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ENTROPIC CURVATURE ON GRAPHS
ALONG SCHRODINGER BRIDGES AT ZERO TEMPERATURE.

PAUL-MARIE SAMSON

ABsTRACT. Lott-Sturm-Villani theory of curvature on geodesic spaces has been extended to discrete graph
spaces by C. Léonard by replacing W,-Wasserstein geodesics by Schrodinger bridges in the definition
of entropic curvature [25, 27, 26]. As a remarkable fact, as a temperature parameter goes to zero, these
Schrodinger bridges are supported by geodesics of the space. We analyse this property on discrete graphs
to reach entropic curvature on discrete spaces. Our approach provides lower bounds for the entropic
curvature for several examples of graph spaces: the lattice Z" endowed with the counting measure, the
discrete cube endowed with product probability measures, the circle, the complete graph, the Bernoulli-
Laplace model. Our general results also apply to a large class of graphs which are not specifically studied
in this paper.

As opposed to Erbar-Maas results on graphs [29, 11, 12], entropic curvature results of this paper im-
ply new Prékopa-Leindler type of inequalities on discrete spaces, and new transport-entropy inequalities
related to refined concentration properties for the graphs mentioned above. For example on the discrete
hypercube {0, 1}" and for the Bernoulli Laplace model, a new W, — W, transport-entropy inequality is
reached, that can not be derived by usual induction arguments over the dimension n. As a surprising fact,
our method also gives improvements of weak transport-entropy inequalities (see [16]) associated to the
so-called convex-hull method by Talagrand [41].

The paper starts with a brief overview about known results concerning entropic curvature on discrete
graphs. Then we introduce a specific entropic curvature property on graphs (see Definition 1.1), derived
from C. Léonard approach [25, 27, 26], and dealing with Schrédinger bridges at zero temperature.

The main curvature results are given in section 2, with their connections to new transport-entropy
inequalities. The concentration properties following from such transport-entropy inequalities are not
developed in the present paper. For that purpose, we refer to [37] and [16] by Gozlan & al, where the
link between transport-entropy inequalities and concentration properties are widely investigated.

The strategy of proof, presented in section 3, uses the so called slowing-down procedure for Schrodin-
ger bridges associated to jump processes on discrete spaces pushed forward by C. Léonard. The key
theorem of the present paper, Theorem 3.5 (with Lemma 3.1), is derived from this procedure, which
consists of decreasing a temperature parameter y to O in order to construct W;-Wasserstein geodesics
on the set of probability measures on the graph. All the curvature results of this paper are derived
from Theorem 3.5. Our strategy also applies for many other graph spaces which are not considered in
this paper. The main goal of this work is to push forward Leonard’s slowing-down procedure to reach
entropic curvature on graphs through few significant new results. In a forthcoming paper, one will
give sufficient geometric conditions to reach entropic curvature property on non-specific graphs from
Theorem 3.5.
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1. INTRODUCTION : SCHRODINGER BRIDGES FOR ENTROPIC CURVATURE

For any measurable space Y, we note M. (Y) the set of all non-negative o-finite measures on Y and
P(Y) the set of all probability measures on Y.

Let (X, d) be a geodesic space equipped with a reference measure m € M, (X). According to Lott-
Sturm-Villani theory of curvature on geodesic spaces [28, 39, 40, 43], a lower bound K € R on the
entropic curvature of the space (X, d,m) is characterized by a K-convexity property of the relative
entropy along constant speed geodesics of the Wasserstein space (P2(X), W>). Let us precise this
property for the non specialist reader. By definition, the relative entropy of a probability measure g on
a measurable space Y with respect to a probability measure r € P(Y), also called Kullback-Leibler
distance between ¢ and r, is given by

H(qlr) := fy log(dq/dr) dgq € [0, o0],

if ¢ is absolutely continuous with respect to r and H(g|r) := +oo otherwise. As explained in [24], this
definition extends to unbounded measures r € M, (Y) as follows. Since r is a o-finite measure, there
exists some measurable function w : Y — [0, +c0) such that

Zy = fe_wdr < 00,

Define the probability measure r,, = % r. Then the definition of H(g|r) is given for all g € P(Y) such
that [wdg < +o0 by

Hglr) = H(glr,) - f wdg—1ogz, € (—o0,+ool.

According to [24], this definition makes sense since the right-hand side does not depends on the func-
tion w satisfying z,, < oo and f wdq < +oco. We refer to [24] for more details and properties about
this definition of relative entropy with unbounded o-finite measures. Let #»(X) denote the space of
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probability measures with second moment, and let W, be the Wasserstein distance of order 2 on P»(X):
namely, for any vg, v € P»(X),

1/2
0 Wa(voov) :=( inf f f d(x,y>2dn<x,y>) ,

nell(vg,vy

where I1(vg, v;) is the set of all probability measures on the product space X X X with first marginal
vo and second marginal v, (also called transference plans from v to vi). A path (v)re[0,17 in P2(X) is
a constant speed W-geodesic from vo to vy if forall 0 < s <t < 1, Wh(vs,vs) = (£ — 5)Wa(vg, v1).
The K-convexity property of the relative entropy H(-|m) is expressed as follows: for any vp, v; € P2(X)
whose supports are included in the support of m, there exists a constant speed Ws-geodesic (V¢)sefo.1]
from v to vq such that for all ¢ € [0, 1],

K
() H(vm) < (1 — 1) H(volm) + t H(v{|m) — 3 t(1 = 1) W3(vo, v1).

If such a property holds, one says that the Lott-Sturm-Villani entropic curvature of the space (X, d, m)
is bounded from below by K.

Property (2) with K = 0 has been discovered by McCann on the Euclidean space (X, d) = R4, - )
endowed with the Lebesgue measure [31]. More generally, as a remarkable fact, when X is a Rie-
mannian manifold equipped with its geodesic distance d and a measure m with density e~V with respect
to the volume measure, property (2) is equivalent to the so-called Bakry-Emery curvature condition
CD(K, 00): Ricc + Hess(V) > K (see e.g. [3]). As a consequence, due to the wide range of impli-
cations of this notion of curvature, property (2) has been used as a guideline by Lott-Sturm-Villani to
define curvature on geodesic spaces (see also [1, 2]) and then by different authors to propose entropic
definitions of curvature on discrete spaces : Bonciocat-Sturm [7], Ollivier-Villani on the discrete cube
[36], Erbar-Maas [29, 11, 12], Mielke [32], Léonard [25, 27, 26], Hillion [19, 20] and Gozlan-Roberto-
Samson-Tetali [15].

This paper concerns Léonard entropic approach of curvature in discrete setting, from which we also
recover results from [15] and [19]. In discrete spaces, several other notions of curvature have already
been studied which are not considered in this paper : the coarse Ricci curvature [34, 35], the Bochner-
Bakry-Emery approach with the (Bochner) curvature [8, 21] and the curvature dimension or exponential
curvature dimension inequality [4].

For m as unique invariant probability measure of a Markov kernel on a discrete space X, a first global
entropic approach has been proposed by M. Erbar and J. Maas [29, 11, 12]. The core of their approach is
the construction of an abstract Wasserstein distance W, on P(X), that replaces the Wasserstein distance
W, in (2). This distance ‘W, is defined using a discrete analogue of the Benamou-Brenier formula for
W5, in order to provide a Riemannian structure for the probability space P(X). Unfortunately, there
is no static definition of ’W% as a minimum of a cost among transference plans  as in the definition
(1) of W22. Erbar-Maas entropic Ricci curvature definition satisfies a tensorization property for product
of graphs that allows to consider high dimensional spaces [11]. This definition has been used to get
lower bounds on curvature for several models of graphs : the discrete circle, the complete graph, the
discrete hypercube [29, 11], the Bernoulli-Laplace model, the random transposition model [13, 14],
birth and death processes, zero-range processes [14], Cayley graphs of non-abelian groups, weakly
interacting Markov chains such as the Ising model [10]. The main strategy of all this papers is to prove
an equivalent criterion of Erbar-Maas entropic curvature given in [11], by identifying some discrete
analogue of the Bochner identity in continuous setting.

Finding a minimizer in the definition of W(vg, v;) is known as the quadratic Monge-Kantorovich
problem. By the so-called slowing down procedure, T. Mikami [33] and then C. Léonard [23, 25,
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26, 27] show that the quadratic Monge-Kantorovich problem in continuous, but also the W;-Monge-
Kantorovich problem in discrete, can be understood as the limit of a sequence of entropy minimization
problems, the so-called Schriodinger problems.

In this paper, the slowing down procedure, described further, is used to prove entropic curvature
properties of type (2) as X is a graph, endowed with its natural graph distance d = d., and with a
measure m, reversible with respect to some generator L. More precisely, in property (2), constant
speed W,-geodesics (vy)spo,17 are replaced by constant speed W;-geodesics where W is the Wasserstein
distance of order I given by

Wilvg,v1) := inf )ffd(x,y) dr(x,y), vo, v1 € P(X).

nell(vy,vy

As explained below, each of these constant speed Wj-geodesics is the limit path of a sequence of
Schrodinger briges (@ )ic0.17 indexed by a temperature parameter y > 0, as y goes to zero. Given
two probability measures vy and vy, this constant speed W;-geodesic selected from this cooling down
process (or slowing down procedure) is unique. According to its construction, we call it Schrodinger
brige at zero temperature and we denote it (/Q\,),E[o, 17 throughout this paper (QO = vp and Ql = v). For
x,y € X, one denotes (Q;").0,1] the Schrodinger brige at zero temperature from the Dirac measure
0y = Qg™ to the Dirac measure 6, = Q™. Actually the bridge (Q)te[o,l] is a mixture of Schrodinger
briges from Dirac measures on the support of vy to Dirac measures on the support of v, according to
a selected transference plan denoted 7 € I1(v, v1), that achieves W(vo, v1). Namely, one has for any
zeX

3) 0i(z) = f 0" (2)dr(x, y), with f f d(x,y)dr(x,y) = Wi(vo, v1).

Observe that the set of minimizers of Wj(vg,v;), also called W;-optimal couplings of vy and vy, is a
convex set that is not necessarily reduced to a singleton. However, according to Leonard’s paper [26],
we know that given v, vq, 7 is uniquely determined, as a minimizer of a strictly convex optimization
problem (see [26, Result 0.2]). In our setting of property (2) on graphs, the curvature term sz(vo, Vi)
is also replaced by some transport cost C,(7) that depends on the selected W;-minimizer 7 € I1(vg, v1),
and may also depend on the parameter ¢ € (0, 1). Let £;(X) denotes the set of probability measures on
X with finite support. The analogue of property (2) on discrete graphs at the focus of this work is the
following.

Definition 1.1. On the discrete space (X, d, m, L), one says that the relative entropy is C-displacement
convex where C = (Cy)eo.17, Iif for any probability measure vy, v) € Pp(X), the Schrodinger bridge at
zero temperature (Q;)iefo,1] from vo to vi, satisfies for any t € (0, 1),

(1 -1
2 C[@.

“) H(Q/lm) < (1 = H(volm) + t H(vi|m) —

2
For some of the graphs studied in this paper, the cost C,(7) is bigger than K ( f f d(x,y)dmr(x, y)) =
K Wi(vo,v1)? for any ¢ € (0,1) with K > 0. Such a property is also a consequence of Erbar-Maas
positive entropic curvature since "W% > 2W12 (see [11, Proposition 2.12]). However, their convexity
property of entropy deals with “W,-geodesics on P(X), whereas property (4) deals with W-geodesics.
As a definition in this paper, the largest constant K € R so that (4) holds with C,(@) = K W;(vp,v1)?

for any v, v; € Pp(X) and any ¢ € (0, 1) is called, if it exists, the Wi-entropic curvature of the space
(X’ d’ m’ L)'

Given a non negative cost function ¢ : N — R*, let us denote

Te(m) = ffC(d(x,y))dﬁ(x,y)



ENTROPIC CURVATURE ON GRAPHS. 5

and T, := T. for the square function c¢(d) = d?, d > 0. For some graphs in this paper, in order to compare
our results with the W% cost that appears in (2) on geodesics spaces, we prove that Cy(7) > K T,,(m)
with K > 0, where one denotes by ¢, any universal cost function (independent of any characteristic of
the graph) satisfying

dd-1)

<c(d) <d?

and which is equivalent to the square function at infinity

im 29 _
d—oo d2

For such a cost function, one has for any € € (0, 1) and any d € N,
co(d) > (1 —&)dd-1)—ale)d,
where « is the non-negative function given by a(g) = supq- {(1 —-e)k-1)- CZT(]‘)} (a(e) = 0 for

g € (1/2,1)). It follows that T,,(7) is controlled by the Wasserstein distances as follows, for any
g€ (0,1)

1

To@ 2 sup {(1=)W300.v1) = [(1 = £) + a@IWi (00 v} 2 5 (W00, v1) = Wi, v1)) 2 0.
£€(0,1)

Therefore, the cost T, (7) can be interpreted as a discrete analogue of the cost sz(vo, v1) in the usual

K-convexity property (2) on geodesic spaces. As a definition in this paper, the T,-entropic curvature

of the space (X, d, m, L) is the largest constant K € R so that there exists a cost ¢, satisfying the above

conditions and such that (4) holds with C,(7) = K T, (r) for any vy, v; € P»(X) and any 7 € (0, 1).

