markov process are less frequent, and the reference process is

therefore a lazy random walk according to C. Léonard’s terminology. In order to justify the behaviour of

the Scrödinger bridge as the temperature goes to zero, for computational reasons, we need the following

not so restrictive additional assumptions.

• The measure m is bounded,

sup
x∈X

m(x) < ∞, and inf
x∈X

m(x) > 0.(11)
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• The generator L is uniformly bounded : there exists S ≥ 1 such that

sup
x∈X
|L(x, x)| ≤ S ,(12)

and there exists I ∈ (0, 1] such that

inf
x,y∈X,x∼y

L(x, y) ≥ I.(13)

• For any x ∈ X, there exists γo ∈ (0, 1] such that
∑

y∈X
γ

d(x,y)
o < ∞.(14)

Hypothesis (12) implies that the semi-group (P
γ
t )t≥0 is given by

P
γ
t := etγL

=

∑

k∈N

(tγ)k

k!
Lk.(15)

Let us now consider the behaviour of the Schrödinger bridges (Q̂
γ
t )t∈[0,1] as γ goes to zero. Assume

ν0 and ν1 have finite support. As condition (12) holds, Lemma 4.3 (iv) gives the limit of the path

(ν
γ
t

x,y
)t∈[0,1] defined by (9): namely, for any z ∈ X,

(16) lim
γ→0

ν
γ
t

x,y
(z) = ν0

t

x,y
(z) := 1[x,y](z) r(x, z, z, y) ρ

d(x,y)
t (d(x, z)),

where for any x, z, v, y ∈ X,

(17) r(x, z, v, y) =
Ld(x,z)(x, z)Ld(v,y)(v, y)

Ld(x,y)(x, y)
,

and ρd
t denotes the binomial law with parameter t ∈ [0, 1], d ∈ N :

ρd
t (k) :=

(
d

k

)
tk(1 − t)d−k, k ∈ {0, . . . , d},

with the binomial coefficient
(
d
k

)
:= d!

k!(d−k)!
. Observe that ν0

0

x,y
is the Dirac measure at point x and ν0

1

x,y

is the Dirac measure at point y. Moreover, for any t ∈ (0, 1), the support of ν0
t

x,y
is [x, y], the set of points

on discrete geodesics from x to y. Therefore this limit Schrödinger bridge (ν0
t

x,y
)t∈[0,1] is consistent with

the metric graph structure. This is not surprising. Indeed, roughly speaking, ν0
t

x,y
can be interpreted

as the law of a process going from x to y which is closest to a lazy random walk (since γ goes to 0).

Therefore this process is forced to follow the geodesics of the graph from x to y.

For fixed x , y, the law ν0
t

x,y
on [x, y] can be described as follows. Let N denote a binomial random

variable with parameters t ∈ [0, 1] and d = d(x, y) ∈ N, and let Γ be a random discrete geodesic in

G(x, y) whose law is given by

P(Γ = α) =
L(α0, α1) · · · L(αd−1, αd)

Ld(x,y)(x, y)
, for all α = (α0, α1, . . . , αd) ∈ G(x, y).

If N and Γ = (Γ0, . . . , Γd) are independent then ν0
t

x,y
is the law of ΓN.

Let us come back to the behaviour of the Schrödinger bridges at low temperature. C. Léonard [25,

Theorem 2.1] proves that given a positive sequence (γk)k∈N with limk→∞ γk = 0, the sequence of op-

timal Schrödinger minimizers (Q̂γk )k∈N converges to a single probability measure Q̂0 ∈ P(Ω) for the

narrow convergence, provided Hypothesis 2.1 holds. In this paper, the measure Q̂0 is named as the limit

Schrödinger problem optimizer at zero temperature, between ν0 and ν1. In the framework of this work,
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choosing two probability measures ν0 and ν1 with finite supports, Hypothesis 2.1 in [25] is reduced to

the following assumption (see condition (µ) in Hypothesis 2.1): for any x, y ∈ X and for any γ > 0

ERγ
[
ℓ | X0 = x, X1 = y

]
< ∞.

According to Lemma 4.3 (vi), this assumption is fulfilled thanks to (12) since P
γ

1
(x, y) > 0 for any

x, y ∈ X and γ > 0.

As a main result of [25, Theorem 2.1], the measure Q̂0 is also a solution of the following dynamic

Monge-Kantorovich problem :

inf
{
EQ[ℓ]

∣∣∣ Q ∈ P(Ω),Q0 = µ0,Q1 = µ1

}
= E

Q̂0[ℓ].

The sequence of coupling measures (̂πγk )k∈N also weakly converges to

π̂0 := Q̂0
0,1.

Moreover, similarly to the continuous case, π̂0 is a W1-optimal coupling of ν0 and ν1, it means a mini-

mizer of W1(ν0, ν1),

W1(ν0, ν1) =

"
d(x, y) dπ̂0(x, y) = E

Q̂0(ℓ).

The weak convergence of (Q̂γk )k∈N to Q̂0 also provides the convergence of (Q̂
γk

t )k∈N to Q̂0
t , and one

has

Q̂0
t (z) =

"
ν0

t

x,y
(z) dπ̂0(x, y).(18)

The path (Q̂0
t )t∈[0,1] is joining ν0 to ν1. According to its construction, this bridge is called Schrödinger

bridge at zero temperature from ν0 to ν1. Observe that for any t ∈ (0, 1), the support of Q̂0
t only depends

of the support of the optimal coupling π̂0 of ν0 and ν1,

(19) supp(Q̂0
t ) =

⋃

(x,y)∈supp(̂π0)

[x.y].

As a main result, C. Leonard proves that with hypothesis (6), the path (Q̂0
t )t∈[0,1] is a constant speed

W1-geodesic (see [25, Theorem 3.15]): for any 0 ≤ s ≤ t ≤ 1,

W1

(
Q̂0

t , Q̂
0
s

)
= (t − s)W1(ν0, ν1).

2. Main results : examples of entropic curvature bounds along Schrödinger bridges on graphs

The main purpose of this section is to present W1 or Wd
2
-entropic curvature bounds or improved ver-

sions of these, for several discrete graph spaces (X, d,m, L), in the framework of the first section. As

explained before, these bounds follows from C-displacement convexity properties (3) of the relative

entropy along Schrödinger bridges at zero temperature (Q̂0
t )t∈[0,1], derived from the slowing down pro-

cedure.

As in the paper [14], C-displacement convexity properties imply a wide range of functional inequali-

ties for the measure m on X, such as Prékopa-Leindler type of inequalities, transport-entropy inequali-

ties, and also discrete Poincaré or modified log-Sobolev inequalities.

To avoid lengths, discrete Poincaré and modified log-Sobolev inequalities are not considered in the

present paper. However, we push forward new transport-entropy inequalities to emphasize the efficiency

of the Schrödinger approach. Indeed, optimal transport costs derived from this method are well suited

to get new concentration properties, using known connections between transport-entropy inequalities

and concentration properties pushed forward in [15]. Observe that Erbar-Mass approach [11] does not

allow to recover such concentration properties on discrete graphs.
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New Prékopa-Leindler type of inequalities are also a straighforward dual consequence of the C-

displacement convexity properties (3). Theorem 2.1 below is a general statement that applies for each

of the discrete spaces (X, d,m, L) studied in this paper and presented next.

Theorem 2.1. On a discrete space (X, d,m, L), assume that the relative entropy satisfies the C-displacement

convexity property (3) with C = (Ct)t∈(0,1) given by : for any ν0, ν1 ∈ Pb(X)

Ct(ν0, ν1) =

"
ct(x, y) dπ̂0(x, y),

where π̂0
= Q̂0

01
, and Q̂0 is the limit Schrödinger problem optimizer between ν0 and ν1. Then, the next

property holds. If f , g, h are functions on X satisfying

(1 − t) f (x) + tg(y) ≤
∫

h dν0
t

x,y
+

t(1 − t)

2
ct(x, y), ∀x, y ∈ X,

then (∫
e f dm

)1−t (∫
eg dm

)t

≤
∫

eh dm.

The proof of this result is an easy adaptation of the one of Theorem 6.3 in [14]. It is left to the reader.

For each of the discrete spaces (X, d,m, L) presented below, we describe the Schrödinger path at zero

temperature and, as a main result, we give a C-displacement convexity property (3) satisfied by the

reversible measure m by specifying the family of costs C = (Ct)t∈(0,1). The strategy of proof of these

results is explained in section 3.

2.1. The lattice Zn endowed with the counting measure. Let m denote the counting measure on

X = Zn. The graph structure on Zn is given by the set of edges

E :=
{
(z, z + ei), (z, z − ei)

∣∣∣ z ∈ Zn, i ∈ [n]
}
,

where [n] := {1, . . . , n} and (e1, . . . , en) is the canonical base of Rn. The graph distance is given by

d(x, y) =

n∑

i=1

|yi − xi|, x, y ∈ Zn.

The measure m is reversible with respect to the generator L defined by, for any z ∈ Zn, for any i ∈ [n],

L(z, z + ei) = L(z, z − ei) = 1, L(z, z) = −2n.

For any integers d, k1, . . . , kn such that d = k1 + · + kn,
(

d
k1 ,...,kn

)
=

d!
k1!···kn!

denotes the multinomial

coefficient. Since

Ld(x,y)(x, y) = #G(x, y) =

(
d(x, y)

|y1 − x1|, . . . , |yn − xn|

)
,

the Schrödinger bridge at zero temperature (Q̂0
t )t∈[0,1] joining two measures ν0, ν1 ∈ Pb(X) is given by

(18) with, according to (16),

ν0
t

x,y
(z) = 1[x,y](z)

(
d(x,z)

|z1−x1 |,...,|zn−xn |
)(

d(z,y)
|y1−z1 |,...,|yn−zn |

)

(
d(x,y)

|y1−x1 |,...,|yn−xn |
) ρ

d(x,y)
t (d(x, z))

= 1[x,y](z)

(
|y1 − x1|
|z1 − x1|

)
· · ·

(
|yn − xn|
|zn − xn|

)
td(x,z)(1 − t)d(z,y), z ∈ Zn.

Observe that (ν0
t

x,y
)t∈[0,1] is a binomial interpolation path as in the paper by E. Hillion [18].

Theorem 2.2. On the space (Zn,m, d, L), the relative entropy H(·|m) satisfies the 0-displacement con-

vexity property (3). In other words, for any Schrödinger bridge at zero temperature (Q̂0
t )t∈[0,1] joining

any two measures ν0, ν1 ∈ Pb(Zn), the map t 7→ H(Q̂0
t |m) is convex.



ENTROPIC CURVATURE ON GRAPHS. 11

Therefore the space (Zn, d,m, L) has non-negative W1 or Wd
2

-entropic curvature. It is a flat space.

This convexity property along binomial interpolation paths has been first obtained by E. Hillion [18].

To compare with Hillion’s method, the main interest of our approach is its simplicity. As explained

in the next section, we first work at positive temperature γ > 0 so that the second derivative of the

function t 7→ H(Q̂
γ
t |m) can be easily computed using Γ2 calculus. Then we analyse the behaviour of

the second derivative of this function as temperature goes to 0, and get a positive lower bound at zero

temperature on Zn. This provides the convexity property of t 7→ H(Q̂0
t |m). In Hillion’s paper, one

may say that computations are done directly at zero temperature. It leads to harder computations and

the construction of the optimal coupling, related to a cyclic monotonicity property, is rather difficult to

handle.

In the paper [16] by Gozlan & al., another kind of convexity property of entropy has been proposed

that generalizes a new Prekopa-Leindler inequality on Z by Klartag-Lehec [21] (see also the more recent

paper [17] by Halikias-Klartag-Slomka). There convexity property is of different nature, it is only valid

for t = 1/2. More precisely, given ν0, ν1 ∈ Pb(Z) they define two midpoint measures

ν− = m−#π and ν+ = m+#π,

where π is the monotone coupling between ν0 and ν1 (which is a W1-optimizer), and for all x, y ∈ Z,

m−(x, y) :=

⌊
x + y

2

⌋
, m+(x, y) :=

⌈
x + y

2

⌉
.

Gozlan & al. result [16, Theorem 8] states that

1

2
H(ν−|m) +

1

2
H(ν+|m) ≤ 1

2
H(ν0|m) +

1

2
H(ν1|m).

As a main difference, the measures ν+ and ν− are only concentrated on the midpoints m−(x, y), m+(x, y),

for x ∈ supp(ν0) and y ∈ supp(ν1). Since ν+ and ν− are much more concentrated than Q̂0
1/2

, their result

directly implies a Brunn-Minkovsky type of inequality. Unfortunately it seems that their approach do

not extend to any values of t ∈ (0, 1).

2.2. The complete graph. Let X be a finite set and µ be any probability measure on X. The set of

edges of the complete graph G = (X, E) is E := X × X \ {(x, x) | x ∈ X} and the graph distance is the

Hamming distance d(x, y) := 1x,y for any x, y ∈ X. The measure µ is reversible with respect to the

generator L given by : for any z, z′ ∈ X with z , z′,

L(z, z′) := µ(z′), L(z, z) := −(1 − µ(z)).

The Schrödinger bridge at zero temperature (Q̂0
t )t∈[0,1] given by (18), is the same as the bridge used in

[14] for the complete graph (see section 2.1.1): for any x, y ∈ X one has

ν0
t

x,y
(z) = (1 − t) δx(z) + t δy(z), z ∈ X.(20)

Theorem 2.3. On the finite space (X, µ, d, L), the relative entropy H(·|µ) satisfies the C-displacement

convexity property (3), with C = (Ct)t∈(0,1) given by: for any ν0, ν1 ∈ P(X) with associated limit

Schrödinger problem optimizer Q̂0 ∈ P(Ω),

Ct(ν0, ν1) :=

∫
ht

(∫
1w,x dπ̂0

→(w|x)

)
dν0(x) +

∫
h1−t

(∫
1w,y dπ̂0

←(w|y)

)
dν1(y),

where π̂0
= Q̂0

0,1
, and for any t ∈ (0, 1), u ≥ 0,

ht(u) :=
th(u) − h(tu)

t(1 − t)
, with h(u) =

{
2
[
(1 − u) log(1 − u) + u

]
for 0 ≤ u ≤ 1,

+∞ for u > 1.
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The cost Ct(ν0, ν1) can be compared with a function of the total variation distance

(21) ‖ν0 − ν1‖TV := 2 sup
A⊂X

|ν0(A) − ν1(A)| = 2 inf
π∈Π(ν0,ν1)

∫
1x,ydπ(x, y) = 2W1(ν0, ν1).

Namely, one has

(22) Ct(ν0, ν1) ≥ (1 +W1(ν0, ν1)) kt

(
W1(ν0, ν1)

1 +W1(ν0, ν1)

)
,

where for all v ∈ [0, 1/2],

(23) kt(v) := inf
α,β,0<α+β≤1

{
αht

(
v

α

)
+ βh1−t

(
v

β

)}
≥ 4v2

1 − v
.

Comments. • The estimate (22) and the inequality (23) (whose proofs are given at the end of the

proof of Theorem 2.3) imply

Ct(ν0, ν1) ≥ 4W1(ν0, ν1)2
= ‖ν0 − ν1‖2TV .

This provides the second convexity property of the relative entropy given in [14, Proposition

4.1] since Q̂0
t = (1 − t)ν0 + tν1, t ∈ [0, 1].

• An improved version of the Csiszar-Kullback-Pinsker inequality also follows from (22). Indeed,

since µ is a probability measure, by Jensen’s inequality H(Q̂0
t |µ) ≥ 0, and the displacement

convexity property (3) and (22) provides, for any t ∈ (0, 1),

1

2
(1 +W1(ν0, ν1)) kt

(
W1(ν0, ν1)

1 +W1(ν0, ν1)

)
≤ 1

t
H(ν0|µ) +

1

1 − t
H(ν1|µ), ∀ν0, ν1 ∈ P(X).

The well-known Csiszar-Kullback-Pinsker inequality is obtained using inequality (23) and then

optimizing over all t ∈ (0, 1) (see [14, Remark 4.2]), namely

1

2
‖ν0 − ν1‖2TV ≤

(√
H(ν0|µ) +

√
H(ν1|µ)

)2
, ∀ν0, ν1 ∈ P(X).

• Theorem 2.3 is also an improvement of the first convexity property of the relative entropy ob-

tained by Gozlan & al. [14, Proposition 4.1]. Indeed, the inequality ht(u) ≥ u2, for all u ∈ [0, 1],

t ∈ (0, 1), provides

Ct(ν0, ν1) ≥ T̃2(ν0, ν1),

with

T̃2(ν0, ν1) := inf
π∈Π(ν0,ν1)

[ ∫ (∫
1w,x dπ→(w|x)

)2

dν0(x) +

∫ (∫
1w,y dπ←(w|y)

)2

dν1(y)
]
.

2.3. Product measures on the discrete hypercube. In this section, the reference space is the discrete

hypercube X = {0, 1}n equipped with a product of Bernoulli measures

µ = µ1 ⊗ · · · ⊗ µn,

with for any i ∈ [n], µi(1) = 1 − µi(0) := αi, αi ∈ (0, 1).

For any z = (z1, . . . , zn) ∈ {0, 1}n and any i ∈ [n] let σi(z) denotes the neighbour of z according to the

i’s coordinate defined by

σi(z) := (z1, . . . , zi−1, zi, zi+1, . . . , zn),

where zi := 1 − zi. The set of edges on {0, 1}n is

E :=
{
(z, σi(z))

∣∣∣ z ∈ {0, 1}n, i ∈ [n]
}
,

and the graph distance is the Hamming distance :

d(x, y) :=

n∑

i=1

1xi,yi
, x, y ∈ {0, 1}n.
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The measure µ is reversible with respect to the generator L given by: for all z ∈ {0, 1}n,

L(z, σi(z)) := (1 − αi) zi + αizi, ∀i ∈ [n],

and L(z, z) := −∑n
i=1 L(z, σi(z)). Observe that setting

Li(zi, zi) := (1 − αi) zi + αizi, zi ∈ {0, 1},
and Li(zi, zi) = −Li(zi, zi), the Bernoulli measure µi is reversible with respect to Li and one has

L := L1 ⊕ · · · ⊕ Ln.

