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ENTROPIC CURVATURE ON GRAPHS
ALONG SCHRODINGER BRIDGES AT ZERO TEMPERATURE.

PAUL-MARIE SAMSON

ABsTRACT. Lott-Sturm-Villani theory of curvature on geodesic spaces has been extended to discrete graph
spaces by C. Léonard by replacing W,-Wasserstein geodesics by Schrodinger bridges in the definition
of entropic curvature [24, 26, 25]. As a remarkable fact, as a temperature parameter goes to zero, these
Schrodinger bridges are supported by geodesics of the space. We analyse this property on discrete graphs
to reach entropic curvature on discrete spaces. Our approach provides lower bounds for the entropic
curvature for several examples of graph spaces: the lattice Z" endowed with the counting measure, the
discrete cube endowed with product probability measures, the circle, the complete graph, the Bernoulli-
Laplace model. Our general results also apply to a large class of graphs which are not specifically studied
in this paper.

As opposed to Erbar-Maas results on graphs [28, 10, 11], entropic curvature results of this paper im-
ply new Prékopa-Leindler type of inequalities on discrete spaces, and new transport-entropy inequalities
related to refined concentration properties for the graphs mentioned above. For example on the discrete
hypercube {0, 1}" and for the Bernoulli Laplace model, a new W, — W, transport-entropy inequality is
reached, that can not be derived by usual induction arguments over the dimension n. As a surprising fact,
our method also gives improvements of weak transport-entropy inequalities (see [15]) associated to the
so-called convex-hull method by Talagrand [39].

The paper starts with a brief overview about known results concerning entropic curvature on discrete
graphs. Then we introduce a specific entropic curvature property on graphs (see Definition 1.1), derived
from C. Léonard approach [24, 26, 25], and dealing with Schrédinger bridges at zero temperature.

The main curvature results are given in section 2, with their connections to new transport-entropy
inequalities. The concentration properties following from such transport-entropy inequalities are not
developed in the present paper. For that purpose, we refer to [35] and [15] by Gozlan & al, where the
link between transport-entropy inequalities and concentration properties are widely investigated.

The strategy of proof, presented in section 3, uses the so called slowing-down procedure for Schrodinger
bridges associated to jump processes on discrete spaces pushed forward by C. Léonard. The key theo-
rem of the present paper, Theorem 3.5 (with Lemma 3.1), is derived from this procedure, which consists
of decreasing a temperature parameter y to 0 in order to construct W;-Wasserstein geodesics on the set
of probability measures on the graph. All the curvature results of this paper are derived from Theorem
3.5. Our strategy also applies for many other graph spaces which are not considered in this paper. The
main goal of this work is to push forward Leonard’s slowing-down procedure to reach entropic cur-
vature on graphs through few significant new results. In a forthcoming paper, one will give sufficient
geometric conditions to reach entropic curvature property on non-specific graphs from Theorem 3.5.
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1. INTRODUCTION : SCHRODINGER BRIDGES FOR ENTROPIC CURVATURE

For any measurable space Y, we note M(Y) the set of all non-negative measures on Y and P(Y) the
set of all probability measures on Y.

Let (X, d) be a geodesic space equipped with a reference measure m € M(X). According to Lott-
Strum-Villani theory of curvature on geodesic spaces [27, 37, 38, 41], a lower bound K € R on the
entropic curvature of the space (X, d,m) is characterized by a K-convexity property of the relative
entropy along constant speed geodesics of the Wasserstein space (P2(X), W»). Let us precise this
property for the non specialist reader. By definition, the relative entropy of a probability measure g on
a measurable space Y with respect to a measure r € M(Y) is given by

H(qlr) :=fy10g(dQ/dr)dq € (=00, 00],

if ¢ is absolutely continuous with respect to r and H(g|r) := +oco otherwise. We refer to [23] for more
details about this definition. The space $»(X) is the set of probability measures with second moment
and W, is the Wasserstein distance of order 2 on X: namely, for any vg, v; € P2(X),

1/2
1) Wa(vo, v1) :=( inf f f d(x,y>2dn(x,y>) ,

nell(vg,vy

where I1(vg, v1) is the set of all probability measures on the product space X X X with first marginal
vo and second marginal v (also called transference plans from vq to vi). A path (v;)eo,17 in P2(X) is
a constant speed W-geodesic from vo to vy if forall 0 < s <t < 1, Wh(vs,vs) = (£ — 5)Wa(vg, v1).
The K-convexity property of the relative entropy H(-|m) is expressed as follows: for any vg, v; € P2(X)
whose supports are included in the support of m, there exists a constant speed Ws-geodesic (V¢)sefo.1]
from v to vy such that for all ¢ € [0, 1],

K
2 H(vilm) < (1 = 0) H(volm) + t H(vilm) = = (1 = 1) W3 (vo, v1).

If such a property holds, one says that the Lott-Sturm-Villani entropic curvature of the space (X, d, m)
is bounded from below by K.
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Property (2) with K = 0 has been discovered by McCann on the Euclidean space (X, d) = R4, - )
endowed with the Lebesgue measure [29]. More generally, as a remarkable fact, when X is a Rie-
mannian manifold equipped with its geodesic distance d and a measure m with density e~V with respect
to the volume measure, property (2) is equivalent to the so-called Bakry-Emery curvature condition
CD(c0, K): Ricc + Hess(V) > K (see e.g. [3]). As a consequence, due to the wide range of impli-
cations of this notion of curvature, property (2) has been used as a guideline by Lott-Sturm-Villani to
define curvature on geodesic spaces (see also [1, 2]) and then by different authors to propose entropic
definitions of curvature on discrete spaces : Bonciocat-Sturm [6], Ollivier-Villani on the discrete cube
[34], Erbar-Maas [28, 10, 11], Mielke [30], Léonard [24, 26, 25], Hillion [18, 19] and Gozlan-Roberto-
Samson-Tetali [14].

This paper concerns Léonard entropic approach of curvature in discrete setting, from which we also
recover results from [14] and [18]. In discrete spaces, several other notions of curvature have already
been studied which are not considered in this paper : the coarse Ricci curvature [32, 33], the Bochner-
Bakry-Emery approach with the (Bochner) curvature [7, 20] and the curvature dimension or exponential
curvature dimension inequality [4].

For m as unique invariant probability measure of a Markov kernel on a discrete space X, a first global
entropic approach has been proposed by M. Erbar and J. Maas [28, 10, 11]. The core of their approach is
the construction of an abstract Wasserstein distance ‘W, on P(X), that replaces the Wasserstein distance
W, in (2). This distance W, is defined using a discrete analogue of the Benamou-Brenier formula for
W,, in order to provide a Riemannian structure for the probability space P(X). Unfortunately, there
is no static definition of (Wg as a minimum of a cost among transference plans 7 as in the definition
(1) of W22. Erbar-Maas entropic Ricci curvature definition satisfies a tensorisation property for product
of graphs that allows to consider high dimensional spaces [10]. This definition has been used to get
lower bounds on curvature for several models of graphs : the discrete circle, the complete graph, the
discrete hypercube [28, 10], the Bernoulli-Laplace model, the random transposition model [12, 13],
birth and death processes, zero-range processes [13], Cayley graphs of non-abelian groups, weakly
interacting Markov chains such as the Ising model [9]. The main strategy of all this papers is to prove
an equivalent criterion of Erbar-Maas entropic curvature given in [10], by identifying some discrete
analogue of the Bochner identity in continuous setting.

Finding a minimizer in the definition of W;(vg, v;) is known as the quadratic Monge-Kantorovich
problem. By the so-called slowing down procedure, T. Mikami [31] and then C. Léonard [22, 24,
25, 26] show that the quadratic Monge-Kantorovich problem in continuous, but also the W;-Monge-
Kantorovich problem in discrete, can be understood as the limit of a sequence of entropy minimization
problems, the so-called Schriodinger problems.

In this paper, the slowing down procedure, described further, is used to prove entropic curvature
properties of type (2) as X is a graph, endowed with its natural graph distance d = d., and with a
measure m, reversible with respect to some generator L. More precisely, in property (2), constant
speed W>-geodesics (vy)spo,17 are replaced by constant speed W;-geodesics where W is the Wasserstein
distance of order I given by

Wi(vo,vy) := inf ffd(x,y) dn(x,y), vo, V1 € P(X).
nell(vg,vy)

As explained below, each of these constant speed W;-geodesics, denoted by (’Q\?),E[o, 17 throughout this
paper, is the limit path of a sequence of Schrodinger briges (Qy )iero0.17 indexed by a temperature param-
eter y > 0, as y goes to zero. We call it Schrodinger brige at zero temperature. In property (2), the
curvature term sz(vo, v1) is also replaced by some transport cost C;(vy, v1) that may also depend on the
parameter ¢ € (0, 1). Let $,(X) denotes the set of probability measures on X with finite support. The
analogue of property (2) on discrete graphs at the focus of this work is the following.
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Definition 1.1. On the discrete space (X, d, m, L), one says that the relative entropy is C-displacement
convex where C = (Cy)el0,1), Iif for any probability measure vy, vi € Pp(X), the Schrodinger bridge at

zero temperature (@)te[o,l] from vq to vy, satisfies for any t € (0, 1),

©) H(QVIm) < (1 = HH(volm) + t H(vilm) - ’(12‘ 2

C:(vo, v1).

For some of the graphs studied in this paper, the cost C;(vg, v;) is bigger than K W;(vo, v1)? for any
t € (0,1) with K > 0. In that case one may say that the W|-entropic curvature of the space (X, d,m, L)
is bounded from below by K. Such a property is also a consequence of Erbar-Maas entropic curvature
since ‘W, > W; but their property deals with different constant speed geodesics on P(X). Let us
introduce another discrete analogue of the W,-distance:

nell(vo,vq

1/2
%) Wg(vo,vl) :=( inf )ffd(x,y)(d(x,y) - l)dﬂ(x,y)) . V0,V1 € Pa(X).

For some graphs in this paper, we also get
Ci(vo,v1) = K’ (Wa(vo,v1)* = Wi(vo, 1)) = K’ We(vo,71)?,

with K’ > 0. In that case, one may say that the Wé’—entropic curvature, of the space (X,d,m, L) is
bounded from below by K’.

In the definition (4) of W¢, the cost d(x, y)(d(x, y) — 1) is zero if x and y are neighbours. Therefore the
optimal transport-cost Wg does not well measure the distance between probabilities with close supports.
Observe that such type of costs also appear in the paper by Bonciocat-Sturm [6] in their definition of
rough (approximate) lower curvature.

In this paper, a C-displacement convexity property is proved for the following discrete spaces : the
lattice Z" endowed with the counting measure (see Theorem 2.2), the discrete hypercube endowed with
product probability measures (see Theorem 2.4), the discrete circle endowed with uniform measure (see
Theorem 2.5), the complete graph (see Theorem 2.3), the Bernoulli-Laplace model (see Theorem 2.6).
For all these graphs, one gets a non-negative lower bound for their W or Wé’—entropic curvature. In a
forthcoming paper one will present geometric conditions on the space (X, d, m, L) for non-negative W,
or Wg—entropic curvature.

For more comprehension, let us briefly explain the slowing down procedure in its original continuous
setting before considering discrete spaces. Let R” be the law of a reversible Brownian motion with
diffusion coefficient y > 0 on the set Q of continuous paths from [0, 1] to X = R?. The coefficient
v can be also interpreted as a temperature parameter. The measure R” € M(Q) is a Markov measure
with infinitesimal operator LY = yA (where A denotes the Laplacian), and initial reversible measure
dm = dx, the Lebesgue measure on R4,

In all the paper, we use the following notations. For any ¢ € [0, 1], X; is the projection map
X :weQ w eX.

Given O € M(Q), the measure Q, := X#Q on X denotes the push-forward of the measure Q by X;, and
forany 0 < f < s < 1, the measure Oy, := (X, X)#0 on X x X denotes the push forward of the measure
O by the projection map (X;, X;). For any integrable function F : Q — R with respect to Q, one notes

EolF] := fg FdQ.



ENTROPIC CURVATURE ON GRAPHS. 5

The informal result by T. Mikami [31] or C. Léonard [22] is the following: for any absolutely contin-
uous measures vy, v; € P,(X), for any sequences (yy)ren Of temperature parameters going to zero,

2 o _ _
W5(vo,v1) = Qég{m {EQ[C] |Q0 =v0,01 =V }

= i in {H(QIR"
lim, [yk QL%){ (QIR™)

Qo =vp, 01 = Vl}],

where c(w) = fo | w, [2dt, if the path w = (wy)efo,17 1s absolutely continuous (w denotes its time
derivative), and c(w) := +oo otherwise. The first equality is known as the Benamou-Brenier formula
(see [5]). The second equality therefore relates W to the so-called dynamic Schrodinger minimization
problems. As a convex minimization problem, for any fixed y > 0, it admits a single minimizer Q7,
namely

5) min, {H(QIR)| Qo = v0.01 = 1} = HQ"R".

As interpretation, the measure Q7 is the law of the process with configuration Q’; =ypattimer =0
and Q = y; at time ¢t = 1, which is the closest one for the entropic distance, to a reversible Brownian

motion with diffusion coefficient y. As a result (see [31, 22]), the sequence of minimizers (é”f Ve
converges to a single measure Q\O € P(Q). For any t € [0, 1], let v) := Qy and v; := @ . By definition,
("Nieo.1) is a Schrodinger bridge from v to vy at fixed temperature vy, and as a main result, as y; goes
to zero, the limit path (v;).[o,17, is a W-geodesic from vg to v; (see [24]). Therefore, it is natural to
consider a relaxation of the curvature definition (2) by replacing the geodesic (vi)«o,17 by the bridge
(v;y)te[o,l] and by replacing sz(vo, v1) by yYH (Q\V |[R”). This idea has been explored in continuous setting
by G. Conforti in [8].

Let us present the discrete analogue of this approach due to C. Léonard [24, 26, 25]. From now on,
the space X is a countable set endowed with the o-algebra generated by singletons. The set Q c X0
denotes the space of all left-limited, right-continuous, piecewise constant paths w = (w;)ef0,17 on X,
with finitely many jumps. The space Q is endowed with the o-algebra ¥ generated by the cylindrical
sets. In all the paper, by convention, a sum indexed by an empty set is equal to zero.

According to C. Léonard’s paper [25], the discrete space X is equipped with a metric distance d. This
distance is assumed to be positively lower bounded: for all x # y in X, d(x,y) > 1. The space X is also
the set of vertices of a connected graph G = (X, E) where E C X X X denotes the set of directed edges
of the graph. G is supposed to be an undirected graph so that for all (x,y) € E, one has (y, x) € E. Two
vertices x and y are neighbours and we note x ~ y if (x,y) € E. We assume that any vertex x € X has a
finite number of neighbours d, and that sup, .y dy = dmax < ©0. We note V(x) the set of neighbours of
x. The length £(w) of a piecewise constant path w = (wy)«ep0,17 € L is given by

lw) = ) dwr,w).
O<t<1
In C. Léonard’s paper, the distance is assumed to be intrinsic in the discrete sense (see [25, Hypothesis
2.1]), this means that for any x,y € X,

d(x,y) := inf {é’(w) | wEQ Wy=X,w = y}.

In this paper, we only consider the simple case where d = d. is the graph distance for which the above
assumptions are fulfilled: d.(x,y) = 1 if and only if x ~ y.

A discrete path « of length { € N joining two vertices x and y is a sequence of £ + 1 neighbours
a = (20,...,2¢) so that zg = x and z, = y. In the sequel, we note z € « if there exists i € {0,..., ¢} such
that z = z;, and we note (z,7') € a if there exists 0 < i < j < £ such that z = z; and 7’ = z;. The distance
d(x,y) is also the minimal length of a path joining x and y. A discrete geodesic path joining x to y is a
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path of length d(x,y) from x to y. We note G(x,y) the set of all geodesic paths joining x to y, and we
note [x, y] the set of all points that belongs to a geodesic from x to y,

[x,y] := {zeX|z€a,aeG(x,y)}.