Due to the abstract definition of the cost ’W% with a discrete analogue of Benamou-Brenier formula,
we don’t know how to compare ’W% with costs involving transference plans and the discrete structure
of the graph such as T,, or any other proposed costs C; of this paper, excepted with le for which
’W% > 2W12. As a consequence, it is still a challenging problem to reach most of the results of the
present paper from Erbar-Maas approach of entropic curvature on discrete spaces.

According to the property of the function ¢, the cost ca(d(x,y)) = 0 if x and y are neighbours.
Therefore the transport-cost 7., does not well measure the distance between probabilities with close
supports. Observe that such type of costs also appear in the paper by Bonciocat-Sturm [7] in their
definition of rough (approximate) lower curvature.

For the graph with positive Wj-entropic curvature studied in this paper (the complete graph, the dis-
crete hypercube and the Bernoulli-Laplace model), one may bound from below the cost C,(r) by dif-
ferent symmetric versions of weak transport cost denoted by T,(@) and bounded from below by the
so-called weak optimal transport costs introduced in the paper [16]. Weak transport-entropy inequal-
ities where introduced by K. Marton in the seminal work [30] in order to get refined concentration
properties for product measure, related to concentration’s results derived from the so-called “Convex
hull method” by M. Talagrand [41]. It was pushed forward in [15] that these costs are related to dis-
placement convexity property of entropy along W;-geodesics in the case of the complete graph and
of the discrete hypercube. From the present paper, we learn that same observation extends to models
without product structure with different kind of weak transport costs, like for the Bernoulli-Laplace
model. Actually, our approach seems very efficient to prove (weak) transport-entropy inequalities since
we discover new ones and get improved versions of the known ones.

As a guideline for other graphs, we present in this paper for the discrete hypercube and the Bernoulli
Laplace model how to easily reach modified logarithmic Sobolev inequalities from the C- displacement
convexity property (4). The strategy is to analyse the C-displacement convexity property (4) as t goes
to zero when the cost C,(m) is lower bounded by some weak transport costs T,(@). It may provide
different kinds of modified logarithmic Sobolev inequalities, depending on the model and the structure
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of weak transport cost T,(@). Contrarily to the Erbar-Maas entropic curvature approach, connections and
comparisons with other known modified logarithmic Sobolev inequalities with optimal constants are not
always easy to handle. It still remains a challenge to improve our strategy or find other ways to reach
modified logarithmic Sobolev inequalities from the use of Schrodinger bridges at zero temperature in
discrete spaces.

Applying usual duality arguments, the C-displacement convexity property (4) also implies new kinds
of curved Prékopa-Leindler inequalities, as opposed to Erbar-Maas entropic approach of curvature due
to the abstract definition of W, (see Theorem 2.1).

Following the line of the paper [15], a tensorization property of the C-displacement convexity property
holds involving Knothe-Rosenblatt coupling (see Theorem 2.2).

In the present paper, a C-displacement convexity property is proved for the following discrete spaces :
the lattice Z" endowed with the counting measure (see Theorem 2.3), the discrete hypercube endowed
with product probability measures (see Theorem 2.5), the discrete circle endowed with uniform measure
(see Theorem 2.6), the complete graph (see Theorem 2.4), the Bernoulli-Laplace model (see Theorem
2.7). For all these graphs, one gets a non-negative lower bound for their Wy or T;-entropic curvature.

In a forthcoming paper, starting from the key Theorem 3.5, one will give sufficient geometric condi-
tions on balls of radius 2, available on any graph space (X, d,m, L), that give lower bounds on W; or
T»-entropic curvature. Other examples of graphs will be studied, like the random transposition model
on the symmetric group S, (for which the Wj-entropic curvature is lower bounded by 4/n?) or the
multinomial distribution on the set X := {(x1,...,xz) € N¢|x; +--- + x4 = N}. Examples of graphs
with negative entropic curvature like trees and also measures with interaction potential will be also
considered.

For more comprehension, let us briefly explain the slowing down procedure in its original continuous
setting before considering discrete spaces. Let R” be the law of a reversible Brownian motion with
diffusion coefficient y > 0 on the set Q of continuous paths from [0, 1] to X = R%. The coefficient y
can be also interpreted as a temperature parameter. The measure R” € M, (Q) is a Markov measure
with infinitesimal operator LY = yA (where A denotes the Laplacian), and initial reversible measure
dm = dx, the Lebesgue measure on R4,

In all the paper, we use the following notations. For any ¢ € [0, 1], X; is the projection map
Xt:a)EQHa)tEX.

Given Q € M, (Q), the measure Q; := X#Q on X denotes the push-forward of the measure Q by X;,
and for any 0 < r < s < 1, the measure Q;; := (X, X))#0 on X X X denotes the push forward of the
measure Q by the projection map (X, X;). For any integrable function F' : Q — R with respect to Q,
one notes

EolF] := fg FdQ.

The result by T. Mikami [33] or C. Léonard [23] is the following: for any absolutely continuous
measures v, V] € P»(X), for any sequences (yy)cen of temperature parameters going to zero,

2 . _ _
Wi(vo,v1) = Qégfg) {EQ[C] |Q0 =vp, 01 =V }

= lim |y, min {H(Q|R"" =vy, 01 =vit|,
iy )’erP(Q){ (QIR™) | Qo = vo, Q1 1}]
where c(w) = fol | w, [2dt, if the path w = (wy)epo.17 is absolutely continuous (w denotes its time

derivative), and c(w) := +oo otherwise. The first equality is known as the Benamou-Brenier formula
(see [5]). The second equality therefore relates W, to the so-called dynamic Schridinger minimization
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problems. As a convex minimization problem, for any fixed y > 0, it admits a single minimizer Q\V,
namely

5) Jmin, {H(QIR)| Qo = v0. 01 = 1} = HQ"IR".

As interpretation, the measure @’ is the law of the process with configuration ’Qz = yp attime t = 0 and
6{ = yj attime ¢ = 1, which is the closest in some entropic meaning, to a reversible Brownian motion

with diffusion coefficient y. As a result (see [33, 23]), the sequence of minimizers (QW )¢en converges
to a single measure Q € P(Q). For any ¢ € [0, 1], let Qty = Qy and v, := Q,. By definition, (Q;y)te[o,l]
is a Schrodinger bridge from v to vy at fixed temperature vy, and as a main result, as y, goes to zero,
the limit path (v;)0,17, is @ Wa-geodesic from v to vy (see [25]). Therefore, it is natural to consider
a relaxation of the curvature definition (2) by replacing the geodesic (v;)«o,1] by the bridge (Q;y),e[o, 1]
and by replacing sz(vo, v1) by yH (§7|R7). This idea has been explored in continuous setting by G.
Conforti in [9].

Let us present the discrete analogue of this approach due to C. Léonard [25, 27, 26]. From now on,
the space X is a countable set endowed with the o-algebra generated by singletons. The set Q c X0
denotes the space of all left-limited, right-continuous, piecewise constant paths w = (w;)e0,17 on X,
with finitely many jumps. The space Q is endowed with the o-algebra ¥ generated by the cylindrical
sets. In all the paper, by convention, a sum indexed by an empty set is equal to zero.

According to C. Léonard’s paper [26], the discrete space X is equipped with a metric distance d. This
distance is assumed to be positively lower bounded: for all x # yin X, d(x,y) > 1. The space X is also
the set of vertices of a connected graph G = (X, E) where E C X X X denotes the set of directed edges
of the graph. G is supposed to be an undirected graph so that for all (x,y) € E, one has (y, x) € E. Two
vertices x and y are neighbours and we write x ~ y if (x,y) € E. We assume that any vertex x € X has a
finite number of neighbours d, and that sup, .y dy = dmax < ©0. We note V(x) the set of neighbours of
x. The length £(w) of a piecewise constant path w = (wy)«ep0,17 € L is given by

lw) = Z d(w,-, w,).

O<t<1

In C. Léonard’s paper, the distance is assumed to be intrinsic in the discrete sense (see [26, Hypothesis
2.1]), this means that for any x,y € X,

d(x,y) :=inf {f(a)) | weE wWy=X,w = y}.

In this paper, we only consider the simple case where d = d. is the graph distance for which the above
assumptions are fulfilled: d-(x,y) = 1 if and only if x ~ y.

A discrete path « of length ¢ € N joining two vertices x and y is a sequence of £ + 1 neighbours
a = (20,...,2¢) so that zg = x and z, = y. In the sequel, we note z € « if there exists i € {0,..., ¢} such
that z = z;, and we note (z,7') € a if there exists 0 < i < j < £ such that z = z; and 7’ = z;. The distance
d(x,y) is also the minimal length of a path joining x and y. A discrete geodesic path joining x to y is a
path of length d(x,y) from x to y. We note G(x,y) the set of all geodesic paths joining x to y, and we
note [x, y] the set of all points that belongs to a geodesic from x to y,

[x,y] = [y, x] = {z€X|z€a,a€G(x,y)}.

At fixed temperature y > 0, as reference measure on €2, we consider a Markov path measure R” with
generator L defined by

LY(x,y) := Y L(x,y) for x #y,
LY(x,x) == — ZyeX,y;&x L (x,y),
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and initial reversible invariante measure Rg = m. More precisely, we assume that m is reversible with
respect to L, which means that for any x,y € X

m(x)L(x, y) = m(y)L(y, x).
It implies that m is reversible with respect to L” for any y > 0, and therefore R = m for all ¢ € [0, 1].
We also assume that the Markov process is irreducible so that m(x) > O for all x € X. Recall that from
the definition of a generator, for any # > 0 and any x,y € X, one has
R}, (6 y) = R ()(6x() + L (x, p)h + o(h)),

where ¢, is the Dirac measure at point x. We note P;, ¢t > 0, the Markov semi-group associated to L,
and P, t > 0, the Markov semi-group associated to L”,y > 0. By reversibility, one has for any x,y € X

R} (x,y) = m(x)P] (x,y) = m(y)P] (y, x),

and since the process is irreducible, P!(x,y) > 0 for all # > 0 and all x,y € X. For any integrable
function f : X — R with respect to PZ(x, -), we set

PLF(x) = ) FO) P (x,).
yeX
In this paper we only consider generator L satisfying :
(6) L(x,y)>0 ifandonlyif x~y,
so that P] = Py, for all y,7 > 0, but also for any x # y,
d(x,y) = min {k € N'| L*(x,y) > 0} .

Let vy, vi € P(X) with respective densities /iy and h; according to m. In Léonard’s paper [26], The-
orem 2.1 ensures that under some assumptions (see [26, Hypothesis 2.1]), at fixed temperature y > 0,
the minimum value of the dynamic Schrodinger problem (5) is reached for a single probability mea-
sure éy which is Markov. This Markov property implies that the measure Qy has density f7(Xo)g”(X1)
with respect to R”, where f7 and g” are non-negative functions on X satisfying the following so-called
Schrodinger system

(7

Y —
{ ST ) Pig¥(x) = ho(x), Vxy € X,

FOPI =mO),
Since f7 is non-negative and f” # 0, by irreducibility one has P} ¥ > 0 for all ¢ > 0, and for the same

reason, P/g” > 0 for all # > 0. As a consequence, if vy and v; have finite support, then the Schrodinger

system (7) implies that f” and g” have also finite support.
According to [27, Theorem 6.1.4.], from the Markov property, the law at time ¢ of the Schrodinger
bridge at fixed temperature vy, Qy , is given by: for any z € X,
®) 0)(x) = Pl f"()P]_g" (m(z) = Z m()P] (z, )P]_ (@) f7 (x)g" ).
x,yeX
Let us present another expression for Qy . First, by reversibility, one has

D m@P! (2, 0P]_y) = m)P](x,y) = R} | (x,5).
zeX

Therefore, setting
m@)P} (2, )P{_(z,y) P{(x, 9P| (zy) P (2P x)

9 7 (2) =
© @ mOP(x,y) Pl(x,y) Pl )

2

and
7 (x,y) = Oy (6.)) = R) | (6, ) ()" (0),
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we get for any z € X,
(10) @@=lf@”@&mnw

Actually, for any x,y € X, (Qtyx’y)ze[o,l] is the Schrodinger bridge joining the Dirac measures 6, and 6.

The path (QZ )i0,1] is therefore a mixing of these Schrodinger bridges, according to the coupling measure
e II(vg, v1).

Using the Schrodinger system (7), the measure 777 can be rewritten as follows,
FOP(xy) P OP0.)
Plg¥(x) PIfrG)
For any v € P(X), let supp(v) denote the support of the measure v, supp(v) := {x € X|v(x) > 0}. The
measure 777 admits the following decomposition,

T(x,y) = vo() 7 (x) = vi 7 (xly),
where 77 and 7¥ are the Markov kernel defined by, for any x € supp(vy),
g WP (x,y)

P g(x)

vi(y)

7 (x,y) = vo(x)

7 Ol =

and for any y € supp(vy),
ffoP T(y, X)
PIfr(y)

In order to fulfill this presentation, recall that the static Schrodinger minimization problem associated
to Rg, , 1s to find the minimum value of H (7T|R2)/, ) over all © € I1(vo,vy). Theorem 2.1. by C. Léonard
[26] ensures that under Hypothesis 2.1 of its paper, this minimum value is the same as the one of the
dynamic Schrodinger minimization problem. Moreover it is reached for 77 = Qz’l € P(X x X) and
therefore

(11) T (xly) =

infHGRY) = HGIRY) = HQIRY).