Easy computations give, for any x, y ∈ {0, 1}n,

Ld(x,y)(x, y) = d(x, y)!

n∏

i=1

(1 − αi)
[xi−yi]+α

[yi−xi]+
i

,(24)

and it follows that the Schrödinger bridge at zero temperature (Q̂0
t )t∈[0,1] joining two probability mea-

sures ν0 and ν1 is given by (18), with according to (16)

ν0
t

x,y
(z) = 1[x,y](z) td(x,z)(1 − t)d(z,y), z ∈ {0, 1}n.

This path has exactly the same structure as the one used in [14] to establish entropic curvature bounds

on the product space ({0, 1}n, µ) (see section 2.1.2).

Theorem 2.4. Let µ = µ1 ⊗ · · · ⊗ µn be a product probability measure on the discrete hypercube

X = {0, 1}n. On the space ({0, 1}n, µ, d, L), the relative entropy H(·|µ) satisfies the C-displacement

convexity property (3), with C = (Ct)t∈(0,1) defined by: for any ν0, ν1 ∈ P({0, 1}n) with associated limit

Schrödinger problem optimizer Q̂0 ∈ P(Ω),

Ct(ν0, ν1) := max
[ ∫ n∑

i=1

ht

(
Π

i
→(x)

)
dν0(x) +

∫ n∑

i=1

h1−t

(
Π

i
←(y)

)
dν1(y) , 4

n∑

i=1

(Πi)
2
,

n t3
2
(̂π0)

t2
3
(̂π0)

[
ht

(
t3 (̂π0)

n t2 (̂π0)

)
+ h1−t

(
t3 (̂π0)

n t2 (̂π0)

)] ]
,

where the definition of functions ht, t ∈ (0, 1) is given in Theorem 2.3, and setting π̂0
= Q̂0

0,1
,

Π
i
→(x) :=

∫
1wi,xi

dπ̂0
→(w|x), Πi

←(y) :=

∫
1wi,yi

dπ̂0
←(w|y), Πi :=

"
1xi,yi

dπ̂0(x, y),

and

t2 (̂π0) =

"
d(x, y)

(
d(x, y) − 1

)
dπ̂0(x, y), t3 (̂π0) =

"
d(x, y)

(
d(x, y) − 1

)(
d(x, y) − 2

)
dπ̂0(x, y)

Comments. • By the Cauchy-Schwarz inequality, one has

n∑

i=1

(Πi)2 ≥ 1

n
W2

1 (ν0, ν1).

As a consequence Ct(ν0, ν1) is bounded from below by 4W2
1
(ν0, ν1)2/n, and the W1-entropic

curvature of the discrete hypercube {0, 1}n is bounded from below by 4/n.

As in the previous part to recover the Csiszar-Kullback-Pinsker inequality, the well-know W1-

optimal transport inequality on the discrete cube for product probability measures follows from

the displacement convexity property (3), using H(Q̂0
t |µ) ≥ 0 and optimizing over all t ∈ (0, 1) :

2

n
W2

1 (ν0, ν1) ≤
(√

H(ν0|µ) +
√

H(ν1|µ)
)2
, ∀ν0, ν1 ∈ P({0, 1}n).
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This transport-entropy inequality is usually proved by induction over n (see [35, Proposition

3.3] for some general tensorization property for weak transport entropy inequalities). Actually,

Theorem 2.4 provides the following improvement of the W1-optimal transport inequality

2 inf
π∈Π(ν0,ν1)

n∑

i=1

("
1xi,yi

dπ(x, y)

)2

≤
(√

H(ν0|µ) +
√

H(ν1|µ)
)2
.

There is no induction proof of this transport entropy inequality.

• By bounding from below the cost Ct(ν0, ν1) by

T̃2(ν0, ν1) := inf
π∈Π(ν0,ν1)

[ ∫ n∑

i=1

(∫
1wi,xi

dπ→(w|x)

)2

dν0(x) +

∫ n∑

i=1

(∫
1wi,yi

dπ←(w|y)

)2

dν1(y)
]
,

one recovers a similar convexity property as the one obtained for the discrete cube in [14,

Corollary 4.4]. The only difference is in the expression (18) of the path (Q̂0
t )t∈[0,1], the coupling

measure π̂0 is replaced by an optimal Knothe-Rosenblatt coupling.

Marton’s transport entropy inequality on the discrete hypercube is a consequence of the last

lower bound on Ct(ν0, ν1): for any ν0, ν1 ∈ P({0, 1}n),

1

2
T̃2(ν0, ν1) ≤

( √
H(ν0|µ) +

√
H(ν1|µ)

)2
.

• Since for any t ∈ (0, 1) ht(u) ≥ u2, u ≥ 0, the cost Ct(ν0, ν1) can be also bounded from below by

(25)
2

n
t2 (̂π0) ≥ 2

n

(
W2

2 (ν0, ν1) −W1(ν0, ν1)
)
≥ 2

n
Wd

2

2
(ν0, ν1).

with Wd
2

defined by (4). Therefore the discrete hypercube has also Wd
2
-entropic curvature

bounded from below by 2/n.

The bound Ct(ν0, ν1) ≥ 2
n

t2 (̂π0) provides a new curved Prékopa-Lindler type of inequality on

the discrete hypercube by applying Theorem 2.1.

The estimate (25) with Theorem 2.4 also implies the following new transport-entropy in-

equality on the discrete hypercube, for any ν0, ν1 ∈ P({0, 1}n),

(26)
1

n
Wd

2 (ν0, ν1)2 ≤ 1

n

(
W2

2 (ν0, ν1) −W1(ν0, ν1)
)
≤

(√
H(ν0|µ) +

√
H(ν1|µ)

)2
,

Obviously we can improve this transport-entropy inequality by keeping the function ht and

h1−t. As opposed to Marton’s transport inequality or to W2-Talagrand’s transport inequality on

Euclidean space, inequality (26) on the hypercube does not tensorize. Nevertheless, it can be

interpreted as a discrete analogue on the hypercube of the W2-Talagrand’s transport inequality.

Indeed, from (26), applying the central limit theorem, one recovers, up to constant, the well-

known W2-transport entropy inequality for the standard Gaussian probability measure γ on

R, due to Talagrand [40]. Namely, one has for any absolutely continuous probability measure

ν ∈ P2(R),

W2
2 (ν, γ) ≤ 2H(ν|γ).(27)

For a sake of completeness, the proof of this implication is given in Appendix (see Lemma 4.1).

Unfortunately, to recover (27), the constant 2/n is expected, instead of 1/n in (26), like in the

W1-transport entropy inequality. Improving the transport-inequality (26) in order to recover

(27) is a remaining problem.



ENTROPIC CURVATURE ON GRAPHS. 15

2.4. The circle Z/NZ endowed with a uniform measure. Let N ∈ N and X be the space Z/NZ,

endowed with the uniform probability measure µ, µ(x) = 1/N. The measure µ is reversible with respect

to the generator L given by ,

L(z, z + 1) = L(z, z − 1) = 1, L(z, z) = −2,

for any z ∈ Z/NZ. One always have d(x, y) ≤ ⌊N/2⌋ = n where ⌊·⌋ denotes the floor function.

If N is odd then for any x, y ∈ Z/NZ, Ld(x,y)(x, y) = 1 and therefore the Schrödinger bridge at zero

temperature (Q̂0
t )t∈[0,1] joining two probability measures ν0 and ν1 on Z/NZ is given by (18), with

according to (16)

ν0
t

x,y
(z) = 1z∈[x,y] ρ

d(x,y)
t

(
d(x, z)

)
.

If N is even then for any x, y ∈ Z/NZ such that d(x, y) < N/2, Ld(x,y)(x, y) = 1 and Ld(x,x+n)(x, x+ n) =

2. The Schrödinger bridge at zero temperature (Q̂0
t )t∈[0,1] is given by (18), with according to (16) : if

d(x, y) < N/2 then

ν0
t

x,y
(z) = 1z∈[x,y] ρ

d(x,y)
t

(
d(x, z)

)
,

and if d(x, y) = N/2 (y = x + n), for any z ∈ Z/NZ \ {x, x + n},

ν0
t

x,x+n
(z) =

1

2
1z∈[x,x+n] ρ

d(x,x+n)
t

(
d(x, z)

)
,

and ν0
t

x,x+n
(x) = (1 − t)d(x,x+n) , ν0

t

x,x+n
(x + n) = td(x,x+n).

Theorem 2.5. On the space (Z/NZ, µ, d, L), the relative entropy H(·|µ) satisfies the 0-displacement

convexity (3).

Therefore the space (Z/NZ, d, µ, L) has positive entropic curvature, it is a flat space.

2.5. The Bernoulli-Laplace model. Let X = Xκ denotes the slice of the discrete hypercube {0, 1}n of

order k ∈ [n − 1], endowed with the uniform probability measure µ, namely

Xκ :=
{
x = (x1, . . . , xn) ∈ {0, 1}

∣∣∣ x1 + . . . + xn = κ
}
.

For z ∈ Xκ, we note J0(z) := {i ∈ [n] | zi = 0} and J1(z) := {i ∈ [n] | zi = 1}. For any i ∈ J0(z) and

j ∈ J1(z), one notes σi j(z) the neighbour of z in Xκ defined by
(
σi j(z)

)
i
= 1,

(
σi j(z)

)
j
= 0,

and for any ℓ ∈ [n] \ {i, j},
(
σi j(z)

)
ℓ
= zℓ. The set of edges of the graph is

E :=
{
(z, σi j(z))

∣∣∣ z ∈ Xκ, {i, j} ⊂ [n], zi = 0, z j = 1
}
,

and the graph distance is given by

d(x, y) :=
1

2

n∑

i=1

1xi,yi
, x, y ∈ Xκ.

The measure µ is reversible with respect to the generator L given by L(z, σi j(z)) := 1 for any i, j such

that zi = 0 and z j = 1, and L(z, z) := −κ(n − κ).

Since Ld(x,y)(x, y) = (d(x, y)!)2, the Schrödinger bridge at zero temperature (Q̂0
t )t∈[0,1] is given by (18),

with according to (16),

ν0
t

x,y
(z) = 1[x,y](z)

(
d(x, y)

d(x, z)

)−1

td(x,z)(1 − t)d(z,y), z ∈ Xκ.(28)
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Theorem 2.6. On the space (Xκ, µ, d, L), the relative entropy H(·|µ) satisfies the C-displacement con-

vexity property (3), with C = (Ct)t∈(0,1) defined by: for any ν0, ν1 ∈ P(Xκ) with associated limit

Schrödinger problem optimizer Q̂0 ∈ P(Ω),

Ct(ν0, ν1) := max
[ 4

min(κ, n − κ)W2
1 (ν0, ν1) , c̃t

(̂
π0) , 2

min(κ, n − κ) t2
(̂
π0)]

where π̂0
= Q̂0

0,1
and

t2
(̂
π0) :=

"
d(x,w)

(
d(x,w) − 1

)
dπ̂0(x,w),

c̃t

(̂
π0) := max

[ ∫ ∑

i∈J0(x)

ht

(
Π

i
→(x)

)
dν0(x),

∫ ∑

i∈J1(x)

ht

(
Π

i
→(x)

)
dν0(x)

]

+max
[ ∫ ∑

i∈J0(y)

h1−t

(
Π

i
←(y)

)
dν1(y),

∫ ∑

i∈J1(y)

h1−t

(
Π

i
←(y)

)
dν1(y)

]
,

with

Π
i
→(x) :=

∫
1wi,xi

dπ̂0
→(w|x), Π

i
←(y) :=

∫
1wi,yi

dπ̂0
←(w|y).

The definition of functions ht, t ∈ (0, 1) is given in Theorem 2.3.

Comments. • Let

T̃2(ν0, ν1) := inf
π∈Π(ν0,ν1)

[ ∫ n∑

i=1

(∫
1wi,xi

dπ→(w|x)

)2

dν0(x) +

∫ n∑

i=1

(∫
1wi,yi

dπ←(w|y)

)2

dν1(y)
]
.

One has

Ct(ν0, ν1) ≥ c̃t

(̂
π0) ≥ 1

2

∫ ∑

i∈[n]

ht

(
Π

i
→(x)

)
dν0(x) +

1

2

∫ ∑

i∈[n]

h1−t

(
Π

i
←(y)

)
dν1(y)

≥ 1

2
T̃2(ν0, ν1).

As a consequence, since H(Q̂0
t |µ) ≥ 0, optimizing over all t ∈ (0, 1), Theorem 2.6 implies the

following weak transport-entropy inequality, for any ν0, ν1 ∈ P(Xκ),
1

4
T̃2(ν0, ν1) ≤

(√
H(ν0|µ) +

√
H(ν1|µ)

)2
.

This inequality has been first surprisingly obtained in [36, Theorem 1.8 (b)] by projection of

a transport-entropy inequality for the uniform measure on the symmetric group, but with the

worse constant 1/8 instead of 1/2. Our approach is much more natural to reach such a result.

• Since Ct(ν0, ν1) ≥ 4
min(κ,n−κ) W2

1
(ν0, ν1), the W1-entropic curvature of the space (Xκ, d, L) is

bounded from below by 4
min(κ,n−κ) . Observe that this constant is optimal since for κ = 1 or

κ = n − 1, Xκ is the complete graph and one recovers its optimal lower curvature bound 4.

Similarly since

t2
(̂
π0) ≥ W2(ν0, ν1)2 −W1(ν0, ν1) ≥ Wd

2 (ν0, ν1)2,

the Wd
2
-entropic curvature of the space (Xκ, d, L) is bounded from below by 2

min(κ,n−κ) .

As for the discrete hypercube, the bound Ct(ν0, ν1) ≥ 2
min(κ,n−κ) t2

(̂
π0) with Theorem 2.1 pro-

vides a new type of curved Prékopa-Leindler inequality on the slices of the discrete hypercube.
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3. Proof of the main results

This section is divided into two parts. We first present general statements to prove displacement

convexity property (3) along Schrödinger bridges at zero temperature. Then we show how it applies for

each involved discrete space of the last part.

3.1. Strategy of proof, general statements to get entropic curvature results. In order to prove prop-

erty (3), we fixe two probability measures ν0 and ν1 in Pb(X) in this part. As in the paper by G. Conforti

[8] in continuous setting, the first step is to decompose the relative-entropy using the product structure

given by (8): for any t ∈ [0, 1],

H(Q̂
γ
t |m) = ϕγ(t) + ψγ(t),

where

ϕγ(t) :=

∫
log(P

γ
t f γ)P

γ
t f γ P

γ

1−t
gγdm and ψγ(t) :=

∫
log(P

γ

1−t
gγ)P

γ

1−t
gγ P

γ
t f γdm.

As recalled below, it is known that the function ϕγ is non-increasing and the function ψγ is non-

decreasing (see [26, Theorem 6.4.2]).

Then, the strategy is to analyse the behaviour of the second order derivative ϕ′′γ and ψ′′γ as γ goes to 0,

in order to apply the next Lemma. For any t ∈ (0, 1) let Kt : [0, 1]→ R+, be defined by

(29) Kt(u) =
2u

t
1u≤t +

2(1 − u)

1 − t
1u≥t, u ∈ [0, 1].

Kt is a kernel function since
∫ 1

0
Kt(u) du = 1.

Lemma 3.1. Assume that hypothesis (11), (12), (13) and (14) hold. Let (γk)k∈N be a sequence of positive

numbers that converges to 0. If for any t ∈ (0, 1)

lim inf
γk→0

ϕ′′γk
(t) ≥ ϕ′′0 (t), and lim inf

γk→0
ψ′′γk

(t) ≥ ψ′′0 (t),(30)

where ϕ0 and ψ0 are continuous functions on [0,1], twice differentiable on (0, 1), then the displacement

convexity property (3) holds with

Ct(ν0, ν1) :=

∫ 1

0

ϕ′′0 (u)Kt(u) du +

∫ 1

0

ψ′′0 (u)Kt(u) du

=
2

t(1 − t)

[
(1 − t)ϕ0(0) + tϕ0(1) − ϕ0(t) + (1 − t)ψ0(0) + tψ0(1) − ψ0(t)

]
.

Observe that if ϕ′′
0
= Kϕ and ψ′′

0
= Kψ are constant functions, then

Ct(ν0, ν1) =
(
Kϕ + Kψ

)
.

The proof of this lemma is postponed in Appendix B.

In order to apply Lemma 3.1, we need first to compute ϕ′γ, ψ
′
γ and ϕ′′γ , ψ

′′
γ in a suitable form so as to

get (30). For any real function u on X, we note

∇u(z,w) = u(w) − u(z), z,w ∈ X,
and

Lu(z) :=
∑

w∈X
u(w) L(z,w) =

∑

w,w∼z

∇u(z,w) L(z,w).

The expressions of ϕ′γ, ψ
′
γ and ϕ′′γ , ψ

′′
γ are given by the next lemmas. These expressions can be found

in Léonard’s paper [26, section 6.4] in a more general framework (for stationary non-reversible Markov

processes). For completeness, the proof of the next result is recalled in Appendix B.
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Lemma 3.2. For any t ∈ (0, 1), one has

ϕ′γ(t) = −
∫ ∑

z′,z′∼z

ζ(e∇F
γ
t (z,z′)) Lγ(z, z′) dQ̂

γ
t (z),

and

ψ′γ(t) =

∫ ∑

z′,z′∼z

ζ(e∇G
γ
t (z,z′)) Lγ(z, z′) dQ̂

γ
t (z),

where ζ(s) := s log s − s + 1, s > 0, and G
γ
t and F

γ
t are the so-called Schrödinger potentials according

to Léonard’s paper terminology [26],

G
γ
t := log P

γ

1−t
gγ, and F

γ
t := log P

γ
t f γ.

Since ζ ≥ 0, the function ϕγ is non-increasing and the function ψγ is non-decreasing.

Lemma 3.3. For any a > 0, b > 0, let

ρ(a, b) :=
(
log b − 2 log a − 1

)
b,

and let ρ(a, b) = 0 if either a = 0 or b = 0. For any t ∈ (0, 1), one has

ϕ′′γ (t) =

∫ [( ∑

z′,z′∼z

e∇F
γ
t (z,z′)Lγ(z, z′)

)2
+

∑

z′,z′∼z

(
1 + ∇F

γ
t (z, z′)

)
e∇F

γ
t (z,z′)

(
Lγ(z, z) − Lγ(z′, z′)

)
Lγ(z, z′)

+

∑

z′,z′′,z∼z′∼z′′
ρ
(
e∇F

γ
t (z,z′), e∇F

γ
t (z,z′′)

)
Lγ(z, z′)Lγ(z′, z′′)

]
dQ̂

γ
t (z),

ψ′′γ (t) =

∫ [( ∑

z′,z′∼z

e∇G
γ
t (z,z′)Lγ(z, z′)

)2
+

∑

z′,z′∼z

(
1 + ∇G

γ
t (z, z′)

)
e∇G

γ
t (z,z′)

(
Lγ(z, z) − Lγ(z′, z′)

)
Lγ(z, z′)

+

∑

z′,z′′,z∼z′∼z′′
ρ
(
e∇G

γ
t (z,z′), e∇G

γ
t (z,z′′)

)
Lγ(z, z′)Lγ(z′, z′′)

]
dQ̂

γ
t (z).