At fixed temperature y > 0, as reference measure on €2, we consider a Markov path measure R” with
generator LY defined by for any x,y € X
{ L'(x,y) =y L(x,y) forx#y,
1- Z)’Gx,yix L)’(_x, y)’
and initial reversible invariante measure R(y) = m. More precisely, we assume that m is reversible with
respect to L, which means that for any x,y € X

m(x)L(x, y) = m(y)L(y, x).

It implies that m is reversible with respect to L” for any y > 0, and therefore R = m for all ¢ € [0, 1].
We also assume that the Markov process is irreducible so that m(x) > 0 for all x € X. Recall that from
the definition of a generator, for any ¢ > 0 and any x,y € X, one has

R}, (6 y) = RI(0)(6x() + L (x, »)h + o)),

where ¢, is the Dirac measure at point x. We note P;, ¢t > 0, the Markov semi-group associated to L,
and P, t > 0, the Markov semi-group associated to L”,y > 0. By reversibility, one has for any x,y € X

R (x,y) = m(x)P](x,y) = m(y)P] (v, %),

and since the process is irreducible, PY(x,y) > 0 for all # > 0 and all x,y € X. For any integrable
function f : X — R with respect to P! (x, -), we set

PIF@) = ) f0) Pl (xy).

yeX

LY(x,x) :

In this paper we only consider generator L satisfying :
(6) L(x,y)>0 ifandonlyif x~y,
so that P] = Py, for all y,7 > 0, but also for any x # y,

d(x,y) = min {k € N | L*(x,y) > 0} .

Let vo, vi € P(X) with respective densities /g and h; according to m. In Léonard’s paper [25], The-
orem 2.1 ensures that under some assumptions (see [25, Hypothesis 2.1]), at fixed temperature y > 0,
the minimum value of the dynamic Schrodinger problem (5) is reached for a single probability mea-
sure @7 which is Markov. This Markov property implies that the measure @’ has density f7(X)g”(X1)
with respect to R, where f” and g” are non-negative functions on X satisfying the following so-called
Schrodinger system

7 { FT(x) Plg"(x) = ho(x),
FOPIG) =m0,
Since f” is non-negative and f” # 0, by irreducibility one has P} ¥ > 0 for all ¢ > 0, and for the same

reason, P/g” > 0 for all # > 0. As a consequence, if vy and v; have finite support, then the Schrodinger
system (7) implies that f” and g” have also finite support.

Vx,y e X.

According to [26, Theorem 6.1.4.], from the Markov property, the law at time ¢ of the Schrédinger
bridge at fixed temperature vy, Qy , is given by: for any z € X,

(®) 0)(2) = P/ f' ()P _ 8" ()m(z) = Z m(2)P) (2, )P]_ (. y) 7 (g ).

x,yeX
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Let us present another expression for Qy . First, by reversibility, one has

D m@P! (2, 0P]_@y) = m()P](x,y) = R} | (x,).

zeX

Therefore, setting

m@P] (2, OP\_(zy) Pl(x,DP{_(zy) P (2P ()

hED) -
) T P ey Py Plow
and
7 (x,) = Oy (x3) = R (£, )7 (07 ),
we get

0@ =Y M@ Ty, zeX

x,yeX
Actually, for any x,y € X, (v;yx’) '),E[o, 11 is the Schrodinger bridge joining the Dirac measures 6, and 6.

The path (Qy )i0.17 is therefore a mixing of these Schrodinger bridges, according to the coupling measure
e H(V(), v 1).

Using the Schrodinger system (7), the measure 777 can be rewritten as follows,

&P (x,y) ") FYOP](y, %)

2 L oy () —
Plg"(x) PIf ()

For any v € P(X), let supp(v) denote the support of the measure v, supp(v) := {x € X|v(x) > 0}. The
measure 777 admits the following decomposition,

T(x,y) = vo() 7 (%) = vi 7 (xly),
where 77 and 77 are the Markov kernel defined by, for any x € supp(vp),
()P (x.)

P g(x)

T(x,y) = vo(x)

() =

and for any y € supp(vy),
S ()P (y, x)
Pl

In order to fulfil this presentation, recall that the static Schrodinger minimization problem associated
to Ry is to find the minimum value of H (7r|R ) over all = € I1(vo, v1). Theorem 2.1. by C. Léonard
[25] ensures that under Hypothesis 2.1 of its paper this minimum value is the same as the one of the
dynamic Schrodinger minimization problem. Moreover it is reached for 77 = Q0,1 € P(X x X) and
therefore

(10) 7l (xly) =

inf H(rR] ) = HEIRG ) = H(Q"IR).
nell(vo,vy) >
As in the continuous case, let us now apply the slowing down procedure. As the temperature y
decreases to zero, the jumps of the Markov process are less frequent, and the reference process is
therefore a lazy random walk according to C. Léonard’s terminology. In order to justify the behaviour of
the Scrodinger bridge as the temperature goes to zero, for computational reasons, we need the following
not so restrictive additional assumptions.

e The measure m is bounded,

(11) sup m(x) < oo, and inf m(x) > 0.
xeX xeX
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e The generator L is uniformly bounded : there exists § > 1 such that

(12) sup |L(x, x)| < S,
xeX

and there exists / € (0, 1] such that

(13) inf  L(x,y) > I.
x,yeX,x~y

e For any x € X, there exists y, € (0, 1] such that
(14) Z ,yd(x .y)

yeX

Hypothesis (12) implies that the semi-group (P} ). is given by

k
(15) Pli=eh =) 2073

Let us now consider the behaviour of the Schrodinger bridges (Qy )ie0.1] @s ¥ goes to zero. Assume
vp and v; have finite support. As condition (12) holds, Lemma 4.3 (iv) gives the limit of the path
(v;yx’y )iejo,1] defined by (9): namely, for any z € X,

(16) lim 7@ = @) = L@ e 2. 2.6 A ),

where for any x,z,v,y € X,

1.4x.2) (x,2) L.40-y) v, y)
LAY (x, y)

(17) r(x,z,v,y) =

’

and pf denotes the binomial law with parameter ¢ € [0, 1], d € N :
d
ﬁ@:&yaﬁﬁﬁkemmﬂh

with the binomial coefficient ( ) o d k), Observe that vo ? is the Dirac measure at point x and v(l)x’} ’

is the Dirac measure at point y. Moreover, for any ¢ € (0, 1), the support of v?x’y is [x, y], the set of points
on discrete geodesics from x to y. Therefore this limit Schrédinger bridge (vox’ '),E[o 1] is consistent with
the metric graph structure. This is not surprising. Indeed, roughly speaking, v 0 " can be interpreted
as the law of a process going from x to y which is closest to a lazy random walk (since y goes to 0).
Therefore this process is forced to follow the geodesics of the graph from x to y.

For fixed x # y, the law v?x’y on [x, y] can be described as follows. Let N denote a binomial random
variable with parameters r € [0,1] and d = d(x,y) € N, and let I' be a random discrete geodesic in
G(x,y) whose law is given by

L(ag, ay) -+ - L(@g-1, @q)

, for all @ = (g, a1, ..., aq) € G(x, ).

If NandT = (Iy,...,I;) are independent then v?x’y is the law of I'y.

Let us come back to the behaviour of the Schrodinger bridges at low temperature. C. Léonard [25,
Theorem 2.1] proves that given a positive sequence (yi)ireny With limg_ yx = 0, the sequence of op-
timal Schrodinger minimizers (Q\Vk)keN converges to a single probability measure QO € P(Q) for the
narrow convergence, provided Hypothesis 2.1 holds. In this paper, the measure éo is named as the limit
Schrodinger problem optimizer at zero temperature, between vy and v;. In the framework of this work,
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choosing two probability measures vy and v; with finite supports, Hypothesis 2.1 in [25] is reduced to
the following assumption (see condition (u) in Hypothesis 2.1): for any x,y € X and for any y > 0
ERY [€|X() =x,X] :y] < 00.
According to Lemma 4.3 (vi), this assumption is fulfilled thanks to (12) since P’ll(x, y) > 0 for any
x,ye Xandvy > 0.
As a main result of [25, Theorem 2.1], the measure @O
Monge-Kantorovich problem :

inf {Eg[¢]] Q € P(Q), Qo = o, Q1 = w1} = Bl ].

The sequence of coupling measures (1% ey also weakly converges to

is also a solution of the following dynamic

-0 ._ 0
no= Q0,1-
Moreover, similarly to the continuous case, 7° is a W;-optimal coupling of vy and v, it means a mini-

mizer of W;(vg, v1),

Wi(vo,v1) = f f d(x,y) dr’(x,y) = Eg(0).

The weak convergence of (@”f Vken to @0 also provides the convergence of (’:yk ken to @? , and one
has
(18) Q)@ = f f W () d(x, y).

The path (@?)re[o,l] is joining vg to v;. According to its construction, this bridge is called Schrodinger
bridge at zero temperature from v to vi. Observe that for any ¢ € (0, 1), the support of QO only depends
of the support of the optimal coupling 7’ of vy and vy,

(19) supp@) = | ) [l

(x,y)esupp(@”)

As a main result, C. Leonard proves that with hypothesis (6), the path (@)te[o,l] is a constant speed
Wi-geodesic (see [25, Theorem 3.15]): forany 0 < s << 1,

Wi(QP, Q°) = (t — $)Wi(vo, v1).

2. MAIN RESULTS : EXAMPLES OF ENTROPIC CURVATURE BOUNDS ALONG SCHRODINGER BRIDGES ON GRAPHS

The main purpose of this section is to present W; or Wg-entropic curvature bounds or improved ver-
sions of these, for several discrete graph spaces (X, d, m, L), in the framework of the first section. As
explained before, these bounds follows from C-displacement convexity properties (3) of the relative
entropy along Schrodinger bridges at zero temperature (@)te[o,l]a derived from the slowing down pro-
cedure.

As in the paper [14], C-displacement convexity properties imply a wide range of functional inequali-
ties for the measure m on X, such as Prékopa-Leindler type of inequalities, transport-entropy inequali-
ties, and also discrete Poincaré or modified log-Sobolev inequalities.

To avoid lengths, discrete Poincaré and modified log-Sobolev inequalities are not considered in the
present paper. However, we push forward new transport-entropy inequalities to emphasize the efficiency
of the Schrodinger approach. Indeed, optimal transport costs derived from this method are well suited
to get new concentration properties, using known connections between transport-entropy inequalities
and concentration properties pushed forward in [15]. Observe that Erbar-Mass approach [11] does not
allow to recover such concentration properties on discrete graphs.
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New Prékopa-Leindler type of inequalities are also a straighforward dual consequence of the C-
displacement convexity properties (3). Theorem 2.1 below is a general statement that applies for each
of the discrete spaces (X, d, m, L) studied in this paper and presented next.

Theorem 2.1. On a discrete space (X,d, m, L), assume that the relative entropy satisfies the C-displacement
convexity property (3) with C = (C;)(0,1y given by : for any vo,vi € Pp(X)

Ci(vo,v1) = ffq(x,y)d'ﬁo(x,y),
70 = Q)

where T = Qy,, and Q‘o is the limit Schrodinger problem optimizer between vy and vi. Then, the next
property holds. If f, g, h are functions on X satisfying

(1 -0f(x) +1g(y) < f hd"™ +

(oo (o] o

The proof of this result is an easy adaptation of the one of Theorem 6.3 in [14]. It is left to the reader.

(1 -t
( 5 )ct(x,y), Vx,y € X,

then

For each of the discrete spaces (X, d, m, L) presented below, we describe the Schrodinger path at zero
temperature and, as a main result, we give a C-displacement convexity property (3) satisfied by the
reversible measure m by specifying the family of costs C = (C;)e0,1). The strategy of proof of these
results is explained in section 3.

2.1. The lattice Z" endowed with the counting measure. Let m denote the counting measure on
X = Z". The graph structure on Z" is given by the set of edges

E = {(z,z +e)(zz—e)|zeZie [n]},

where [n] :={1,...,n}and (ey,...,e,) is the canonical base of R"”. The graph distance is given by
n
dx,y)= Y lyi—xl,  xyezZ"
i=1

The measure m is reversible with respect to the generator L defined by, for any z € Z", for any i € [n],
Liz,z+e) =Lz z-e) =1,  Lzz) =-2n

For any integers d,ky,...,k, such that d = k; + - + k, (k1 d k) = % denotes the multinomial
coefficient. Since
d(x,y)

1= xilooosyn — xnl)’
the Schrodinger bridge at zero temperature (@),6[0,1] joining two measures v, v| € Pp(X) is given by
(18) with, according to (16),
d(x,z) d(z,y)
(lZl_xl|a---,|Zn_xn|)(|yl_Zl| ,,,,, Iyn—znl)

( d(x.y) )
|yl —X1 | ----- |yn _xnl

- X — X
_ ]]-[x,y](Z) (b’l 1|) o (|)’n n|) td(x’z)(l _ l‘)d(z’y), e 7n
lz1 — x1] |z — Xl

LY (x,y) = #G(x,y) = (

VW2 = 11y @) 02N (d(x, 2))

Observe that (v?x’) ’)te[O,l] is a binomial interpolation path as in the paper by E. Hillion [18].

Theorem 2.2. On the space (Z",m,d, L), the relative entropy H(-|m) satisfies the 0-displacement con-
vexity property (3). In other words, for any Schriodinger bridge at zero temperature (@)te[o, 1] joining
any two measures vy, vy € Pp(Z"), the map t — H (é? |m) is convex.
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Therefore the space (Z",d, m, L) has non-negative W; or Wg—entropic curvature. It is a flat space.
This convexity property along binomial interpolation paths has been first obtained by E. Hillion [18].
To compare with Hillion’s method, the main interest of our approach is its simplicity. As explained
in the next section, we first work at positive temperature y > 0 so that the second derivative of the
function ¢t — H (Qy |m) can be easily computed using I'; calculus. Then we analyse the behaviour of
the second derivative of this function as temperature goes to 0, and get a positive lower bound at zero
temperature on Z". This provides the convexity property of ¢ +— H(@Im). In Hillion’s paper, one
may say that computations are done directly at zero temperature. It leads to harder computations and
the construction of the optimal coupling, related to a cyclic monotonicity property, is rather difficult to
handle.

In the paper [16] by Gozlan & al., another kind of convexity property of entropy has been proposed
that generalizes a new Prekopa-Leindler inequality on Z by Klartag-Lehec [21] (see also the more recent
paper [17] by Halikias-Klartag-Slomka). There convexity property is of different nature, it is only valid
for t = 1/2. More precisely, given vy, v; € Pp(Z) they define two midpoint measures

v_ =m_#n and Ve = mi#m,
where 7 is the monotone coupling between vy and vy (which is a Wi-optimizer), and for all x,y € Z,
(x.y) {x + yJ X+ y"
m_(x,y) = , .
Y 2 2

Gozlan & al. result [16, Theorem 8] states that

() = |

1 1 1 1
EH(V_lm) + EH(erIm) < EH(VOW) + EH(vllm).

As a main difference, the measures v, and v_ are only concentrated on the midpoints m_(x, y), m4(x,y),
for x € supp(vp) and y € supp(vy). Since v, and v_ are much more concentrated than Q? 1 their result
directly implies a Brunn-Minkovsky type of inequality. Unfortunately it seems that their approach do
not extend to any values of ¢ € (0, 1).

2.2. The complete graph. Let X be a finite set and u be any probability measure on X. The set of
edges of the complete graph G = (X, E) is E := X X X \ {(x,x)|x € X} and the graph distance is the
Hamming distance d(x,y) := 1., for any x,y € X. The measure y is reversible with respect to the
generator L given by : for any z,7" € X with z # 2/,

L(z,7') = u(@), L(z,z2) := —(1 = p(2)).

The Schrodinger bridge at zero temperature (@)te[o,l] given by (18), is the same as the bridge used in
[14] for the complete graph (see section 2.1.1): for any x,y € X one has

(20) W@ =(1-06.() +16,z), zeX.