The main goal of this paper is to prove a convexity property for the function ¢ € [0, 1] — H (@,lm) by
applying the slowing down procedure. Our strategy is first to differentiate twice at positive temperature
v > 0 the function ¢ € [0, 1] — H(@ |m) using backward equations for the Markov process. Then as
a main contribution of this paper, we analyse the behavior of the second derivative of this functions as
the temperature y goes to zero (see Theorem 3.5). Considering different examples of graphs, any lower
bound of this limit second derivative gives a convexity property of type (4).

We want this strategy to hold for a large class of graphs (X, d, m, L), with possibly infinite set of
vertices X. Mainly in order to justify the lower bounds on the second derivative as y goes to zero, we
make the following assumptions.

e The measure m is bounded,

(12) sup m(x) < oo, and inf m(x) > 0.
xeX xeX
e The generator L is uniformly bounded : there exists S > 1 such that
(13) sup |L(x, )| < S,
xeX
and there exists / € (0, 1] such that
(14) inf  L(x,y) > 1.

x,yeX,x~y
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e For any x € X, there exists y, € (0, 1] such that
(15) Dy <o,

yeX

All these assumptions are obviously satisfy if X is finite. One may also consider any infinite graph
X with bounded degree d,,x endowed with the counting measure m, which is reversible with respect
to the generator Ly given by Lo(x,y) = 1 for x ~ y, Lo(x,x) = —d,. On such graphs (X, d, mg, L),
a condition dealing with the geometry of balls of radius 2 will be given in a forthcoming paper to get
lower bounds on the 7;-entropic curvature.

Unfortunately, the above assumptions are not fulfilled by example for the M/M/oco process on N with
Poisson stationary measure. For such processes, the same strategy is expected to provide lower bounds
on entropic curvature adapting proofs by the known specific expression of the Markov semi-group. A
next challenge is to weak the assumptions of this paper for other specific classes of processes.

One of the main assets of Hypothesis (13) is to provide a simple expression for the semi-group (P)).o,
namely

k
(16) Pli=eh =) %Lk.
keN
From this expression, on may simply derive a rather expression of Schrodinger bridges at zero temper-
ature between Dirac measures. Namely, given x,y € X, as condition (13) holds, Lemma 4.4 (iv) gives
the limit of the path ( Q;yx’y)te[o,u defined by (9), namely for any z € X,

(17) lim 07 () = 0/ (2) = Ly (@) r(x. 2.2 Y7 (d(x, 2)),
’y—)

where for any x,z,v,y € X,
LY (x, )LV (v, y)
LI (x, )

and pf denotes the binomial law with parameters 7 € [0, 1] and d € N :

(18) r(x,z,v,y) =

’

(k) = (Z) A -, kejo,....d),

with the binomial coefficient (Z) = %. Obviously one has Q™ = 6, and Qi = 6, . Moreover,
observe that for any ¢ € (0, 1), the support of O/ is [x,y], the set of points on discrete geodesics
from x to y. Observe that this limit Schrodinger bridge (Q7*);e[0,17 is consistent with the metric graph
structure. This is not surprising. As the temperature y decreases to zero, the jumps of the Markov
process are less frequent, and the reference process is therefore a lazy random walk according to C.
Léonard’s terminology. Roughly speaking, Q;*Y can be interpreted as the law of a process which is
forced to go from x at time O to y at time 1 and that does not want to move or to jump too much between
time O and 1. Therefore this process follows the geodesics of the graph from x to y.

For a better understanding, the law O/ on [x, y] can be described as follows. Let NV, denote a binomial
random variable with parameters ¢ € [0, 1] and d = d(x,y) € N, and let I" be a random discrete geodesic
in G(x,y) whose law is given by

L < Llag-

PT = a) = (o, @1) (@g-1,@q)
LAV, y)

If Nyand I = (I', . . ., I'y) are independent then Q;* is the law of T'y;,.

, for all @ = (ag, ay,...,aq) € G(x,).

Let us come back to the behavior of the Schrodinger bridges (Qy )ief0,1] as y goes to zero. Assume
vo and v; have finite support. C. Léonard [26, Theorem 2.1] proves that given a positive sequence
(Ye)eew with limy_,o, ¥, = 0, the sequence of optimal Schrédinger minimizers (Q7)¢,,en converges to
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a single probability measure é € P(Q) for the narrow convergence, provided Hypothesis 2.1 holds.
In this paper, the measure é is named as the limit Schrodinger problem optimizer at zero temperature,
between vy and vy. In the framework of this work, choosing two probability measures vy and v, with
finite supports, Hypothesis 2.1 in [26] is reduced to the following assumption (see condition (u) in
Hypothesis 2.1): for any x,y € X and for any y > 0

Ery [€] X0 = x, X1 = y] < 0.

According to Lemma 4.4 (vi), this assumption is fulfilled thanks to (13) since PT(x, y) > 0 for any
x,y € Xandy > 0.

As a main result of [26, Theorem 2.1], the measure é is also a solution of the following dynamic
Monge-Kantorovich problem :

inf {Eql€1| Q € P(Q), Qo = po, Q1 = ju} = Eglel.
The sequence of coupling measures (17¢)en also weakly converges to

= Qo,1,
and similarly to the continuous case, 7 is a Wi-optimal coupling of vy and v.

The weak convergence of (é”’ )een to é also provides the convergence of (Qy Neen to Q, and (10)
implies (3). According to its construction, this bridge is called Schrodinger bridge at zero temperature
from vy to v;. Observe that for any ¢ € (0, 1), the support of Q, only depends on the support of the
optimal coupling 7 of vy and vy,

(19) supp@) = ) [eyl.

(x,y)€supp()

As a main result, C. Leonard proves that with hypothesis (6), the path (ét)te[o, 1] is a constant speed
Wi-geodesic (see [26, Theorem 3.15]): forany 0 < s <t <1,

Wi(Qy, Q) = (= )W (vo, v1).

Actually, from the above interpretation of the measure Qi as the law of I'y, where I is a random
geodesic from x to y, independent of a binomial random variable N; with parameters ¢ € [0, 1] and
d(x,y), one proves that any bridge (@t),e[o’l] defined by (3) is a Wi-geodesic, as soon as 7 is a Wi-
optimal coupling of v and v;. The proof of this result is the same as the one of [15, Proposition 2.2].

2. MAIN RESULTS : EXAMPLES OF ENTROPIC CURVATURE BOUNDS ALONG SCHRODINGER BRIDGES ON GRAPHS

The main purpose of this section is to present W; or T,-entropic curvature bounds for several discrete
graph spaces (X,d,m, L) in the framework of the first section. As explained before, these bounds
follows from C-displacement convexity properties (4) of the relative entropy along Schrddinger bridges
at zero temperature (ét)te[o,l]v derived from the slowing down procedure.

As in the paper [15], C-displacement convexity properties imply a wide range of functional inequali-
ties for the measure m on X, such as Prékopa-Leindler type of inequalities, transport-entropy inequali-
ties, and also discrete Poincaré or modified log-Sobolev inequalities.

As mentioned before, our approach is efficient to reach new transport-entropy inequalities, trans-
port cost well suited to get new concentration properties, using known connections between transport-
entropy inequalities and concentration properties pushed forward in [16]. Although Erbar-Maas method
does not allow to recover such concentration results on graphs, both approaches imply bounds on the
so-called subgaussian constant o->(X) of the graph (see [6]), namely o*(X) < 1/K if the W;-entropic
curvature is bounded from below by K > 0.
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As a guideline for other graphs, connexions between C-displacement convexity properties along
Schrodinger bridges at zero temperature and modified log-Sobolev inequalities are explained only in the
case of the discrete hypercube or the Bernoulli-Laplace Model (see comments (d) after Theorem 2.5 and
after Theorem 2.7). Even if this global strategy does not allow to recover exactly some known modified
log-Sobolev inequality for the Bernoulli-Laplace model, preliminary computations look promising to
apply it for measures on graphs with interaction potentials. A challenge is to improve it for that purpose.

New Prékopa-Leindler type of inequalities are also a straightforward dual consequence of the C-
displacement convexity properties (4). Here is a general statement that applies for each of the discrete
spaces (X, d, m, L) studied in this paper and presented next.

Theorem 2.1. On a discrete space (X, d, m, L), assume that the relative entropy satisfies a C-displacement
convexity property (see Definition 1.1) with C = (C;)e(0,1y given by : for any vy, vi € Pp(X)

Ct@ = ffct(x,)’)dﬁ(x,)’),

where T = le, and @ is the limit Schrodinger problem optimizer between vy and vi. Then, the next
property holds for all t € (0, 1). If f, g, h are functions on X satisfying

t(l1-1

(1= 0f(0) + 1g0) < f hdQ + axny),  Vxyed

(fefdm)l_t(fegdm)ts fehdm.

The proof of this result is an easy adaptation of the one of Theorem 6.3 in [15]. It is left to the reader.

then

Following the paper [16, section 3.2], a tensorization property holds for the C-displacement property
by using Knothe-Rosenblatt couplings. Let (X;,d;, m;, L;), i € [n] := {1,...,n}, be n graphs satisfying
the assumptions of the paper (12)-(15). Let (X,d, m, L) be the product graph space defined by X :=
Xi XXX, m:=m®- - ®my,and forall x = (x1,...,x,) € X, y=(1,...,Vn) € X,

d(x,y) = ) di(xi,y).

n
i=1

If each measure m; is reversible with respect to L;, then the product measure m is reversible with respect
to the generator

L=L& - -&L,.
Namely L is defined by L(x,y) = 0 if d(x,y) > 2, L(x,x) = — X jexy2x L(x,y), and for d(x,y) = 1, if
i € [n] is the index for which d;(x;,y;) = 1 (and x; = y; for all j # i), then

L(x,y) = Li(xi, yi)-

The Markov semi-group (P;);s associated to L has a product structure, for any x,y € X, for any ¢ > 0,

Pt(x5y) = Pl,t(xhyl) o 'Pn,t(xrhyn)’

where (P; )0 denotes the semi-group associated to the generator L; on X;, i € {1,...,n}. By construc-
tion, it follows that the Schrodinger bridge at zero temperature between the Dirac measures ¢, and ¢,
is a product of Schrodinger bridges at zero temperature between the Dirac measures d,, and ¢,, on Xj,
namely for any z = (z1,...,2,) € X

(20) i) = Q"M (@) - O (zn).
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This can be also derived from the geometric structure of the graph. Since any discrete geodesic from x
to y is made of d;(x;, y;) jumps for the i’s coordinates picked from a discrete geodesic from x; to y; on
X;, one has for x # y,

d(x,y) d(x1.y1) d(X,yn)
LY (x,y) =( LV, y1) - Ly (g, y),
di(x1,31), -« s (X yn) ! " o
where for any integers d,k;,...,k, such that d = k; + - + k,, (lq d k) = ﬁ is the multinomial

coefficient. The identity (20) then easily follows.

Using the notations of the paper [16], any measures vq, v; € £(X) admit the following disintegration
formulas: for all x = (x1, ..., x,),y = V1, .., yn) € X,

1 2 3
vo(x) = vy(x1) vo(xalx) vy (x3lxi, x2) - - - v (xalxt, ..oy Xn—1),

Vi) = viGD Vi) Vi3l Y2) - VEOalyts e Yae1),
with v(l), v% € P(Xy)and forany i € {2,...,n}, vf)( X1, e, Xi1), v"l( 1y e Vie1) € P(X;). For i € [n], let
T X1y oy Xie 1y Y1s oos Vie1) € SD(X%) be a coupling of vé')(-lxl, s Xi—1) and v"l(-lyl, ..,Vi—1). Then, the
Knothe-Rosenblatt coupling 7 of v and v| associated to the collection of couplings 7;’s is defined by

7" (x,y) 1= 71(xn, y1) 7262, Y2IX1, Y1)+ (s Yl X1 weos Xne 15 V15 oves Yy )-

One notices (Q;"))te[o,l] the bridge in P(X) from Qg’) = v to Q(ln) = v, associated to the coupling 77”,
defined by

0"(z) = f 0™ ()dr"(x,y),  tel0,1].

Theorem 2.2. Let (X;,d;,m;, L;), i € [n], be a collection of graph spaces. Assume that each space
(Xi,di, m;, L;) satisfies a Cj-displacement convexity property with C; = (Ci 0,1y Let (X,d,m, L) be
the product space defined as above. Given vo, v, € Pp(X) with their disintegration formulas mentioned
above, let 1™ be the Knothe-Rosenblatt coupling of vy and vy, associated the collection of couplings ;s
constructed as follows: 7| := Ql) | Is the projection at time 0 and 1 of él, the limit Schrodinger problem

optimizer at zero temperature between v(l) and V%, and fori € {2,...,n} and x1, ..., Xi—1, Y1, -, Vi-1 € X,

T X s X, V1 e Yie1) = QG X1 oty Xim1, V15 s Yim1)

is the projection at time 0 and 1 of Qi( X1y eees Xie15 V15 oo Yie1), the limit Schrodinger problem optimizer
at zero temperature between vf)( “|x15 ey Xim1) and Vi (- |y1, ..., yi-1). Then, the product space (X, d,m, L)
satisfies the following convexity property, for any vq,vi € Pp(X?) and any t € (0, 1),

=06 rm),

1) H(Q"™m) < (1 = )H(volm) + t H(v1|m) —

where (Q;"))te[o,l] is the bridge from v to v| associated to the coupling 7™ and
n
Cin™) =) f f Cit G X1, o X1, V1, e VimD) A (3, 3).
i=1

The proof of this result is a simple adjustment of the proof of Theorem 1.1 in [15], which is left to the
reader.