Let us now analyse the behavior of ϕ′′γ (t), ψ′′γ (t) as temperature γ goes to zero. Recall first that for

t ∈ (0, 1), the support of the Schrödinger bridge at zero temperature Q̂0
t given by (19) is independent of

t. As a consequence, one expects that the limit behavior of ϕ′′γ (t), ψ′′γ (t) is expressed in term of sums

restricted to point of the support of Q̂0
t . For a sake of simplicity, we note

Ẑ := supp(Q̂0
t ).

Let us define, for any z ∈ Ẑ,

V→(z) :=
{
z′ ∈ V(z)

∣∣∣∣ (z, z′) ∈ C→
}

and V←(z) :=
{
z′ ∈ V(z)

∣∣∣∣ (z, z′) ∈ C←
}
,

where

C→ :=
{
(z,w) ∈ X × X

∣∣∣∣ z , w,∃(x, y) ∈ supp(̂π0), (z,w) ∈ [x, y]
}
,

and

C← :=
{
(z,w) ∈ X × X

∣∣∣∣ (w, z) ∈ C→

}
.

Similarly, one also defines

V→(z) :=
{
z′, ∈ V(z)

∣∣∣∣ (z, z′) ∈ C→

}
and V←(z) :=

{
z′, ∈ V(z)

∣∣∣∣ (z, z′) ∈ C←

}
,

where for any z ∈ X
V(z) :=

{
z′′ ∈ X

∣∣∣∣ d(z, z′′) = 2
}
.

As a remarkable fact, according to Lemma 4.2 postponed in Appendix A, from the d-cyclically mono-

tone property of the W1-optimal coupling π̂0, C→ and C← are disjoint sets. This implies that V→(z) and

V←(z) are disjoint, and also V→(z) and V←(z), for any z ∈ Ẑ.
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According to the expression of ϕ′′γ (t), ψ′′γ (t) given in Lemma (3.3), a first step is to give the behavior

as γ goes to zero of the quantities

A
γ
t (z,w) := e∇F

γ
t (z,w)

=
P
γ
t f γ(w)

P
γ
t f γ(z)

, and B
γ
t (z,w) := e∇G

γ
t (z,w)

=
P
γ

1−t
gγ(w)

P
γ

1−t
gγ(z)

,

for z ∈ X and w = z′ or w = z′′ with z ∼ z′ ∼ z′′.

To this end, one needs to define several quantities. For any z ∈ X, x ∈ supp(ν0), y ∈ supp(ν1) and any

t ∈ (0, 1), let

(31) at(z, y) := Q̂0(Xt = z|X1 = y) =

∫
ν0

t

w,y
(z) dπ̂0

← (w|y),

and

bt(z, x) := Q̂0(Xt = z|X0 = x) =

∫
ν0

t

x,w
(z) dπ̂0

→ (w|x).

Observe that for t ∈ (0, 1), at(z, y) > 0 if and only if z ∈ Ẑ and y ∈ Ŷz with

Ŷz :=
{
y ∈ supp(ν1)

∣∣∣∣∃x ∈ X, (x, y) ∈ π̂0, z ∈ [x, y]
}
.

Identically bt(z, x) > 0 if and only if z ∈ Ẑ and x ∈ X̂z with

X̂z :=
{
x ∈ supp(ν0)

∣∣∣∣∃x ∈ X, (x, y) ∈ π̂0, z ∈ [x, y]
}
.

For further use, for any y ∈ supp(ν1) and x ∈ supp(ν0), we also introduce the sets

Ẑy :=
{
z ∈ Ẑ

∣∣∣∣ y ∈ Yz

}
and Ẑx :=

{
z ∈ Ẑ

∣∣∣∣ x ∈ Xz

}
,

so that (
z ∈ Ẑ, y ∈ Ŷz

)
⇔

(
y ∈ supp(ν1), z ∈ Ẑy

)
,

and (
z ∈ Ẑ, x ∈ X̂z

)
⇔

(
x ∈ supp(ν0), z ∈ Ẑx

)
.

For any z ∈ Ẑ, z′ ∈ X, z′ ∼ z, define

(32) at(z, z
′, y) :=

∑

w∈X,(z,z′)∈[y,w]

r(y, z, z′,w) d(y,w) ρ
d(y,w)−1
t (d(z,w) − 1) π̂0

←(w|y),

and

bt(z, z
′, x) :=

∑

w∈X,(z,z′)∈[x,w]

r(x, z, z′,w) d(x,w) ρ
d(x,w)−1
t (d(x, z)) π̂0

→ (w|x),

where the function r is given by (17). One easily check that at(z, z
′, y) > 0 if and only if z′ ∈ V←(z) and

y ∈ Ŷ(z,z′) with

Ŷ(z,z′) =
{
y ∈ supp(ν1)

∣∣∣∣∃x ∈ X, (x, y) ∈ π̂0, (z, z′) ∈ [y, x]
}
⊂ Ŷz ∩ Ŷz′ ,

and identically bt(z, z
′, x) > 0 if and only if z′ ∈ V→(z) and x ∈ X(z,z′) with

X̂(z,z′) =
{
y ∈ supp(ν1)

∣∣∣∣∃x ∈ X, (x, y) ∈ π̂0, (z, z′) ∈ [x, y]
}
⊂ X̂z ∩ X̂z′ .

For any z ∈ Ẑ and z′′ ∈ X with d(z, z′′) = 2, define also

(33) at(z, z
′′, y) :=

∑

w∈X,(z,z′′)∈[y,w]

r(y, z, z′′,w) d(y,w)(d(y,w) − 1) ρ
d(y,w)−2
t (d(z,w) − 2) π̂0

←(w|y),

and

bt (z, z
′′, x) :=

∑

w∈X,(z,z′′)∈[x,w]

r(x, z, z′′,w) d(x,w)(d(x,w) − 1) ρ
d(x,w)−2
t (d(x, z)) π̂0

→ (w|x).
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We also have at(z, z
′′, y) > 0 if and only if z′′ ∈ V←(z) and y ∈ Ŷ(z,z′′), and bt (z, z

′′, x) > 0 if and only if

z′′ ∈ V→(z) and x ∈ X̂(z,z′′).

Lemma 3.4. Assume that conditions (12) and (13) are fulfilled. Let (γk)k∈N be a sequence of positive

numbers converging to 0, and let Q̂0
t denote the weak limit of the sequence of probability measures

(Q̂
γk

t )k∈N. Let z ∈ Ẑ.

• For any z′ ∈ V(z), it holds

lim
k→∞

(
γkA

γk

t (z, z′)
)
= At(z, z

′) ≥ 0 and lim
k→∞

(
γkB

γk

t (z, z′)
)
= Bt(z, z

′) ≥ 0,(34)

with At(z, z
′) > 0 if and only if z′ ∈ V←(z) and Bt(z, z

′) > 0 if and only if z′ ∈ V→(z). Moreover,

given z′ ∈ V←(z), for any y ∈ Ŷz

At(z, z
′) :=

at(z, z
′, y)

at(z, y)
,

and given z′ ∈ V→(z), for any x ∈ X̂z

Bt(z, z
′) :=

bt(z, z
′, x)

bt(z, x)
.

• For any z′′ ∈ V(z), it holds

(35) lim
k→∞

(
γk

2A
γk

t (z, z′′)
)
= At (z, z

′′) ≥ 0 and lim
k→∞

(
γk

2B
γk

t (z, z′′)
)
= Bt (z, z

′′) ≥ 0,

with At (z, z
′′) > 0 if and only if z′′ ∈ V←(z) and Bt (z, z

′′) > 0 if and only if z′′ ∈ V→(z).

Moreover, given z′′ ∈ V←(z), for any y ∈ Ŷz

At (z, z
′′) :=

at(z, z
′′, y)

at(z, y)
,

and given z′′ ∈ V→(z), for any x ∈ X̂z

Bt (z, z
′′) :=

bt (z, z
′′, x)

bt(z, x)
.

Lemma 3.4 provides the following Taylor estimates for the functions ϕ′′γk
and ψ′′γk

as γk goes to 0,

which are a key result of this paper.

Theorem 3.5. Assume that conditions (12), (13) and (14) are fulfilled. Let (γk)k∈N be a sequence of

positive numbers converging to 0 and Q̂0
t denotes the weak limit of the sequence of probability measures

(Q̂
γk

t )k∈N. With to the notations of Lemma 3.4, one has for any t ∈ (0, 1)

lim inf
γk→0

ϕ′′γk
(t)

≥
∫ [( ∑

z′∈V← (z)

At(z, z
′) L(z, z′)

)2
+

∑

z′∈V← (z), z′′∈V← (z), z′∼z′′
ρ
(
At(z, z

′),At(z, z
′′)

)
L(z′, z′′)L(z, z′)

]
dQ̂0

t (z)

=

∫ [( ∑

z′∈V(z)

At(z, z
′) L(z, z′)

)2
+

∑

z′∈V(z), z′′∈V(z), z′∼z′′
ρ
(
At(z, z

′),At(z, z
′′)

)
L(z′, z′′)L(z, z′)

]
dQ̂0

t (z),
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and

lim inf
γk→0

ψ′′γk
(t)

≥
∫ [( ∑

z′∈V→ (z)

Bt(z, z
′) L(z, z′)

)2
+

∑

z′∈V→ (z), z′′∈V→ (z), z′∼z′′
ρ
(
Bt(z, z

′),Bt (z, z
′′)

)
L(z′, z′′)L(z, z′)

]
dQ̂0

t (z)

=

∫ [( ∑

z′∈V(z)

Bt(z, z
′) L(z, z′)

)2
+

∑

z′∈V(z), z′′∈V(z), z′∼z′′
ρ
(
Bt(z, z

′),Bt (z, z
′′)

)
L(z′, z′′)L(z, z′)

]
dQ̂0

t (z).

Proof of Theorem 3.5. We only prove the lower bound of lim infγk→0 ϕ
′′
γk

(t) since by symmetry, identical

arguments provide the lower bound of lim infγk→0 ψ
′′
γk

(t). We start with the expression of ϕ′′γ (t), t ∈
(0, 1), given by Lemma 3.3,

(36) ϕ′′γ (t) =

∫ (
M
γ
t + R

γ
t

)
dQ̂

γ
t ,

with for any z ∈ X,

M
γ
t (z) :=

( ∑

z′, z′∼z

e∇F
γ
t (z,z′)Lγ(z, z′)

)2
+

∑

z′, z′′, z∼z′∼z′′
ρ
(
e∇F

γ
t (z,z′), e∇F

γ
t (z,z′′)

)
Lγ(z, z′)Lγ(z′, z′′),

and

R
γ
t (z) :=

∑

z′, z′∼z

(
1 + ∇F

γ
t (z, z′)

)
e∇F

γ
t (z,z′) (Lγ(z, z) − Lγ(z′, z′)

)
Lγ(z, z′).

We will get the behaviour of ϕ′′γ (t) as γ goes to zero by applying Fatou’s Lemma. For that purpose, we

need first to bound from below the function
(
M
γ
t + R

γ
t

)
Q
γ
t uniformly in γ by some integrable function

with respect to the counting measure on X. Let us first lower bound M
γ
t (z) and bound |Rγt (z)| uniformly

in γ, for γ sufficiently small for any z ∈ X.

Recall that ρ(a, b) = 0 as soon as a = 0 or b = 0, and ρ(a, b) = (log b − 2 log a − 1)b. Therefore, easy

computations give for any a ≥ 0,

(37) inf
b≥0

ρ(a, b) = −a2,

As a consequence, according to the definition of A
γ
t , one has

M
γ
t (z) ≥ −

∑

z′, z′′, z∼z′∼z′′
A
γ
t (z, z′)2Lγ(z, z′)Lγ(z′, z′′).

From hypothesis (12) and then applying inequality (57), it follows that for any z ∈ X

(38) M
γ
t (z) ≥ −γ2S 2d2

max max
z′,z′∼z

A
γ
t (z, z′)2 ≥ −

(
d2(x0, z) + 1

)
K2d(x0 ,z) O(1)

t2
.

where x0 is a fixed point of X, K = 2S/I and O(1) denotes a positive constant that does not depend on

z, γ, t. Similarly, from (12) and (57), one may show that

(39) |Rγt (z)| ≤ γ

t

[
log

(
1

γ

)
+ d(x0, z)

]
d(x0, z) Kd(x0 ,z) O(1) ≤ |γ log γ|

t
d2(x0, z) Kd(x0 ,z) O(1).

Lemma 4.3 (vii) therefore implies for any z ∈ X and any 0 ≤ γ < γ̄ < 1,

(M
γ
t (z) + R

γ
t (z)) Q̂

γ
t (z) ≥ −O(1)

(
1B(z) + 1X\B(z) γ̄

(
γ̄K2

)[2d(x0 ,z)−4D−1]+
) (

d2(x0, z) + 1
)

K2d(x0 ,z).
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It remains to choose γ̄ such that (γ̄K3)2 < γo so that hypothesis (14) implies
∑

z∈X

(
1B(z) + 1X\B(z) γ̄

(
γ̄K2

)[2d(x0 ,z)−4D−1]+
) (

d2(x0, z) + 1
)

K2d(x0 ,z) < +∞.

Now, conditions for Fatou’s Lemma are fulfilled and one has

lim
γk→0

ϕ′′γ (t) ≥
∑

z∈X
lim inf
γk→0

[(
M
γk

t (z) + R
γk

t (z)
)

Q̂
γk

t (z)
]
> −∞.(40)

The weak convergence of (Q̂γk )k to Q̂0 implies limγk→0 Q̂
γk

t (z) = Q̂0
t (z), and the inequality (39) gives

limγk→0 R
γk

t (z) = 0 for any z ∈ X. As a consequence,

lim inf
γk→0

[(
M
γk

t (z) + R
γk

t (z)
)

Q̂
γk

t (z)
]
= lim inf

γk→0

[
M
γk

t (z)
]

Q̂0
t (z).

In order to complete the proof Proposition 3.5, it remains to bound from below lim infγk→0

[
M
γk

t (z)
]

for

any z ∈ Ẑ since otherwise Q̂0
t (z) = 0. One has M

γk

t = E
γk

t + F
γk

t , where for any z ∈ Ẑ,

E
γk

t (z) :=
( ∑

z′, z′∼z

γkA
γk

t (z, z′) L(z, z′)
)2
−

∑

z′, z′′, z∼z′∼z′′
γ2

k A
γk

t (z, z′′)2 L(z, z′)L(z′, z′′),

and

F
γk

t (z) =
∑

z′, z′′, z∼z′∼z′′
γ2

k

[
ρ
(
A
γk

t (z, z′), Aγk

t (z, z′′)
)
+ A

γk

t (z, z′′)2
]

L(z, z′)L(z′, z′′).

Lemma 3.4 implies

lim
γk→0

E
γk

t (z) =
( ∑

z′∈V← (z)

At(z, z
′) L(z, z′)

)2
−

∑

z′∈V← (z), z′′∈X, z′′∼z′
At(z, z

′)2 L(z, z′)L(z′, z′′).(41)

Assume that z′ ∈ V←(z), or equivalently limγk→0 γkA
γk

t (z, z′) , 0. According to Lemma 3.4, for any

z′′ ∼ z′, one has limγk→0

(
γ2

k
A
γk

t (z, z′′)
)
= 0 if d(z, z′′) ≤ 1 and limγk→0

(
γ2

k
A
γk

t (z, z′′)
)
= At (z, z

′′) if

z′′ ∈ V(z). As a consequence the continuity of the function ρ on the set (0,∞) × [0,∞), implies

lim
γk→0

[
ρ
(
γkA

γk

t (z, z′), γ2
k A

γk

t (z, z′′)
)
+ γ2

k A
γk

t (z, z′)2
]
= ρ

(
At(z, z

′),At (z, z
′′)

)
1z′′∈V(z) + At(z, z

′)2.

If z′ ∈ V(z) \ V←(z), or equivalently limγk→0 γkA
γk

t (z, z′) = At(z, z
′) = 0, then identity (37) provides,

according to the definition of the function ρ,

lim inf
γk→0

[
ρ
(
γkA

γk

t (z, z′), γ2
k A

γk

t (z, z′′)
)
+ γ2

k A
γk

t (z, z′)2
]

≥ 0 = ρ(0,At (z, z
′′)) = ρ(At(z, z

′),At (z, z
′′))1z′′∈V(z) + At(z, z

′)2.

As a consequence, one gets

lim inf
γk→0

F
γk

t (z) ≥
∑

z′, z′′, z∼z′∼z′′

[
ρ(At(z, z

′),At (z, z
′′))1z′′∈V(z) + At(z, z

′)2
]

=

∑

z′∈V← (z), z′′∈V← (z), z′∼z′′
ρ(At(z, z

′),At (z, z
′′)) +

∑

z′∈V← (z), z′′∈X, z′′∼z′
At(z, z

′)2 L(z, z′)L(z′, z′′).

This inequality together with (40) and (41) ends the proof of Theorem 3.5. �
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3.2. Application to specific examples of graphs.

3.2.1. The lattice Zn .

Proof of Theorem 2.2. For any z ∈ Zn and any i ∈ [n], we note σi+(z) = z + ei and σi−(z) = z − ei. One

has σi+σi− = id and for j , i, σi+σ j+ = σ j+σi+, σi+σ j− = σ j−σi+, σi−σ j− = σ j−σi−. We note

Ai+(z) := At(z, σi+(z)), Ai+ j+(z) := At (z, σi+σ j+(z)), z ∈ Zn.

We define similarly Ai−, Ai− j−, Ai− j+. Applying Theorem 3.5, by symmetrisation one gets

lim inf
γk→0

ϕ′′γk
(t) ≥

∫ ( n∑

i=1

(Ai+ + Ai−)
)2

dQ̂0
t +

∫ n∑

i=1

(
ρ (Ai+, Ai+i+) + ρ (Ai−, Ai−i−)

)
dQ̂0

t

+
1

2

∫ ∑

i, j,i, j

(
ρ(Ai+, A j+i+) + ρ(A j+, A j+i+)

)
+

(
ρ(Ai−, A j−i−) + ρ(A j−, A j−i−)

)

+

(
ρ(Ai+, A j−i+) + ρ(A j−, A j−i+)

)
+

(
ρ(Ai−, A j+i−) + ρ(A j+, A j+i−)

)
dQ̂0

t .