Theorem 2.3. On the finite space (X, u,d, L), the relative entropy H(-|u) satisfies the C-displacement
convexity property (3), with C = (Cy)e0,1) given by: for any vo,vi € P(X) with associated limit
Schrodinger problem optimizer éo € P(Q),

Civo,v1) = fht(f1w¢xﬁg(wlx))dV0(x)+fhl—t(f]lw;tydﬁg(WW))dVl(y)a

where 10 = @0,1’ and for any t € (0,1), u > 0,

__ th(u) = h(tu) ) [ 2[(d —uwlog(l —u) +u] for 0<u<l,
h(u) := W, with h(u) = { +oo for u> 1.
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The cost Cy(vy, vy) can be compared with a function of the total variation distance

2D vo = villry := 2 sup [vo(A) = vi(A) =2  inf fﬂxiydﬂ(x, y) = 2Wi(vo, v1).
AcX nell(vo,vy)
Namely, one has
Wi(vo, v1)
22 Ci(vo,v1) = (1 + Wi(vo, ki| ————————|,
(22) (v, v1) = ( 1vo, V1)) t(1+W1(VO,V1))
where for all v € [0,1/2],
. v \ 4y?
= — == :
(23) ki(v) a,ﬁ,01<rg‘+ﬂ§1 {aht(a) B t(/&’)} T 1-v
Comments. o The estimate (22) and the inequality (23) (whose proofs are given at the end of the

proof of Theorem 2.3) imply

2 2
Ci(vo,v1) = 4W1(vo, v1)~ = llvo = villgy-

This provides the second convexity property of the relative entropy given in [14, Proposition

4.1] since Q° = (1 = tyvg + tvy, 1 € [0, 1].

e An improved version of the Csiszar-Kullback-Pinsker inequality also follows from (22). Indeed,
since pu is a probability measure, by Jensen’s inequality H (Q\?Iu) > 0, and the displacement

convexity property (3) and (22) provides, for any t € (0, 1),
Wi(vo,v1)

1
5+ Wivo, vi) ki | T
2( + Wi(vg,v1)) t(l + Wi(vg, v1)

1 1
) < " H(volu) + 15 H|w), Yvo, v € P(X).

The well-known Csiszar-Kullback-Pinsker inequality is obtained using inequality (23) and then

optimizing over all t € (0, 1) (see [14, Remark 4.2]), namely

1
S0 =villy < (VEGol) + VHO1 W)

2, Yvo, v1 € P(X).

e Theorem 2.3 is also an improvement of the first convexity property of the relative entropy ob-
tained by Gozlan & al. [14, Proposition 4.1]. Indeed, the inequality h,(u) > u?, forallu € [0, 1],

t € (0, 1), provides .
Ci(vo,v1) = Ta(vo, v1),

with
2

2
Tz(Vo,Vl) = nel'}(l}/gvl)[f(f]lW#Cdﬂ_)(Wl)C)) dVO(x)+f(f]lw¢yd7T<_(W|y)) dVl()’)]-

2.3. Product measures on the discrete hypercube. In this section, the reference space is the discrete

hypercube X = {0, 1}" equipped with a product of Bernoulli measures

H=H1 Q" @ Uy,
with for any i € [n], g;(1) = 1 — ;(0) := ;, @; € (0, 1).

For any z = (z1,...,2z,) € {0, 1}" and any i € [n] let 0;(z) denotes the neighbour of z according to the

i’s coordinate defined by
i(2) 7= (215> Zi1>Zis Titls - - + 5 Zn)s
where 7; := 1 — z;. The set of edges on {0, 1}" is

E = {Goi@)|z€0.1)".i € [n]],

and the graph distance is the Hamming distance :

d(x,y) := Z ]lx,-;ty,-, x,y € {0, 1}".
i=1
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The measure u is reversible with respect to the generator L given by: for all z € {0, 1}",
Lz, oi(2) == (1 —@)zi + aiZiy Vi€ [n],
and L(z,2) := — X, L(z,0i(2)). Observe that setting
Li(zi,z) = (1 —@)z+aizi, z €{0,1},
and L;(z;, z;) = —Li(z;, 7;), the Bernoulli measure y; is reversible with respect to L; and one has
L=L1& - --&L,.

Easy computations give, for any x,y € {0, 1}",

n
24) LYY (x,y) = d(x, y)! 1—[(1 — gl gDl
i=1

and it follows that the Schrodinger bridge at zero temperature (@)te[o,l] joining two probability mea-
sures vg and vy is given by (18), with according to (16)

W@ = L@ @91 =@ ze o, 1)

This path has exactly the same structure as the one used in [14] to establish entropic curvature bounds
on the product space ({0, 1}", ) (see section 2.1.2).

Theorem 2.4. Let u = p; ® -+ ® u, be a product probability measure on the discrete hypercube
X = {0,1}". On the space ({0,1}*,u,d, L), the relative entropy H(-|u) satisfies the C-displacement
convexity property (3), with C = (C;)e(0,1y defined by: for any vo,vi € P({0, 1}") with associated limit
Schrodinger problem optimizer Q‘o € P(Q),

C(v.v1) = max | f > b (L (0) dvo(x) + f Db (M) dvi) . 4y Aty
i=1 i=1 i=1

nty@) @) (@)
£@) [h’(nrz(ﬁ%)+h1"(nrz(n*)>)]]’

where the definition of functions hy, t € (0, 1) is given in Theorem 2.3, and setting 7° = ég v

1,00 = [ By 00, ) 1= [ Ly 0o 1= [ [ 800,

and
n@) = [[ deyey - naey. 6@ = [[ e - D) - D@
Comments. e By the Cauchy-Schwarz inequality, one has

n

: 1
2,017 = = Wi, ).
i=1

As a consequence C,(vy,vy) is bounded from below by 4W12(v0,v1)2 /n, and the W-entropic
curvature of the discrete hypercube {0, 1}" is bounded from below by 4/n.

As in the previous part to recover the Csiszar-Kullback-Pinsker inequality, the well-know Wi-
optimal transport inequality on the discrete cube for product probability measures follows from
the displacement convexity property (3), using H (@? lu) = 0 and optimizing over all t € (0, 1) :

2
“Wivo.v) < (VEHOol) + VEGI) . Yvovi € PUO 1Y),
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This transport-entropy inequality is usually proved by induction over n (see [35, Proposition
3.3] for some general tensorization property for weak transport entropy inequalities). Actually,
Theorem 2.4 provides the following improvement of the W\ -optimal transport inequality

inf ( [[ taeancs. y)) < (VG0 + VA -

neH(vo vl)

There is no induction proof of this transport entropy inequality.

e By bounding from below the cost C;(vy,vy) by

n 2 n 2
Tooo.v) = it | f Z;( f nw,.ix,.dnﬂ<w|x>) dvo(x) + f Z}( f ﬂw,.;&y,»da(ww)) dn )],

(25)

(26)

27)

one recovers a similar convexity property as the one obtained for the discrete cube in [14,
Corollary 4.4]. The only difference is in the expression (18) of the path (@)te[o, 17, the coupling
measure T is replaced by an optimal Knothe-Rosenblatt coupling.

Marton’s transport entropy inequality on the discrete hypercube is a consequence of the last

lower bound on Cy(vy, v1): for any vy, vy € P({0, 1}"),

1—
STa00.m) < (VOO + VHR)

Since for any t € (0, 1) hy(u) > u?, u > 0, the cost Ci(vy, v1) can be also bounded from below by
2 2 2 0
“h@) > = (sz(Vo,Vl) - W1(V0,V1)) > = Wi (vo, v1).
n n n

with Wg defined by (4). Therefore the discrete hypercube has also Wg-entropic curvature
bounded from below by 2/n.

The bound C,(vy,v1) > % t (@) provides a new curved Prékopa-Lindler type of inequality on
the discrete hypercube by applying Theorem 2.1.

The estimate (25) with Theorem 2.4 also implies the following new transport-entropy in-
equality on the discrete hypercube, for any vy, v, € P({0, 1}"),

1 1
~W300.v1)” <~ (W3 00, v1) = Wivo, ) < (VHOol) + VHO: ) .

Obviously we can improve this transport-entropy inequality by keeping the function h, and
hi—;. As opposed to Marton’s transport inequality or to Wy-Talagrand’s transport inequality on
Euclidean space, inequality (26) on the hypercube does not tensorize. Nevertheless, it can be
interpreted as a discrete analogue on the hypercube of the Wy-Talagrand’s transport inequality.
Indeed, from (26), applying the central limit theorem, one recovers, up to constant, the well-
known W-transport entropy inequality for the standard Gaussian probability measure y on
R, due to Talagrand [40]. Namely, one has for any absolutely continuous probability measure
v € Pr(R),

W2(v,y) < 2H(y).

For a sake of completeness, the proof of this implication is given in Appendix (see Lemma 4.1).
Unfortunately, to recover (27), the constant 2/n is expected, instead of 1/n in (26), like in the
Wi-transport entropy inequality. Improving the transport-inequality (26) in order to recover
(27) is a remaining problem.
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2.4. The circle Z/NZ endowed with a uniform measure. Let N € N and X be the space Z/NZ,
endowed with the uniform probability measure yu, u(x) = 1/N. The measure u is reversible with respect
to the generator L given by ,

L(z,z+1)=Lz,z—1) =1, L(z,z) = =2,
for any z € Z/NZ. One always have d(x,y) < |[N/2] = n where | -] denotes the floor function.

If N is odd then for any x,y € Z/NZ, L**(x,y) = 1 and therefore the Schrodinger bridge at zero
temperature (’Q\?),E[o,l] joining two probability measures vy and v; on Z/NZ is given by (18), with
according to (16)

Ly d(x,
VW (@) = Toepy 7 (d(, 2)).

If N is even then for any x,y € Z/NZ such that d(x,y) < N/2, LYY (x,y) = 1 and LY (x, x +n) =
2. The Schrodinger bridge at zero temperature (@),6[0,1] is given by (18), with according to (16) : if
d(x,y) < N/2 then

W (@) = Loy p(d(x. 2),
and if d(x,y) = N/2 (y = x + n), forany z € Z/NZ\ {x, x + n},

X, X+ 1 d
V? (Z) = 5 ]lze[x,x+n] P; (o) (d(x, Z)),
and v?x’xm(x) =(1- t)d(x’“”), v?x’x+n(x +n)= (AGextn)

Theorem 2.5. On the space (Z/NZ,u,d, L), the relative entropy H(-|u) satisfies the O-displacement
convexity (3).

Therefore the space (Z/NZ,d, u, L) has positive entropic curvature, it is a flat space.
2.5. The Bernoulli-Laplace model. Let X = X, denotes the slice of the discrete hypercube {0, 1}" of
order k € [n — 1], endowed with the uniform probability measure y, namely
Xei={x= () €40, 1 x + .+ x, = k).

For z € X, we note Jy(z) := {i € [n]|z = 0} and J(2) := {i € [n]|z; = 1}. For any i € Jy(z) and
J € J1(z), one notes 07;(z) the neighbour of z in X, defined by

(04@), = 1. (0@, = 0.
and for any ¢ € [n] \ {i, j}, (O'ij(Z)){ = z;. The set of edges of the graph is

E = {(z, 0ij(2) |z € X il j} € [n],z; = 0,2; = 1}’

and the graph distance is given by
1 n
d(x,y) = 5 ; 1y, x,y € Xy.

The measure u is reversible with respect to the generator L given by L(z, 07;(z)) := 1 for any i, j such
that z; = O and z; = 1, and L(z, 2) := —«(n — k).

Since LYY (x, y) = (d(x, y)!)?, the Schrédinger bridge at zero temperature (@)te[o,l] is given by (18),
with according to (16),

d(x,y)

-1
d(x,2) d(z,y)

t | , € X,.

d(x, Z)) ( ) ¢ .

(28) ﬁ”@=nmﬂ%
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Theorem 2.6. On the space (Xy,u,d, L), the relative entropy H(-|u) satisfies the C-displacement con-
vexity property (3), with C = (Cy)w0,1) defined by: for any vo,vi € P(X) with associated limit
Schrodinger problem optimizer Q‘o € P(Q),

4
Cy(vo,v1) 1= max | ————— W2(v, 1),
(v, v1) maX[min(K,n_K) [0, ), &(@), mm( PP

lz('{))]

H@") = ffd(x, w)(d(x,w) — 1) da’(x, w),

&@°) —max[f

h, H L)) dvo(x), f hy (I (x)) dvo(x)]

ieJo(x) i€y (x)
wmax| [ 3w () dnon [ 3 b (ML) ano]
ieJo(y) i€J1(y)
with
ML) i= | Lypgdm W),  TEL() = | Ly dm (wly).

The definition of functions hy, t € (0, 1) is given in Theorem 2.3.

Comments. o Let
n 2 n 2
Tr(vo,vy) := nenigg,v.)[f;(fﬂw”“” dﬂ_,(wlx)) dVO(x)"'f;(f]lw#yi d7r<_(w|y)) dvl(y)].
One has
Ci(vo,v1) 2 &(@) > _fzht (x) dvo(x) + = fzhl —t e(y))dvl(y)
i€[n] i€[n]
1
5 T>(vo, v1).

As a consequence, since H (Q? lw) = 0, optimizing over all t € (0, 1), Theorem 2.6 implies the
following weak transport-entropy inequality, for any vy, v, € P(X,),

1 —
7 200, v1) < (VG0 + V1)

This inequality has been first surprisingly obtained in [36, Theorem 1.8 (b)] by projection of

a transport-entropy inequality for the uniform measure on the symmetric group, but with the

worse constant 1/8 instead of 1 / 2. Our approach is much more natural to reach such a result.
e Since Ci(vo,vy) > W (vo,v1), the Wy-entropic curvature of the space (X,,d, L) is

mm(Kn K)
bounded from below by m Observe that this constant is optimal since for k = 1 or
k = n—1, Xy is the complete graph and one recovers its optimal lower curvature bound 4.
Similarly since

H(@°) = Walvo, vi)* = Wi(vo, vi) = Wi(vo,v1)%,

the Wd -entropic curvature of the space (X, d, L) is bounded from below by m

As for the discrete hypercube, the bound C,(vy,v1) > mtz(ﬂ) with Theorem 2.1 pro-
vides a new type of curved Prékopa-Leindler inequality on the slices of the discrete hypercube.
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3. PROOF OF THE MAIN RESULTS

This section is divided into two parts. We first present general statements to prove displacement
convexity property (3) along Schrodinger bridges at zero temperature. Then we show how it applies for
each involved discrete space of the last part.

3.1. Strategy of proof, general statements to get entropic curvature results. In order to prove prop-
erty (3), we fixe two probability measures v( and v; in $,(X) in this part. As in the paper by G. Conforti
[8] in continuous setting, the first step is to decompose the relative-entropy using the product structure
given by (8): for any ¢ € [0, 1],

H(Q)Im) = ¢,(1) + 4, (1),
where

(1) = flog(Pny)Pny PT_tgydm and Y, (1) = j‘log(Pﬂf_tgy)Pﬂf_tgy P! fYdm.
As recalled below, it is known that the function ¢, is non-increasing and the function i, is non-

decreasing (see [26, Theorem 6.4.2]).

Then, the strategy is to analyse the behaviour of the second order derivative ¢/ and ¢ as y goes to 0,
in order to apply the next Lemma. For any ¢ € (0, 1) let K; : [0, 1] — R, be defined by
2(1 —uw)

2u
(29) Ki(u) = 7]1u51 t

]]-MZZ’ ue [Oa 1]

K, is a kernel function since fol K, (u)du = 1.