Remarks. e Even if the mt;’s are Wi-optimal couplings in SD(X?), there is no reason for n'™ to be
a Wy-optimal coupling of vy and vy in P(X?), and therefore for (an))te[o’ 1] to be a W1-geodesic.
Therefore, the convexity property (21) on the product space (X, d, m, L) slightly differs from the
convexity property given by Definition 1.1.
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e One will see on the discrete hypercube X = {0, 1}", that working directly on the product space
provides convexity properties that can not be derived from the tensorization property of Theorem
2.2.

Let us now present results for specific discrete spaces (X, d,m,L). For each of these spaces, we
describe the Schrodinger path at zero temperature and, as a main result, we give a C-displacement
convexity property (4) satisfied by the reversible measure m by specifying the family of costs C =
(Coic0,1)- The strategy of proof of these results is explained in section 3.

2.1. The lattice Z" endowed with the counting measure. Let m denote the counting measure on
X = 2Z". The graph structure on Z" is given by the set of edges

E = {(z,z +e) (zz—e)|zeZie [n]},

where (e, ..., e,) is the canonical base of R”. The graph distance is given by
n
deey) =) i—xl  xyeZ'
i=1

The measure m is reversible with respect to the generator L defined by, for any z € Z", for any i € [n],

L(z,z+e)=L(z,z—¢) =1, L(z,z) = —2n.
For any integers d,ki,...,k, such that d = k| + - + k,, (k flk) = —£__ denotes the multinomial

1seeesn kl'kn'
coefficient. Since

Mwmw=%ww=( }
|)’1 —X1|,---,|)’n—xn|

the Schrodinger bridge at zero temperature (@)te[o, 1] joining two measures vg, v; € Pp(X) is given by
(3) with, according to (17),
d(x,2) d(z.y)
(Izl—)ql ,,,,, Izn—xnl)(lyl—znI,.-.,Iyn—znl)

( d(xy) )
|yl —X] | ----- |yn_xn|

ly1 — xil lyn = Xl
= Lixy) () (|Z1 ) |Z” ~ x"| (A T ze 7,
n n

(@) = Ly (@) 0 d(x, 2))

Observe that (Q;*)e[0.17 is a binomial interpolation path as in the paper by E. Hillion [19].

Theorem 2.3. On the space (Z", m, d, L), the relative entropy H(-|m) satisfies the O-displacement con-
vexity property (4). In other words, for any Schrodinger bridge at zero temperature (Q;)c(o0,1] joining
any two measures vy, vy € Pp(Z"), the map t — H(Q;|m) is convex.

Therefore the space (Z",d, m, L) has non-negative W; or T,-entropic curvature. Actually, it can not
be positive and one may say that (Z", d, m, L) is a flat space. Indeed, if property (4) holds with C,(@") =
Kle(vo, v1), K > 0, then choosing vy = ¢, and v; = ¢, for x,y € X, one gets forz = 1/2

' X K
—MQMﬂb—byww@ﬁn=mgﬁmhe§fmw,

n

where for a finite set A, |A| denotes its cardinality. Since [[x, y]| = [T;Z;(Iy; — xi| + 1), the last inequality

implies for any x,y € Z",
[; lvi — xi'] <% ; log(lyi — xil + 1),

which is impossible for large values of |y; — x;|. A similar proof holds replacing Wf(vo, v1) by T¢, (7).
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The convexity property along binomial interpolation paths given by Theorem 2.3 has been first ob-
tained by E. Hillion [19]. To compare with Hillion’s method, the main interest of our approach is its
simplicity. As explained in the next section, we first work at positive temperature y > 0 so that the sec-
ond derivative of the function ¢ — H (Qy |m) can be easily computed using I, calculus. Then we analyse
the behavior of the second derivative of this function as temperature goes to 0, and get a nonnegative
lower bound at zero temperature on Z". This provides the convexity property of ¢t — H (@,Im). In
Hillion’s paper, one may say that computations are done directly at zero temperature. It leads to harder
computations and the construction of the optimal coupling, related to a cyclic monotonicity property, is
rather difficult to handle.

In the paper [17] by Gozlan & al., another kind of convexity property of entropy has been proposed
that generalizes a new Prekopa-Leindler inequality on Z by Klartag-Lehec [22] (see also the more recent
paper [18] by Halikias-Klartag-Slomka). Their convexity property is of different nature, it is only valid
for t = 1/2. More precisely, given vy, v; € Pp(Z) they define two midpoint measures

v_ = m_#n and vy = mi#nm,
where 7 is the monotone coupling between vy and vy (which is a Wj-optimizer), and for all x,y € Z,

’ .

m(x,y) = (i) o=

1 1 1 1
EH(V_lm) + EH(erIm) < EH(volm) + EH(vllm).

As a main difference, the measures v, and v_ are only concentrated on the midpoints m_(x, y), m.(x,y),
for x € supp(vp) and y € supp(vy). Since v, and v_ are much more concentrated than Ql /2, their result
directly implies a Brunn-Minkovsky type of inequality. Unfortunately it seems that their approach do
not extend to other values of r € (0, 1).

2.2. The complete graph. Let X be a finite set and u be any probability measure on X. The set of
edges of the complete graph G = (X, E) is E := X X X \ {(x, x)| x € X} and the graph distance is the
Hamming distance d(x,y) := 1,4, for any x,y € X. The measure u is reversible with respect to the
generator L given by : for any z,7" € X with z # 7/,

L(z,7) := pu(@), L(z,2) == =(1 = u(2)).

The Schrodinger bridge at zero temperature (Q\t),e[o’l] given by (3), is the same as the bridge used in
[15] for the complete graph (see section 2.1.1): for any x,y € X one has

(22) 0:"(2) = (1 = 1) 0x(2) + 1 0y(2), z€X,
and therefore Q = (1 —1tyvy + tvy.

Theorem 2.4. On the finite space (X, u,d, L), the relative entropy H(-|u) satisfies the C-displacement
convexity property (4), with C = (Cy)e0,1) given by: for any vo,vi € P(X) with associated limit
Schrodinger problem optimizer Q € P(Q),

Ci(m) := f hy ( f ]lwixd%}(WIX))de(xH f hi— ( f ]lw;a)vd?rL(WIy))dw(y),

where T = @0,1, and for any t € (0,1), u > 0,

__ th(u) = h(tu) ) [ 2[(d —uwlog(l —u) +u] for 0<u<l,
h(u) := W, with h(u) = { +oo for u> 1.
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The cost C() can be compared with a function of the total variation distance

(23) vo = villry := 2 sup [vo(A) = vi(A)l =2 inf f]lx;eydﬂ(x, y) =2Wi(vo, v1).
AcX nell(vo,vy)
Namely, one has
Wi(vo,v1)
24 C > 1+ w . k PN E
(24) () = ( 1(v0,v1)) t(l " W1(V0,V1))
where for all v € [0, 1/2],
. v v 4y?

= — =1t = )
(25) ki(v) a,ﬁ,01<rg‘+ﬂ§1 {aht(a) B t(/&’)} T 1-v
Comments. (a) This result is an improved version of the convexity properties of the relative en-

tropy obtained by Gozlan & al. [15, Proposition 4.1]. Indeed, from the estimate (24) and the
inequality (25) (whose proofs are given at the end of the proof of Theorem 2.4), one gets

(26) Ci(m) = 4W1(v0.v1)* = lvo = villz
and from the inequality h,(u) > u?, for all u € [0, 1], t € (0, 1), it follows that
C:(@) = Ta(vo, V1),

with

2 2
Tz(V(),Vl) = nel_}(lgw)[f(f]lw¢xd77_,(w|x)) dVO(x)+f(f]lw¢ydﬂ'<_(W|y)) dVl(}’)]-

These lower bounds on C(r) exactly provide the convexity properties of Proposition 4.1 [15].
(b) Since u is a probability measure, by Jensen’s inequality H(@,Iy) > 0. Therefore, the dis-

placement convexity property (4) together with the bound (26) imply the well-known Csiszar-

Kullback-Pinsker inequality by optimizing over all t € (0, 1) (see [15, Remark 4.2]), namely

1 2
o =villry < (VEGok) + VHOIR) . Yvo.v1 € PX).

The optimality of the constant 1/2 on the left-hand side of this inequality gives the optimality of
the constant 4 in (26). Therefore the Wy -entropic curvature of the complete graph is 4.
Observe that (4) actually provides an improved version of the Csiszar-Kullback-Pinsker in-
equality, namely for any t € (0, 1),
Wi(vo, v1)

1
S+ W N\ T Wi
2( + Wi(vo,v1)) t(1+W1(V(),V1)

1 1
) < n H(volu) + -, H|w), Yvo, vi € P(X).

2.3. Product measures on the discrete hypercube. In this section, the reference space is the discrete
hypercube X = {0, 1}" equipped with a product of Bernoulli measures

U= ® @ Uy,
with for any i € [n], y;(1) = 1 — ;(0) := ;, @; € (0, 1).

For any z = (z1,...,z,) € {0, 1}" and any i € [n] let 0;(z) denotes the neighbour of z according to the
i’s coordinate defined by

O—I(Z) = (215 o 5Zi—la2ia Zitlse - ,Zn)’

where 7; := 1 — z;. The set of edges on {0, 1}" is

E = {Goi@)|z€0.1)".i € [n]],
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and the graph distance is the Hamming distance :
n
d(x,y) := Z ]lx,-;ty,-, x,y € {0, 1}".
i=1

The measure u is reversible with respect to the generator L given by: for all z € {0, 1}",
Lz, oi(2) == (1 —@) zi + aiZiy Vi€ [n],
and L(z,2) := — X, L(z,0i(2)). Observe that setting
Li(zi,z) == (1 —a)zi + @izi,  zi €{0, 1},
and L;(z;, z;) = —Li(z;, Z;), the Bernoulli measure y; is reversible with respect to L; and one has
L=L1& - --&L,

Easy computations give, for any x,y € {0, 1}",

n
27) LYY (x,y) = d(xy)! | (1= el
i=1
and it follows that the Schrodinger bridge at zero temperature (’Q\?),E[O,l] joining two probability mea-
sures vy and vy is given by (3), with according to (17)
(28) tx,y(z) — ]l[x,y](Z) td(x,z)(l _ t)d(z,y), z€{0, l}n
This path has exactly the same structure as the one used in [15] to establish entropic curvature bounds

on the product space ({0, 1}", ) (see section 2.1.2).

Theorem 2.5. Let u = p; ® -+ ® u, be a product probability measure on the discrete hypercube
X = {0,1}". On the space ({0,1}*,u,d, L), the relative entropy H(-|u) satisfies the C-displacement
convexity property (4), with C = (C;)e(0,1y defined by: for any vo,vi € P({0, 1}") with associated limit
Schrodinger problem optimizer é € P(Q),

4 4 ~
Ci) = max [~ Wi, v1). ~Te,@. T,)].

where T = Q), 1, the cost function c; of T, is defined by
hth—1
c2(h) ;= max {%,hz —2h(1 + log h)]l;#o}, heN,

the cost T, is defined by

@ = [ Yn(mw)ane+ [ m (I m)no,
i=1 i=1

with the definition of the functions h, t € (0, 1) given in Theorem 2.4 and setting
1,00 = [ oy 0, TL0) = [ B 701

Comments. (a) The first lower bound C,(m) > %le(vo, v1)? gives the Wi-entropic curvature of the
discrete hypercube {0, 1}" bigger and asymptotically equal to 4/n as n goes to infinity. Indeed,
as in the previous part to recover the Csiszar-Kullback-Pinsker inequality, the well-known Wi-
optimal transport-entropy inequality on the discrete hypercube for product probability measures
is a consequence the displacement convexity property (4), using H(Ql,u) > 0 and optimizing
over all t € (0, 1). Namely, one has

2
“Wivo.v) < (VEHOol) + VEGI) . Yvovi € PUO 1Y),
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(29)

(30)

(b)

(c)

PAUL-MARIE SAMSON

From the central limit Theorem, the constant 2/n (related to the subgaussian constant of the
space as mentioned before) is known to be asymptotically optimal as n goes to infinity.
The second lower bound C,(r) > % T, () can not be derived from a tensorisation property such
as in Theorem 2.2. Indeed, for n = 1, on the two points space, one has TCZ@ = 0. Therefore,
the Schrodinger approach allows to capture a property of the hypercube that can not be derived
Jfrom a tensorisation property as it is often the case.

This second lower bound also gives a new kind of curved Prékopa-Lindler inequality on
the discrete hypercube by applying Theorem 2.1. It also implies the following new transport-
entropy inequality on the discrete hypercube, for any vy, v, € P{0, 1}"),

2
=Ts(v0,m0) < (VHOlD + VHOAR)

As opposed to Marton’s transport inequality or to Wy-Talagrand’s transport inequality on Eu-
clidean space, inequality (29) on the hypercube does not tensorize. Nevertheless, it can be
interpreted as a discrete analogue on the hypercube of the Wy-Talagrand’s transport inequal-
ity. Indeed, from (29), applying the central limit theorem, one exactly recovers the well-known
W,-transport entropy inequality for the standard Gaussian probability measure 'y on R, due to
Talagrand [42]. Namely, one has for any absolutely continuous probability measure v € P»(R),

W2(v,y) < 2HOly).