Identity (37) implies for any a, a′, b ∈ R+,

(42) ρ(a, b) + ρ(a′, b) = 2ρ
(√

aa′, b
)
≥ −2aa′.

It follows that

lim inf
γk→0

ϕ′′γk
(t) ≥

∫ ( n∑

i=1

(Ai+ + Ai−)
)2

dQ̂0
t −

∫ n∑

i=1

(
A2

i+ + A2
i−
)

dQ̂0
t

−
∫ ∑

i, j,i, j

(
Ai+A j+ + Ai−A j− + Ai+A j− + Ai−A j+

)
dQ̂0

t

= 2

∫ n∑

i=1

Ai+Ai− dQ̂0
t ≥ 0.

Identically one may prove that lim inf
γk→0

ψ′′γk
(t) ≥ 0. Applying then Lemma 3.1 ends the proof of Theorem

2.2. �

3.2.2. The complete graph.

Proof of Theorem 2.3. Since for any x, y ∈ X, d(x, y) = 1, Theorem 3.5 and Lemma 3.4 provide for any

t ∈ (0, 1)

lim inf
γk→0

ϕ′′γk
(t) ≥

∫ ( ∑

z′∈V← (z)

At(z, z
′) L(z, z′)

)2
dQ̂0

t (z) =

" ( ∑

z′∈V← (z)

At(z, z
′) L(z, z′)

)2
dQ̂0

t,1(z, y)

=

∫ ∑

z∈Zy

( ∑

z′∈V← (z)

at(z, z
′, y)

at(z, y)
L(z, z′)

)2

at(z, y)dν1(y)

With the expression (20) of ν0
t

x,y
, one easily check that for any z ∈ Ẑ, y ∈ Ŷz, or equivalently for any

y ∈ supp(ν1), z ∈ Ẑy,

at(z, y) = (1 − t) π̂0
←(z|y) + t δy(z),

and with (32), for any z′ ∈ V←(z),

at(z, z
′, y) = 1z=y

π̂0
←(z′|y)

µ(z′)
.
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As a consequence, one gets
∫ ∑

z∈Zy

( ∑

z′∈V← (z)

at(z, z
′, y)

at(z, y)
L(z, z′)

)2

at(z, y)dν1(y) =

∫ ( ∑

z′∈V← (y)

at(y, z
′, y)

at(y, y)
µ(z′)

)2
at(y, y) dν1(y)

=

∫ (
1 − π̂0

←(y|y)
)2

1 − (1 − t)
(
1 − π̂0

←(y|y)
) dν1(y) =

∫
1

2

(
1 − π̂0

←(y|y)
)2

h′′
(
(1 − t)

(
1 − π̂0

←(y|y)
))

dν1(y) = ϕ′′0 (t),

where for any t ∈ [0, 1],

ϕ0(t) :=
1

2

∫
h
(
(1 − t)(1 − π̂0

←(y|y)
)

dν1(y).

One may similarly show that for any t ∈ (0, 1),

lim inf
γk→0

ψ′′γk
(t) ≥ ψ′′0 (t),

with ψ0(t) :=
∫

h
(
t(1 − π̂0

→(x|x)
)

dν0(x). The proof of Theorem 2.3 ends by applying Lemma 3.1 and

since

(1 − t)ϕ0(0) + tϕ0(1) − ϕ0(t) =
t(1 − t)

2

∫
h1−t

(∫
1w,ydπ̂0

←(w|y)

)
dν1(y),

and

(1 − t)ψ0(0) + tψ0(1) − ψ0(t) =
t(1 − t)

2

∫
ht

(∫
1w,xdπ̂0

→(w|x)

)
dν0(x).

Let us now compare Ct(ν0, ν1) with a function of W1(ν0, ν1). Observe that for any y ∈ supp(ν1),∫
1w,ydπ̂0

←(w|y) , 0, if and only if y belongs to the set

D← :=
{
w ∈ supp(ν1)

∣∣∣∣∃x ∈ X,w , x, (x,w) ∈ supp(̂π0)
}
.

Since h1−t(0) = 0 and h1−t is convex, Jensen’s inequality provides
∫

h1−t

(∫
1w,ydπ̂0

←(w|y)

)
dν1(y) ≥ ν1(D←) h1−t



!
1w,ydπ̂0

←(w|y)dν1(y)

ν1(D←)

 = ν1(D←) h1−t

(
W1(ν0, ν1)

ν1(D←)

)
.

Similarly one has
∫

ht

(∫
1w,xdπ̂0

→(w|x)

)
dν0(x) ≥ ν0(D→) ht



!
1w,xdπ̂0

→(w|x)dν1(y)

ν1(D→)

 = ν0(D→) ht

(
W1(ν0, ν1)

ν0(D→)

)
,

with

D→ :=
{
w ∈ supp(ν0)

∣∣∣∣∃y ∈ X,w , y, (w, y) ∈ supp(̂π0)
}
.

According to (21), W1(ν0, ν1) ≥ ν0(D→) − ν1(D→), and we know from Lemma 4.2 (iii) that the sets D←
and D→ are disjoint. As a consequence,

ν0(D→) + ν1(D←) ≤ W1(ν0, ν1) + ν1(D→) + ν1(D←)+ ≤ W1(ν0, ν1) + 1.

This leads to the expected result (22) :

Ct(ν0, ν1) ≥ (1 +W1(ν0, ν1)) inf
α,β,0<α+β≤1

{
αht

(
W1(ν0, ν1)

α(1 +W1(ν0, ν1))

)
+ βh1−t

(
W1(ν0, ν1)

β(1 +W1(ν0, ν1))

)}
,

= (1 +W1(ν0, ν1)) kt

(
W1(ν0, ν1)

1 +W1(ν0, ν1)

)
.

In order to prove the estimate (23) of the function kt, one first observes that by construction, for any

t ∈ (0, 1) and v ∈ [0, 1],

ht(v) =

∫ 1

0

v2h′′(uv) Kt(u) du =

∫ 1

0

v2

1 − uv
Kt(u) du,
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and since Kt(u) = K1−t(1 − u),

h1−t(v) =

∫ 1

0

v2

1 − (1 − u)v
Kt(u) du.

Since ht(u) = +∞, for u > 1, it follows that for any v ∈ [0, 1/2],

kt(v) = inf
α,β,0<α+β≤1

{
αht

(
v

α

)
+ βh1−t

(
v

β

)}
≥ inf

α,β,α>v,β>v,α+β≤1

{
αht

(
v

α

)
+ βh1−t

(
v

β

)}

≥
∫ 1

0

v2 inf
α,β,α>v,β>v,α+β≤1

{
1

α − uv
+

1

β − (1 − u)v

}
Kt(u)du.

Easy computations give

inf
α,β,α>v,β>v,α+β≤1

{
1

α − uv
+

1

β − (1 − u)v

}
= inf

α′,β′,α′>(1−u)v,β′>uv,α′+β′≤1−v

{
1

α′
+

1

β′

}

≥ inf
α′,β′,α′>0,β′>0,α′+β′≤1−v

{
1

α′
+

1

β′

}
=

4

1 − v
.

It provides the expected estimate (23), namely kt(v) ≥ 4v2

1−v
. �

3.2.3. Product probability measures on the discrete hypercube.

Proof of Theorem 2.4. According to Lemma 3.4 and using (24), (32), (33), one has for any i, j ∈ [n]

with i , j, for any z ∈ Ẑ and y ∈ Ŷz,

At(z, σi(z)) :=
at(z, σi(z), y)

at(z, y)
, and At (z, σ jσi(z)) :=

at (z, σ jσi(z), y)

at(z, y)

with

at(z, σi(z), y) :=
∑

w,(z,σi(z))∈[y,w]

1yi,wi
1zi=yi

Li(zi, zi)
(1 − t)d(y,z)td(z,w)−1 π̂0

←(w|y),

and

(43) at (z, σ jσi(z), y) :=
∑

w,(z,σiσ j(z))∈[y,w]

1yi,wi
1zi=yi

Li(zi, zi)

1y j,w j
1z j=y j

L j(z j, z j)
(1 − t)d(y,z)td(z,w)−2 π̂0

←(w|y).

Since for any i , j, σiσ j = σ jσi, and observing that

L j(z j, z j) = L
(
σi(z), σ jσi(z)

)
= L

(
z, σ j(z)

)
,

Theorem 3.5 provides after symmetrization,

lim inf
γk→0

ϕ′′γk
(t) ≥

∫ ( n∑

i=1

At(z, σi(z)) Li(zi, zi))
)2

dQ̂0
t (z)

+
1

2

∫∑

(i, j), i, j

[
ρ
(
At(z, σi(z)),At (z, σ jσi(z))

)
+ ρ

(
At(z, σ j(z)),At (z, σ jσi(z))

)]

L j(z j, z j) Li(zi, zi) dQ̂0
t (z).(44)
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By applying identity (42), one gets

lim inf
γk→0

ϕ′′γk
(t) ≥

∫ n∑

i=1

(
At(z, σi(z)) Li(zi, zi)

)2
dQ̂0

t (z)

=

n∑

i=1

∫ ∑

z∈E←
i

(y)

(
At(z, σi(z)) Li(zi, zi)

)2
at(z, y) dν1(y),

where in the last inequality, for any y ∈ supp(ν1), the set E←
i

(y) is defined by

E←i (y) :=
{
z ∈ Ẑy

∣∣∣∣ y ∈ Ŷ(z,σi(z))

}
.

From the definition (31) of at(z, y), one has

∑

z∈{0,1}n
1E←

i
(y)(z) at(z, y) =

Q̂0
t,1

(
E←

i
(y) × {y}

)

ν1(y)
,

and simple computations give
∑

z∈{0,1}n
1E←

i
(y)(z)At(z, σi(z), y) Li(zi, zi) at(z, y) =

∑

z∈{0,1}n
1E←

i
(y)(z) at(z, σi(z), y) Li(zi, zi) = Π

i
←(y).

Therefore Cauchy-Schwarz inequality provides

(45) lim inf
γk→0

ϕ′′γk
(t) ≥

n∑

i=1

∑

y∈{0,1}n

Π
i
←(y)2 ν1(y)2

Q̂0
t,1

(
E←

i
(y) × {y}

) .

At this level, a first lower bound is obtained using the fact that

Q̂0
t,1

(
E←

i
(y) × {y}

)

ν1(y)
≤

∑

z∈{0,1}n
1zi=yi

at(z, y) = 1 −
∑

z∈{0,1}n
1zi,yi

at(z, y).

Observing that if z ∈ [y,w] and zi , yi then necessarily zi = wi, one gets

∑

z∈{0,1}n
1zi,yi

at(z, y) =
∑

w∈{0,1}n
1wi,yi


∑

z∈[y,w]

1zi=wi
(1 − t)d(y,z)td(z,w)

 π̂
0
←(w|y) = (1−t)

∑

w∈{0,1}n
1wi,yi

π̂0
←(w|y),

and therefore

lim inf
γk→0

ϕ′′γk
(t) ≥

n∑

i=1

∑

y∈{0,1}n

Π
i
←(y)2 ν1(y)

1 − (1 − t)Πi
←(y)

.

This inequality implies (as in the proof of Theorem 2.3) for any t ∈ (0, 1)

lim inf
γk→0

ϕ′′γk
(t) ≥ ϕ′′0 (t),

where

ϕ0(t) :=

∫ n∑

i=1

h
(
(1 − t)Πi

←(y)
)

dν1(y).

One may identically prove that

lim inf
γk→0

ψ′′γk
(t) ≥ ψ′′0 (t),

with

ψ0(t) :=

∫ n∑

i=1

h
(
tΠi
→(x)

)
dν0(x).

Following the proof of Theorem 2.3, the two above estimates yield the first lower bound of Ct(ν0, ν1).
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A second lower bound can be reached from (45) applying again Cauchy-Schwarz inequality. Setting

αi(t) := Q̂0
t,1

( ⋃

y∈supp(ν1)

(
E←i (y) × {y}

) )
,

one gets, for any t ∈ (0, 1)

lim inf
γk→0

ϕ′′γk
(t) ≥

n∑

i=1

1

αi(t)

(∫
Π

i
←(y) dν1(y)

)2

=

n∑

i=1

(Πi)2

αi(t)
,

whereΠi := π̂0 ({(x, y) ∈ {0, 1}n | xi , yi}). By symmetry, one may identically show that for any t ∈ (0, 1)

lim inf
γk→0

ψ′′γk
(t) ≥

n∑

i=1

(Πi)2

βi(t)
,

with

βi(t) := Q̂0
0t

( ⋃

x∈supp(ν0)

(
{x} × E→i (x)

))
,

and for any x ∈ supp(ν0),

E→i (x) :=
{
z ∈ Ẑx

∣∣∣∣ x ∈ X̂(z,σi(z))

}
.

Observe that for any x ∈ supp(ν1), y ∈ supp(ν0), one has E→
i

(x) ∩ E←
i

(y) = ∅. Indeed if z ∈ E→
i

(x) ∩
E←

i
(y) then (z, σi(z)) ∈ C→ ∩ C← but Lemma 4.2 (ii) ensures that C→ ∩C← = ∅. It follows that

αi(t) + βi(t) =
∑

x,y∈{0,1}n

∑

z∈E→
i

(x)∪E←
i

(y)

1z∈[x,y] ν
0
t

x,y
(z) π̂0(x, y) ≤ 1.

Since minα,β>0,α+β≤1

{
1
α
+

1
β

}
= 4, this property together with the above estimates imply

lim inf
γk→0

ϕ′′γk
(t) + lim inf

γk→0
ψ′′γk

(t) ≥ 4

n∑

i=1

(Πi)2.

Then applying Lemma 3.1, this estimate give the second lower bound of Ct(ν0, ν1) in Theorem 2.4.

Let us now explain how to reach the third type of lower bound starting again from (44). For that

purpose, for any i , j in [n], we define

E←i j (y) :=
{
z ∈ Ẑy

∣∣∣∣ y ∈ Ŷ(z,σiσ j(z))

}
, y ∈ supp(ν1).

Since {σi(z), σi(z)} ⊂ [z, σiσ j(z))], one has

E←i j (y) ⊂ E←i (y) ∩ E←j (y).

To simplify the notations, let Li(z) := Li(zi, zi), Ai(z) := At(z, σi(z)) and Ai j(z) = At (z, σ jσi(z)). Ob-

serving that
(
ρ(Ai, Ai j) + ρ(A j, Ai j)

)
LiL j = ρ(AiLi, Ai jLiL j) + ρ(A jL j, A jiLiL j), one gets that (44) is

equivalent to

(46) lim inf
γk→0

ϕ′′γk
(t) ≥

∫ [( n∑

i=1

Ai Li

)2
+

∑

(i, j),i, j

ρ
(
AiLi, Ai jLiL j

)]
dQ̂0

t .

The idea is now to minimize the expression inside the integral in the right-hand side over all AiLi,

i ∈ [n]. According to Lemma 3.4, given y ∈ supp(ν1) and z ∈ Ẑy,

Ai(z) =
at(z, σi(z), y)

at(z, y)
> 0⇔ z ∈ E←i (y), and Ai j(z) =

at(z, σ jσi(z), y)

at(z, y)
> 0⇔ z ∈ E←i j (y).

Thus, the right-hand side of (46) is also
∫ ∑

z∈Zy

[( ∑

i∈I←(z,y)

Ai(z) Li(z)
)2
+

∑

(i, j)∈I←(z,y)

ρ
(
Ai(z)Li(z), Ai j(z)Li(z)L j(z)

)]
at(z, y) dν1(y),
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where

I←(z, y) :=
{
i ∈ [n]

∣∣∣∣ z ∈ E←i (y)
}
, and I

←(z, y) :=
{
(i, j) ∈ [n] × [n]

∣∣∣∣ z ∈ E←i j (y)
}
.

Let us note

I
←
1 (z, y) :=

{
i ∈ [n]

∣∣∣∣∃ j ∈ [n], (i, j) ∈ I←(z, y)
}
=

{
i ∈ [n]

∣∣∣∣∃ j ∈ [n], ( j, i) ∈ I←(z, y)
}
,

and given i ∈ I←
1

(z, y),

I
←
2,i(z, y) :=

{
j ∈ [n]

∣∣∣∣ (i, j) ∈ I←(z, y)
}
.

One may observe I←
1

(z, y) ⊂ I←(z, y) and for any i ∈ I←(z, y), I←
2,i

(z, y) ⊂ I←(z, y) \ {i}.
For any fixed sequence βi j := Ai jLiL j, (i, j) ∈ I←, let us define the function F by

F((βi)i∈I←) :=
( ∑

i∈I←
βi

)2
+

∑

(i, j)∈I←
ρ
(
βi, βi j

)
, (βi)i∈I← ∈ (R∗

+
)|I
← |

(the dependence in z, y is omitted to simplify the notations). Since I←
1
⊂ I←, one has

inf
βi>0,i∈I←\I←

1

F((βi)i∈I←) =
( ∑

i∈I←
1

βi

)2
+

∑

i∈I←
1

∑

j∈I←
2i

ρ
(
βi, βi j

)
.

Observe that if I←
1
= ∅ then infβi>0,i∈I← F((βi)i∈I←) = 0. We assume now that I←

1
, ∅. The function of

(βi)i∈I1← ∈ (R∗+)|I
←
1
| on the right-hand side is convex. By differentiating, its minimum value is reached at

the point (βi)i∈I←
1

satisfying for all i ∈ I←
1

,

2
∑

i′∈I←
1

βi′ − 2
∑

j∈I←
2i

βi j

βi

= 0.

Therefore, one has βi =

∑
j∈I←

2i
βi j

∑
i′∈I←

1
βi′
. Summing the last equality over all i ∈ I←

1
, one gets

( ∑

i′∈I←
1

βi′
)2

:= S ,

and it follows that βi =

∑
j∈I←

2i
βi j

√
S

and therefore S =
∑

(i, j)∈I← βi j. Finally, setting S i =
∑

j∈I←
2i
β ji, one has

inf
βi>0,i∈I←

F((βi)i∈I←) =
1

S

( ∑

i∈I←
1

S i

)2
+

∑

(i, j)∈I←
βi j

(
log βi j − 2 log

S i√
S
− 1

)

=

∑

(i, j)∈I←
βi j

(
log(βi jS ) − log(S iS j)

)
= −

∑

(i, j)∈I←
βi j log

(
S iS j

βi jS

)
.