Lemma 3.1. Assume that hypothesis (11), (12), (13) and (14) hold. Let (‘yi)ren be a sequence of positive
numbers that converges to 0. If for any t € (0, 1)

(30) ligl _1)13f @y (1) = ¢y (t), and li){kn igf Wl () = ¢y @),

where @ and Y are continuous functions on [0, 1], twice differentiable on (0, 1), then the displacement
convexity property (3) holds with

1 1
Cz(Vo,V1)Z=f0 906'(M)Kt(u)du+j; Yo (WK, (u) du

3 2
Sl -

5 (1= Dg0(0) + 100(1) = go(t) + (1 = Wro(0) + wo(1) = wro(1)|-

Observe that if ¢ = K, and ¢j = Ky, are constant functions, then
Civo.v1) = (Ko + Ky).
The proof of this lemma is postponed in Appendix B.

In order to apply Lemma 3.1, we need first to compute ¢, and ¢/, in a suitable form so as to
get (30). For any real function u on X, we note
Vu(z,w) = u(w) —u(z), zwelk,

and

Lu(z) := Z u(w) L(z,w) = Z Vu(z, w) L(z, w).

weX w,w~z

The expressions of ¢, ¥, and ¢,y are given by the next lemmas. These expressions can be found
in Léonard’s paper [26, section 6.4] in a more general framework (for stationary non-reversible Markov
processes). For completeness, the proof of the next result is recalled in Appendix B.
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Lemma 3.2. Foranyt € (0, 1), one has
(1) = - f D L) D(2,2)d0) (),
7~z
and

w0 = f D (D) L, 2)d0] ),
7,7~z
where {(s) := slogs—s+ 1,5 >0, and GZ and F 2’ are the so-called Schrodinger potentials according
to Léonard’s paper terminology [26],

G! :=log P{_tgy, and F :=log P! f".

Since { > 0, the function ¢, is non-increasing and the function i, is non-decreasing.
Lemma 3.3. Foranya > 0,b > 0, let
pla,b) := (logh —2loga—1)b,
and let p(a, b) = 0 if either a = 0 or b = 0. For any t € (0, 1), one has
/ 2 ’
(1) = f [( > D) + Y (1+VF(2.2) (U (20 - (@, 2)) (2. 7)

77~z 7.2~z

+ Z 0 (eVFZ(z,z’)’ eVFZ(z,z”)) Lz, Z")] d@(z),

7,7 2~~~
VHOE f[( Z NOED (g, Z'))2 + Z (1 + VG (z, Z’)) eVny(Z’Z/)(U’(z, 2) - Ly(Z',Z’)) L(z,7)
7,7~z 7,7~z

Y ’ Y ’”
+ Z P(eVG’ (02 V0o ))Ly(z, z’)Ly(z’,z")] dQ) (2).
7,7 2~ ~7"!
Let us now analyse the behavior of ¢/ (), ¥/ (¢) as temperature y goes to zero. Recall first that for

t € (0, 1), the support of the Schrodinger bridge at zero temperature @ given by (19) is independent of
t. As a consequence, one expects that the limit behavior of <p;’ (1), 1//;’ (1) is expressed in term of sums

restricted to point of the support of @ For a sake of simplicity, we note
Z:= supp(@? ).
Let us define, for any z € Z
V.0 = eVa|eec) ad V.@={evo|eec)
where
C. = {w) e Xx X|z# w,3(x,3) € supp@), (2, w) € [, 1}

and
C_:={a@we XxX| (w.2)eC).

Similarly, one also defines
V.= {7,e V() | z)eC.} and V_(2):={,e V(@) | @)ecC.},
where for any z € X
V() = (" € X|de ) =2).

As a remarkable fact, according to Lemma 4.2 postponed in Appendix A, from the d-cyclically mono-
tone property of the W-optimal coupling 7°, C_, and C_ are disjoint sets. This implies that V_(z) and
V_(z) are disjoint, and also V_ (z) and V_(z), for any z € Z.
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According to the expression of ¢/ (¢), ¥/ (¢) given in Lemma (3.3), a first step is to give the behavior
as y goes to zero of the quantities

PY f7(w)
P} f(2)
forzeXandw=Z7 orw=7"withz~7 ~7".

PY_g"(w)

and  BY(z,w) := "G @M = ,
t P]_8"(2)

Y e JVF (zw) _
AV(z,w) = eVFr @) =

To this end, one needs to define several quantities. For any z € X, x € supp(vp), y € supp(v;) and any
t€(0,1), let

(1) a(z,y) = O°(X; = 21X, = y) = f V" @) dr® (wly),

and

bu(z, %) := %X, = 21X, = x) = f Vv (@) d7° (wix).

Observe that for ¢ € (0, 1), a,(z,y) > 0 if and only if 7 € Z and yE ?Z with

—

Y, = {y € supp(vy) | dx e X, (x,y) eﬁo,z € [x,y]}.

Identically b;(z, x) > 0 if and only if z € Z and x € X, with

—

X, = {x € supp(vo) | dx e X, (x,y) en ze [x,y]}.

For further use, for any y € supp(v;) and x € supp(vg), we also introduce the sets

YARE {ze2|ye YZ} and Z = {z €Z|x€XZ},
so that . . .
(z €Zye YZ) s (y € supp(v1),z € Zy),
and
(z €Z xe )?Z) & (x € supp(vp),z € Z)

For any z € Z 7 € X, 7 ~ z, define
’oN , d(y,w)-1 -0
(32) a2 = Y ez w)dew) el dew) = D (wly),
weX,(z,2))ely,w]
and
b,(z,7, %) := Z r(x,z,7 ,w)d(x, w)pf(x’w)_l(d(x, z))?g(wlx),
weX,(z,2))e[x,w]
where the function r is given by (17). One easily check that a,(z,z’,y) > 0 if and only if 7/ € V_(z) and
ye i;(z,z’) with

Vieoy = {v € supp(v) [ Fx € X, (1,3) €7, (5. 2) € [y alf € Vo Vo,
and identically b/(z,z’, x) > O if and only if 7 € V_(2) and x € X, ) with

Xz = v € suppOn) | Ir e X, (x,3) €7, (2.2) € [yl < Ko Ko

For any z € Z and 7’ € X with d(z,7"”) = 2, define also
(33 A= ), ez wdow)do,w) = 1D dz w) - D7 (i),
weX,(z,2”7)€ly,w]
and

b= Y ez w)des widw) - D e )7 ().

weX, (2,2 )e[x,w]
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We also have a,(z,z”,y) > 0 ifand only if 7/ € V_(z) and y € 3’\(2,2//), and b,(z,7”, x) > 0 if and only if
77 €V_(z) and x € X ).

Lemma 3.4. Assume that conditions (12) and (13) are fulfilled. Let (yi)ien be a sequence of positive

numbers converging to 0, and let @ denote the weak limit of the sequence of probability measures
— iy
(

; Yeen. Let z € Z.
e forany 7’ € V(z), it holds
(34) Jim (%A z.2)) = Az.2) 2 0 and Jim (%Bl(2,2)) = B(2,7) 2 0,

with A(z,2') > 0 if and only if Z' € V_(2) and By(z,2') > 0 if and only if 2’ € V_(2). Moreover,
givenz' € V_(2), foranyy €Y,

a(z, 7,

A(z,7) = M,

a[(Z, y)

and given 7' € V_(2), for any x € X,

’ bt(Za Z’; x)
Bi(z,7) i= ——.

(z,2) bz 1)

e forany 7’ € V(z), it holds
(35) Jim (%PA)z.2") = Aiz2) 20 and Jim (%’B)“(z.2")) = Bi(z.7") 2 0,

with A;(z,7”) > 0if and only if 77 € V_(z) and By(z,7") > 0 if and only if 7/ € V_(2).
Moreover, given 7 € V_(2), foranyy € Y,

7 a, Z’ Z”a
A(z,77) = AR
a[(Z, y)
and given 7/ € V_(z), for any x € 5(;
17 bt(Za Z”a x)
Bi(z,7") i= ————=
1(z,27) D)

Lemma 3.4 provides the following Taylor estimates for the functions ¢}, and ¥’/ as y; goes to 0,
which are a key result of this paper.

Theorem 3.5. Assume that conditions (12), (13) and (14) are fulfilled. Let (yy)ren be a sequence of

positive numbers converging to 0 and @? denotes the weak limit of the sequence of probability measures

(7’{ Yrew. With to the notations of Lemma 3.4, one has for any t € (0, 1)

liminf ¢ (¢
im inf ¢y, (1)
2
> f [( D, ARDLED) + D p(Az(Z,Z'),Az(z,z"))L(Z’,Z")L(z,z’)]dé?(z)
77eV_(2) 77€V_(2),27€V _(2),7/~7"

= f [( Z At(z,z’)L(z,z’))2+ Z p(At(z,z'),At(z,z"))L(z',z")L(z,z’)] d0(2),

7eV(z) 7€V(2),2€V(2), 7/ ~2"
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and

lim inf ) (¢
im inf yry, (7)

> f[( Z B/(z,7) L(z, Z’))2 + Z P(Bt(z, 7). B,(z, Z”)) L. 2L Z’)] dé?(z)

7€eV_(2) 7€V, (2),77eV_,(2), 7 ~7"

= f [( Z Bt(z,z’)L(z,z’))2+ Z p(Bt(z,z'),Bt(z,z"))L(z’,z")L(z,z’)] d0(2).

7eV(z) 7€V(z),72"€V(2), 7/ ~2"

Proof of Theorem 3.5. We only prove the lower bound of lim inf,, 0 ¢ () since by symmetry, identical
arguments provide the lower bound of liminf, w;fk (t). We start with the expression of go’y’ (n,t €
(0,1), given by Lemma 3.3,

(36) oy () = f (M] +RY) d@},
with for any z € X,

Y ’ 2 Y ’ Y 7
M@ :=( D, @)+ Y p(eVETHET) D, (2,
7,7~z 2,7, 2~7~7"
and

R!(z) := Z (1 +VF(z, z’)) (L (2,2) - L(Z,7) L (2.2).
7,7~z
We will get the behaviour of ¢ (7) as y goes to zero by applying Fatou’s Lemma. For that purpose, we
need first to bound from below the function (M;y + Rty) Q! uniformly in y by some integrable function

with respect to the counting measure on X. Let us first lower bound M;y(z) and bound IRty(Z)I uniformly
in vy, for y sufficiently small for any z € X.

Recall that p(a,b) = 0 as soon as a = 0 or b = 0, and p(a, b) = (logb — 2log a — 1)b. Therefore, easy
computations give for any a > 0,

(37) inf p(a, b) = —a?,
b>0
As a consequence, according to the definition of AY, one has

M@z- Y A

2,7, 2~ ~7"

From hypothesis (12) and then applying inequality (57), it follows that for any z € X

(dz(x(), 2) + 1) K200 0(1)

(38) M) (z) > —y*S*d> 3

Y N2
max Z,rrgflszt (z.z ) 2 —

where x is a fixed point of X, K = 25 /1 and O(1) denotes a positive constant that does not depend on
z,v,t. Similarly, from (12) and (57), one may show that

1
lylogyl (;g N 20,2 K709 (1),

1

39 IR@I< %[log(—) + d(x0.2)] d(x0.2) K¥“9 0(1) <
Y

Lemma 4.3 (vii) therefore implies for any z€ X and any 0 <y <y < 1,

)[Zd(xo’z)—4D—1]+) (

(M](2) + R](2)) Q] (2) = —O(1) (ng(z) + 1xp(2) 7 (7K d*(x0,2) + 1) K009,
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It remains to choose ¥ such that (¥K?)? < v, so that hypothesis (14) implies

Z (]IB(Z) +1as@7 (VK 2)[2"("°’Z>—4D—11+)(
zeX

d*(x0,2) + 1) K009 < oo,

Now, conditions for Fatou’s Lemma are fulfilled and one has

: " s Vi ¥ Y
“o) lim g0 3 (474 R10) 270 >

The weak convergence of (éyk )k to QO implies lim,, o /;yk (z) = @ (z), and the inequality (39) gives
lim,, 0 R;Yk (z) = 0 for any z € X. As a consequence,
liminf [(M)(2) + R*(2) Q) (2)| = liminf [M}*(2)| Q) (2).
Yk—0 vk—0
In order to complete the proof Proposition 3.5, it remains to bound from below lim inf,, o [M;y" (z)] for

any z € Z since otherwise Q°(z) = 0. One has M”* = E/* + F!*, where for any 7 € Z,

EZk(Z) = ( Z )/kAZk(Z, Z,)L(Z, Z/))2 _ Z YI%AZ’((Z, Z//)Z L(Z, Z,)L(Z,, Z”),

7,7~z 2,2z~ ~
and
F'@o= > 7le(Alfe A7)+ Al ) | L U, ).
Z/’Z,/’ZNZ,NZN
Lemma 3.4 implies
2
@y lim Ero=( Y AGHLED) - ) AGI LU,
7,k—0
7eV (2) 7eV_(2),7"eX, 2" ~7

Assume that 7 € V_(z), or equivalently lim,,_,o¥4A)*(z,Z’) # 0. According to Lemma 3.4, for any
2 ~ 7', one has lim,, (,)/]%Az’k(z, Z")) = 0if d(z,z’) < 1 and lim,,_,o (y]%AZk(Z, Zu)) = A7) if
7" € V(2). As a consequence the continuity of the function p on the set (0, o) X [0, 00), implies

lim, [0 (VA (2. 2). VAT 2. 2)) + VAT (2. 2% = p(Arz. 2, As (2.2 e + Adz 2.
k—>

If 7 € V(z) \ V_(2), or equivalently lim,,_,o¥xA)“(z, ') = As(z,Z’) = 0, then identity (37) provides,
according to the definition of the function p,

liminf [p (veA* (2. 2), A (2.2")) + AT (2. 2)?]
vk —0

>0=p(0,A,(2,7") = p(Aiz, 7)), Ay (2, 2N ey + Az, 7).

As a consequence, one gets

liminf F'Q) > > [p(Aiz ) Az, ) herev + Az, 2]
Yk—0

Z’» ZH’ ZNZI NZH
= > PAGD AN+ Y AR LEDLE, D).
Z’€V4_ (Z), ZNEVH (Z), 7/ ~7" ZIGV‘, (Z), ZIIEX, 7' ~7

This inequality together with (40) and (41) ends the proof of Theorem 3.5. O
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3.2. Application to specific examples of graphs.

3.2.1. The lattice Z" .
Proof of Theorem 2.2. For any z € Z" and any i € [n], we note 0;4(z) = z+ ¢; and 0;_(2) = z — ¢;. One
has o 0. =id and for j # i, 01404 = 0j40i4, 010 j- = 0j_0iy, 00 j- = 0j_0-. We note
Air(2) = Az, 0+(2),  Airj+ (D) = Ay(z, 0404 (2)), zeZ"
We define similarly A;_,A;_;_,A;_j;. Applying Theorem 3.5, by symmetrisation one gets

lim inf ¢/ (1) > f (zn:(A,-++Ai_))2dQ?+ f i(p(AH,AHH)+p<A,-_,A,-_i_))dQ?