For a sake of completeness, the proof of this implication is given in Appendix A (see Lemma4.1).
As a byproduct of this observation, since the constant 2 is optimal in Talagrand’s inequality
(30), the constant 2/n in (29) and the constant 4/n in C,(w) > % T, () are also asymptotically
optimal in n. Therefore the Ty-entropic curvature of the discrete hypercube is asymptotically
equivalent to 4/n as n goes to infinity.

Actually, according to the proof of Theorem 2.5, for each fixed t € (0, 1), the cost function c;
can be improved, one has

Ci(m) = % f f wi(d(x, y)) d(x, y),

where for any d € N

_ 1
wi(d) = max{d(d2 D,f vs(d) Ki(s) ds} > co(d),
0

with

t

(& RGN
w(d) = [Z VkG=1) (’y + ’%)] .
k=0

The inequality h,(u) > uz,for allu € [0,1], r € (0,1) gives T}Gﬂ > Tz(vo, v1) with

n 2 n 2
o0 Teoi=_int [ [ 3 [ tsndr.on) aneos [ [ tman om] ano)
o =1 =1

So, from the third lower bound T,(7) of C(m), one recovers a similar convexity property as the
one obtained for the discrete cube in [15, Corollary 4.4]. The only difference is the expression
(3) of the path (@)te[o, 11, the coupling measure T is replaced by an optimal Knothe-Rosenblatt
coupling.

The following symmetric version of Marton’s transport entropy inequality on the discrete
hypercube is a consequence of the last lower bound on C,(r): for any vy, v € P({0, 1}"),

1~
STa00.m) < (Vo) + VHO )
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(d) The lower bound T,(%) is also well adapted to recover modified logarithmic Sobolev inequality
on the discrete hypercube as t goes to 0. Assume v is a probability measure with positive
density f. Observe first that

lim 7, = | | Z Bt o) v + [ Z m (1)) i),

where for u € [0, 1), hi(u) := lim;—; h,(u) = ul’(u) — h(u) = 2(—u — log(1 — wu)). For any real
function g on {0, 1}", let us note

Dig(x) := g(oi(x)) — g(x), x € {0, 1}".

Applying Lemma 4.2, since T, (x) = (x)(x) the convexity property (4) with C, = T, given by
Theorem 2.5 implies as t goes 0

H(volu) < Hnlu) + Z ~Dj(log £)(x) TTE, (x) vo(x)

xeX i=
= f ;h(n:m) a0 - 3 f ;’“ (=)

Choosing then v = u it follows that

(32) H(volw) < ) " =Dillog () TIL, (x) vo(x)

xeX i=1
__fz h (11 (o dvo(x)——fzhl ) duy).

One may check that this inequality is optimal since for the two points space (n = 1) this is
an equality. The proof of this equality is left to the reader. It lies on the fact that since 7 is a W,
optimizer, one has n(x, x) = min(vo(x), u(x)) for x = 0 and x = 1. From this remark, starting
from the tensorisation form of the one dimensional convexity property with C; = T, given by
Theorem 2.2 with the n'™ be the Knothe-Rosenblatt coupling of vy € P({0, 1}") and vi = u, one
easily check that the same strategy as t goes to 0 implies

H(volw) < H(vglu1) + f D THEClx, . xi [u)ve(),
=2

which is still an equality due to the tensorisation property of entropy. However, without using
the tensorisation argument, we don’t know if (32) is an equality for dimension n bigger than 2.
From (32) in dimension n, using the identity

1 1
(33) sup {—Dp - = h(p)} =-hQ@D.)=eP +D_-1,
pel0.1) 2 2

and since

1
3 h* (2[Di(log f)(0)]-) f(x)

= ([Dif(0)]- + f(ai()))[Di(log ()] = [Dif (x)]-
< [Di(log H(D]-[D;if(x)]-,
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one gets the following modified logarithmic Sobolev inequality,

HG) < [ 330 QDo 1o = 5 Y [ () dacy)
i=1 i=1
o (]
(34) <) [ 5 @Ditog 1) avg
i=1

< f Z;[Di(logf)]_wif]_du

Since h* (2[D;(log f)]-) < [D;(log )12, one recovers the reinforced modified logarithmic Sobolev
inequality of Corollary 5.5 in [15). By means of the Central Limit Theorem, this reinforced mod-
ified log-Sobolev inequality actually leads to the usual logarithmic Sobolev inequality of Gross
[18] for the standard Gaussian, with the optimal constant (see [15, Corollary 5.5]).

A simple way to improve the modified inequality (34) is to take into account the extra term

involving hy (IT_(y)) in (32). Given x; € 10,1} and for j € [n] \ {i} given z; € (0,1}, let us
introduce the notations

. . -1
20X 0= (20 e oy Zimls Xis Zivl - - - Zn) €40, 1YY, and  zr = (z1,...,2i-1, Zi+1» - - - 2n) € {0, 1}"

Applying Jensen’s inequality, the convexity property of the function hy provides

; € n—1 wr€E "’_IA( 1Vis 1. l)
[m@Eo)am= [ hl(l—z’ o1yt 2 s T )dui(y,-),

By setting p; = ® je[n)\(ijMi and since

DI Fagnwo) < ), Fayew) = > ey,

z:€{0,1}1 w;e{0,1)7 wel0,1}" z€{0,1)n-1
and
Z Z ﬂ(ZzyL, zyl) < Z Z %\(Z, Wiyi) = ﬂi(Yi)a
€{0,1)1 w;e{0,1)n z€{0,1}" w;e{0,1)n-!

it follows that

f hy (M) dua(y) > f h [1—mm > f(z,y»ul(zl)}} dui(yy).

z7€{0, 1)1

For any fixed y; € {0, 1}, one has

l—mln Z f(zzyl)ul(zz = [ f f(z)—f(zz-yi)du(z)] = [ f Dif(y)dﬂz‘(yi)] Hi(y;)-

z:€{0,1)n-1

As a consequence (34) provides the following new modified logarithmic Sobolev inequality on
the discrete hypercube,

n n
1, 1
Hifuw < Y, [ 31 @Ditog ) dve - )5 [ ([ | Dis) st ] ) ) duis).
=J 2 =2
As we will show in a forthcoming paper, the last strategy also simply provides modified log-
arithmic Sobolev inequalities for probability measures py = e~V on {0, 1} with interaction

potentials V : {0,1}" — R, that can not be easily derived from tensorization property argu-
ments.
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2.4. The circle Z/NZ endowed with a uniform measure. Let N € N and X be the space Z/NZ,
endowed with the uniform probability measure yu, u(x) = 1/N. The measure u is reversible with respect
to the generator L given by ,

Lz,z+1)=Lz,z—- 1) =1, L(z,z) = -2,
for any z € Z/NZ. One always have d(x,y) < |[N/2] = n where | -] denotes the floor function.

If N is odd then for any x, y € Z/NZ, LYCY)(x, y) = 1 and therefore the Schrédinger bridge at zero tem-

perature (Q)te[o,l] joining two probability measures vo and v; on Z/NZ is given by (3), with according
to (17)

07™(2) = Laepuy 1 (d(x, 2)).

If N is even then for any x,y € Z/NZ such that d(x,y) < N/2, L&Y (x,y) = 1 and LY (x, x +n) =
2. The Schrodinger bridge at zero temperature (Q;)so,1] is given by (3), with according to (17) : if
d(x,y) < N/2 then

01 (2) = Teepuy " (d(x, 2)),
and if d(x,y) = N/2 (y = x + n), forany z € Z/NZ\ {x, x + n},

1
0I"""(2) = Sl sepnent A (d(x. ),

and Q[x,x+n(x) — (1 _ t)d(x,x+n)’ th,x+n(x + l’l) — td(x,x+n)‘

Theorem 2.6. On the space (Z/NZ,u,d, L), the relative entropy H(-|u) satisfies the O-displacement
convexity (4).

Therefore the space (Z/NZ,d, u, L) has non-negative W, or T, entropic curvature.
2.5. The Bernoulli-Laplace model. Let X = X, denotes the slice of the discrete hypercube {0, 1}" of
order k € [n — 1], endowed with the uniform probability measure y, namely
Xy = {x= (xX1,...,%,) € {0,1}|x1 +... 4 X, =/<}.

For z € X, let Jo(z) :={i € [n]|z; = O} and Ji(z) :={i € [n]|z; = 1}. Forany i € Jy(z) and j € Ji(2),
one denotes ¢;j(z) the neighbour of z in X, defined by

(@), =1 (03@), =0,
and for any ¢ € [n] \ {i, j}, (O’i j(z))€ = z¢. The set of edges of the graph is

E = {(z, 0ij(2) |z € X i, j} € [n].z; = 0,2; = 1}’

and the graph distance is given by
1 n
d(xay) = Eg]lxi#y," X,y e)<K'

The measure u is reversible with respect to the generator L given by L(z, 07;(z)) := 1 for any i, j such
that z; = O and z; = 1, and L(z, 2) := —«(n — k).

Since LYY (x,y) = (d(x, y)!)?, the Schrédinger bridge at zero temperature (Q\t)te[o, 17 is given by (3),
with according to (17),

d(x,y)

-1
d(x,2) d(z.y)

t | , € X,.

d(x, Z)) ( ) ¢ .

(35) 0i"(2) = Lyxy) (z)(
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Theorem 2.7. On the space (Xy,u,d, L), the relative entropy H(-|u) satisfies the C-displacement con-
vexity property (4), with C = (Cy)wc0,1) defined by: for any vo,vi € P(X) with associated limit
Schrodinger problem optimizer Q € P(Q),

C/(m) = max[ le(vo, V1), T.,(m), T}@],

min[«, n — k] min[k, n — k]

where T = éo, 1, the cost function c; of T, is the same as in Theorem 2.5, and the cost T, is defined by

f max ht I (x), Z ht(HL(x))] dvo(x)

zeJo (x) Jje€J1(x)

+frnax[ Z hl_t(Hf_(y)), Z hl—t(H{—(y))]dVl(y),

i€Jo(y) JeJ1()

with the same definitions for the functions h,, t € (0,1) and the quantities T1',(x) and II'_(y) as in
Theorem 2.5.

Comments. (a) Since C,(m) >
is bounded from below by m. Observe that this constant is optimal for k = 1 or k = n—1,
since X is the complete graph and one recovers its optimal lower curvature bound 4 (see
Comment (b) of Theorem 2.4).

In the paper [13, Theorem 1.1] the Erbar-Maas entropic curvature of the Bernoulli Laplace
model along ‘W-geodesics is bounded from below by 5 (n K), therefore their curvature term is
of order

W (vo, v1), the Wi-entropic curvature of the space (X, d, L)

mm(K n—kK)

n+2

n+2
m"wﬁ(m,w) > ———Wi(vo, V).

k(n — k)

Theorem 2.7 a slightly better constant as regards to the W\-curvature term since
with equality for (k,n) = (1,2).
T.,(n), the Ty-entropic curvature of the space (Xy, d, L) is bounded from

k(n—k) —
4
min([k,n—k] .

(b) Since CtO > m
below by m Moreover, applying Theorem 2.1, this lower bound provides a new type of
curved Prékopa-Leindler inequality on the slices of the discrete hypercube.

(c) Accordmg to the definition (31) of Tz(vo, V1), as in the case of the hypercube, one has Cy(m) >
T,O > Tz(vo, v1). As a consequence, since H (Q,l,u) 0, optimizing over all t € (0,1),
Theorem 2 7 implies the following weak transport-entropy inequality, for any vo,v) € P(X,),

1~
7 200,70 < (VO + VHO1T)

This inequality is a reinforced symmetric version of a transport entropy inequality given in [38,
Theorem 1.8 (b)] with the worse constant 1/8 instead of 1/4. It was surprisingly obtained by
projection of a transport-entropy inequality for the uniform measure on the symmetric group.
The approach of the present paper is much more natural to reach such a result.