By concavity of the function log, applying Jensen inequality, one gets

inf
βi>0,i∈I←

F((βi)i∈I←) ≥ −S log

∑
(i, j)∈I← S iS j

S 2
≥ S −

∑
(i, j)∈I← S iS j

S
≥

∑
i∈I←

1
S 2

i

S
,

Therefore (46) provides,

lim inf
γk→0

ϕ′′γk
(t) ≥

∫ ∑

z∈Zy

∑

i∈I←
1

(z,y)

S 2
i
(z)

S (z)
at(z, y)dν1(y).

For any y ∈ supp(ν1), let

E
←
i (y) :=

{
z ∈ Zy

∣∣∣∣ i ∈ I←1 (z, y)
}
=

⋃

j∈[n]\{i}
E←i j (y).
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Cauchy-Schwarz inequality implies

(47) lim inf
γk→0

ϕ′′γk
(t) ≥

(∑n
i=1

∫ ∑
z∈E←

i
(y) S i(z) at(z, y) dν1(y)

)2

∑n
i=1

∫ ∑
z∈E←

i
(y) S (z) at(z, y) dν1(y)

.

By using (43), simple computations give for any i ∈ [n],

∫ ∑

z∈E←
i

(y)

S i(z) at(z, y) dν1(y) =
∑

j∈[n]\{i}

∫ ∑

z∈Zy

at(z, σ jσi(z), y) Li(zi, zi) L j(z j, z j) dν1(y)

=

∑

j∈[n]\{i}

"
1xi,yi

1x j,y j
dπ̂0(x, y)

=

"
1xi,yi

(d(x, y) − 1) dπ̂0(x, y).(48)

and
∫ ∑

z∈E←
i

(y)

S (z)at(z, y) dν1(y) =

∫ ∑

z∈Zy

1E←
i

(y)(z)
∑

(k,l)∈I←(z,y)

at(z, σkσl(z), y) Lk(zk, zk) Ll(zl, zl)dν1(y)

=

∑

(k,l),k,l

∫ ∑

z∈E←
i

(y)∩E←
kl

(y)

at(z, σkσl(z), y) Lk(zk, zk) Ll(zl, zl)dν1(y)

= 2
∑

l∈[n]\{i}

∫ ∑

z∈E←
il

(y)

at(z, σiσl(z), y) Li(zi, zi) Ll(zl, zl)dν1(y)

+

∑

(k,l),k,l,k,i,l,i

∫ ∑

z∈E←
i

(y)∩E←
kl

(y)

at (z, σkσl(z), y) Lk(zk, zk) Ll(zl, zl)dν1(y)

= 2

"
1xi,yi

(d(x, y) − 1) dπ̂0(x, y)

+

∑

(k,l),k,l,k,i,l,i

" ∑

z∈[y,w]

1E←
i

(y)(z)1yk=zk,wk
1yl=zl,wl

(1 − t)d(y,z)td(z,w)−2 dπ̂0(w, y)

Now, observe that if z ∈ [y,w] ∩ E←
i

(y) with (w, y) ∈ supp(̂π0) and yi , wi then necessarily zi = yi.

Indeed, z ∈ E←
i

(y) implies (z, σi(z)) ∈ C← . And if wi = zi , yi, since z ∈ [y,w] with (w, y) ∈ supp(̂π0),

one also gets (σi(z), z) ∈ C← or equivalently (z, σi(z)) ∈ C→ . This is impossible because C← ∩ C→ = ∅
according to Lemma 4.2 (ii). It follows that

∑

(k,l),k,l,k,i,l,i

" ∑

z∈[y,w]

1E←
i

(y)(z)1yk=zk,wk
1yl=zl,wl

(1 − t)d(y,z)td(z,w)−2 dπ̂0(w, y)

≤
∑

(k,l),k,l,k,i,l,i

" ∑

z∈[y,w]

1yi=zi=wi
(z)1yk=zk,wk

1yl=zl,wl
(1 − t)d(y,z)td(z,w)−2 dπ̂0(w, y)

+

∑

(k,l),k,l,k,i,l,i

" ∑

z∈[y,w]

1yi=zi,wi
(z)1yk=zk,wk

1yl=zl,wl
(1 − t)d(y,z)td(z,w)−2 dπ̂0(w, y)

=

∑

(k,l),k,l,k,i,l,i

"
1wi=yi

1yk,wk
1yl,wl

dπ̂0(w, y) + t

"
1wi,yi

1yk,wk
1yl,wl

dπ̂0(w, y)
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and therefore
∫ ∑

z∈E←
i

(y)

S (z)at(z, y) dν1(y) ≤ 2

"
1xi,yi

(d(x, y) − 1) dπ̂0(x, y)

+

"
1xi=yi

d(x, y)(d(x, y) − 1) dπ̂0(x, y) + t

"
1xi,yi

(d(x, y) − 1)(d(x, y) − 2) dπ̂0(x, y).(49)

Finally, (47), (48), (49) imply for any t ∈ (0, 1),

lim inf
γk→0

ϕ′′γk
(t) ≥

(
t2
2
(̂π0)

)2

nt2 (̂π0) − (1 − t)t3 (̂π0)
=

nt3
2
(̂π0)

t2
3
(̂π0)

ϕ′′0 (t),

where

ϕ0(t) := h

(
(1 − t)t3 (̂π0)

n t2 (̂π0)

)
.

Identically, one may prove that for any t ∈ (0, 1),

lim inf
γk→0

ψ′′γk
(t) ≥

nt3
2
(̂π0)

t2
3
(̂π0)

ψ′′0 (t),

with ψ0(t) = ϕ0(1 − t). Finally as in the proof of Theorem 2.3, applying Lemma 3.1, the two last

estimates yield the third lower bound of Ct(ν0, ν1) in Theorem 2.4. �

3.2.4. The circle Z/NZ.

Proof of Theorem 2.5. Let us note n′ = ⌈N/2⌉where ⌈·⌉ denotes the ceiling function. Let y ∈ supp(ν1) ⊂
Z/NZ, and z ∈ Ẑy. We observe that if {w ∈ Z/NZ | (z, z − 1) ∈ [y,w]} , ∅ then necessarily (z − 1, z) ∈
[y + n′, y] and if {w ∈ Z/NZ | (z, z + 1) ∈ [y,w]} , ∅ then necessarily (z, z + 1) ∈ [y, y + n]. As a

consequence, since the sets {z ∈ Z/NZ | (z, z + 1) ∈ [y, y + n]} and {z ∈ Z/NZ | (z − 1, z) ∈ [y + n′, y]} are

disjoints, the sets {z ∈ Ẑy | y ∈ Ŷ(z,z+1)} and {z ∈ Ẑy | y ∈ Ŷ(z,z−1)} are also disjoints. It follows that

∫ ∑

z∈Ẑy

(
At(z, z + 1) + At(z, z − 1)

)2
at(z, y) dν1(y)

=

∫ ∑

z∈Ẑy

(
A2

t (z, z + 1) + A2
t (z, z − 1)

)
at(z, y) dν1(y).

Therefore Theorem 3.5 together with (37) provide

lim inf
γk→0

ϕ′′γk
(t) ≥

∫ ∑

z∈Ẑy

(
A2

t (z, z + 1) + A2
t (z, z − 1)

)
+ ρ

(
At(z, z + 1),At (z, z + 2)

)

+ ρ
(
At(z, z − 1),At (z, z − 2)

)
at(z, y) dν1(y)

≥ 0

Identically one proves that lim inf
γk→0

ψ′′γk
(t) ≥ 0. The proof of Theorem 2.5 ends by applying Lemma

3.1. �
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3.2.5. The Bernoulli-Laplace model.

Proof of Theorem 2.6. The proof follows the one of Theorem 2.4 on the discrete hypercube. According

to Lemma 3.4, one has for any z ∈ Ẑ ⊂ Xκ and y ∈ Ŷz ⊂ supp(ν1), for any i, k ∈ J0(z) and any j, l ∈ J1(z)

with i , k and j , l

At(z, σi j(z)) :=
at(z, σi j(z), y)

at(z, y)
, and At (z, σklσi j(z)) :=

at (z, σklσi j(z), y)

at(z, y)
,

where at(z, σi j(z), y) and at(z, σklσi j(z), y) are given by (32) and (33). To simplify the notations, let us

note At(z, σi j(z)) = Ai j(z) and At (z, σklσi j(z)) = Akl,i j(z). Observing that σkiσi j(z) = σk j(z) so that

d(z, σkiσi j(z)) = 1 and similarly d(z, σ jlσi j(z)) = 1, Theorem 3.5 provides

lim inf
γk→0

ϕ′′γk
(t) ≥

∫ ( ∑

(i, j)∈J0×J1

Ai j

)2
dQ̂0

t +

∫ ∑

(i, j),(k,l)∈J0×J1 ,i,k, j,l

ρ(Ai j, Akl,i j) dQ̂0
t .

For y ∈ supp(ν1) and any distinct i, j, k, l ∈ [n], let us define

E←i j (y) :=
{
z ∈ Ẑy

∣∣∣∣ y ∈ Ŷ(z,σi j(z))

}
, E←kl,i j(y) :=

{
z ∈ Ẑy

∣∣∣∣ y ∈ Ŷ(z,σklσi j(z))

}
.

and for any z ∈ Ẑy,

I←(z, y) :=
{
(i, j) ∈ J0(z) × J1(z)

∣∣∣∣ z ∈ E←i j (y)
}

=

{
(i, j) ∈ J0(z) × J1(z)

∣∣∣∣ zi = yi = 0, z j = y j = 1,∃v ∈ Xκ, vi = 1, v j = 0, z ∈ [y, v], π̂0(v, y) > 0
}
.

The last equality is a consequence of the geometry of geodesics on the slice of the discrete hypercube.

Define also

I
←(z, y) :=

{
((i, j), (k, l)) ∈ (J0(z) × J1(z))2

∣∣∣∣ z ∈ E←kl,i j(y)
}
,

I
←
1 (z, y) :=

{
(i, j) ∈ J0(z) × J1(z)

∣∣∣∣∃(k, l) ∈ J0(z) × J1(z), ((i, j), (k, l)) ∈ I←(z, y)
}
,

and for (i, j) ∈ I←
1

(z, y),

I
←
2,i j(z, y) :=

{
(k, l) ∈ J0(z) × J1(z)

∣∣∣∣ ((i, j), (k, l)) ∈ I←(z, y)
}
.

Since the indices k, l, i, j all differ, σklσi j(z) = σi jσkl(z), and therefore Akl,i j(z) = Ai j,kl(z) and ((i, j), (k, l)) ∈
I
←(z, y) implies ((k, l), (i, j)) ∈ I←(z, y). Moreover, one may easily check that I←

1
(z, y) ⊂ I←(z, y). As a

consequence, by symmetrisation it follows

(50) lim inf
γk→0

ϕ′′γk
(t) ≥

∫ ( ∑

(i, j)∈I←
Ai j

)2
dQ̂0

t +
1

2

∫ ∑

((i, j),(k,l))∈I←

(
ρ(Ai j, Akl,i j) + ρ(Akl, Akl,i j

)
dQ̂0

t .
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Let us compute a first lower bound of the right hand side of this inequality. Applying identity (42)

yields

lim inf
γk→0

ϕ′′γk
(t) ≥

∫ [( ∑

(i, j)∈I←
Ai j

)2
−

∑

((i, j),(k,l))∈I←
Ai jAkl

]
dQ̂0

t

≥
∫ [( ∑

(i, j)∈J0×J1

Ai j

)2
−

∑

((i, j),(k,l))∈(J0×J1)2,i,k, j,l

Ai jAkl

]
dQ̂0

t

=

∫ [∑

i∈J0

( ∑

j∈J1

Ai j

)2
+

∑

j∈J1

(∑

i∈J0

Ai j

)2
−

∑

(i, j)∈J0×J1

A2
i j

]
dQ̂0

t

≥ max
[ ∫ ∑

i∈J0

( ∑

j∈J1

Ai j

)2
dQ̂0

t ,

∫ ∑

j∈J1

(∑

i∈J0

Ai j

)2
dQ̂0

t

]

= max
[ ∫ ∑

z∈Ẑy

∑

i∈[n]

( ∑

j∈[n]

Ai j(z)1(i, j)∈I←(z,y)

)2
at(z, y) dν1(y),

∫ ∑

z∈Ẑy

∑

j∈[n]

( ∑

i∈[n]

Ai j(z)1(i, j)∈I←(z,y)

)2
at(z, y) dν1(y)

]
.

We will now bound from below the right hand side of this inequality using Cauchy-Schwarz inequality.

For any y ∈ supp(ν1), and any i ∈ J0(y), j ∈ J1(y) we note

E←i,0(y) :=
{
z ∈ Xκ

∣∣∣∣∃l ∈ J1(y), y ∈ Ŷ(z,σil(z))

}
, E←j,1(y) :=

{
z ∈ Xκ

∣∣∣∣∃k ∈ J0(y), ∈ Ŷ(z,σk j(z))

}
.

Since (i, j) ∈ I←(z, y) implies z ∈ E←
i,0

(y) and z ∈ E←
j,1

(y), one has

∫ ∑

z∈Ẑy

∑

i∈[n]

( ∑

j∈[n]

Ai j(z)1(i, j)∈I←(z,y)

)2
at(z, y) dν1(y) =

∫ ∑

i∈J0(y)

∑

z∈E←
i,0

(y)

( ∑

j∈J1(y)

Ai j(z)
)2

at(z, y) dν1(y),

and therefore by Cauchy-Schwarz inequality,

∫ ∑

z∈Ẑy

∑

i∈[n]

( ∑

j∈[n]

Ai j(z)1(i, j)∈I←(z,y)

)2
at(z, y) dν1(y) ≥

∫ ∑

i∈J0(y)

(∑
j∈J1(y)

∑
z∈E←

i,0
(y) Ai j(z)at(z, y)

)2

∑
z∈E←

i,0
(y) at(z, y)

dν1(y).

For (i, j) ∈ J0(y) × J1(y), one may compute the quantity
∑

z∈E←
i,0

(y) Ai j(z)at(z, y) using the two following

observations. First (z, σi j(z)) ∈ [y,w] holds if and only if one has yi = zi = w j = 0, y j = z j = wi = 1

and z ∈ [y, σi j(w)]. Secondly, the generator L is translation invariant which implies for any (z, σi j(z)) ∈
[y,w],

r(y, z, σi j(z),w) = r(y, z, z, σi j(w))
Ld(y,σi j(w))(y, σi j(w))

Ld(y,w)(y,w)
.
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Therefore, using (32), one gets for any (i, j) ∈ J0(y) × J1(y),

∑

z∈E←
i,0

(y)

Ai j(z) at(z, y) =
∑

z∈Xκ
at(z, σi j(z), y)

=

∑

w∈Xκ
1yi=w j=01y j=wi=1

d(y,σi j(w))∑

s=0

∑

z∈[y,σi j(w)],d(y,z)=s

r(y, z, z, σi j(w))
Ld(y,σi j(w))(y, σi j(w))

Ld(y,w)(y,w)

d(y,w)ρ
d(y,w)−1
t (d(y,w) − 1 − s) π̂0

←(w|y)

=

∑

w∈Xκ
1yi=w j=01y j=wi=1

Ld(y,σi j(w))(y, σi j(w))

Ld(y,w)(y,w)
d(y,w) π̂0

←(w|y)

=

∑

w∈Xκ

1yi=w j=01y j=wi=1

d(y,w)
π̂0
←(w|y),

where the last equality holds since Ld(x,y)(x, y) = (d(x, y)!)2 for any x, y ∈ Xκ. Since for i ∈ J0(y),∑

j∈J1(y)

1yi=w j=01y j=wi=1 = d(y,w)1wi,yi
, it follows that

∑

j∈J1(y)

∑

z∈E←
i,0

(y)

Ai j(z) at(z, y) =
∑

w∈Xκ
1wi,yi

π̂0
←(w|y),

and therefore

∫ ∑

z∈Ẑy

∑

i∈[n]

( ∑

j∈[n]

Ai j(z)1(i, j)∈I←(z,y)

)2
at(z, y) dν1(y) ≥

∫ ∑

i∈J0(y)

(∑
w∈Xκ 1wi,yi

π̂0
←(w|y)

)2

∑
z∈E←

i,0
(y) at(z, y)

dν1(y).

With same computations, by exchanging the role of i and j, we finally obtain

lim inf
γk→0

ϕ′′γk
(t) ≥ max

[ ∫ ∑

i∈J0(y)

(∑
w∈Xκ 1wi,yi

π̂0
←(w|y)

)2

∑
z∈E←

i,0
(y) at(z, y)

dν1(y),

∫ ∑

j∈J1(y)

(∑
w∈Xκ 1w j,y j

π̂0
←(w|y)

)2

∑
z∈E←

j,1
(y) at(z, y)

dν1(y)
]

(51)

Working on ψ′′γk
(t), on may identically show that

lim inf
γk→0

ψ′′γk
(t) ≥ max

[ ∫ ∑

i∈J0(x)

(∑
w∈Xκ 1wi,xi

π̂0
→(w|x)

)2

∑
z∈E→

i,0
(x) bt(z, x)

dν0(x),

∫ ∑

j∈J1(x)

(∑
w∈Xκ 1w j,x j

π̂0
→(w|x)

)2

∑
z∈E→

j,1
(x) bt(z, x)

dν0(x)
]

(52)

where for any x ∈ supp(ν0), and any i ∈ J0(x), j ∈ J1(x), we note

E→i,0(x) :=
{
z ∈ Xκ

∣∣∣∣∃l ∈ J1(x), x ∈ X̂(z,σil(z))

}
, E→j,1(x) :=

{
z ∈ Xκ

∣∣∣∣∃k ∈ J0(x), x ∈ X̂(z,σk j(z))

}
.
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From this two estimates, we will derive two different lower-bounds of Ct(ν0, ν1). A first strategy is to

apply again Cauchy-Schwarz inequality, (51) and (52) implies

lim inf
γk→0

ϕ′′γk
(t) + lim inf

γk→0
ψ′′γk

(t)

≥ max

[ ∑

i∈[n]

[
1

αi,0(t)

("
1xi,yi

1yi=0 dπ̂0(x, y)

)2

+
1

βi,0(t)

("
1xi,yi

1xi=0 dπ̂0(x, y)

)2 ]
,

∑

j∈[n]

[
1

αi,1(t)

("
1xi,yi

1yi=1 dπ̂0(x, y)

)2

+
1

βi,1(t)

("
1xi,yi

1xi=1 dπ̂0(x, y)

)2 ]]

with

αi,0(t) := Qt1

(
{(z, y) | yi = 0, z ∈ E←i,0(y)}

)
, βi,0(t) := Q0t

(
{(x, z) | xi = 0, z ∈ E→i,0(x)}

)
,

and

αi,1(t) := Qt1

(
{(z, y) | yi = 1, z ∈ E←i,1(y)}

)
, βi,1(t) := Q0t

(
{(x, z) | xi = 1, z ∈ E→i,1(x)}

)
.