L i=1

f D (P A i) + pA e A i) + (P(Ai, A i) + (A, A i)
i,J,i#]

+ (A Aji) + p(A A i) + (P(Ais Ajein) + p(Aji, A jiin)) A
Identity (37) implies for any a,a’,b € R,
(42) pla,b) + p(a’,b) = 2p(Vaa',b) > ~2aa’.
It follows that

11m1nf¢;’(t)>f Z(AHJFA ) doP - fz (A2, +A2)d

f Z AivAjr + A Aj + Ay A+ AiLAj,)dO)

i,J,i# ]

= 2fZA,-+A,-_ dQ® > 0.
i=1

Identically one may prove that lim igf 1//;; (1) 2 0. Applying then Lemma 3.1 ends the proof of Theorem
Vi
2.2. O

3.2.2. The complete graph.

Proof of Theorem 2.3. Since for any x,y € X, d(x,y) = 1, Theorem 3.5 and Lemma 3.4 provide for any
tre0,1)

ligligfw'y’k(r)z f ( Z Az ) L(z,7)) a0 ) = f f t(z,z’)L(z,z’))zdégl(z,y)
- 7€V _(2) zeV (64]
a,(z,7,y) ’
f Z( T L(Z,Z’)) a(z, y)dvi (y)
2\ a/(z,y)

With the expressign (20) of v? *¥ one easily check that for any z € Z, y € ?Z, or equivalently for any
y € supp(v1),z € Z7,
alz,y) = (1= 07 @y) +18,(2),
and with (32), for any 7’ € V_(2),
7 (Z]y)

a(z,7,y) = 1,op————.
(2,2, y) z=y u(7)
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As a consequence, one gets

2 ’
fz ( a(z, 7, y) L(z, Z,)) al(z,y)dvi(y) = f( Z Mu(z’))ét(y, V) dvi(y)
€2 VN 77eV_(2) a[( y) ZeV_(y) at(y’ )’)

(1-70b) Lo . )
—f (= 0(1-70b) dw(y)—fz(l—nh(yw)) W (=0 (1 =70 61y)) dni() = ¢ @),

where for any 7 € [0, 1],

1
wo0i= 5 [ (=001 -7 1) an o)
One may similarly show that for any ¢ € (0, 1),

lim inf Wl (1) 2 g (D),

with ¥ (t) := f h(t(l —Eg(xlx)) dvo(x). The proof of Theorem 2.3 ends by applying Lemma 3.1 and
since

1-
(1 = D0 + (1) ~ o) = "7 f hl_t( 11w¢ycf7r*l(w|y>)dvl(y),

and

1 _
(1 = D0(0) + (1) ~ o) = -2 f ht( 1w¢xcfzr*j<w|x>)dvo<x).

Let us now compare C,(vy,v;) with a function of W;(vy,v;). Observe that for any y € supp(vy),
f ]lw;&yﬁ(i (wly) # 0, if and only if y belongs to the set

D_ := {w € supp(vy) | Ixe X,w#x,(x,w) € SUPPG?O)}

Since h1_,(0) = 0 and &, is convex, Jensen’s inequality provides

1yppydr® d
f hl_t( nwgﬂcffr*i(ww))dvl(y)Zvl(DH)hH [ oyl () ) =v1<Dk)hH(M).
vi(D_) vi(D_)

Similarly one has

1,y dr® d
f ht( 1 o7 (wlx))dvo(x) Zvo(DH)ht(ff e, (W) VIU)]:VO(DH)ht(M)’
- vi(D.) vo(D_)

with
D_ = {w € supp(vo) | dyeX,w+y,wy e supp@o)}.
According to (21), Wi(vg,vy) > vo(D-) — vi(D-), and we know from Lemma 4.2 (iii) that the sets D _
and D _ are disjoint. As a consequence,
vo(D=) +vi(Do) < Wi(vg,vy) + vi(Do) +vi(DO)+ < Wilvg,vy) + 1.
This leads to the expected result (22) :
Wi(vo, v1) Wi(vo, v1)
Ci(vo,v1) = (1 + Wl(Vo,Vl)) a+ﬂ<l {aht (a(l W00, V1))) + Bhi— (ﬂ(l W10, V1)))}’

Wi(vo, v1)
L+ Wivo,v)]

=+ WI(VO,VI))kt(

In order to prove the estimate (23) of the function k;, one first observes that by construction, for any
t€(0,1)and v € [0, 1],

1 1 2
hy(v) = f VR (uv) K () dut = f Y K.(u)du,
0 0 1 — uy
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and since K;(u) = K1_;(1 — u),

1 2
hl—t(v):j(: mKt(u)du-

Since h,(u) = +oo, for u > 1, it follows that for any v € [0, 1/2],

0= it o () e ()} =t () i 5)

1
1 1

> 2 inf - K (u)du.

_fo Y a,ﬁ,a>v,1ﬁn>v,af+,851 a—-uv B-0-uy {)du

Easy computations give

. 1 1 ) 1 1
inf + = inf —+ =
a.B,a>v.p>v,a+6<1 | @ — Uy ,3 - (1 — M)V o' B >(1-uyv ' >uv,a’ +8' <1-v o’ ﬂ’

. 1 1 4
> inf —+ == .
o fLa>05>00+p<1-v (@) B 1—-v

It provides the expected estimate (23), namely k;(v) > fvv ]

3.2.3. Product probability measures on the discrete hypercube.

Proof of Theorem 2.4. According to Lemma 3.4 and using (24), (32), (33), one has for any i, j € [n]
withi # j,foranyze Zandye€ Y,

a(z,0:(2),y) ar(z, 0 j0i(2),y)

Alz,0i(@0) = ————=—, and  A(z,0,0i(7) =
@) ay(z,y)
with
Ly L=y, d03.2) dzm)—1 =0
at(Z, O'i(Z)aY) = Z ﬁ (1 — l‘) %) %, ﬂ-k(wb’)a
W,(Z,O’,‘(Z))e[y’w] 1 Zla Zl
and

]l)’#Wi]lZFyi ]lyjiwj]lzj:yj
LiGziz) Liz)z))

@) aoe@.y) = ) (1 = 0D EI2 70 ().

w,(z,00 j(2))Ely,w

Since for any i # j, 0;0°j = 0 jo;, and observing that
Ljzj,7)) = L(0i(2), 07j0i(2) = L(2,074(2)),
Theorem 3.5 provides after symmetrization,

liminfso;’ 1) = f ZAz(z,m(z))L(zl,zz))) d0} ()

fz |P(An(z, 7i(2), Ay (2, 07j0i(2)) + p(Ai(z (D), A (2, (D)) )|

i,)),i#]

(44) Lj(zj,7)) Li(zi» ) A0V (2).
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By applying identity (42), one gets

limint (> [ > (e L %) 40

: Z [ Y (oo e m) acnano.

ZEE‘_())

where in the last inequality, for any y € supp(v), the set E7(y) is defined by

E7(y) = {Z ez |y € ?(z,a'i(z))}'

From the definition (31) of a;(z, y), one has

O (Ermx i)
D e m@alzy) = R
€01y &
and simple computations give
Z Lg-)(2A(z, 0i(2), ) Li(zi, 7i) an(z, y) = 1 g=)(@) 8,2, 0i(2), y) Lilzi, 7) = T ().
z€(0,1) (0,1}
Therefore Cauchy-Schwarz inequality provides
HL(y)2 n()?

(45) liminf o7 (1) >
7 ;)E{Ol Eh(y) x {y })

At this level, a first lower bound is obtained using the fact that

0 —
OW(ET D ) _ Sty =1- Y Laaty.

i) (0.1} (0,1}

Observing that if z € [y, w] and z; # y; then necessarily z; = w;, one gets

DU L@@y = D | D Tom (1= 0 09E N2 (ly) = (1=0) D" Ly 22 (),

z€{0,1}? we{0,1}" z€[y,w] we{0,1}"

and therefore
n

IT_(y)? vi(y)
hmlnfgoylc(t) > ;ﬁ; T~ DIl o) .

This inequality implies (as in the proof of Theorem 2.3) for any ¢ € (0, 1)

. . ’7 > ’’
hikn_lgf ©, (1) = ¢ (1),
where

¢o(t) = f D h(( =T ) diy),
i=1

One may identically prove that
lim ir(}f Wl (0 = gy (),
Vi

Yo(t) = f Z h(tHi_)(x)) dvo(x).
i=1

Following the proof of Theorem 2.3, the two above estimates yield the first lower bound of C;(v, v;).

with
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A second lower bound can be reached from (45) applying again Cauchy-Schwarz inequality. Setting
ain:=0( | (EFexbh)).
yesupp(vy)
one gets, for any 7 € (0, 1)
n 1 ) 2 n (Hi)z
liminf @2 (1) > » ——| | I_(y)dv =) —,
minf ¢, (1 Z} e ( f ) 1@)) Z; el
where IT' := 7y ({(x,y) € {0, 1}" | x; # y;}). By symmetry, one may identically show that for any ¢ € (0, 1)
" .
1T 2
lim inf 1//;'k(t) > —( ) ,
%=0 — Bi(0)
with
=00 | (xE”W)),
xesupp(vo)
and for any x € supp(vp),

E”(x) := {Z €Zy|x€ X(Z,O'i(z))}'

Observe that for any x € supp(vy),y € supp(vp), one has E;”(x) N E (y) = 0. Indeed if z € E;”(x) N
E{ (y) then (z,0(z)) € C, N C_ but Lemma 4.2 (ii) ensures that C, N C_ = 0. It follows that

x,y
a;(f) + Bilt) = § § Leepey VW7 (2) T, y) < 1.
xye{0,1}" zeE ()VE! (y)

Since ming g>0,0+p<1 {é + é} = 4, this property together with the above estimates imply
n
liminf ¢7 () + iminf ¥/ (1) > 4 » (IT')*.
imin @, (0 imin W, () 2 ;( )

Then applying Lemma 3.1, this estimate give the second lower bound of C;(vg, v;) in Theorem 2.4.

Let us now explain how to reach the third type of lower bound starting again from (44). For that
purpose, for any i # jin [n], we define

E;0) = {Z €2 |y € ?(zmaxz))}, y € supp(vy).
Since {0i(2), 07i(2)} C [z, 07i0j(z))], one has
E5() € ES () NET ().
To simplify the notations, let L;(z) := Li(z;,7), Ai(z) := Al(z,0i(2)) and A;j(z) = A;(z,0;0(2)). Ob-

serving that (p(A;, Aij) + p(Aj, Aif)) LiL; = p(AiLi, AyLiLj) + p(A;Lj, AjLiLj), one gets that (44) is
equivalent to

n
(46) liminf ¢/ (1) > f (>4 Ll-)2 + > plAiLi AyLiL;)| Q).
70 i1 (0. )i%]

The idea is now to minimize the expression inside the integral in the right-hand side over all A;L;,
i € [n]. According to Lemma 3.4, given y € supp(v;) and z € 7,

a(z, 0i(2), )

an(z,y)

Thus, the right-hand side of (46) is also

f SIS aue) + Y AL AGOLOLE) atz ) d ),

€2Y i€l (zy) (i, )L (z,y)

Ai2) = >0 zeE (), and Aij<z)=W>0@zeEﬁ(y>.
1\Ky

J
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where

I“@y) =i € [n] |z €EF () and I(y):=|G.)) € [n] x[n] |z € E50)).
Let us note

[Ty =fielnl|3jelnl,Gj) eIy} ={ieml|3jen i el @)
and given i € I{7(z, ),

L@y = {j e |G ) e I"@y).
One may observe I{7(z,y) C I (z,y) and for any i € I"(z,), I 5 5@y I (z, )\ {i}.
For any fixed sequence ;; := A;;L;Lj, (i, j) € I, let us define the function F by
F@Byer) = (Y8 + Y p(BuBy)  Boier € @'
iel= (i, el
(the dependence in z,y is omitted to simplify the notations). Since I~ C I, one has
Bi>0,iilellf;\ll‘l_ F((Biier-) = (E;T,Bi)z + le; jezﬂgp(ﬁi,ﬁij)-

Observe that if I;” = 0 then infgso,ic7- F((Bi)ier-) = 0. We assume now that I7™ # (. The function of

(Bi)ic1,~ € (Ri)mi—' on the right-hand side is convex. By differentiating, its minimum value is reached at
the point (ﬁi)ie]l‘l_ satisfying for all i € I,

2> Br —2Zﬁ”: 0.

el JEL;

) jels; Bij
Zi/eﬂ‘l_ Bi”

Therefore, one has §; = Summing the last equality over all i € I}", one gets

(2.6) =s.

el
. 2jers Bij . .
and it follows that 8; = # and therefore S = 3 (; je1- Bij. Finally, setting §; = 3 jels Bji, one has
2 S,‘
inf — F((Bier-) = ( Si) + Bij (logﬁij —2log — - 1)
Bi>0,iel S le%:l_ (i,%r— Vs
A\FAY
= > Bij(log(sS) —log(8iS ) == > Bijlog|=—2
(S (.)€l FiiS

By concavity of the function log, applying Jensen inequality, one gets

(i jei=SiS | 2 jer= SiS 2icie S ,2
f  F((B)icr=) = —S log — >q _ ; > i
ﬂ,>10nl€]‘_ ( l)IEI ) § S2 - S S = S B
['herefore (46) provides,

S2
hm 1nf go’y'k(t) > fz (@ a(z, y)dvy(y).

€2 i€l (z,y) § (Z)
For any y € supp(vy), let

EC(y) = {zeZy|ie]I‘1_(z,y)}= ) E5m.
Jeln\{i}



ENTROPIC CURVATURE ON GRAPHS. 29

Cauchy-Schwarz inequality implies

(Z?:l S 2zere(y Si(@) a2, y) dw(y))2
L Semr o S@azy)dvi(y)

47 liminf ¢ () >
47) 13{:113 @, (1) =

By using (43), simple computations give for any i € [n],

f D SiDalzy)dn () = f D e, 002, 3) Lizi T Lz, 7) dvi ()
Z€E7 () JemN\@} v zez¥
Z ff XiEYi xjiy]fo(x y)
Jeln\{i}
48) =[]ttt = v

and

f Y. S@azy)dn() = f Dle@ D iz w0,y L ) Litz, v ()

2€E () €2Y (k,DEl™ (z.y)

= > f D s ooi@,y) L T Lz dvi ()
(kDk#EL Y ZeE-(DNE (v)

=2 > f D T2, ) Lii 7 Lz dvi ()

le[n]\{i} © zeE{ ()

+ > f D o2, L ) Litz dvi ()
(kD) k#Lk#i,I#i Z€ETONE; ()

=2 f f Ty (d(x,y) = 1) dT(x, y)
ff ()@ ymgem Lymgen (1 = OV 2 d70(w, y)

(k,1D), k;&l k#i,l#i z€[y,w]

Now, observe that if z € [y, w] N E[(y) with (w,y) € supp(@@”) and y; # w; then necessarily z; = ;.
Indeed, z € E{ (y) implies (z,07(2)) € C_. And if w; = z; # y;, since z € [y, w] with (w,y) € supp(@°),
one also gets (0i(z),z) € C_ or equivalently (z,0;(z)) € C_,. This is impossible because C, N C_, =0
according to Lemma 4.2 (ii). It follows that

ff g ()DL ymgm Lymga, (1 = *O2 12 70w, y)

(k,D), k#l ki, 1#i z€[y,w]

ff ), Zi=Wi (Z)ﬂyk:zkiwk ﬂyzzzliwl (- t)d(y’z)td(z’w)_z ﬁo(way)

(k D), k:;tl k#i,1#i z€[) w]

f f Ly (D Ly —gy Ly (1 = 702 q70 3y )

(k,0), k;&l k#1,1#i z€[) w]

= Z ff]ley,-]lyk#wk]ly]#wl d’ﬁO(W, )’) + tff]lw#y,-]lyk#wk]ly]#wl d’ﬁO(W’ )’)

(kD) kEL k£ I
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and therefore

[ 3 seaenano <2 [[ @ - nay)

2€ET ()
(49) + ff]lxi=y,-d(x,y)(d(x,y) - D dr’(x,y) + tff]lxﬁey,-(d(x,y) — D(d(x,y) = 2)dr’(x, y).
Finally, (47), (48), (49) imply for any 7 € (0, 1),
2

o (5@") ma)

S o= @ — - e 0
where

_ (=05
wo(t) .—h( 12 GO) )

Identically, one may prove that for any ¢ € (0, 1),

i
lim 18f W (0 = Wy (D),
Yi—

15@)
with Yo(t) = ¢o(1 — t). Finally as in the proof of Theorem 2.3, applying Lemma 3.1, the two last
estimates yield the third lower bound of C,(vg, v;) in Theorem 2.4. a

3.2.4. The circle Z/NZ.

Proof of Theorem 2.5. Letus note n’ = [N/2] where [-] denotes the ceiling function. Let y € supp(v;) C
Z/NZ, and z € 7. We observe that if {weZ/NZ|(z,z—1) € [y,w]} # 0 then necessarily (z — 1,z) €
[y + n’,y] and if {w € Z/NZ|(z,z + 1) € [y,w]} # 0 then necessarily (z,z + 1) € [y,y + n]. Asa
consequence, since the sets {z € Z/NZ|(z,z+ 1) € [y,y +nl} and {z € Z/NZ|(z — 1,2) € [y + 1’, y]} are
disjoints, the sets {z € zZ |y e ’}7(Z,Z+ p}and {z € z ly e ?(z,z—l)} are also disjoints. It follows that

f 3 (Adzz+ D+ Adzz = D) azy)dnio)

zeZ‘"
- fz (Arz(z, 2+ D)+ AXz, 2 - 1)) a(z,y) dvi(y).
zez"

Therefore Theorem 3.5 together with (37) provide

. . 144 2 2
lim inf ¢4, 1) > f DAzt D+ ANz = 1)+ p(Az 2+ 1), A5,z +2))

A

+p(Az 2 = DAz 2 - D) @iz y) dvi ()
>0

Identically one proves that lim ir(}f tﬁ;,’k(t) > 0. The proof of Theorem 2.5 ends by applying Lemma
Vi
3.1. O
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3.2.5. The Bernoulli-Laplace model.