(d) From the lower bound C(m) > Tt@ Theorem 2.7 also yields a modified logarithmic Sobolev.
For any real function g on X,, let us note

Djjg(x) = g(oij(x) — g(x), x€ Xy, (i, )) € Jo(x) x Jy(x).
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Assume vy has positive density f with respect to u and let us choose vi = u. According to
rf,,(x)

Lemma 4.2, setting H’Z,(x) = (x), the convexity property (4) with C; = Tt given by Theo-

rem 2.7 implies as t goes to 0

Hovopy < >, > =Dyllog ()T, (x) vo(x)

xeX (i, /)eJo(x)xJ; (x)
- = f max H’ (x)) Z h(HL(x))]dvo(x).

zeJo (%) JeJ1(x)
Now, let us observe that for i € Jy(x), one has

Z Y, (x) = f Z Loy e d(x, y) r(x, 07ij(x), 07(x), y) dr— (y|x)

JjeS1(x) JjeN1(x)
= f Z Ly d(x, ) r(x, 073j(x), 07(x), y) dr (y|x)
JeJi()NJi(y)
_ & (x,y)((d(x,y) = D)
- ]lxiiyi 2
(d(x,»)")
and similarly for j € J1(x), one has Yic ) Hil,(x) = HL(x). It follows that

dre-, (ylx) = I, (),

. 1 .
H(fpul) < f min (]rer}agc)[Dij(logf)(x)]-HL(x)— Eh(nux))),
iedotx) VI
D, (max [Dy(log f)(0)]- T/ (x)——h(HL<x)))]de(x>
J€J1(x)

Finally the identity (33) gives the following modified logarithmic inequality

1
H(fulu) < frnm[z A (2 max[DU(log f)]_), Z Eh* (2 ?ég}f[Dij(log f)]_)]dvo

i€y Jehi
(36) f min| > max (IDyjog HI-IDyif1.), ), max (1Dis(log N1-1Di;f1)] d
ieJy Jjehi
n+2

From the lower bound ) of Erbar entropic curvature given in [13, Theorem 1.1], we know
from [11, Theorem 7.4] that the following modified logarithmic Sobolev inequality holds

6D HUMw<e [ Y DytoenDyfdu=2, [ Y Dyox N-Dyfl-du

(i, ))eJoXJ; (i, ))eJoxJ;

with ¢, = 1/2(n + 2), and the best constant c, in this inequality is known to be greater than
1/4n (see comments after [13, Theorem 1.1]). This inequality is stronger than (36). Indeed,

one has
[D;;(log /]-[D;jf1- du
(n+ 2) (@, j)EJOXJl ! ’
(n +2) f min Z max ([Di;(log N]-[D;jf1-), (n — k) JGZI max ([D;;(log £)1-[D;;f] )]
fmln Z max ([Dl](log HI- [Dljf] ) Z rnax ([Dlj(log HI- [Dljf] )] du.
ieJy

Choosing the function f defined by f(x) = alx; +B), x € Xy, where B > 0 and « is a
renormalisation constant, one may check that the right-hand side and the left-hand side of this
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inequality are asymptotically equivalent as n goes to infinity. However it remains a challenge
to improve our strategy in order to recover (37).

3. PROOF OF THE MAIN RESULTS

This section is divided into two parts. We first present general statements to prove displacement
convexity property (4) along Schrodinger bridges at zero temperature. Then we show how it applies for
each involved discrete space of the last part.

3.1. Strategy of proof, general statements to get entropic curvature results. In order to prove prop-
erty (4), we fix two probability measures vy and v; in £,(X) in this part. As in the paper by G. Conforti
[9] in continuous setting, the first step is to decompose the relative-entropy using the product structure
given by (8): for any ¢ € [0, 1],

H(Q]Im) = ¢y(1) + 4 (0),

where
(1) = flog(Pny)Pny PT_tgydm and Y, (1) := j‘log(Pﬂf_tgy)Pﬂf_tgy P! fYdm.
As recalled below, it is known that the function ¢, is non-increasing and the function , is non-

decreasing (see [27, Theorem 6.4.2]).

Then, the strategy is to analyse the behaviour of the second order derivative ¢ and ¢/ as y goes to 0,
in order to apply the next Lemma. For any ¢ € (0, 1) let K, : [0, 1] — Ry, be defined by
2u 2(1 —u
(38) Kiw = 2+ X0, weo 0,
K; is a kernel function since fol K:(u)du = 1.
Lemma 3.1. Assume that hypothesis (12), (13), (14) and (15) hold. Let (y¢)cen be a sequence of positive
numbers that converges to 0. If for any t € (0, 1)

1. . f Y73 1- . f ’7 t > 24

(39) imin @, () + imin ¥, (1) = £7(),

where & is a continuous functions on [0,1], twice differentiable on (0, 1), depending on the coupling T,
then the displacement convexity property (4) holds with

2
Hl-1

1
Ci() = fo & (w)K,(u) du = (1= 00 + (1) - &),

Observe that if £ = K is a constant function, then C,(r) = K. The proof of this lemma is postponed
in Appendix B.

In order to apply Lemma 3.1, we need first to compute ¢/, ", and ¢/, ¢’/ in a suitable form so as to
get (39). For any real function u on X, we note
Vu(z,w) = u(w) —u(z), z,weX,

and

Lu(z) = Z u(w) L(z,w) = Z Vu(z, w) L(z, w).

weX ww~z

The expressions of ¢, ¥, and ¢,y are given by the next lemmas. These expressions can be found
in Léonard’s paper [27, section 6.4] in a more general framework (for stationary non-reversible Markov
processes). For completeness, the proof of the next result is recalled in Appendix B.
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Lemma 3.2. Foranyt € (0, 1), one has
Y ’
o) = - f D Ue™EN) (2,2 d0) (),
7,7~z
and

W (1) = f D ") (2, 2)d0) (@),
7.7~z
where {(s) := slogs— s+ 1,5 > 0, and G and F! are the so-called Schrodinger potentials according
to Léonard’s paper terminology [27],

G :=logP] ¢, and  F) :=logP!f".

Since { > 0, the function ¢, is non-increasing and the function i, is non-decreasing.

Lemma 3.3. Foranya > 0,b > 0, let
p(a,b) := (logh —2loga —1)b,
and let p(a, b) = 0 if either a = 0 or b = 0. For any t € (0, 1), one has

@) = f[( Z VDY () Z’))2 + Z (1 +VF(z Z’)) eVFZ(z,z’)(LV(Z’ 2) - Ly(Z',Z’)) L(z,7)

7,7~z 7,7~z
n Z 0 (eVF;’(z,z’)’ eVF;Y(z,z”)) LY(z,7)L(Z, Z”)] d@(z),

7.7 2~ ~7"

Y ’ 2 Y ’
O f [( > ") + Y (14 V6] (2) ¥ (L (5, - () V(2. 2)

7,7~z 7,7~z
+ Z 0 (eVGZ(z,z/), eVG,V(z,z”)) LY(z,7)L(Z, Z”)] d@(z).

7.7~ ~7"

Let us now analyse the behavior of <p;’ (0, 1//;’ (1) as temperature y goes to zero. Recall first that for

t € (0, 1), the support of the Schrédinger bridge at zero temperature @, given by (19) is independent of
t. For sake of simplicity, one denotes

Z:=supp(Q),  1€(0,1).
As a consequence, one expects that the limit behavior of ¢J(7), ¢//(z) is expressed in term of sums

restricted to points of Z. Let us define, for any z € Z
V.=l Vel eCL) ad V.= V| ec )
where
C. = {ew) e Xx X |2 w,3(x) € supp(@, & w) € [x,y1},

and
C_:={awe XxX| (w.2)eC_).

Similarly, one also defines
V.@={eV@|@)ec) ad V. @:={eV0|c)eC ),
where for any z € X
V() = e X|d(z 2 =2).
As a remarkable fact, according to Lemma 4.3 postponed in Appendix A, from the d-cyclically mono-

tone property of the Wi-optimal coupling 7, C_ and C_ are disjoint sets. This implies that V_(z) and
V_(z) are disjoint, and also V_ (z) and V_(z), for any z € Z.
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According to the expression of ¢/(z), ¥/ (7) given in Lemma 3.3, a first step is to give the behavior as
v goes to zero of the quantities

Pl () P]_g"(u)
P f7(2) Pl 8"
foru = 7/ oru = 77 with z ~ 7 ~ 7. This is a key result of this paper. Let us briefly give the

intuition behind it. From the Markov property, the quantity A’ (z, u) can be interpreted as the mean ratio
of transition probabilities under conditional law of the Schrodinger bridge, namely

Y e VF (zu) _ Y o VG ) _
Al(zu) = VT &0 = B)(z,u) := "0 G =

AY(Z l/l) = Z PZ(L[, W) ﬂ(W)PZ(Z, W) _ Z PZ(M, W) e

Y = =
@0 Plw)  Pf(@) PY(z.w) Q7(Xo =wiX =2)

weX weX

where QV(XO = w|X; = z) is the law of Xy given X; = z under the law Qy. As y goes to 0, the law Qy
tends to Q, and the behavior of the ratio is given by the Taylor expansion of P} as y goes to 0, namely
according to Lemma 4.4 (iii),

P} (u,w) = (1)) LY (u, wyd(z, w)!
Pl (z,w) LAz, w)d(u, w)!
Therefore, if y goes to 0 then the main contribution in the sum given by (40) is for points w € X such

that d(u, w) — d(z, w) has minimum value. This means that u € [z, w], so that d(u, w) —d(z, w) = —d(u, z).
It follows that for u = 7/ with 2/ ~ z,
1 LYW wyd(z, w)! ~

Ay > ! ~— X, = X, = ,
@ Z)V—’O vt LAGW)(z, w)d(Z', w)! O0(Xo = wlX; =2)

+0(1)).

weX,z €[z,w]

and for u = 7”7 with d(z,7”) = 2,

1
A)’ , ’7 ~
(@2 y-0 y212

Ld(zu,w)(zu,w)d(z’ W)' A
X = X = .
2. L wyd( w20 =X =2

weX,z"€[z,w]
The quantity B} (z, ) can be similarly analysed as y goes to 0.

Let us now formulate precise statements. One needs to define several quantities. For any z € X,
x € supp(vp), y € supp(vy) and any ¢ € (0, 1), let

(41) az.y) = O(X; = 21X, = y) = szW’y(Z) drc_(wly),

and

—

bi(z,x) 1= QX; = 2dXo = x) = | Q" (@)dr_ (wlv).

Observe that for ¢ € (0, 1), a,(z,y) > 0if and only if 7 € Z and yE ?Z with

—

Y, := {y e supp(vy)|Ax € X, (x,y) €T,z € [x,y]}.

Identically b,(z, x) > 0 if and only if z € Zand x € 5(\2 with

X, = {x € supp(vp) | dxeX,(x,y) e,z € [x,y]}.

For further use, for any y € supp(v;) and x € supp(vp), we also introduce the sets

7V = {ze2|ye?z} and Z = {z€2|x€)?z},
so that . . .

(z €Z,ye YZ) & (y € supp(v1),z € Z”),
and

— —

(z e€eZ,x€ XZ) S (x € supp(vp),z € Zx)
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For any z € Z,7 € V(z), define

42) azZi= Y, rnnd wdw e dw) - DE_v),
weX,(z,2))ely,w]
and
(s, 0= > ez wdesw) ™ dlx )T (wl),

weX,(z,2))elx,w]
where the function r is given by (18). One easily check that a,(z,z’,y) > 0 if and only if 7/ € V_(z) and
y € Y with

Yier) = {y € supp(v1) | dx e X, (x,y) €7, (z.2) €[y, XJ} cY.nYy,
and identically b,(z,7’,x) > Oifand only if 7 € V_(z) and x € Y(Z,Z/) with

)?(Z,Z/) = {x € supp(vp) | Aye X, (x,y) €m,(z,7) € [x, y]} - 5(; N )?Z/.

For any z € Z and 7 € V(z), define also

@3 aG= ), ez wdow)do,w) = 1D dz w) - DTy,
weX,(z,2”)€ly,w]

and

bis, 0= Y rxz 2 wdC widn w) = 1) pf " d(, ) (wl).
weX,(z,2”)e[x,w]

We also have a,(z,z”,y) > 0 ifand only if 7/ € V_(z) and y € 3’\(2,2//), and b,(z,z”, x) > 0 if and only if
77 €V _(z)and x € X ).

Lemma 3.4. Assume that conditions (13) and (14) are fulfilled. Let (y¢)cen be a sequence of positive
numbers converging to 0, and let Q; denote the weak limit of the sequence of probability measures
(7[)€EN- Letz € Z.

e forany 7’ € V(z), it holds
(44) lim (y,A](z,2)) = Az, )2 0 and  lim (yB]'(z,7)) = B(2,7) 2 0,
Ye—0 ve—0

with At(Z, Z/) >0 lfand Only le, c VH(Z)» and Bt(z, Z') >0 ifand Only le, S VH(Z). Moreoven
given7 € V_(z), foranyy €Y,

, a(z, 7,
A(z,7) = u,
a[(Z, y)
and given 7 € V_(2), for any x € )?Z
’ bt(Za Z’; x)
Bi(z,7) = ———.
(z,2) D)
e forany 7” € V(z), it holds
@5 lim (y2A(27) = Az2) 20 and  lim (v/°B)'(2,7")) = Bi(z,7") 2 0,
Ye—0 Ye—0

with A;(z,7") > 0 if and only if 77 € V_(z) and B;(z,7") > 0 if and only if 7/ € V_(2).
Moreover, given 7’ € V _(z), foranyy € Y,
ar (Z, Z”, y)

A7) = ai(z,y)
1\&s
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and given 7’ € V_(z), for any x € X,

b/(z,7", x)

Bi(z2") = b(z, X)
1\Ky

Lemma 3.4 provides the following Taylor estimates for the functions ¢, and ¢/ as y, goes to 0,
which are a key result of this paper.

Theorem 3.5. Assume that conditioni (13), (14) and (15) are fulfilled. Let (y¢)een be a sequence of
positive numbers converging to 0 and Q, denotes the weak limit of the sequence of probability measures
(7[)56N. With the notations of Lemma 3.4, one has for any t € (0, 1)

ligl _i)rolf @, (1)

> f [( 3 AL + > (A2 7). Adz.2) L(z',z")L(z,z')] d0,(2)
77eV_(2) 77eV_(2),77eV _(2), 2/ ~7"

= f [( 3 Ade L) > p(At<z,z’>,At(z,z">)L(z’,z">L(z,z')] d0,(2),
7eV(2) 7€V(2),2"€V(2), 7'~z

and
ligl igf W (1)
2 f [( Z Bz(Z,Z')L(Z,Z'))Z-F Z p(B[(Z,Z’),Bt(z,z"))L(z’,z”)L(z,z’)]déz(z)

7€V, () 7€eV_(2),77eV_ (2), 7 ~z"

= f [( Z Bt(Z,Z’)L(Z,Z’))2+ Z p(Bt(z,z’),Bt(z,z”))L(z’,z”)L(z,z’)] d0,(2).