Observe that the sets E←
i,0

(y) and E→
i,0

(x) are disjoint. Indeed, if it is not the case, there exists z ∈ Ẑ,

j, k ∈ J1(z), j , i, k , i, such that (z, σi j(z)) ∈ C→ and (σik(z), z) ∈ C→ . Lemma 4.2 (i) implies

z ∈ [σik(z), σi j(z)]. Due to the geometry of geodesics on Xκ, this is impossible since zi = 0 and

(σik(z))i = (σi j(z))i = 1. It follows that

αi,0(t) + βi,0(t) ≤
∑

x,y∈Xκ

∑

z∈E←
i,0

(y)∪E→
i,0

(x)

ν0
t

x,y
(z) π̂0(x, y) ≤ Q̂0

t ({z ∈ Xκ | zi = 0}).

Similarly one proves that

αi,1(t) + βi,1(t) ≤ Q̂0
t ({z ∈ Xκ | zi = 1}).

As a consequence, from the identity infα>0,β>0,α+β≤1

{
u2

α
+

v2

β

}
= 4(u + v)2, u, v ≥ 0, one gets

lim inf
γk→0

ϕ′′γk
(t) + lim inf

γk→0
ψ′′γk

(t) ≥ 4 max
[ ∑

i∈[n]

1

Q̂0
t ({z ∈ Xκ | zi = 0})

("
1xi,yi

dπ̂0(x, y)

)2

,

∑

j∈[n]

1

Q0
t ({z ∈ Xκ | z j = 1})

("
1x j,y j

dπ̂0(x, y)

)2 ]

Applying again Cauchy-Schwarz inequality and since
∑

j∈[n] Q0
t ({z ∈ Xκ | z j = 1}) = κ, ∑

i∈[n] Q0
t ({z ∈

Xk | zi = 0}) = n − κ and 2d(x, y) =
∑

i∈[n] 1xi,yi
, one obtains

lim inf
γk→0

ϕ′′γk
(t) + lim inf

γk→0
ψ′′γk

(t) ≥ 4

min(κ, n − κ)W2
1 (ν0, ν1).

Then applying Lemma 3.1 provides the first lower bound of Ct(ν0, ν1) in Theorem 2.6.

Let us start again from (51) and (52) to reach another lower-bound of Ct(ν0, ν1). For any i ∈ J0(y),

one has
∑

z∈E←
i,0

(y)

at(z, y) =
∑

w∈Xκ

∑

z∈[y,w]

1z∈E←
i,0

(y)ν
0
t

w,y
(z) π̂0

←(w|y)

≤
∑

w∈Xκ

∑

z∈[y,w]

1zi=yi=0ν
0
t

w,y
(z) π̂0

←(w|y)

=

∑

w∈Xκ
1yi=wi=0 π̂

0
←(w|y) +

∑

w∈Xκ
1yi,wi

( ∑

z∈[y,w]

1zi=yi=0ν
0
t

w,y
(z)

)
π̂0
←(w|y).
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Using the expression of ν0
t

w,y
(z) given by (28), one has for yi = 0 and wi = 1,

∑

z∈[y,w]

1zi=yi=0ν
0
t

w,y
(z) =

d(y,w)−1∑

k=0

( ∑

z,z∈[y,w],zi=0

1d(y,z)=k

) (1 − t)ktd(y,w)−k

(
d(y,w)

k

)

=

d(y,w)−1∑

k=0

(
d(y,w)

k

)(
d(y,w) − 1

k

)
(1 − t)ktd(y,w)−k

(
d(y,w)

k

)

= t.

It follows that for any i ∈ J0(y)

∑

z∈E←
i,0

(y)

at(z, y) ≤ 1 − (1 − t)

∫
1yi,wi

dπ̂0
←(w|y).

One identically shows that for any i ∈ J1(y),

∑

z∈E←
i,1

(y)

at(z, y) ≤ 1 − (1 − t)

∫
1yi,wi

dπ̂0
←(w|y).

As a consequence, setting Πi
←(y) :=

∫
1yi,wi

dπ̂0
←(w|y), (51) provides

lim inf
γk→0

ϕ′′γk
(t) ≥ ϕ′′0 (t),

where

ϕ0(t) := max
[ ∫ n∑

i=1

1yi=0 h
(
(1 − t)Πi

←(y)
)

dν1(y),

∫ n∑

j=1

1y j=1 h
(
(1 − t)Π

j
←(y)

)
dν1(y)

]
.

One may identically show from (52) that

lim inf
γk→0

ψ′′γk
(t) ≥ ψ′′0 (t),

where

ψ0(t) := max
[ ∫ n∑

i=1

1xi=0 h
(
tΠi
→(x)

)
dν0(x),

∫ n∑

j=1

1x j=1 h
(
tΠ

j
→(x)

)
dν0(x)

]
.

As in the proof of Theorem 2.3, the two last estimates with Lemma 3.1 give the second lower bound of

Ct(ν0, ν1) in Theorem 2.6

As in the case of the hypercube, the third lower bound of Ct(ν0, ν1) be reached by estimating differently

the right-hand side of inequality (50). For any fixed positive reals Akl,i j(z), ((i, j), (k, l)) ∈ I←(z, y), let us

define the convex function F : (R∗+)I←(z,y) → R defined by

F((βi j)(i, j)∈I←) :=
( ∑

(i, j)∈I←
βi j

)2
+

1

2

∑

((i, j),(k,l))∈I←

(
ρ(βi j, Akl,i j) + ρ(βkl, Akl,i j)

)
, (βi j)(i, j)∈I← ∈ (R∗+)I←(z,y).

As in the proof of Theorem 2.4, after some computations, its minimum value is given by: if I← = ∅,
then

inf
(βi j)(i, j)∈I←∈(R∗+)I←

F((βi j)(i, j)∈I←) = 0,

and if I← , ∅
inf

(βi j)(i, j)∈I←∈(R∗+)I←
F((βi j)(i, j)∈I) =

∑

((i, j),(k,l))∈I←
−Akl,i j log

S i jS kl

Akl,i jS
,
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where S i j :=
∑

(k,l)∈I←
2,i j

Akl,i j and S :=
∑

(i, j)∈I←
1

S i j. Let W :=
∑

((i, j),(k,l))∈I←
S i jS kl. Assume that I← , ∅. By

concavity of the logarithmic function, applying Jensen inequality, it follows that

inf
(βi j)(i, j)∈I←∈(R∗+)I←

F((βi j)(i, j)∈I) ≥ −S log

(
W

S 2

)
.

For any (i, j) ∈ I←
1

, one has

I
←
2,i j ⊂ I←1 \

{{
(i, j)

}
∪

{
(i, l′)

∣∣∣∣ l′ ∈ [n] \ { j}
}
∪

{
(k′, j)

∣∣∣∣ k′ ∈ [n] \ {i}
}}
,

and therefore

W =
∑

(i, j)∈I←
1

S i j

∑

(k,l)∈I←
2,i j

S kl

≤
∑

(i, j)∈I←
1

S i j

[( ∑

(k,l)∈I←
1

S kl

)
+ S i j −

( ∑

l′,(i,l′)∈I←
1

S il′
)
−

( ∑

k′,(k′, j)∈I←
1

S k′ j

)]

= S 2
+ S̃ 2 −

∑

i∈J0

( ∑

j,(i, j)∈I←
1

S i j

)2
−

∑

j∈J1

( ∑

i,(i, j)∈I←
1

S i j

)2
,

where we set S̃ 2 :=
∑

(i, j)∈I1
S 2

i j. By Cauchy Schwarz inequality, since |J0| = n − κ and |J1| = κ, one has

∑

i∈J0

( ∑

j,(i, j)∈I←
1

S i j

)2
≥ S 2

n − κ and
∑

j∈J1

( ∑

i,(i, j)∈I←
1

S i j

)2
≥ S 2

κ
.

As a consequence, since
∑

i∈J0

(∑
j,(i, j)∈I←

1
S i j

)2 ≥ S̃ 2 and
∑

j∈J1

(∑
i,(i, j)∈I←

1
S i j

)2 ≥ S̃ 2, we get

W ≤ S 2

(
1 −max

[ 1

n − κ ,
1

κ

])
,

and therefore

inf
(βi j)(i, j)∈I←∈(R∗+)I←

F((βi j)(i, j)∈I←) ≥ − log

(
1 −max

[ 1

n − κ ,
1

κ

])
≥ S

min(κ, n − κ) .

This lower estimate also holds if I← = ∅ since S = 0 in that case. As a consequence (50) imply

lim inf
γk→0

ϕ′′γk
(t) ≥ 1

min(κ, n − κ)

∫ ∑

((i, j),(k,l))∈I←
Akl,i j dQ̂0

t

=
1

min(κ, n − κ)

∫ ∑

(i, j),(k,l)∈J0(y)×J1(y),i,k, j,l

∑

z∈Xκ
Akl,i j(z) at(z, y) dν1(y).

Observing that for (i, j), (k, l) ∈ J0(y) × J1(y) with i , k and j , l, (z, σklσi j(z)) ∈ [y,w] if and

only if one has yi = w j = yk = wl = 0, y j = wi = yl = wk = 1 and z ∈ [y, σklσi j(w)], and

using the fact that Ld(σklσi j(z),w)(σklσi j(z),w) = Ld(z,σklσi j(w))(z, σklσi j(w)), one gets for any y ∈ Xκ, and
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(i, j), (k, l) ∈ J0(y) × J1(y) with i , k and j , l,∑

z∈Xκ
Akl,i j(z, y) at(z, y)

=

∑

w∈Xκ,w j=wl=0,wi=wk=1

d(y,σklσi j(w))∑

s=0

∑

z∈[y,σklσi j(w)],d(y,z)=s

r(y, z, z, σklσi j(w))
Ld(y,σklσi j(w))(y, σklσi j(w))

Ld(y,w)(y,w)

d(y,w)(d(y,w) − 1) ρ
d(y,w)−2
t (d(y,w) − 2 − s) π̂0

←(w|y)

=

∑

w∈Xκ
1yi=w j=yk=wl=01y j=wi=yl=wk=1

Ld(y,σklσi j(w))(y, σklσi j(w))

Ld(y,w)(y,w)
d(y,w)(d(y,w) − 1) π̂0

←(w|y)

=

∑

w∈Xκ

1yi=w j=yk=wl=01y j=wi=yl=wk=1

d(y,w)
(
d(y,w) − 1

) π̂0
←(w|y).

From the identities ∑

i∈J0(y)

∑

k∈J0(y)\{i}
1yi=0,wi=11yk=0,wk=1 = d(y,w)

(
d(y,w) − 1

)
,

and ∑

j∈J1(y)

∑

l∈J1(y)\{ j}
1y j=1,w j=01yl=1,wl=0 = d(y,w)

(
d(y,w) − 1

)
,

we finally obtain

lim inf
γk→0

ϕ′′γk
(t) ≥ 1

min(κ, n − κ)

∫ ∑

w∈Xκ
d(y,w)

(
d(y,w) − 1

)
π̂0
←(w|y) dν1(y) =

t2 (̂π0)

min(κ, n − κ) .

By symmetry the same estimate holds for lim infγ→0 ψ
′′
γ (t). Then the proof of Theorem 2.6 ends by

applying Lemma 3.1. �

4. Appendix A : Basic lemmas

Lemma 4.1. The transport-entropy inequality (26) implies the W2 transport-entropy inequality (27) for

the standard Gaussian measure with the constant 4 instead of 2.

Proof. The result follows from the transport-entropy inequality (26) for the uniform probability measure

µ on the hypercucube (αi = 1/2 for all i ∈ [n]), by using the central limit Theorem with the projection

map

Tn(x) :=
2
√

n

( n∑

i=1

xi −
n

2

)
, x, y ∈ {0, 1}n.

By density, it suffises to prove (27) for any probability measure ν on R with continuous density f and

compact support K. Let νn denotes the probability measure on {0, 1}n with density fn with respect to µ

given by

fn(x) :=
f (Tn(x))∫
f ◦ Tn dµ

, x ∈ {0, 1}n.

Applying (26) with ν0 := µ and ν1 := νn, one gets

1

n
Wd

2 (µ, νn)2 ≤ H(νn|µ).(53)

By the weak convergence of Tn#µ to the standard Gaussian law γ, one has

lim
n→∞

H(νn|µ) = H(ν|γ).(54)
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Easy computations give for any x, y ∈ {0, 1}n,

1

n
d(x, y)(d(x, y) − 1) ≥ 1

4
|Tn(x) − Tn(y)|

(
|Tn(x) − Tn(y)| − 2

√
n

)
,

and therefore
1

n
Wd

2 (µ, νn)2 ≥ 1

4
inf

πn∈Π(Tn#µ,Tn#νn)

"
cn(z,w) dπn(z,w),

where cn(z,w) = |z − w|
(
|z − w| − 2√

n

)
. Let ε > 0. Since Tn#µ weakly converges to γ and Tn#νn weakly

converges to ν, one checks that any sequence πn ∈ Π(Tn#µ, Tn#νn) is relatively compact. Since

∫
|z| d(Tn#µ)(z) ≤

(∫
|z|2d(Tn#µ)(z)

)1/2

=

(∫
T 2

n dµ

)1/2

= 1,

it follows that there exists a compact set Kε ⊂ R such that

sup
n∈N

∫

R\Kε

|z| d(Tn#µ)(z) ≤ ε.

Observing that since f has compact support K,
∫

R\K
|w| d(Tn#νn)(w) =

∫
1Tn(x)∈R\K |Tn(x)| fn(Tn(x)) dµ(x) = 0

one gets

sup
n∈N

∫

R2\(Kε×K)

(|z| + |w|) dπn(z,w) ≤ sup
n∈N

∫

R\Kε

|z| d(Tn#µ)(z) ≤ ε.

Let c(z,w) := |z−w|2. The cost cn uniformly converges to the quadratic cost c on Kε. It follows that for

n sufficiently large"
cn dπn ≥

"
c dπn −

"
Kε×K

|c − cn| dπn −
"
R2\(Kε×K)

(c − cn) dπn ≥
"

c dπn − 2ε.

and therefore
1

n
Wd

2 (µ, νn)2 ≥ 1

4
W2

2 (Tn#µ, Tn#νn) − ε
2
.

From the weak convergence in P2(R) of the sequences (Tn#µ) and (Tn#νn) and then letting ε goes to 0,

one gets

lim inf
n→+∞

1

n
Wd

2 (µ, νn)2 ≥ 1

4
W2

2 (ν, γ).

Finally, (53) and (54) imply W2
2
(ν, γ) ≤ 4H(ν|γ) as n goes to +∞. �

Lemma 4.2. Let X be a graph with graph distance d. Let ν0, ν1 ∈ P(X) and assume that π̂ ∈ P(X ×X)

is a W1-optimal coupling of ν0 and ν1, namely

W1(ν0, ν1) =

"
d(x, y) dπ̂(x, y).

(i) Let

C→ :=
{
(z,w) ∈ X × X

∣∣∣∣ z , w,∃(x, y) ∈ supp(̂π), (z,w) ∈ [x, y]
}
.

If (z1,w) ∈ C→ and (w, z2) ∈ C→ then w ∈ [z1, z2].

(ii) Let

C← :=
{
(z,w) ∈ X × X

∣∣∣∣ (w, z) ∈ C→

}
.

The sets C→ and C← are disjoint.
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(iii) If d is the Hamming distance then the following sets D→ and D← are disjoint,

D← :=
{
w ∈ supp(ν1)

∣∣∣∣∃x ∈ X,w , x, (x,w) ∈ supp(̂π)
}
,

and

D→ :=
{
w ∈ supp(ν0)

∣∣∣∣∃y ∈ X,w , y, (w, y) ∈ supp(̂π)
}
.

Proof. (i) Let (z1,w) ∈ C→ and (w, z2) ∈ C→ . there exists (x, y) ∈ supp(̂π) such that (z1,w) ∈ [x, y]

and there exists (x′, y′) ∈ supp(̂π) such that (w, z2) ∈ [x′, y′]. One has

d(z1,w) + d(w, z2) =
(
(d(x, y) − d(x, z1) − d(w, y)

)
+

(
d(x′, y′) − d(x′,w) − d(z2, y

′)
)
.

It is well known that the support of any optimizer of W1(ν0, ν1) is d-cyclically monotone (see

[41, Theorem 5.10]. By definition, it means that for any family (x1, y1), . . . , (xN , yN) of points

in the support of π̂
N∑

i=1

d(xi, yi) ≤
N∑

i=1

d(xi, yi+1),

with the convention yN+1 = y1. It follows that

d(x, y) + d(x′, y′) ≤ d(x, y′) + d(x′, y),

and therefore, from the above identity,

d(z1,w) + d(w, z2) ≤ d(x, y′) + d(x′, y) − d(x, z1) − d(w, y) − d(x′,w) − d(z2, y
′).

By the triangular inequality, it follows that

d(z1,w) + d(w, z2) ≤ (
d(x, z1) + d(z1, z2) + d(z2, y

′)
)

+
(
d(x′,w) + d(w, y)

) − d(x, z1) − d(w, y) − d(x′,w) − d(z2, y
′) = d(z1, z2).

This implies that w ∈ [z1, z2].

(ii) Assume there exists (z,w) ∈ C→ ∩ C← . Then (w, z) ∈ C→ and therefore, according to (i),

z ∈ [w,w] = {w}. This is impossible since z , w.

(iii) We assume that d(x, y) = 1x,y for any x, y ∈ X. If the two sets D→ and D← intersect, then there

exists (x,w) ∈ C→ and (w, y) ∈ C→ . Point (i) implies w ∈ [x, y], and since d(x, y) = 1, we get

either w = x or w = y, which is impossible.