Proof of Theorem 2.6. The proof follows the one of Theorem 2.4 on the discrete hypercube. According
to Lemma 3.4, one has forany z € Z ¢ X, and y € Y, C supp(vy), for any i,k € Jo(z) and any j,/ € Ji(z)
withi# kand j# [

a, s ij s > ij >
(2, 071j(2) y)’ and Az, oo (2) = a,(z, 0k0ij(2),y)
a(z,y) a(z,y)

Az, 0(2) =

where a,(z, 07(2),y) and a,(z, oo (), y) are given by (32) and (33). To simplify the notations, let us
note Ax(z,0j(z)) = A;j(z) and A;(z,0140j(z)) = Ap,ij(z). Observing that o;o;j(z) = oy j(z) so that
d(z,040j(z)) = 1 and similarly d(z, 0 jj07;j(z)) = 1, Theorem 3.5 provides

ey 230 00
liminf o}, (1) > f (D) Ay)da)+ f > p(Aij Anif) A

(i, ))eJoxJ; @, )),(k,heJoxJy i#k, j#l
For y € supp(vy) and any distinct i, j, k, [ € [n], let us define
E;J_()’) = {Z €z |y € Y(Z,O'ij(Z))}’ E}Zl]()’) = {Z ez’ |y € Y(Z,O'klo'ij(Z))}'
and for any 7z € 7,

1@y =) € Jo@) x 1) | 2 € B )

= {. j) € Jo(2) % Jl(z)|z,- =yi=0.z;=y;= 1B eX,vi = Lv;=0z€ [yv].7°v.y) > 0}.

The last equality is a consequence of the geometry of geodesics on the slice of the discrete hypercube.
Define also

Iy = {( ), (6. D) € (o@) x 1) |2 € B 00),
17z y) = {6, ) € Jo@) X @) 3k D) € Jo@) X 112, (G, ), (6, D) € T7(z, ),

and for (7, j) € I} (z, ),
5@ ) = (kD) € o) X 1@ | (G, ), (K, D) € T7(z,y).

Since the indices k, [, 1, j all differ, 07yy07;j(z) = 0j01(z), and therefore Ay;;(z) = A;jx(2) and (7, j), (k, 1)) €
[T (z,y) implies ((k, 1), (i, j)) € I”(z,y). Moreover, one may easily check that I{"(z,y) € I (z,y). Asa
consequence, by symmetrisation it follows

(50) li$i8f¢gk(t) > f( Z A,-j)2 dQP + %f Z (p(Aij,Akz,ij) +P(Ak1,Ak1,ij) doy.

(L. pel= ((RC)S
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Let us compute a first lower bound of the right hand side of this inequality. Applying identity (42)
yields

ligfl_i)lgfap;’k(t)zf[( Z Aij)z_ Z AijAkl]dé?

@@ pel— (1, )),(k,D))el—
>[I0 - 2 Aijhu] 4]
(i,))eJoxJy ((i,j),(k,l))e(Jo xJ1 )Z,i;&k,j;tl
[IS(Sar+X(Sa) - 3 4@
ieJy jeJ; jeJ1 iedy (i,))eJoxJ1
>max| [ 32N ) adh [ (Y 40) @)
ieJy jeJ; jeJ1 i€dy

= max| f A Aij(z)ﬂa,j)el*(z,y))z an(z,y) dvi(y),

7 icin)  jen]

f Z Z (Z Aij(z)]]‘(i,j)d‘_(z,y))2at(Za y) dV1(y)].

wczv jeln] ieln]

We will now bound from below the right hand side of this inequality using Cauchy-Schwarz inequality.
For any y € supp(vy), and any i € Jo(y), j € J1(y) we note

Efo() = {z € X,

Al e Ji(y),y € ?(z,a'iz(z))}’ E;_l ) = {Z € X

Jk € Jo(y), € ’Y\(Z,O'kj(Z))}‘

Since (i, j) € I (z,y) implies z € E:.’_O(y) and z € E;_l (v), one has

fz Z ( Z Aij(Z)IL(i,j)eI“(z,y))z a(z,y)dvi(y) =f Z Z ( Z Aij(Z))2 a(z,y)dvi(y),

ze7v i€ln]  jeln] i€Jo(y) zeEEB(y) JjeN(y)

and therefore by Cauchy-Schwarz inequality,

2
(Z jehy) ZzeEq o Aij(Dan(z, y))

DzeE () 42 Y)

dvi(y).

fZ Z ( Z Aij(Z)ﬂ(i,j)er—(z,y))2 ar(z,y)dvi(y) = f Z

ze7y i€ln]  jeln] i€Jo(y)

For (i, j) € Jo(y) X J1(y), one may compute the quantity }; . ESO) A;j(2)a;(z, y) using the two following
observations. First (z,0j(z)) € [y, w] holds if and only if one has yi=zi=wj=0,y;j=z; =w; =1
and z € [y, o;(w)]. Secondly, the generator L is translation invariant which implies for any (z, 07;(z)) €
[y, wl,

LTy, ()
LAy, w)

r(y,z,0ij(2), w) = 1(y, 2,2, 071j(W))
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Therefore, using (32), one gets for any (i, j) € Jo(y) X J1(y),

D A@aky) = ) ak ), y)

2€E5 () 2€Xk
d(y.oij(w) LAO-Tij(w)) Oy, O—lj(w))
= Z ]lyl-zwj:O]]-yj:w,-:lZ Z r(y’ <%, O-U(W)) Ld(y,w)(y )
weX, s=0  ze[y,o;;(w)].d(y.2)=s W

d(y, w)p? ™ d(y, w) = 1= )7 (wly)

LAy g (w))
- Z Ly=wj=0Ty;=w=1 - d(y, w)ﬁg(wly)

d(y,
weX, LA W)(y’ w)
]lyi=w~=0]]-y-:w,-:l
weX, ’

where the last equality holds since LAxY)(y, y) = (d(x,y)!)* for any x,y € X,. Since for i € Jo(y),
D7 Dymumolymwmt = dGy W) Ly, it follows that
JES(Y)

D, Ay = D Ty T (wly),

JEN () Z€E () weX,
and therefore

(ZweXK ]lw,-;&yiﬁ(i(WW))z

2
fz Z ( Z Aij(Z)]l(i,j)eI‘—(z,y)) ai(z,y)dvi(y) = f Z 5 75 dvi(y).
Zviell  jeln] i€Jo(y) €E () 4Ly
With same computations, by exchanging the role of i and j, we finally obtain
(Ber, Luya 70 01)°
WEA iFVi
liminf g7 (£) > max [f Z dvi(y),
70 ity ek @)
2
Zwe){K ]lw-¢y~’7?3(w|)’)
(51) fz( — ))dV1(y)]
jeh ) S TIORL
Working on ¢ (), on may identically show that
—0 2
lim inf ¢’ (1) > [f D (Swex, Luges T, 001) dvo(x)
imin > max vo(X),
no0 i€Jo(x) ZZEE:‘Y)(X) bi(z, %)
2
(ZWEXK ﬂWjixj'/ﬁ(l(wlx))
(52) | dvo()
Z ZzeE;l (x) bl‘(Za X) ]

JeJ1(x)
where for any x € supp(vp), and any i € Jo(x), j € J1(x), we note

Ej()={ze X|Ae @) x € Xy} Ej@):=|ze X,

dk € Jo(x), x € X\(z,rfkj(z))}'
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From this two estimates, we will derive two different lower-bounds of C;(vg, v). A first strategy is to
apply again Cauchy-Schwarz inequality, (51) and (52) implies

liminf ¢ (7) + liminf y/; (1
im inf @y, (£) + Lim inf g, (7

1 2 5
Zmax[;m[ai,o(t) (ff Ll 470Gy ))+ Bro® (H Ly Lo 7 (x,y>) |
! 2 2
];r;] [(li,l(l‘) (ffﬂxﬁtyi]l)’izl d7r{)(x,y))+ B (ffﬂxi;tyi]lxizl ﬁo(x,y)) ”

@io(®) = On (1@ i = 0,2 € EgON),  Bio(®) := Qo (1(x,2) | xi = 0,z € Ej(n)),

with

and
i) = 0n (I@ylyi= Lz e EOY),  Bin® = Qu ({(x2)|x = 1,z € E;;(0)}).

Observe that the sets E;I)(y) and Ei’_(’)(x) are disjoint. Indeed, if it is not the case, there exists z € Z
Jk € J1(z), j # i, k # i, such that (z,0j(z)) € C_ and (oi(z),z) € C_. Lemma 4.2 (i) implies
7 € [oi(z),0i(2)]. Due to the geometry of geodesics on X, this is impossible since z; = 0 and
(oik(2))i = (0ij(2)); = 1. It follows that

aio®+Bom < > > WY@ (ny) < 0z € Xilzi = 0)),
x,yeXy zEELT)(y)UEi?)(x)

Similarly one proves that
@i, (0 + B (1) < O)({z € Xl = 1)).

. . . 2
As a consequence, from the identity inf,-0,850,0+8<1 {”; + VF} =4(u+v)>, u,v >0, one gets

[S]

| 2
liminf ¢!/ (f) + liminf ¢/ (f) > 4 max ( f Lyzy, dn(x, y)) ,
7m0 T o0 T [; 0V((z € X, |z = 0)) B

1 2
1y sy &2,
Z] 0Y(lz € Xclzj = 1) (f oy A y)) |

J€ln

Applying again Cauchy-Schwarz inequality and since } jep, 0%z € X,z = 1D = & Yiem 0%z €
Xi1zi = 0}) = n -« and 2d(x,y) = X je[n) Lx#y,» ONE Obtains

. . 123 . . 7 2
hikn _1}{)1f @, (1) + hikn _1}{)1f W, (1) = m Wi(vo,v1).
Then applying Lemma 3.1 provides the first lower bound of C(vy, v1) in Theorem 2.6.

Let us start again from (51) and (52) to reach another lower-bound of C,(vy,v;). For any i € Jy(y),

one has
D ay =), > et @R (wly)

zeE:O ) weX, z€[y,w]

< Z Z ]lz,~=yi=0v?w’y(2)’7?(i(w|y)

weX, z€[y,w]

= > Lm0 B0 + D Ty D Tamzort™ @R ().

weX, weXy z€[y,wl]
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Using the expression of V?W’y(z) given by (28), one has for y; = 0 and w; = 1,

oW d(y,w)-1 (1 _ t)ktd(y,w)—k
Z Lymy=ov; (@) = Z ( Z ]ld(y’Z):k)W
z€[y,w] k=0 z,z€[y,w],z;i=0 ( k )
dy,w)—

O (d(y, w))(d(y, w) — 1)<1 — g0k
=R k (%)
=1.
It follows that for any i € Jo(y)
Z at(za y) <1- (1 - t)fﬂyi;&wiﬁg(WW)-
Z€E ()

One identically shows that for any i € J{(y),

a(z,y)<1-(1- t)fﬂy,-#w,-cﬁrf(WIy)-

€E7 ()
As a consequence, setting IT._(y) := f ]ly,-;aW,.Jﬁ‘i (wly), (51) provides
h%lf&f @, (1) = @y (D),

where
o() := max | f 2 Lo h((1 = DI () dni ), f 2 Ly h((1 = DIL ) dvi )]
i=1 j=1

One may identically show from (52) that
liyr?ggf W () > g (o),

where
Yo(r) = max | f Z L0 h(¢ 1, (1)) dvo ), f anjzl h(e 11, () dvo () |-
i=1 J=1

As in the proof of Theorem 2.3, the two last estimates with Lemma 3.1 give the second lower bound of
C:(vo,v1) in Theorem 2.6

As in the case of the hypercube, the third lower bound of C,(vg, v;) be reached by estimating differently
the right-hand side of inequality (50). For any fixed positive reals Ay;;(z), (i, /), (k,[)) € I7(z,y), let us
define the convex function F : (R%)"” @ — R defined by

2 1 eI (zy
F((Bij)i,jyer-) == ( Z ,Bij) +3 Z (P(ﬂij,Akl,ij) +.0(,3k1,Akz,ij)), Bij)ijer- € RE)TE,
(i, )el= (@), (k,D)el=
As in the proof of Theorem 2.4, after some computations, its minimum value is given by: if [T = 0,
then
inf  F(Bij)ijer-) =0,
Biji jer— R
and if I # 0
SiiSu

inf F(Bij)ijen) = Z ~Auijlog Ap,iiS’
L]

Bij)i jer— R (@0, j) (k)T
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where §;; = Z Ajjand S = Z Sij. Let W := Z SijS 1. Assume that I # 0. By
(kDEL; (y) e (()XCA)) Sinn
concavity of the logarithmic function, applying Jensen inequality, it follows that

w
inf F(Bipiper) > -S log(—).
Bapae ey B S2

For any (i, j) € I, one has

5 <\ {{@ ) ulan]r emn i u{w, v emnal),

and therefore

W= Sij Z Sk

((N)Sioe (k,l)e]lzij

< D Sif[( 2 Su)rSu=( D, Su)=( ) Sk'f)]
() (k,Del} XA K (K el
SN SN Y s

i€lo  ji. el jel i, pely

where we set S2 := Z S IZJ By Cauchy Schwarz inequality, since |Jy| = n — k and |J;| = «, one has

(i, )eh
2 S2 , g2
;(Z(_Slj) Zn—K and Z(.ZHSU) 27_
o AGNEL Jen i pers

2 —~ 2 —
: 2 2
As a consequence, since e, (Z e Si j) >S5~ and Y e, (Zi’(i, Jels S j) >S°, we get

n—«k K

WsSz(l—max[ ! l]),

and therefore

. 1 1 S
inf F((Bij)(i,j)e]“) > — IOg (1 - max[ s ]) >

Bif)iper— RN n—K K min(k, n — k)

This lower estimate also holds if I~ = () since S = 0 in that case. As a consequence (50) imply

. ! D
lim inf go;'k(t) > — f Apij dé?
70 min(k.n =) J G Gher-

1
e | 3 3 Az ) dviy)

@@, 1),(k,DeJo()XJ1 (0),i#k, j#£l  z€X,

Observing that for (i, j), (k,]) € Jo(y) x Ji(y) with i # k and j # [, (z,on0;(z)) € [y,w] if and
only if one has y; = w; = yx = w; = 0,y; = w; = yy = wg = 1 and z € [y,ono;j(w)], and
using the fact that LATuoijQW) (07, i(2),w) = LA@ouTiiW) (7 o0 (w)), one gets for any y € X,, and
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G, ), (k, 1) € Jo(y) X Jy(y) with i # k and j # L,
D Auifz ) arz,y)
ZGXK
d(y,ouoij(w))
= Z Z Z r(y, 2,2, O oij(w))
weX,wi=wi=0,wi=wi=1  s=0  z€[y,on0i;(w)].dy.2)=s
d(yw)=2
Ay, w)(d(y, w) = D pf "2 (d(y, w) = 2 = )T (wly)

Ld(y,O'kIO'ij(W))(y O'klo'ij(w))
’ —0
3D T —— — oG d(y, w)(d(y, w) = DT (wly)

weX,

Ld(y,o'klo'ij(w))(y’ O'klo'ij(W))
LA (y, w)

_ Z ]]‘)’I:Wj:)’k=Wl=0]]‘)’j=Wi=y1=Wk=1A()

d(y, w)(d(y,w) — 1) m_(wly).