7€V(2) 77€V(2),2"eV(2), 2/ ~2"

Comments. Let us briefly explain how to use this result. First, adding the two above inequalities of this
Theorem provides a lower bound on the second derivative of the relative entropy along the Schridinger
path at zero temperature. Then, it remains to find good estimates of this lower bound to apply Lemma
3.1 in order to get entropic curvature lower-bounds for the graph. The following equalities are a main
guideline for this estimation, one has

f D, Az L) d0@) = f D, D, @ WLE ) dn ()

ZeV_(2) 2eZ 7€V_(2)

=f2d(y,w)i_(w|y)d1/1()’)

weX
(46) = Wi(vo, v1),
and similarly
@7) [ Y Beend@e = wionm.

7€V, (2)

but also

J

Az, 7" LA(2,7")d0y(2) = f Zd(y,W)(d(y,W)—l)i(WIy)dw(y)

7eV_(2) weX

= ffd(x,y)(d(x,y) - Ddn(x,y),
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and

B,(z,7") L*(z,7)d0:(z) = f f d(x,y)(d(x,y) — 1)dn(x,y).

f eV, (2)

The easy proof of these equalities is left to the reader.

Proof of Theorem 3.5. We only present the proof of the lower bound of lim infy, o ¢7, () since by sym-
metry, identical arguments provide the lower bound of liminf,, o ¥, (r). We start with the expression
of ¢}/(r) given by Lemma, 3.3, for 7 € (0, 1)

(48) QY1) = f (M] +R}) dQ)
with for any z € X,
, 2 / "
M) = ( Z MEDLY (g, ) + Z p (BVF’Y(Z’Z ), Vs VL2,

7,7~z 7,7, 2~ ~7"
and ,

R/(2) := Z (1 +VF!(z, z’)) VD (2,2 - (., D)) L(z,2).

7,7~z
We will get the behaviour of go;’ (1) as y goes to zero by applying Fatou’s Lemma. For that purpose, we

need first to bound from below the function (M;y + Rty) QZ uniformly in y by some integrable function

with respect to the counting measure on X. Let us first lower bound M;y(z) and bound IRty(z)I uniformly
in vy, for y sufficiently small for any z € X.

Recall that p(a,b) = 0 as soon as a = 0 or b = 0, and p(a, b) = (logb — 2loga — 1)b. Therefore, easy
computations give for any a > 0,

(49) inf p(a, b) = —a’,
b>0
As a consequence, according to the definition of A}, one has
M@=- > AP EHIED).
Z,’ ZN’ Z~Z/NZ,/
From hypothesis (13) and then applying inequality (83), it follows that for any z € X

(d?(x0,2) + 1) K24002 O(1)
2 '

(50) M) (z) = —y*S?*d>

b4 7N\2
max ZIZHZ?XZAI (z,2)" 2 -

where x is a fixed point of X, K = 25 /I and O(1) denotes a positive constant that does not depend on
z,v,t. Similarly, from (13) and (83), one may show that

(x0,2) K409 O(1).

1 1
(51) |RZ(Z)| < %[ IOg (;) + d(xop, Z)] d(xo,2) Kd(xo,z) o) < ly (;g 7l d2

Lemma 4.4 (vii) therefore implies forany z € Xandany 0 <y <y < 1,

(M](2) + R (2) Q] (2) = —O(1) (]lB(z) +1xp@)¥ (71{2)[2‘1()‘0’1)—4D—1]+) (

where

d(x0,2) + 1) K009,

B = U [x,y] D Z
xesupp(vo).yesupp(vi)
It remains to choose ¥ such that (¥K?)? < v, so that hypothesis (15) implies

Z (ILB(Z) +1x\p@) ¥ ()‘/Kz)[z"(x"’z)—@—lh)(
zeX

d*(x0,2) + 1) K009 < oo,
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Now, conditions for Fatou’s Lemma are fulfilled and one has

(52) lim /(1) > eleigl in [(M) @) + R (2) @) 2)] > ~co.

Ye—0

The weak convergence of (éw )¢ to é implies lim,, o Qy “(2) = Q(z), and the inequality (51) gives
lim,, o R;”(z) = 0 for any z € X. As a consequence,

liminf (M) + K]'(2) )" )] = liminf [} @)] Ot

In order to complete the proof Proposition 3.5, it remains to bound from below lim 1nfy,_,0 [M [(z)] for

any z € Z since otherwise Q,(z) = 0. One has M = E! + F*, where for any z € A

E]'(2) = Z WAZ‘(Z,Z’)L(Z,Z’)) Z yiAY (2,7') Lz, 2L, "),

7,7~z ,2~7' ~7"
and
Fl@= Y %Al @)+ Al @Y | L LE. ).
7,7, 2~ ~7"
Lemma 3.4 implies
2
(53) lim E'(:) = (D ALY - > Az, 2) Lz, 2L, ).
Ye— Z’€V4_ ) ZIGV‘, @), 7'€X, 7" ~7

Assume that 7/ € V_(2), or equivalently lim,,_,o yeA'(z,7) # 0. According to Lemma 3.4, for any
2 ~ 7, one has lim,, g (y?A;”(Z, z")) = 0if d(z,z’) < 1 and lim,,_,o (?’?Atw(z, Zu)) = Az, 7") if
7" € V(2). As a consequence the continuity of the function p on the set (0, ) X [0, o), implies

Jim [0 (veAY 2. ). VAT 2. 2) + ViAY (2. 2)7] = plAne ) As @) [Leneyioy + Az 2 )
[—)

If 77 € V() \ V_(z), or equivalently lim,,_,o YeAl'(z,7) = Alz,7') = 0, then identity (49) provides,
according to the definition of the function p,

liminf [p (WAZ’ (2.2),v?AY (2, z”)) +y2AY (2,7 )2]
ve—0

>0=p(0,A,(2,7") = p(Ai(z, 7)), Ay (2. 2N revi + Az, 7).

As a consequence, one gets

liminf F/'@) > > [z 2) Ae, @ W lareve + Az, 2)’
Ye—0

Z’, Z//, ZNZI NZ”
= >, PAGD AN+ Y A L)L),
ZIEV‘, (Z), ZHEVH (Z), Z/NZ// ZI€V4_ (Z), Z”EX, Z// ~Z/

This inequality together with (52) and (53) ends the proof of Theorem 3.5. |



ENTROPIC CURVATURE ON GRAPHS. 31

3.2. Application to specific examples of graphs.

3.2.1. The lattice Z" .
Proof of Theorem 2.3. For any z € Z"" and any i € [n], we note 0;4(2) = 7z + ¢; and 0;_(2) = 7 — ¢;. One
has oy 0. =id and for j # i,04,0j4 = 0j40i4, 00 =00y, 00 ;- = 0j_0;-. We note

Air(2) == Az, 014(2),  Airjr(2) 1= A2, 01104 (2)), z€Z".

We define similarly A;_,A;_;_, A;_ ;. Applying Theorem 3.5, by symmetrisation one gets
N C 2 = C ~
liminf ¢y, (1) > f ( Z(A” +AL)) dQ, + f Z (o (Aiv Ais) + p (A, Aiic) ) dO,

f D7 (P A Ajuis) + pAj A i) + (0(Ai, A i) + p(A -, A i)
i, Ji#]

+ (A, Aji) + p(A ;- A i) + (P(Ais A i) + p(Aji A jrin)) A
Identity (49) implies for any a,a’,b € R,
(54) pla,b) + p(a’,b) = 2p(Vaa', b) = ~2ad’.
It follows that

hmmfgo;’(t)>f Z(AHJFA ) do, - fz (A2, +A2)dO,

= | D (AnAj +AcA; + AnA; + A AL)dO
i,J,i#]

=2 f Z AisAi_dO, > 0.

Identically one proves that hm 1nf w () > 0. Applying then Lemma 3.1 ends the proof of Theorem 2.3.
O

3.2.2. The complete graph.

Proof of Theorem 2.4. Since for any x,y € X, d(x,y) = 1, Theorem 3.5 and Lemma 3.4 provide for any
re0,1)

timinter, 0> [( Y AL @@= [[( Y AeLe)d@aey
- ZEV_(2) zeV @
a(z,7,y) ?
f Z( ATl L(Z,Z’)) a(z, y)dvi (y)
2\ a/(z,y)

With the expression (22) of O/, one easily check that for any z € Z, y € ?Z, or equivalently for any
y € supp(v1),z € Z,
al(z,y) = (1 = )7 _(2ly) +16y(2),
and with (42), for any 7’ € V_(z),
7 (Zy)

a(z,7,y) = -
o y) 7=y u(7)
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As a consequence, one gets

at(Z,Z,,y) ’ : f at(y;Z,ay) ’ 2
——L > 1\&s d = - N t\J>» d
JE( 3 s weofacnmo= [( 3, 2 faonino

3 (1 —’7?<_()’|)’))2 d _ 11 — 2h// 1 1 fo d -4
- [ i e 0 = [ 30 -F o) @ =0 (=T obdno) = 20,

where for any 7 € [0, 1],
1 —~
£c(tyi= 5 [ (=01 =70 dni0)
One similarly shows that for any ¢ € (0, 1),

llgl_l)glf ¥y, (1) = E5,(0),

with £.,(r) := % f h(t(1 =7 (x|x)) dvo(x). The proof of Theorem 2.4 ends applying Lemma 3.1 and
the two following identities

1—
a—%4mw&m—&m=“2”fm%fmmﬁwm%mw,

and

1_
a—%4mﬂam—@m=“2Tﬁﬁmeﬁmmymm

Let us now compare C,(7r) with a function of Wi (vq, v1). Observe that for any y € supp(v1), f 1yypydr_(wly) #
0, if and only if y belongs to the set

D_ = {w e supp(n) | T € X.w # x, (x,w) € supp(@).

Since h1_,(0) = 0 and &, is convex, Jensen’s inequality provides

1yzydr_(wly)dvi(y) Wi(vo,
fm%nmﬁwﬂmwmmew‘ﬂle }mmm%ﬁ%@)

Similarly one has

1,z dr d
fmtfhmﬁxw@dwm2wﬂxmtﬂ AT WM L ya (WD)
vi(D.) vo(D_,)

with
D = {w € supp(vp) | yeX,w#y,w,y) € SUPP@}-

According to (23), W (vg, v) = vo(D—) — vi(D-), and we know from Lemma 4.3 (iii) that the sets D
and D _ are disjoint. As a consequence,

—

vo(D=) +vi(Do) < Wi(vp, vi) + vi(Ds) + vi(Do)+ < Wilvp, v) + 1.
This leads to the expected result (24) :
. Wi(vo, v1) Wi(vo, v1)
C > (1+ Wiy, f h + Bh_ )
(@2 A+ Wil ) inf {0‘ ’(a(l n Wl(vo,vl))) B ’(3(1 n Wl(vo,vl)))}

Wi(vo, v1)
L+ Wivo,v))

=+ Wl(VO,Vl))kt(
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In order to prove the estimate (25) of the function k;, one first observes that by construction, for any
te(0,1)and v e [0,1],

1 1 1 V2
h(v) = = f VAR (uv) K, (u) du = f K.(u) du,
2 Jo o 1

—uv
and since K;(u) = K1_,(1 — u),

1 V2
hl—t(V):‘fO‘ mKt(u)du-

Since h,(u) = +oo, for u > 1, it follows that for any v € [0, 1/2],

. v 1% . 4 v
k[(V) - a,ﬁ,olgti;ﬁﬁl {aht (a) +ﬂh1_t (B)} = a,ﬁ,a>v:lfll>t;,a+ﬁﬁl {a,h[ ((_X) +ﬂh1_t (B)}

1
1 1

> 2 inf - K (u)du.

_fo Y a,ﬁ,a>v,1ﬁn>v,af+,851 a—-uv B-0-uy {)du

Easy computations give

1 1 1 1
inf + = inf — + =
a.B,a>v.p>v,a+6<1 | @ — UV ,3 - (1 - M)V o« B >(l—wyv B >uva’ +8/<1-v | @’ ﬂ'

) 1 1 4
> inf — 4+ == .
@ BLa>0p8>00+8<1-v | B 1-v

It provides the expected estimate (25), namely k;(v) > f—fzv. m|

3.2.3. Product probability measures on the discrete hypercube.

Proof of Theorem 2.5. The first step of the proof is to express the lower bounds on liminf,, 0 ¢/, () and
liminf,, 0 ¥7,(r) given by Theorem 3.5 using the symmetries of the graph structure of the hypercube,
and keeping in mind the comments given next to Theorem 3.5. This leads to the estimates (57) and (58).
The second step is to prove that each of the lower bound on C,() in Theorem 2.5 is a consequence of
these estimates.