�

Lemma 4.3. Let ν0 and ν1 some probability measures in P(X) with bounded support.

(i) If (12) holds, then for any x, y ∈ X and any integer k, Lk(x, y) ≤ (2S )k.

(ii) If (13) holds, then for any x, y ∈ X, Ld(x,y)(x, y) ≥ Id(x,y).

(iii) If (12) and (13) hold, then for any x, y ∈ X, any t ∈ [0, 1], and any γ ∈ (0, 1), one has

P
γ
t (x, y) =

Ld(x,y)(x, y)

d(x, y)!
(γt)d(x,y)

(
1 + γKd(x,y)O(1)

)
,

where K := 2S/I and O(1) denotes a quantity uniformly bounded in x, y, t and γ.

(iv) If (12) holds then for any x, y, z ∈ X and for any t ∈ [0, 1]

lim
γ→0

ν
γ
t

x,y
(z) = ν0

t

x,y
(z) := 1[x,y](z) r(x, z, z, y) ρ

d(x,y)
t (d(x, z)).

(v) If (12) holds then for any x, y ∈ X,

P
γ
t (x, y) ≥ Ld(x,y)(x, y)

d(x, y)!
(tγ)d(x,y)e−γtS .
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For a fixed x0 ∈ X, let D := max
x∈supp(ν0),y∈supp(ν1)

(d(x0, x), d(x0, y)). It follows that if (12) and (13)

hold then for any γ ∈ (0, 1) and t ∈ (0, 1),

(55) 0 < e−S

(
tγI

d(x0, z) + 1 + D

)d(x0 ,z)+1+D

min
w∈supp(ν0)

f γ(w) ≤ P
γ
t f γ(z) ≤ max

w∈supp(ν0)
f γ(w).

(vi) If (12) holds then ERγ[ℓ|X0 = x, X1 = y] ≤ γS

P
γ

1
(x,y)

.

(vii) Assume (12) and (13) hold. For a fixed x0 ∈ X, let D := max
x∈supp(ν0),y∈supp(ν1)

(d(x0, x), d(x0, y)).

For any x ∈ supp(ν0) and y ∈ supp(ν1), one has for any t ∈ (0, 1) and any γ ∈ (0, 1)

ν
γ
t

x,y
(z) ≤ O(1)

(
1[x,y](z) +

(
1 − 1[x,y](z)

)
γ
(
γK2

)[2d(x0 ,z)−4D−1]+
)
,

where K := 2S/I and O(1) denotes a constant that only depends on S , I,D and K := 2S/I.

As a consequence, if B denotes the finite set

B :=
{
z ∈ X

∣∣∣∣ z ∈ [x, y], x ∈ supp(ν0), y ∈ supp(ν1)
}
,

then

Q̂
γ
t (z) ≤ O(1) γ

(
γK2

)[2d(x0 ,z)−4D−1]+
, ∀z ∈ X \ B.(56)

(viii) Assume (12) and (13) hold. Let x0 ∈ X, t ∈ (0, 1) and γ ∈ (0, 1). For any w, z, z′ ∈ X with

d(z, z′) ≤ 2 and w ∈ supp(ν0) one has

P
γ
t (z′,w)

P
γ
t (z,w)

≤
max

(
1, d(x0, z)d(z,z′)

)
Kd(x0 ,z) O(1)

(γt)d(z,z′)
,

where K := 2S/I and O(1) is a positive constant that does not depend on z, z′, γ, t. It follows

that

(57)
(γt)d(z,z′)

max
(
1, d(x0, z)d(z,z′)

)
Kd(x0 ,z) O(1)

≤
P
γ
t f γ(z′)

P
γ
t f γ(z)

≤
max

(
1, d(x0, z)d(z,z′)

)
Kd(x0 ,z) O(1)

(γt)d(z,z′)
.

(ix) Let (γk)k∈N be a sequence of positive numbers converging to zero. If (11), (12), (13) and (14)

hold, then for any t ∈ [0, 1]

lim
γk→0

H(Q̂
γk

t |m) = H(Q̂0
t |m).

Proof. (i) Given (12), we want to show that for any x ∈ X, S k(y) := supx∈X |Lk(x, y)| ≤ (2S )k. It

follows by induction on k from the inequality

S k+1(y) = sup
x∈X

∣∣∣∣L(x, x)Lk(x, y) +
∑

z,z∼x

L(x, z)Lk(z, y)
∣∣∣∣ ≤ 2 sup

x∈X
|L(x, x)| S k(y).

(ii) For x = y, one has Ld(x,y)(x, y) = 1 and by definition for x , y,

Ld(x,y)(x, y) :=
∑

α

Lα,

where the sum is over all path α from x to y of length d(x, y), α = (z0, . . . , zd(x,y)) with z0 = x

and zd(x,y) = y, and

Lα := L(z0, z1)L(z1, z2) . . . L(zd(x,y)−1, zd(x,y)).

Such a path α is a geodesic. Since we assume in this paper that L(x, y) > 0 if and only if x and

y are neighbour, one has Lα > 0. By irreducibility it always exists at most one geodesic path

from x to y, and from assumption (12), for such a path α, Lα ≥ Id(x,y). As a consequence we get

Ld(x,y)(x, y) ≥ Id(x,y).
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(iii) According to (15), for any x, y ∈ X,

P
γ
t (x, y) =

Ld(x,y)(x, y)

d(x, y)!
(γt)d(x,y)

1 + γ
∑

k,k≥d(x,y)+1

Lk(x, y)

Ld(x,y)(x, y)

d(x, y)!

k!
tk−d(x,y)γk−d(x,y)−1

 .

Applying Lemma 4.3 (i) and (ii), we get

∣∣∣∣Pγt (x, y)−Ld(x,y)(x, y)

d(x, y)!
(γt)d(x,y)

∣∣∣∣

≤ γ Ld(x,y)(x, y)

d(x, y)!
(γt)d(x,y)

∑

k,k≥d(x,y)+1

Kd(x,y) (2S )k−d(x,y)

(k − d(x, y))!

≤ γ Ld(x,y)(x, y)

d(x, y)!
(γt)d(x,y)Kd(x,y)e2S ,

from which the expected result follows.

(iv) Let x, y, z ∈ X and t ∈ [0, 1]. If (12) holds, according to (15), the Taylor expansion of P
γ
t (x, y)

as γ goes to zero is given by

P
γ
t (x, y) =

Ld(x,y)(x, y)

d(x, y)!
(γt)d(x,y)

+ o(γd(x,y)),

As a consequence, the Taylor expansion of ν
γ
t

x,y
(z), defined by (9), is

ν
γ
t

x,y
(z) = γd(x,z)+d(z,y)−d(x,y) Ld(x,z)(x, z)Ld(z,y)(z, y)

Ld(x,y)(x, y)

d(x, y)!

d(x, z)!d(z, y)!
td(x,z)(1 − t)d(z,y)

+ o(γd(x,z)+d(z,y)−d(x,y)).

The expected result follows since one has γd(x,z)+d(z,y)−d(x,y)
= 1 if z ∈ [x, y], and

limγ→0 γ
d(x,z)+d(z,y)−d(x,y)

= 0 otherwise.

(v) On some probability space (Ω′,A, P), let (Ns)s≥0 be a Poisson process with parameter γS and

(Yn)n∈N be a Markov chain on X with transition matrix Q given by

Q(z,w) :=
Lγ(x,w)

γS
, for w , z ∈ X, and Q(z, z) :=

γS + Lγ(z, z)

γS
.

We assume that (Yn)n∈N and (Ns)s≥0 are independent. It is well known that the law of the process

(Xt)t≥0 under Rγ given X0 = x is the same as the law of the process (X̃t)t≥0 under P given X̃0 = x

defined by X̃t := YNt
. As a consequence, one has for any y ∈ X,

P
γ
t (x, y) = Rγ (Xt = y | X0 = x) = P

(
X̃t = y | X̃0 = x

)
.

Let n = d(x, y) and Ñt denotes the number of jumps of the process X̃t, one has

P
γ
t (x, y) ≥ P

(
X̃t = y, Ñt = n | X̃0 = x

)

= P

(
Y1, . . . , Yn are all different, Yn = y,Nt = n | X̃0 = x

)

= P

(
Nt = n)P(Y1, . . . , Yn are all different, Yn = y | X̃0 = x

)

=
(γtS )n

n!
e−γtS

∑

α=(x0 ,...,xn), α geodesic from x to y

Q(x0, x1) · · ·Q(xn−1, xn)

=
(γt)n

n!
e−γtS Ld(x,y)(x, y).
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This ends the proof of the first part of (v). Observe that from the Schrödinger system (7),

f γ(w) > 0 if and only if w ∈ supp(ν0). Since ν0 has bounded support, it follows that for any

w ∈ supp(ν0,

0 < min
u∈supp(ν0)

f γ(u) ≤ f γ(w) ≤ max
u∈supp(ν0)

f (u),

and therefore for any z ∈ X,

min
u∈supp(ν0)

f (u) min
w∈supp(ν0)

P
γ
t (z,w) ≤

∑

w∈supp(ν0)

f γ(w)P
γ
t (z,w) = P

γ
t f γ(z) ≤ max

u∈supp(ν0)
f (u).

From (13) and (ii) and since d(z,w) ≤ d(z, x0) + 1 + D for any w ∈ supp(ν0), one gets

min
w∈supp(ν0)

P
γ
t (z,w) ≥ e−S

(
tγI

d(x0, z) + 1 + D)

)d(x0 ,z)+1+D)

,

from which the second part of (v) follows.

(vi) The length ℓ(ω) of a path ω ∈ Ω represents the number of jumps of the process Xt between

times 0 and 1. Therefore according to the definition of the process (X̃t)t≥0 above,

ERγ[ℓ | X0 = x, X1 = y] = EP
[
Ñ1 | X̃0 = x, X̃1 = y

]

≤ EP
[
N1 | X̃0 = x, X̃1 = y

]
=

EP

[
N11X̃1=y

| X̃0 = x
]

P

(
X̃1 = y | X̃0 = x

) ≤ EP [N1]

P
γ

1
(x, y)

,

which ends the proof since EP [N1] = γS .

(vii) From (iii) and (v), one gets for any x, z, y ∈ X,

ν
γ
t

x,y
(z) =

P
γ
t (x, z)P

γ
t (z, y)

P
γ

1
(x, y)

≤ γd(x,z)+d(z,y)−d(x,y)r(x, z, z, y)
d(x, y)!

d(x, z)!d(z, y)!
td(x,z)(1 − t)d(z,y) eγS

(
1 + γKd(x,z)O(1)

) (
1 + γKd(z,y)O(1)

)
.(58)

If z ∈ [x, y] then thanks to (i) and (ii), the right-hand side of this inequality is bounded from

above by
(
2S

I

)d(x,y)

ed(x,y)eγS 4K2d(x,y)O(1),

and the maximum of this quantity over all x ∈ supp(ν0) and y ∈ supp(ν1) is a constant O(1),

independent of x, z, y and γ.

If z < [x, y], then d(x, z) + d(z, y) − d(x, y) ≥ max{1, 2d(x0, z) − 4D}, and the right-hand side of

(58) is bounded by

γd(x,z)+d(z,y)−d(x,y) (2S )d(x,z)+d(z,y)

Id(x,y)
d(x, y)! eγS 4Kd(x,z)+d(z,y)O(1)

≤ γ1+[2d(x0 ,z)−4D−1]+
(2S )2d(x0 ,z)+2D

Id(x,y)
d(x, y)! eγS 4K2d(x0 ,z)+2DO(1).

The maximum over all x ∈ supp(ν0) and y ∈ supp(ν1) of the right-hand side quantity is bounded

by O(1) γ1+[2d(x0 ,z)−4D−1]+K4d(x0 ,z). This ends the proof of the first inequality of (vii). The second

inequality easily follows since

Q̂
γ
t (z) =

∑

x∈supp(ν0),y∈supp(ν1)

ν
γ
t

x,y
(z) π̂γ(x, y).
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(viii) Using (iii) and (v), one gets for any z, z′ ∈ X and any w ∈ supp(ν0),

P
γ
t (z′,w)

P
γ
t (z,w)

≤ Ld(z′,w)(z′,w)

Ld(z,w)(z,w)

d(z,w)!

d(z′,w)!

(
1

γt

)d(z,w)−d(z′,w)

eγtS
(
1 + γKd(z′,w)O(1)

)

≤ Kd(z,z′)+d(z,x0)+d(x0 ,w) max
(
1, d(z,w)2

) ( 1

γt

)d(z,z′)

2eS Kd(z,z′)+d(z,x0)+d(x0 ,w)O(1)

≤
K2d(z,x0) max

(
1, d(z, x0)2

)
O(1)

(γt)d(z,z′)
,

where one maximizes over all w ∈ supp(ν0) to get the last inequality. Inequality (57) follows

since

P
γ
t f γ(z′)

P
γ
t f γ(z)

=

∑

w∈supp(ν0)

P
γ
t (z′,w)

P
γ
t (z,w)

f γ(w)P
γ
t (z,w)

P
γ
t f γ(z)

,

with
∑

w∈supp(ν0)

f γ(w)P
γ
t (z,w)

P
γ
t f γ(z)

= 1.

(ix) Recall that

H(Q̂
γ
t |m) =

∑

z∈X
log

Q̂
γk

t (z)

m(z)
Q̂
γk

t (z).

Let us consider the finite set B defined in Lemma 4.3 (vii). From the weak convergence of the

sequence (Q̂
γk

t ) to Q̂0
t and since supp(Q̂0

t ) ⊂ B, one has

lim
γk→0

∑

z∈B

log
Q̂
γk

t (z)

m(z)
Q̂
γk

t (z) = H(Q̂0
t |m)

Therefore it remains to prove that

lim
γk→0

∑

z∈X\B
log

Q̂
γk

t (z)

m(z)
Q̂
γk

t (z) = 0.

From Lemma 4.3(vii) and hypothesis (11) one has, for any z ∈ X \ B,

Q̂
γk

t (z)

m(z)
≤

O(1) γk

(
γkK2

)[2d(x0 ,z)−4D−1]+

infz∈Xm(z)
.

Using the inequality |v log v| ≤
√

v for v ∈ (0, 1], we get for 0 < γk ≤ min
(

infz∈X m(z)

O(1)
, 1

K2

)
,

∑

z∈X\B
log

Q̂
γk

t (z)

m(z)
Q̂
γk

t (z) ≤ O(1) sup
z∈X

m(z)
√
γ
∑

z∈X

(
γK2

)[2d(x0 ,z)−4D−1]+/2
.

Hypothesis (14) then implies that there exists γ1 > 0 such that for any 0 < γ < γ1

∑

z∈X\B
log

Q̂
γk

t (z)

m(z)
Q̂
γk

t (z) ≤ O(1)
√
γ,

and the expected result follows.

�
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5. Appendix B : Proofs of Lemmas 3.1, 3.2, 3.3, 3.4

Proof of Lemma 3.2 and Lemma 3.3. Let γ denotes a fixed parameter of temperature that can be choose

as small as we want. To simplify the notations, the dependence in the temperature parameter γ is

sometimes omitted. For t ∈ (0, 1), let us note ft := P
γ
t f γ and gt := P

γ

1−t
gγ and recall that Ft := log ft,

Gt := log gt and

ϕ(t) =

∫
Ft ft gt dm, ψ(t) =

∫
Gt ft gt dm.

Observe that for γ sufficiently small, these two functions are well defined on (0, 1) since (55) and (56)

implies

∫
|Ft | ft gt dm =

∑

z∈X

∣∣∣log(P
γ
t f γ(z))

∣∣∣ Q̂t
0(z)

≤ O(1) + O(1)
∑

z∈X\B
(d(x0, z) + 1 + D)

(
log

1

tγI
+ log (d(x0, z) + 1 + D)

)
γ
(
γK2

)[2d(x0 ,z)−4D−1]+
.

According to hypothesis (14), the right-hand side of this inequality is finite if (γK2)2 < γo. Identically,

one could check that
∫
|Gt | ft gt dm is finite for γ sufficiently small.

The proof is based on Γ2-calculus by using backward equations, ∂t ft = L ft, ∂tgt = −Lgt. We only

present the proof of the expression of ϕ′(t) and ϕ′′(t). Same arguments provide the expression of ψ′(t)
and ψ′′(t). We start with a general statement that we will apply twice. Let (t, z) ∈ (0, 1)×X → Vt(z) ∈ R
denotes some differentiable function in t (that also depends of the parameter γ) satisfying for any ε ∈
(0, 1/2), and any x0 ∈ X,

sup
t∈(ε,1−ε)

|Vt(z)| ≤ O(1)
Ad(x0 ,z)

γ10
,(59)

and

sup
t∈(ε,1−ε)

|∂tVt(z)| ≤ O(1)
Bd(x0,z)

γ10
,(60)

for all z ∈ X where O(1), A, B denote constants that do not depend on t, γ and z. then the following

identity holds: for any t ∈ (0, 1),

∂t

(∫
Vt ft gt dm

)
=

∫
∂t(Vt ft gt) dm

=

∫
(∂tVt) ft gt + Vt (L ft) gt − Vt ft (Lgt) dm

=

∫
(∂tVt) ft gt + Vt (L ft) gt − L(Vt ft)gt dm

=

∫ [
∂tVt(z) −

∑

z′, z′∼z

e∇Ft(z,z
′)∇Vt(z, z

′) L(z, z′)
]

ft(z)gt(z) dm(z).(61)

It suffises to justify this identity for any ε ∈ (0, 1/2) and any t ∈ (ε, 1 − ε). The second equality of (61)

is due to the backward equations. The first equality of (61) is justified by applying Lebesgue’s theorem

with hypothesis (14), provided that for γ sufficiently small, one has

sup
t∈(ε,1−ε)

|∂t(Vt ft gt)(z) m(z)| ≤ O(1) γ
d(x0 ,z)
o .
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This is indeed the case, since for any z ∈ X,

∂t(Vt ft gt)(z) m(z) =

(∂tVt)(z) + Vt(z)
LP

γ
t f γ(z)

P
γ
t f γ(z)

− Vt(z)
LP

γ

1−t
gγ(z)

P
γ

1−t
gγ(z)

 Q̂
γ
t (z),

with according to (57), for any t ∈ (ε, 1),
∣∣∣∣∣∣
LP

γ
t f γ(z)

P
γ
t f γ(z)

∣∣∣∣∣∣ ≤ S dmax

(
1 + max

z′,z′∼z

∣∣∣∣∣∣
P
γ
t f γ(z′)

P
γ
t f γ(z)

∣∣∣∣∣∣

)
≤ S dmax

max(1, d(x0, z))Kd(x0 ,z) O(1)

γε
≤ O(1)

Kd(x0,z)

γ
.