From the identities

weX,

Z Z Ly=0w=1Ly=0,m=1 = d(y, w)(d(y, w) = 1),
i€Jo(y) keJo\{i}
and
ﬂ)’jzlswjzo]l)’lzl,WFO = d(y’ W)(d(y’ W) - l)a
JeJ1() leJi M}
we finally obtain

H(@°)

L, 1 =0 =
IO 2 gy | 3 0o - DReWI0 = Gl

By symmetry the same estimate holds for liminf,_ 47/ (). Then the proof of Theorem 2.6 ends by
applying Lemma 3.1. |

4. APPENDIX A : BASIC LEMMAS

Lemma 4.1. The transport-entropy inequality (26) implies the W, transport-entropy inequality (27) for
the standard Gaussian measure with the constant 4 instead of 2.

Proof. The result follows from the transport-entropy inequality (26) for the uniform probability measure
4 on the hypercucube (a; = 1/2 for all i € [n]), by using the central limit Theorem with the projection

map
n

2 n
T,(x):= — xi— =), x,yef{0,1}".
2(x) \/ﬁ(;, 5) xyelon
By density, it suffises to prove (27) for any probability measure v on R with continuous density f and
compact support K. Let v" denotes the probability measure on {0, 1} with density f, with respect to u
given by

T,
fuw = LD oy
ff oTydu
Applying (26) with vo := g and v := V", one gets
1
(53) ~W3Gu,") < HO ).

By the weak convergence of T),#u to the standard Gaussian law y, one has
(54) lim HO ) = Hy).
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Easy computations give for any x,y € {0, 1}",
1 1 2
—d(x, y)d(x,y) = 1) = = |Ty(x) = T,,(y)| (lTn(x) - Tl - —)
n 4 \n

and therefore

1wd<u P s L f f Calz W) drtn(z, W),

4 n,,EH(T #/.1 T, ")

where ¢, (z,w) = |z — wl(lz —w| - 7_) Let € > 0. Since T,#u weakly converges to y and T,#v" weakly

converges to v, one checks that any sequence r,, € II(T,#u, T,#v") is relatively compact. Since

1/2 1/2
f B d(Tn#u)(as( f Izlzd(Tn#,U)(z)) =( f T,%d,u) -1,

it follows that there exists a compact set K, C R such that
sup f |zl d(T#u)(2) < e.
neN JR\K,

Observing that since f has compact support K,

fR e = f L1, ek Ta (Ol foTa () d(x) = 0

one gets

sup f (Iz + wl) dmy(z, w) < sup f |2l d(T, #1)(2) < &.
neN JR2\(K.xK) neN JR\K,

Let c(z, w) := |z — w|*. The cost ¢, uniformly converges to the quadratic cost ¢ on K. It follows that for
n sufficiently large

ffcndﬂnszcdﬂn—ff |c—c,,|d7r,,—ff (C—Cn)dﬂ'anfcdﬂ'n—ZS.
XK R2\(K:xK)

and therefore
1 1
S WYY = 2 W, T - ;
n

From the weak convergence in > (R) of the sequences (7,#u) and (T,,#v") and then letting € goes to 0,
one gets

1 1
lim inf — W‘jl(u,v”)2 > 7 W3, 7).

n—+o0o n
Finally, (53) and (54) imply W22(v, v) < 4H(v|y) as n goes to +oco. m]
Lemma 4.2. Let X be a graph with graph distance d. Let vy, vy € P(X) and assume that 7w € P(X x X)

is a Wy-optimal coupling of vo and vy, namely

Wi(vo,v1) = ffd(x,y)d?f(x,y),

(i) Let
C, = {(z, w) € X X X|z #w,A(x,y) € supp(m), (z,w) € [x,y]}.
If (z1,w) € C_ and (w,z2) € C_, thenw € [z1, 22].
(ii) Let
C_:= {(z,w) € XxX|(w,z) € C_}}.
The sets C_, and C_ are disjoint.
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(iii) If d is the Hamming distance then the following sets D_, and D _ are disjoint,

D = {w € supp(vy) | dxe X,w#x,(x,w) € Supp(f?)},

—

and
D = {w € supp(vp) | yeX,w#y,w,y) € SUPP@}-

Proof. (i) Let (z;,w) € C_, and (w,z3) € C_. there exists (x,y) € supp(n) such that (z;,w) € [x,y]
and there exists (x’,y") € supp(m) such that (w, z2) € [x’,y’]. One has

d(zi,w) +dw,22) = ((d(x,y) = d(x,21) = d(w, y)) + (d(x,y") = d(x', w) = d(z2, )")).

It is well known that the support of any optimizer of W;(vp, v1) is d-cyclically monotone (see
[41, Theorem 5.10]. By definition, it means that for any family (x1,y;),..., (xn,yn) of points

in the support of 7
N N
Z d(x;,yi) < Z d(xi, yi+1),
i=1 i=1

with the convention yy, = y;. It follows that
d(x,y) +d(x',y") < d(x,y') + d(x', y),
and therefore, from the above identity,
d(zi,w) +dw,22) < d(x,y") +d(x',y) —d(x,z1) = d(w, y) = d(x', w) = d(z2,y").
By the triangular inequality, it follows that

d(z1,w) +d(w,22) < (d(x,z1) +d(z1,22) + d(22,Y"))
+ (d(x/a W) + d(W, y)) - d(X, Zl) - d(W, y) - d(x/a W) - d(zzay’) = d(Zl,ZZ)«

This implies that w € [z1, z2].

(i) Assume there exists (z,w) € C_, N C_. Then (w,z) € C_ and therefore, according to (i),
z € [w,w] = {w}. This is impossible since z # w.

(iii) We assume that d(x,y) = 1., for any x,y € X. If the two sets D_, and D_ intersect, then there
exists (x,w) € C_, and (w,y) € C_ . Point (i) implies w € [x,y], and since d(x,y) = 1, we get
either w = x or w =y, which is impossible.

Lemma 4.3. Let vy and v some probability measures in P(X) with bounded support.

(i) If (12) holds, then for any x,y € X and any integer k, L¥(x,y) < (2S)*.
(ii) If (13) holds, then for any x,y € X, LY®Y(x, y) > 140,

(iii) If (12) and (13) hold, then for any x,y € X, any t € [0, 1], and any y € (0, 1), one has
LI (x,y)
d(x,y)!

where K := 25 /1 and O(1) denotes a quantity uniformly bounded in x,y,t and .
(iv) If (12) holds then for any x,y,z € X and for any t € [0, 1]

. .y > d(x,y
lim v} () = 7" @) 1= U@ 16, 2.2,) ] W, ).

P (x,y) = (") (1 +yK ™V 0(1)),

(v) If (12) holds then for any x,y € X,

LAY (x, y) )
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For a fixed xy € X, let D := max (d(xg, x), d(xq,y)). It follows that if (12) and (13)
xesupp(vo),yesupp(v)
hold then for any y € (0,1) and t € (0, 1),

tyl d(x0,2)+1+D
» 0<e | T n+1sD i <P/ < :
Y = (d(xo,z) +1+ D) Lemin - fTO0) < PUfY@) < max f7(w)
(vi) If (12) holds then Egy[€]1Xy = x, X1 = y] < P’jgy)‘
1
(vii) Assume (12) and (13) hold. For a fixed xo € X, let D = max (d(x0, x), d(x0, )).

xesupp(vo).yesupp(vi)
For any x € supp(vy) and y € supp(vy), one has for any t € (0, 1) and any y € (0, 1)

, [2d(x0,2)—4D—-1]4+
V() < 0(1)(]1[x,y](z) (1= Ty @) y (&) )

where K := 25 /1 and O(1) denotes a constant that only depends on S, 1, D and K := 2S/1.
As a consequence, if B denotes the finite set

’

B := {z eX | Z € [x,y], x € supp(vp),y € supp(vl)},
then
(56) 0/(x) < 0(1)y (yK* . VzeX\B.

(viii) Assume (12) and (13) hold. Let xo € X, t € (0,1) and y € (0,1). For any w,z,7 € X with
d(z,7') <2 and w € supp(vp) one has

Pl w) _ max(1,d(xo,2)'@) K400 0(1)
<

)[2d(XO 2)—4D-1],

Pl(z,w) ~ (y1)d@2) ,
where K := 25 /1 and O(1) is a positive constant that does not depend on z,7’,7y,t. It follows
that

57 (y1)?&) P/f(z)  max(1,d(x, o)) K40 o(1)
< < ‘
OP (1, d(x0, )& K400 O(1) = PYfr(z) ~ (y1)d@)

(ix) Let (yx)renw be a sequence of positive numbers converging to zero. If (11), (12), (13) and (14)
hold, then for any t € [0, 1]

limo H(Q*Im) = H(QV|m).
Vi

Proof. (i) Given (12), we want to show that for any x € X, S(y) := sup,cy \LF(x, | < @28 Y It
follows by induction on k from the inequality

Ska10) = sup (e DL ) + 37 L L@ )| < 25up L 2] 10

xeX Z2~x

(ii) For x =y, one has LY®Y)(x, y) = 1 and by definition for x # y,
LYk y) 1= ) L,
3

where the sum is over all path @ from x to y of length d(x,y), @ = (2o, ..., Z4(xy) With zo = x
and z4(y,y) =y, and

Lo = L(z0,21)L(21, 22) - - - LZd(x,y)-15 Zd(x.y))-

Such a path « is a geodesic. Since we assume in this paper that L(x, y) > 0 if and only if x and
y are neighbour, one has L, > 0. By irreducibility it always exists at most one geodesic path
from x to y, and from assumption (12), for such a path a, L, > I?. As a consequence we get
LAY (x, y) >[40,
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(iii) According to (15), for any x,y € X,

d(xy Lk d
PY(x.y) = #y)( DO 1ay Y (03)  dED! ) pmdi1

a
d(x,y)! khsdons1 L CD(xy) k!

Applying Lemma 4.3 (i) and (ii), we get

LA (x,y) :
Pl ()= = |
LDy e deyy (285)7
L) (e 3 e B
d(x,y)! el =)
Ly
> (x.y) prd(x.y) ,28
— (yt K ,
ey ‘

from which the expected result follows.
(iv) Let x,y,z € X and € [0, 1]. If (12) holds, according to (15), the Taylor expansion of Pty(x, y)
as 'y goes to zero is given by
L1 (x,y)
d(x,y)!

As a consequence, the Taylor expansion of v;yx’y(z), defined by (9), is

d d
Pl (x,y) = (y)D) 4 o(y 1),

VI (7) = e rd@y)-d(ey) L@ L zy) () 14D (1 — pyd@y)
' LA (x,y) d(x,2)'d(z,y)!
+ O(Yd(x,z)+d(z,y)—d(x,y)).
The expected result follows since one has y?-+d@y)=d(xy) = 1 if 7 € [x,y], and
limy_,() ,yd(X,Z)+d(z,y)—d(x,y) = ( otherwise.
(v) On some probability space (Q', A, P), let (N;)s>0 be a Poisson process with parameter yS and
(Y,)nen be a Markov chain on X with transition matrix Q given by
L7 (x, S+ L
& W), forw#zeX, and Q(z,2) := 7—(ZZ)
¥S S
We assume that (¥,),en and (Ny)>0 are independent. It is well known that the law of the process
(X))r>0 under R given Xy = x is the same as the law of the process (X,),>0 under P given Xo =X
defined by X, = Yy,. As a consequence, one has for any y € X,

0@z, w) =

P)(x,y) = R" (X, = y| Xo = x) = P(X, = y| Xo = x).
Letn = d(x,y) and N, denotes the number of jumps of the process X,, one has
PZ(x,y) > P(Z :y,ﬁ, = nlfo = x)
= P(Yl, ..., Y, are all different, ¥,, = y, N, = n|)~(0 = x)
= P(N, =n)P(Yy,...,Y, are all different, Y,, = yl)?o = x)

_01S) s
n!

_ ()"
TR

O(x0, x1) - O(xp-1, Xp)

a=(x0,...,Xn), @ geodesic from x to y

eV LAY (, v).
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This ends the proof of the first part of (v). Observe that from the Schrodinger system (7),
fY(w) > 0 if and only if w € supp(vy). Since vy has bounded support, it follows that for any
w € supp(vo,

0< min () < fY(w) < max f(u),

uesupp(vp) uesupp(vo)
and therefore for any z € X,

min _f(u) min Pl(z,w) < Z FYWPl(z,w) = P/ fY(z) < max f(u).

uesupp(vo) wesupp(vo) Wwesupp(vo) uesupp(vo)
From (13) and (ii) and since d(z, w) < d(z, x9) + 1 + D for any w € supp(vp), one gets

tyl
d(xg,2) + 1+ D)

’

)d(xo,z)+1+D)

min  Pl(z,w) = e
wesupp(vo)

from which the second part of (v) follows.
(vi) The length {(w) of a path w € € represents the number of jumps of the process X; between
times 0 and 1. Therefore according to the definition of the process (X;);>o above,

Err[€]Xo = x, X1 = y] = B [ N1 1 X0 = %, X; =]

_ o Be[NiIg 0Xo=x] Ea
SEP[N1|XO—X,X1_y]_ P(§1:;|§o=x) SPT(x,y)’

which ends the proof since Ep [N1] = ¥S.
(vii) From (iii) and (v), one gets for any x,z,y € X,

P](x,2)P](z,y)

Xy
v (2)
' Pl(x,y)
_ d(x,y)!
d(x,2)+d(z,y)—d(x.y) d(x,2) 1 _ pd@y) ¥S
< vy r(x,z,z,y)d(x’z)!d(z,y)!t (1-19 e
(58) (1+yK20(1) (1 +yK“0(1)).

If z € [x,y] then thanks to (i) and (ii), the right-hand side of this inequality is bounded from
above by

2S d(x.y) a
(T) 1 S 42N (1),
and the maximum of this quantity over all x € supp(vp) and y € supp(v) is a constant O(1),
independent of x, z,y and .

If z ¢ [x,y], then d(x, z) + d(z,y) — d(x,y) > max{l, 2d(xg, z) — 4D}, and the right-hand side of
(58) is bounded by

d(x,2)+d(z,
(e +d(ey)—d(xy) (25) (x,2)+d(z,y)

J4Cy) d(x,y)! e’ 4 KA+ 01y

Y

1+[2d(x0,2)-4D—11, (28 )2dx0-0+2D S 4 1-2d(x0,2)+2D
<y 0,2 +—[d(x,y) d(x, y)! e?> 4K~ (1),

The maximum over all x € supp(vp) and y € supp(v;) of the right-hand side quantity is bounded
by O(1) y!*12dx0.9-4D-1]s g4d(x0.2)  Thjs ends the proof of the first inequality of (vii). The second
inequality easily follows since

Q= > ATOPx.

xesupp(vo),yesupp(vi)
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Using (iii) and (v), one gets for any z,7' € X and any w € supp(vp),

’ 4 ’ d 8 —d /,
Pr@w) LI w) dzw)! (i) e & (1+yK*0(1))
Pl(z,w) = LI&W(z,w) d(Z,w)!

d(z,7)
< Kd(Z,Z/)+d(Z,x0)+d(x0,W) max (1’ d(Z, W)Z) (lt) 2€S Kd(z,z')+d(z,x0)+d(x0,w) 0(1)
Y

K24@x0) max (1, d(z, xO)z) o)

<
- (G

’

where one maximizes over all w € supp(vp) to get the last inequality. Inequality (57) follows
since

PIfE) _ 3 Pl w) [T (W)P] (2, w)

PIf@) o Pl@w) P
P!(z,
win |y LR
wesupp(vo) Prf7(@)
Recall that

H(Qtlm)—zl og = ()) 0" @)

Let us consider the finite set B defined in Lemma 4.3 (vii). From the weak convergence of the
sequence ( ") to Qt and since supp(Qt) C B, one has

(Z) ’*y
lim » log "@)=H
limy Z (2) = H(Q}m)
Therefore it remains to prove that
. 07 (2) o
lim E log —— (z) =
Ye—0 “X\B m(z)

From Lemma 4.3(vii) and hypothesis (11) one has, for any z € X'\ B,

[2d(x0,2)-4D—1].+
0/'@) _ O (vik?) ™

m(z) ~ inf,cx m(z)

Using the inequality |[v1log v| < +/v for v € (0, 1], we get for 0 < y; < min (infzg’(‘lr)"(Z), %)

7Yk
Z log =~ © 0" (z) < O(1) sup m(z)\/_z K2 Pdbo=ab=l 2
z

zeX\B m(z) zeX zeX

Hypothesis (14) then implies that there exists y; > 0 such that for any 0 <y <y,

Nk
S 10e L8 51 < 00y v,

zeX\B m(z)

and the expected result follows.
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5. AppenDIX B : Proors or LEmMas 3.1, 3.2, 3.3, 3.4

Proof of Lemma 3.2 and Lemma 3.3. Lety denotes a fixed parameter of temperature that can be choose
as small as we want. To simplify the notations, the dependence in the temperature parameter 7y is
sometimes omitted. For ¢ € (0, 1), let us note f; := P f” and g, := P?_ .8 and recall that F, := log f,
G, :=log g, and

@(t) = f Fifi g dm, () = f G.f, g; dm.

Observe that for y sufficiently small, these two functions are well defined on (0, 1) since (55) and (56)
implies

[ 1Edfigidm = loe ] Gito

zeX

1 2d(x,2)—4D—1],
<o) + 0(1) Z(d(xo,z)+1+D)(logty—l+log(d(x0,z)+1+D))y(yK2)[ (o-=ab=

zeX\B

According to hypothesis (14), the right-hand side of this inequality is finite if (yK?)> < v,. Identically,
one could check that f |G| f g dm is finite for vy sufficiently small.

The proof is based on I';-calculus by using backward equations, d,f; = Lf;, 0,¢; = —Lg;. We only
present the proof of the expression of ¢’(r) and ¢”'(¢). Same arguments provide the expression of ¥’ (r)
and ¥’ (t). We start with a general statement that we will apply twice. Let (r,7) € (0, 1) XX — V,(2) € R
denotes some differentiable function in ¢ (that also depends of the parameter ) satisfying for any € €
(0,1/2), and any xj € X,

Ad(x0,2)
(59) sup Vi)l < O(1)—5—,
te(e,1—¢) Y
and
Bi(x0,9)
(60) sup 10, Vi(2)| < O(1)—5—,
1e(e,1-5) Y

for all z € X where O(1),A, B denote constants that do not depend on ¢,y and z. then the following
identity holds: for any ¢ € (0, 1),

at(fvtﬁgtdm) = fat(vtftgt)dm

- f @V foge+ Vi(Lf) g1 - Vi fi (Lgs) dm
= f(atvt)ftgt + Vi (Lf) g — L(Vift)g:r dm

61) - [fovia- Y, 9@ e )@@ dn),

7,7~z

It suffises to justify this identity for any € € (0,1/2) and any 7 € (g, 1 — ). The second equality of (61)
is due to the backward equations. The first equality of (61) is justified by applying Lebesgue’s theorem
with hypothesis (14), provided that for y sufficiently small, one has

sup |0:(Vifi g)(2) m(z)| < O(I)yg(xo’Z).

te(e,1-¢)
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This is indeed the case, since for any z € X,

LP? f7(2) LP]_g"(2)
AV, =0, V)@ + V, ! -V I 0 (2),
(Vi fit 8)(2) m(2) [( Vi)(@) + Vi(2) P 1(2) P e 0, (@)
with according to (57), for any 7 € (¢, 1),
‘LP?fy(z) <5y (1 o max [P ) < 5q., X dGo. KT 0) ) KO0
PIfr(2) |~ e 22~2| PIfY(2) |) ~ e ve - 0%
LP] §'()

d(x(.2) .
o0 <o(HK yo ,forany r € (0,1 — &) and z € X. Together with (56),

we get the bound, forany z € X and 7 € (g,1 — ¢),

One identically shows that

( z)ld(xo,z)

10,(Vefs g)(@m(2)| < O(1) (B2 + (AK)"0) < 0(1) g™,

,yll

for any y > 0 with y*(B + AK)K* < y,. The third equality of (61) is due to Fubini’s theorem together
with the reversibility property of m with respect to L. The last equality of (61) is a simple rearrangement
of the terms.

At first, one applies (61) with V; = F}, since according to (55), for any 7 € (g, 1 — ¢), for any z € X,

1 2d(x0.2)
IF/(2) < 0(1) (d(x0,2) + 1 + D) (log o7 Hlog 9+ 1+ D)) < 0 —.
and
LP/f(2) K0
|0:F:(2)| = ‘Yt— <0(1) .
P fY(2) Y

OF @) = ), L) = Y (D 1)L ze X,
7eX 7,7~z
one gets the expected result

(1) = f D (7D 1 = VF(2, e D) Lz, ) fi2)gi () dim(2)

7,7~z

_ _f Z {(eVF’(Z’Z/))L(z,z’)d@(z).

7,7~z

We want now to apply again (61) with Vi(z) = >/ .. { (eVF f(z’z’)) L(z,7'), z € X. From the inequality,

|£(a) <2 +a*a>0and using (57), one may check as above that (59) holds. The backward equations
ensure that

- Lfi@)  fi@LA@) . ¢ vhe) ’
0,V,(2) = Z ( ) 0 )§ (e )L(z,z)

_ VF(z,7) Lfi(@) _ Lft(Z))VF NIz 7
2 ¢ (ﬁ(z’) fiw ) e )

VF (&) "D (D 1) L ) L )
Z/g Z/,g ZNZ, ~Z/,

- Z VF(z,7)e" &) (eVF W) _ 1) L(z,Z) L(z,w").

7w~z W~z

7,7~z

7,7~z

Simple computations together with (57) show that (60) holds too.
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Applying the identity (61), since
VWL = Y () L ) L)
7.7~z ZI, 7, 2~ ~7"
_ Z eVF;(Z,Z’)g (eVF[(Z,W,)) L(Z, ZI) L(Z, W’),
7w~z W~z
one gets for any ¢ € (0, 1),
QDI/(I) _ f Z [é/ VF,(ZW) _VF (Z z )( VFi(zw) _ )]eVF,(z,z/)L(Z’ZI)L(Z’ W/)

7w~z W~z

+ Z [VF,(z, ) (€7D — 1) = £ (V) eV Lz, ) L z”)]d@ )

7,7, 2~ ~7"
f[ (VF[(Z, W,) _ VF[(Z, ZI)) _ 1) eVFt(Z,W’)‘FVF{(Z,Z’)L(Z’ Z/) L(Z, Wl)
W, ~, W~z

(VFi(z.2) + 1) V"L, ) Lz, w)
4 ,W ,Z "Z,W ~Z
— Y TR D)L L)
ZI, Z,/, Z~Z’NZI,
_ Z p (eVFr(Z,z’), eVF;(Z,Z//)) L(Z, ZI) L(Z/, Z’/)]d@(Z),
Z” ZN, Z~Z/~Z/,
where the last equality holds since VF(z,7") + VF(Z',7"") = VFy(z,7"). The expected expression of
¢" (1) follows by symmetrization of the first sum in 7’ and w’, and since 3}, /.. L(z,w") = =L(z,z). O

Proof of Lemma 3.1. Let € € (0,1/2). We first prove that if (12), (13) and (14) hold then go '(1) is
uniformly lower bounded over all ¢ € [g, 1] and y € (0,¥] for some ¥ € (0, 1). According to (36) and
inequality (38) and (39), forany ¢ € [g, 1] and y > 0,

PACE —mn[@ [ @eoaxiag e+ [ (@ 1)K2d<x0’z>d§{(z>]

> —o(1) f P (x0, DK 40 (2,

where O(1) denotes a positive constant that only depends on ¥ and &. Using Lemma 4.3 (vii) and the
fact that vy and v; have bounded support, it follows that

g =-o1) max (d(xo, K*09) = 0(1) > d*(x0,2) (vK°
z€lx.y
xesupp(vp), yesupp(vl) zeX

[2d(x0,2)-4D—1]+
=—0(1) - 0(1) Y d*(xo.2) (yK*) "
zeX

)[Zd(xo,z)—4D—l]+

From hypothesis (14), choosing ¥, so that (YK 3)? < yp, one gets

") > -0(1
ye(oy?,e[g 1]%() -

One may similarly proved by symmetry that if (12), (13) and (14) hold, then 1// /(1) is also uniformly
lower bounded, namely
inf V() = =0(1).
Y07 1El0,1¢] ¥y () 2 -0()
Lete € (0,1/2), and for y € [0, 1), let

FS) = HQ)_pypipm), 1 €10, 11.
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We will first prove a convexity property for the function Fj from a convexity property of F. Yk as the
sequence (yy) goes to zero. We use the identity, for any ¢ € (0, 1)

Hl-1)

1
(62) (1= OF2 (0) + tF2 (1) — FE (1) = fo K(s)(F2)(s)ds,

where the kernel K; is defined by (29). Observe that

1 1-¢
[ Ky s =a-20 [ k() (e +v00) du

The above uniform bounds on ¢ and 7 for y € (0, ¥) allow to apply Fatou’s Lemma. Together with
Lemma 4.3 (ix) it implies, for any € € (0, 1/2)
l1-&
(1 - 2¢) f Kt

For any ¢t € [0, 1] the support of the measure Qt is finite, included in the set B defined Lemma 4.3
(vii). As a consequence, the function ¢ € [0, 1] - H (@?Im) is continuous as a finite sum of continuous
function. It follows that for any ¢ € [0, 1],

lim F5(1) = H(QVm).

(63) (1= DFZ(0) + tF5(1) — F5(r) > hm inf (i}, () + ¥/, () de

Consequently, using hypothesis (30) and applying Fatou’s Lemma as & goes to zero, equality (63)
provides

(1= OHolm) + tHO|m) - HQVm) > L1

f K; (u) hrn 1nf <p (u) + hm 1nf 1//),,( (u))
t(l )

fo K o) (/0 + @) e

[(1 = Do(0) + 10o(1) = @o()] + [(1 = Do (0) + (1) — Yro(1)]
were the last equality is a consequence of identity (62) applied with ¢ and . O

Proof of Lemma 3.4. Letz € Zand7 € V(z). One will only compute the expression of lim,, o (ykAZk (z, z’))

and similar calculations provide lim,, o (kaZk (z, z’)). For any y > 0, let

al(z,y) = Q'(X; = X1 =) = f v @) dr (why),
and
Py (v 2P) (' w)
P(y,w)
Using equality (10) and since PT f7(y) > 0 for any y > 0, one easily check that for any y > 0,
P _ya/z7.y)
Pl alzy)

a/(z,7,y) = f @l (v.z. 2, wydn’ (wly), with @] (y,z,2,w) =

yAl(z,7) =

From the expression (31) of a,(z, y) and since supp@‘(-ly)) C supp(vp), one has

| @y -aGy|< sip P -AT@+ )[Ry -7 )|

wesupp(o) wesupp(vo)

Therefore, the weak convergence of (7% )iy to 7° and Lemma 4.3 (4) imply
(64) lim a,*(z,y) = a,(z,y).
Yc—0
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Let us now consider the behaviour of ykaty" (z,7,y) as vy goes to zero. Lemma 4.3 (iii) provides the
following Taylor expansion,

d(y,2)+1+d(Z .w)—d(y,w)

d(y, w)! o
e[ (,2,2,w) =7 O (g _ gyt

dy,2)ld(Z ,w)!
. (1 + y(Kd(y,z) + Kd(z’,w) + Kd(y,w)) 0(1)) ,

r(y,z,2,w)

where O(1) is a quantity uniformly bounded in t,vy,z,7’, x,y. By the triangular inequality and since
z ~ 7', one has d(y,w) < d(y,z) + 1 +d(z’, w), with equality if and only if (z,z’) € [y, w]. Therefore, one
gets

lirr(l) ya! (v,2,7,w) = @X(y,2,7, W),
’y—)
with
0 ’ ,_ ’ d(y,w)-1
@; (0, 2,2, w) 1= L yepym 10, 2,2, w)d(y, wp, (d(z,w) - 1).
Moreover, Lemma 4.3 (i), (ii) and (iii) ensures that for any w € supp(vp) and y € supp(vy),
)/Q’Z(y, Z. Z,, w) < 0(1),yd(y,z)+1+d(z’,w)—d(y,w) 28 )d(y,z)+d(z',w)—d(y,w) Kd(y,z)+d(z’,w)

(28)Y1OMd(y, w)! K40
. max
wesupp(vo),yesupp(vy) J40.w)
< O(1) (y28 K0+ mti=dom),

where O(1) is a constant independent of ¢,y,z,z’, w. Therefore ya/ty(y, z,Z/,w) < O(1) as soon as y <
1/(25 K). As a consequence, for any y; < 1/(2S K), it holds
|yl (2.2 y) - 2z, 2. y) |
< s |nelghndow -alnnd w0 Y |[@y) -7 )|,

wesupp(vo) wesupp(vo)
As ¥y goes to 0, this inequality with the weak convergence of 7% to 77° implies

lim yra/*(z, 2, y) = a(z, 7, y),
vk—0

The set ?Z is not empty since z € Z. Since for any y € ?Z, a;(z,y) # 0, it follows from (64) that
ykAY¥(z,7') converges as y; goes to zero with for any y € Y.,

a(z,7',y)

lim A (2, 7)) = .
7450 YA ( ) at(Z,y)
The proof of the first part of Lemma 3.4 is completed.

We now turn to the proof of the second part of Lemma 3.4. One will only compute lim,, o (y]%AZ" (z, z”))
forzeZ,7’ € V(z) and the expression of lim,, o (y]%BZk (z, z”)) follows from similar calculations. For
any y € X and any ¢ > 0, one has

2,7 7"
24Y 77 ')’at(Z,Z ’y)
YA @)=
' al (z,y)
with

ya)(z,7',y) = f Y2 al (v, 2,2, w) di (wly).
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It remains to compute lim,, yiaty" (z,7”,y) to prove (35). As above, Lemma 4.3 (iii) provides
diy,w)! (1 — 00"
d(y,2)ld(Z", w)!
. (1 + ,y(Kd(y,Z) + Kd(Z”,W) + Kd(y,w)) 0(1)) ,

)/Q’Z(y, Z. ZN, W) — ,yd(y,z)+2+d(z w)—d(y,w) r(y, z Zu i W)

where O(1) is a quantity uniformly bounded in t,v, z,z”, x, y. Since d(y, w) < d(y,z) + 2+ d(z”, w) with
equality if and only if (z,z”) € [y, w], it follows that

. ’7 ’7 1 d(y,w)—
}/E)% yzaZ(y’ 2, W) = a’?(y’ 2, W) = ]]-(Z,Z”)G[y,W] r(y, 2, W) d(ya W)(d(ya W) - 1).0[ ) 2(d(Z, W) - 2)

Moreover, Lemma 4.3 (i), (ii) and (iii) gives that for any w € supp(vp) and y € supp(vy),
Yol (2.2, w) < O(1) (y28 Ky mmdom,

where O(1) is a constant independent of ¢,y,z, 7", w. As above, the proof ends as y; goes to 0 from the
inequality

|veal .27 y) —anz. 2", ) |

< s [|nel e w -l w0 Y [F ) -7 )|,

wesupp(vo) wesupp(vo)

for all v, < 1/(2S K). The end of the proof of the second part of Lemma 3.4 is identical to the one the
first part. O
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