One identically shows that

∣∣∣∣∣
LP

γ

1−t
gγ(z)

P
γ

1−t
gγ(z)

∣∣∣∣∣ ≤ O(1) Kd(x0 ,z)

γ
, for any t ∈ (0, 1 − ε) and z ∈ X. Together with (56),

we get the bound, for any z ∈ X and t ∈ (ε, 1 − ε),

|∂t(Vt ft gt)(z)m(z)| ≤ O(1)
(
Bd(x0,z)

+ (AK)d(x0 ,z)
)
(
γK2

)2d(x0 ,z)

γ11
≤ O(1) γ

d(x0 ,z)
o ,

for any γ > 0 with γ2(B + AK)K4 ≤ γo. The third equality of (61) is due to Fubini’s theorem together

with the reversibility property of m with respect to L. The last equality of (61) is a simple rearrangement

of the terms.

At first, one applies (61) with Vt = Ft, since according to (55), for any t ∈ (ε, 1 − ε), for any z ∈ X,

|Ft(z)| ≤ O(1) (d(x0, z) + 1 + D)

(
log

1

εγI
+ log (d(x0, z) + 1 + D)

)
≤ O(1)

2d(x0 ,z)

γ
,

and

|∂tFt(z)| =
∣∣∣∣∣∣
LP

γ
t f γ(z)

P
γ
t f γ(z)

∣∣∣∣∣∣ ≤ O(1)
Kd(x0 ,z)

γ
.

∂tFt(z) =
∑

z′∈X
e∇Ft(z,z

′)L(z, z′) =
∑

z′, z′∼z

(
e∇Ft(z,z

′) − 1
)

L(z, z′), z ∈ X,

one gets the expected result

ϕ′(t) =

∫ ∑

z′, z′∼z

(
e∇Ft (z,z

′) − 1 − ∇Ft(z, z
′)e∇Ft(z,z

′)
)

L(z, z′) ft(z)gt(z) dm(z)

= −
∫ ∑

z′, z′∼z

ζ
(
e∇Ft (z,z

′)
)

L(z, z′) dQ̂
γ
t (z).

We want now to apply again (61) with Vt(z) =
∑

z′,z′∼z ζ
(
e∇Ft (z,z

′)
)

L(z, z′), z ∈ X. From the inequality,

|ζ(a)| ≤ 2 + a2, a > 0 and using (57), one may check as above that (59) holds. The backward equations

ensure that

∂tVt(z) =
∑

z′, z′∼z

(
L ft(z

′)

ft(z)
− ft(z

′)L ft(z)

f 2
t (z)

)
ζ′

(
e∇Ft(z,z

′)
)

L(z, z′)

=

∑

z′, z′∼z

e∇Ft(z,z
′)

(
L ft(z

′)

ft(z′)
− L ft(z)

ft(z)

)
∇Ft(z, z

′) L(z, z′)

=

∑

z′, z′′, z∼z′∼z′′
∇Ft(z, z

′) e∇Ft (z,z
′)
(
e∇Ft(z

′,z′′) − 1
)

L(z, z′) L(z′, z′′)

−
∑

z′,w′, z′∼z,w′∼z

∇Ft(z, z
′) e∇Ft (z,z

′)
(
e∇Ft(z,w

′) − 1
)

L(z, z′) L(z,w′).

Simple computations together with (57) show that (60) holds too.
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Applying the identity (61), since
∑

z′, z′∼z

e∇Ft(z,z
′)∇Vt(z, z

′) L(z, z′) =
∑

z′, z′′, z∼z′∼z′′
e∇Ft(z,z

′)ζ
(
e∇Ft (z

′,z′′)
)

L(z, z′) L(z′, z′′)

−
∑

z′,w′, z′∼z,w′∼z

e∇Ft (z,z
′)ζ

(
e∇Ft(z,w

′)
)

L(z, z′) L(z,w′),

one gets for any t ∈ (0, 1),

ϕ′′(t) = −
∫ [ ∑

z′,w′, z′∼z,w′∼z

[
ζ
(
e∇Ft (z,w

′)
)
− ∇Ft(z, z

′)
(
e∇Ft(z,w

′) − 1
) ]

e∇Ft(z,z
′)L(z, z′) L(z,w′)

+

∑

z′, z′′, z∼z′∼z′′

[
∇Ft(z, z

′)
(
e∇Ft(z

′,z′′) − 1
)
− ζ

(
e∇Ft (z

′,z′′)
) ]

e∇Ft(z,z
′)L(z, z′) L(z′, z′′)

]
dQ̂

γ
t (z)

= −
∫ [ ∑

z′,w′, z′∼z,w′∼z

( (∇Ft(z,w
′) − ∇Ft(z, z

′)
) − 1

)
e∇Ft(z,w

′)+∇Ft (z,z
′)L(z, z′) L(z,w′)

+

∑

z′,w′, z′∼z,w′∼z

(∇Ft(z, z
′) + 1

)
e∇Ft(z,z

′)L(z, z′) L(z,w′)

−
∑

z′, z′′, z∼z′∼z′′

(∇Ft(z, z
′) + 1

)
e∇Ft(z,z

′)L(z, z′) L(z′, z′′)

−
∑

z′, z′′, z∼z′∼z′′
ρ
(
e∇Ft(z,z

′), e∇Ft(z,z
′′)
)

L(z, z′) L(z′, z′′)
]
dQ̂

γ
t (z),

where the last equality holds since ∇Ft(z, z
′) + ∇Ft(z

′, z′′) = ∇Ft(z, z
′′). The expected expression of

ϕ′′(t) follows by symmetrization of the first sum in z′ and w′, and since
∑

w′,w′∼z L(z,w′) = −L(z, z). �

Proof of Lemma 3.1. Let ε ∈ (0, 1/2). We first prove that if (12), (13) and (14) hold then ϕ′′γ (t) is

uniformly lower bounded over all t ∈ [ε, 1] and γ ∈ (0, γ̄] for some γ̄ ∈ (0, 1). According to (36) and

inequality (38) and (39), for any t ∈ [ε, 1] and γ > 0,

ϕ′′γ (t) ≥ −O(1)

[
|γ log γ|

ε

∫
d2(x0, z)Kd(x0 ,z)dQ̂

γ
t (z) +

1

ε2

∫ (
d2(x0, z) + 1

)
K2d(x0 ,z)dQ̂

γ
t (z)

]

≥ −O(1)

∫
d2(x0, z)K2d(x0 ,z)dQ̂

γ
t (z),

where O(1) denotes a positive constant that only depends on γ̄ and ε. Using Lemma 4.3 (vii) and the

fact that ν0 and ν1 have bounded support, it follows that

ϕ′′γ (t) ≥ −O(1)
∑

x∈supp(ν0),y∈supp(ν1)

max
z∈[x,y]

(
d2(x0, z)K2d(x0 ,z)

)
− O(1)

∑

z∈X
d2(x0, z)

(
γK3

)[2d(x0 ,z)−4D−1]+

= −O(1) − O(1)
∑

z∈X
d2(x0, z)

(
γK3

)[2d(x0 ,z)−4D−1]+

From hypothesis (14), choosing γ̄o so that (γ̄K3)2 < γ0, one gets

inf
γ∈(0,γ̄),t∈[ε,1]

ϕ′′γ (t) ≥ −O(1).

One may similarly proved by symmetry that if (12), (13) and (14) hold, then −ψ′′γ (t) is also uniformly

lower bounded, namely

inf
γ∈(0,γ̄),t∈[0,1−ε]

ψ′′γ (t) ≥ −O(1).

Let ε ∈ (0, 1/2), and for γ ∈ [0, 1), let

Fε
γ(t) = H(Q̂

γ

(1−ε)t+ε(1−t)
|m), t ∈ [0, 1].
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We will first prove a convexity property for the function Fε
0

from a convexity property of F
γk
ε as the

sequence (γk) goes to zero. We use the identity, for any t ∈ (0, 1)

(62) (1 − t)Fε
γk

(0) + tFε
γk

(1) − Fε
γk

(t) =
t(1 − t)

2

∫ 1

0

Kt(s)(Fε
γk

)
′′

(s) ds,

where the kernel Kt is defined by (29). Observe that
∫ 1

0

Kt(s)(Fε
γk

)′′(s) ds = (1 − 2ε)

∫ 1−ε

ε

Kt

(
u − ε

1 − 2ε

) (
ϕ′′γk

(u) + ψ′′γk
(u)

)
du.

The above uniform bounds on ϕ′′γ and ψ′′γ for γ ∈ (0, γ̄) allow to apply Fatou’s Lemma. Together with

Lemma 4.3 (ix) it implies, for any ε ∈ (0, 1/2)

(63) (1 − t)Fε
0(0) + tFε

0(1) − Fε
0(t) ≥ t(1 − t)

2
(1 − 2ε)

∫ 1−ε

ε

Kt

(
u − ε

1 − 2ε

)
lim inf
γk→0

(
ϕ′′γk

(u) + ψ′′γk
(u)

)
du.

For any t ∈ [0, 1] the support of the measure Q̂0
t is finite, included in the set B defined Lemma 4.3

(vii). As a consequence, the function t ∈ [0, 1] → H(Q̂0
t |m) is continuous as a finite sum of continuous

function. It follows that for any t ∈ [0, 1],

lim
ε→0

Fε
0(t) = H(Q̂0

t |m).

Consequently, using hypothesis (30) and applying Fatou’s Lemma as ε goes to zero, equality (63)

provides

(1 − t)H(ν0|m) + tH(ν1|m) − H(Q̂0
t |m) ≥ t(1 − t)

2

∫ 1

0

Kt (u)
(

lim inf
γk→0

ϕ′′γk
(u) + lim inf

γk→0
ψ′′γk

(u)
)

du

≥ t(1 − t)

2

∫ 1

0

Kt (u)
(
ϕ′′0 (u) + ψ′′0 (u)

)
du

=
[
(1 − t)ϕ0(0) + tϕ0(1) − ϕ0(t)

]
+

[
(1 − t)ψ0(0) + tψ0(1) − ψ0(t)

]

were the last equality is a consequence of identity (62) applied with ϕ0 and ψ0. �

Proof of Lemma 3.4. Let z ∈ Ẑ and z′ ∈ V(z). One will only compute the expression of limγk→0

(
γkA

γk

t (z, z′)
)

and similar calculations provide limγk→0

(
γkB

γk

t (z, z′)
)
. For any γ > 0, let

a
γ
t (z, y) := Q̂γ(Xt = z|X1 = y) =

∫
ν
γ
t

w,y
(z) dπ̂γ← (w|y),

and

a
γ
t (z, z′, y) :=

∫
α
γ
t (y, z, z′,w) dπ̂γ←(w|y), with α

γ
t (y, z, z′,w) =

P
γ

1−t
(y, z)P

γ
t (z′,w)

P
γ

1
(y,w)

.

Using equality (10) and since P
γ

1
f γ(y) > 0 for any γ > 0, one easily check that for any γ > 0,

γA
γ
t (z, z′) = γ

P
γ
t f γ(z′)

P
γ
t f γ(z)

=
γ a

γ
t (z, z′, y)

a
γ
t (z, y)

.

From the expression (31) of at(z, y) and since supp(̂πγk

← (·|y)) ⊂ supp(ν0), one has
∣∣∣ aγk

t (z, y) − at(z, y)
∣∣∣ ≤ sup

w∈supp(ν0)

∣∣∣ νγk

t

w,y
(z) − ν0

t

w,y
(z)

∣∣∣ +
∑

w∈supp(ν0)

∣∣∣ π̂γk

← (w|y) − π̂0
←(w|y)

∣∣∣ .

Therefore, the weak convergence of (̂πγk )k∈N to π̂0 and Lemma 4.3 (4) imply

(64) lim
γk→0

a
γk

t (z, y) = at(z, y).
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Let us now consider the behaviour of γka
γk

t (z, z′, y) as γk goes to zero. Lemma 4.3 (iii) provides the

following Taylor expansion,

γα
γ
t (y, z, z′,w) = γd(y,z)+1+d(z′ ,w)−d(y,w)r(y, z, z′,w)

d(y,w)!

d(y, z)!d(z′ ,w)!
(1 − t)d(y,z)td(z′,w)

·
(
1 + γ

(
Kd(y,z)

+ Kd(z′,w)
+ Kd(y,w)

)
O(1)

)
,

where O(1) is a quantity uniformly bounded in t, γ, z, z′, x, y. By the triangular inequality and since

z ∼ z′, one has d(y,w) ≤ d(y, z) + 1 + d(z′,w), with equality if and only if (z, z′) ∈ [y,w]. Therefore, one

gets

lim
γ→0

γα
γ
t (y, z, z′,w) = α0

t (y, z, z′,w),

with

α0
t (y, z, z′,w) := 1(z,z′)∈[y,w] r(y, z, z′,w)d(y,w)ρ

d(y,w)−1
t (d(z,w) − 1).

Moreover, Lemma 4.3 (i), (ii) and (iii) ensures that for any w ∈ supp(ν0) and y ∈ supp(ν1),

γα
γ
t (y, z, z′,w) ≤ O(1) γd(y,z)+1+d(z′ ,w)−d(y,w) (2S )d(y,z)+d(z′,w)−d(y,w) Kd(y,z)+d(z′,w)

· max
w∈supp(ν0),y∈supp(ν1)

(2S )d(y,w)d(y,w)!Kd(y,w)

Id(y,w)

≤ O(1) (γ2S K)d(y,z)+d(z′ ,w)+1−d(y,w),

where O(1) is a constant independent of t, y, z, z′,w. Therefore γα
γ
t (y, z, z′,w) ≤ O(1) as soon as γ <

1/(2S K). As a consequence, for any γk < 1/(2S K), it holds

∣∣∣ γka
γk

t (z, z′, y) − at(z, z
′, y)

∣∣∣

≤ sup
w∈supp(ν0)

∣∣∣ γkα
γk

t (y, z, z′,w) − α0
t (y, z, z′,w)

∣∣∣ + O(1)
∑

w∈supp(ν0)

∣∣∣ π̂γk

← (w|y) − π̂0
←(w|y)

∣∣∣ ,

As γk goes to 0, this inequality with the weak convergence of π̂γk to π̂0 implies

lim
γk→0

γk a
γk

t (z, z′, y) = at(z, z
′, y),

The set Ŷz is not empty since z ∈ Ẑ. Since for any y ∈ Ŷz, at(z, y) , 0, it follows from (64) that

γkA
γk

t (z, z′) converges as γk goes to zero with for any y ∈ Ŷz,

lim
γk→0

γkA
γk

t (z, z′) =
at(z, z

′, y)

at(z, y)
.

The proof of the first part of Lemma 3.4 is completed.

We now turn to the proof of the second part of Lemma 3.4. One will only compute limγk→0

(
γ2

k
A
γk

t (z, z′′)
)

for z ∈ Ẑ, z′′ ∈ V(z) and the expression of limγk→0

(
γ2

k
B
γk

t (z, z′′)
)

follows from similar calculations. For

any y ∈ X and any t > 0, one has

γ2A
γ
t (z, z′′) =

γ2a
γ
t (z, z′′, y)

a
γ
t (z, y)

,

with

γ2a
γ
t (z, z′′, y) :=

∫
γ2 α

γ
t (y, z, z′′,w) dπ̂γ←(w|y).
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It remains to compute limγk→0 γ
2
k
a
γk

t (z, z′′, y) to prove (35). As above, Lemma 4.3 (iii) provides

γα
γ
t (y, z, z′′,w) = γd(y,z)+2+d(z′′,w)−d(y,w)r(y, z, z′′,w)

d(y,w)!

d(y, z)!d(z′′ ,w)!
(1 − t)d(y,z)td(z′′,w)

·
(
1 + γ

(
Kd(y,z)

+ Kd(z′′,w)
+ Kd(y,w)

)
O(1)

)
,

where O(1) is a quantity uniformly bounded in t, γ, z, z′′, x, y. Since d(y,w) ≤ d(y, z) + 2+ d(z′′,w) with

equality if and only if (z, z′′) ∈ [y,w], it follows that

lim
γ→0

γ2α
γ
t (y, z, z′′,w) = α0

t (y, z, z′′,w) := 1(z,z′′)∈[y,w] r(y, z, z′′,w) d(y,w)(d(y,w) − 1)ρ
d(y,w)−2
t (d(z,w) − 2).

Moreover, Lemma 4.3 (i), (ii) and (iii) gives that for any w ∈ supp(ν0) and y ∈ supp(ν1),

γ2α
γ
t (y, z, z′′,w) ≤ O(1) (γ2S K)d(y,z)+d(z′ ,w)+2−d(y,w),

where O(1) is a constant independent of t, y, z, z′′,w. As above, the proof ends as γk goes to 0 from the

inequality

∣∣∣ γ2
ka
γk

t (z, z′′, y) − at (z, z
′′, y)

∣∣∣

≤ sup
w∈supp(ν0)

∣∣∣ γ2
kα

γk

t (y, z, z′′,w) − α0
t (y, z, z′′,w)

∣∣∣ + O(1)
∑

w∈supp(ν0)

∣∣∣ π̂γk

← (w|y) − π̂0
←(w|y)

∣∣∣ ,

for all γk < 1/(2S K). The end of the proof of the second part of Lemma 3.4 is identical to the one the

first part. �
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[13] M. Fathi and J. Maas. Entropic ricci curvature bounds for discrete interacting systems. The Annals of Applied Probability,

26(3):1774–1806, 2016.

[14] N. Gozlan, C. Roberto, P.-M. Samson, and P. Tetali. Displacement convexity of entropy and related inequalities on

graphs. Probability Theory and Related Fields, 160(1-2):47–94, 2014.

[15] N. Gozlan, C. Roberto, P.-M. Samson, and P. Tetali. Kantorovich duality for general transport costs and applications. J.

Funct. Anal., 273(11):3327–3405, 2017.



50 PAUL-MARIE SAMSON

[16] N. Gozlan, C. Roberto, P.-M. Samson, and P. Tetali. Transport proofs of some discrete variants of the prékopa-leindler
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[25] C. Léonard. Lazy random walks and optimal transport on graphs. Ann. Probab., 44(3):1864–1915, 2016.
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