Step 1 : Given z € Z, let us define the sets
1@ ={ichl|oe V. @} =lien|cr@ec.},
re=fich|o@ev.@)=lien|erneec.},
1) = {(G, ) € ) X [nl | i # . 0ierj(@) € V_ (@) = (G, ) € [n] X [n] | . orer i) € €,

@) = (G, ) € [n] X [n] | overs(2) € V_ @)} = (G, ) € [n] x n] |z, rers()) € €.

and I77(z) := {i € [n]13j € [n].G, ) € I}, I[(2) == {i € [n]|3Tj € [n]. (i, j) € [7(2)}. Observe
that if I”(z) # 0 then [I{"(z)] > 2. Obviously one has I}"(z) € I (z) and since o0 = 00, one
has I7(z) = {(i, j) |i,j € I{ (2),i # j}. Same remarks hold with the sets /7 (z),17(2), 17 (z). The sets

C_ and C_ are disjoints and therefore /" (z) and /7 (z) are also disjoints. To simplify, for z € Z and
i, j € [n],i # jles us denotes

Ai(2) == Az, 0i(2),  Aij(2) = Az, 000j(2),  Li(2) := L(z, 04(2)).

Since for any i # j, o;0; = o jo;, one has A;; = Aj;, and observing that L(o-i(z),a'jai(z)) = Li(z)
Theorem 3.5 provides after symmetrization

(55) 11)1:?_1}{)1f QD;,/[(Z‘) > f( Z A; Ll')2 dét + f{ Z [p(Ai, Aij) +p(Aj, Aij)]LiLj dét

el i, jicly
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Let A := Xy Jicte 2A;;L;L; and B;; := ZAW% According to the definition of the function p given in

Lemma 3.3, computations provide

{;1 |o(Ar Ai) + p(As. A |LiL
i,jic

=Alogh-A+A > BylogB)—A ) 1ogRAiA) By
{i,jicIy {i,j)cTy

(56) > Alog A — A + Alog Z 24/A;,

{iicly

where the last inequality follows from the duality formula between the log-Laplace transform and the
entropy, namely in this case

supy > logRAA)B;— > BijlogBi=log > 24,
Bty {ijicly {ij)cl

where the supremum runs over all probabilities 8 on I]". Note that A # 0 if and only if [[{7| > 2
and therefore }; jicte 2A;A; > 0. It follows that all quantities above are well defined. Setting A :=

Dier— AiLj and A% = Y ier (AiL)?, since I € I7, (55) and (56) finally give the following lower-bound

(57) 1i§? vinf ¢ (1) > f 4% - A+ A(log A - log (A? — A%)) 1y 12| dO;.

From the lower-bound of liminf,,_o ¢, () given by Theorem 2.5, following the same lines of proof
one gets

(58) 115? EZACE f |B> — B + B (log B - log (B* - B2)) 1~ 152| 40,

where we set for any z € Z

B@) = Y Bz,0i@)Li2), B =) Bl o)}, B@:= ). Bz 0o /) LiQLi).

el iel= {i, ity
Step 2 : By the Cauchy-Schwarz inequality A% > A2/|I| and therefore (57) gives

1 _
lim igfgo;’[(t) > f[Az A+ A(logA log(Az) - log(l - —)) ]l|1<-|>2] dQ;
Ye—

||
A? 1 _
> | max¢{—,—log(l ——)A}d
f {IH 2(1- =) } e

(59) f —max A2 }d@,

where the last inequalities follows from the concavity property of the logarithmic function and since
A2/|I7| = A% 1 pe 1 + A2 /|II7 |1} 52. Identically (58) implies

s ’” 1
(60) llgl_l)gf ¥y, (1) = ﬂ max {B B} dQ,

Keeping only the quantities involving A and B in (59) and (60), and applying Cauchy-Schwarz in-
equality, the identities (46) and (47) yield

1 1
— + —|.
[i<1d0, [lI~1dQ;

lim 1nf<,0 (D) + hm 1nfgb () > le(vo, vl)[
Ye—
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Since, the sets I~ and /™ are disjoint f 1] d§t+ f Vid dé, < n, and therefore the identity min, g>0,o+g<1 {é + é} =
4 implies

4
hm 1nf<,0 (1) + hm 1nf :,b;’ ) > - le(vo, v1).

Then applying Lemma 3.1, this estimate give the first lower bound of C,(r) in Theorem 2.5.
Keeping only the quantities involving A and B in (59) and (60), one gets

61 11m1nf t +11m1nf (@) > —dO,.
(61) mi 90 (D) vy, (1) = f|1‘_| |1_’| o

According to Lemma 3.4 and (43), for any i, j € [n] with i # j, forany z € Z and yE ?Z,

ar(z, 0j0(2), y)2Li(2)Lj(2)
at(Z’ )’)

2A,(z,0j01(2))Li(z)Lj(z) :=
with

a@oo@ = ), r0.2,00@,w)dl wdh, w) = D e d(, w) = DT (wly).

w,(z,00 j(2))Ely.w]
From the identity

(v, 2, 00 {(2), W)L (2, 010 1(2)) = 1(y, 2,2, W),
¥ty

and since L*(z, oo (2)) = 2Li(z)L(z) one has for any z € Z and y € ?Z

Az) =

D 0.2z wdow)do,w) = Dpf Oz w) - DTy,

weX z,2€[y.w]

a[(Z, )’)

Working identically with B(z) one finally gets

(62) f > f f eix, ) d(x, ),
where
1 x
06 = D) e M2 A Y) = Dol D) - 2)
z€[x,y]
1 d(xy)—2
+ ;} T 8 M ) = D ).

Since |[I”| < nand [I”’| < nand for any k € {0, ..., d(x, )}, eyl drz=k (X, 2,2, ¥) = 1, it follows that

2
(63) cr(x,y) 2 —d(x, y)d(x.y) = D).

For large values of d(x, y), this lower bound can be improved using the fact that /~ and /= are disjoint
and therefore |[| + [[”’| < n. By first rewriting ¢,(x, y), applying Cauchy-Schwarz inequality, and then
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using the identity inf,50,850,0+8<1 {%2 + ’%2} = (u+v)%, u,v >0, one gets

) i, 2)d(x,2) — 1) d@y)\dzy) - D -
Gy = Z( Q2 eI -1 ) @

z,2€[x,y]

§ (f VA D@ D = DO )’ N (f VG @G ) — DAQE @)
N 2 [1=dQ (1 =02 [1~dQm

{ f Vd(x, z)(d(x 2 — f N y)(d(z, » -1

2
D dOi(2) + in"y(z)]

4
= —v(d(x,)),
n

with for any d € N,
@[3y, Ay
vl =g - ¢ 1-t/] "

Then applying Lemma 3.1 together with (61), (62), (63) provides the following lower bound on the cost
Ct@a

Ci(m) > %ffwt(d(x,y)) dr(x, )

_ 1
wy(d) := max {d(d2 D,f ve(d) K () ds}, d e N.
0

The proof of the second lower bound on C,(7) ends from the next estimate of the quantity fol ve(d) K,(s)ds.
Since for any s € (0, 1) and d € N, one has

d d d 2
plk)y  pi_, (k)
id) = L [d e H)}

=1

with

SICACINLG 1-pl0) 1-p7 (0
dZ( P )l s ),
=1

it follows that for any ¢ € (0, 1)

1 1 _d 1 - 0
f vs(d)Kt(s)dszdz—df (1 AO |, 127 ))Kt(s)ds,
0 0

) 1-ys

with ford > 1,

L -pdo) 1-pf (0) 0 a1 1
[ )Kt(s)ds—2z nkutkl)(;_dﬂ)

<2[ +

For the proof of third lower bound on C,(7), one uses again (57) and (58) with the concavity of the
logarithmic function to obtain

1
k

i~

} 2 +2logd.

(64) lim inf (t)+11mmf¢;' ) > f A2dO; + f B2dO.,.
’y —
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According to the definition of A2,

n

[Raa=Y, [ 3 (oL acnao.

i=1 Y zeE-(y)

where E7(y) := {z ez |y € iz,gi(z))} for any y € supp(v;). Easy computations give
D AQL@aE) = ) az o2,y L) = TILE).
2€EF () Z€ET(y)
and therefore by the Cauchy-Schwarz inequality
—~ IT
[Rig=3 0P
pr ZzeE;—(y) ax(z,y)

If z € E{ (y) then z; = y; and therefore

Z a(z,y) <1 - Z 1;y,a:(2, y).

€E-(y) 22

From the definition (41) of a,(z, y), and observing that if z € [y, w] and z; # y; then necessarily z; = w;,
one gets

D lwazy) = ) W,ﬂ,[ D Lo (1= 109 f““”)] L) = =0 > Ty T (wly),

zEZ"' wef0,1}" z€[y,w] wef0,1}"

and therefore

~ ¥ L (»)? v1(y)
A2dQ, > .
f IZ; ye{; —(1-nT(y)

This inequality implies (as in the proof of Theorem 2.4) for any ¢ € (0, 1)
- 7" . 1 Y 4
[Ragzero. witn e [ Yn(a-0nio)dno)
2J G

Similar computations with the quantity f Bd Q, and (64) finally provide
ligggf @y (1) + ligigf Yo (1) 2 EL(t) + EX(p),

with £,(2) := 5 f h (t Hi_,(x)) dvo(x). Following the proof of Theorem 2.4, the two above estimates
yield the third lower bound of C;(m). ]

3.2.4. The circle Z./NZ.

Proof of Theorem 2.6. Letus note n’ = [N/2] where [-] denotes the ceiling function. Lety € supp(v;) C
Z/NZ, and z € 7. We observe that if {we Z/NZI(Z,Z — 1) € [y,w]} # 0 then necessarily (z — 1,z) €
[y + n’,y] and if {w € Z/NZ|(z,z + 1) € [y,w]} # 0 then necessarily (z,z + 1) € [y,y + n] As a
consequence, since the sets {z € ZINZ|(z,z + 1) € [y, y+ nl}and {z € Z/NZ|(z - 1,2) € [y + 1, y]} are
disjoints, the sets {z € 7 |y e Y(Z 1) and {z € VA |y e Y(ZZ 1} are also disjoints. It follows that

f N (Aez+ D+ Az = D) alzy)dn ) = f D (A D+ ANz = D)@z ) dn ().

zEZy zezy
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Therefore Theorem 3.5 together with (49) provide

s ” 2 2
liminf ¢4/, (1) > f 2. Az D+ AT 2= D) +p(Az 2+ D, Al 2 +2)
zeZY
+p(Ade 2 = 1), A2 = D)) arlz.y) dvi ()
>0

Identically one proves that lim ir(}f :,l/;'[(t) > 0. The proof of Theorem 2.6 ends applying Lemma 3.1. O
Yo

3.2.5. The Bernoulli-Laplace model.

Proof of Theorem 2.7. One follows the same strategy as for the proof of Theorem 2.5. As a first step,
the geometric structure of the slices of the cube provides estimates of the lower lower bounds on
liminf,, 0 ¢7, () and liminfy, o7 (r) given by Theorem 3.5. In the second step, one explains how
these estimates (namely (67) and (68)) imply each of the lower bound on C,(r) given by Theorem 2.7.

Step 1 : For z € Z, one defines the sets
17@) ={G. ) € Jo@ X @] @ s € €,
I7@) 1= {0, ) € Jo@) X 1) @ o) € €.
1@ 1= {(G, J), (k. D) € (o@) X W@ | G, ) # (h D, uacrij) € V(@)
2@ = {(G, ), D) € (o) X W@ | G ) # (k. D, racrij() € VD),
7@ = {(G, ) € Jo@) X 1@) |30k, ) € Jo@) X 112D, (G, ), (ks D) €T (),

I7°(2) = {(G, ) € Jo() X J1(2) | 3k, ) € Jo() X 1), (G, ), (k, D) € T @),

The sets I (z) and I (z) are disjoints since C_ N C_, = 0. Obviously one has I{"(z) C I (z). Observe
that o;07;j(z) = oy;(2) so that d(z, 0;0j(z)) = 1 and similarly d(z, 0 j;0;;(z)) = 1. It follows that if
(@, ), (k, D) € I7(2) or (G, j), (k,])) € [7(2), then the indices i, j, k, [ all differ and oy07;;(z) = 0 j0.(2).
As a consequence one has I7(z) = {((G, ), (k, D) [{(, ), (k,D} € 17 (2),i # k,j # [}. Same remarks
hold with the sets 17 (), 17(2), I (z). To simplify, one denotes A;j(z) := Ax(z,0(z)) and Ay (2) :=
A;(z,010(2)). After symmetrization, Theorem 3.5 provides

s 7" 2 = 2y
(65) hrn_l)gf @), (1) = f( Z Aij) dQ; + f Z [P(Aij, Akl,ij) +,0(Aij, Akl,ij)] dQ;.

& (i, jel= (G kDICIC ik, j£
Setting A 1= Y jkbicl ik, jel Z8%Lij> Brij = 2A§”" , according to the definition of the function p
given in Lemma 3.3, easy computations provides

Z [p(A[j, Akl,ij) + P(Aij’ Ak’vij)]

(G )k DYCIE ik, jl
=AlogA—A+A Z BriijlogBuij) — A Z log(2AijAw) Bijxi
(). (kD)YCL ik, £ (G ) (kDYCI ik, j#l

(66) > Alog A — A — Alog > 2AijA jt,
{(i,j),(k,l)}c]l‘r,i#k,j#l

where the last inequality follows from the duality formula between the log-Laplace transform and the
entropy. For z € Z, let

Jo @ :={ie Jo@|3je i), (G, ) eI}, Ji @ =1{jei@|Tie /i(),G)el},
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and let us define identically J;’(z) and J,”(z) by replacing the set I by the ™. If i € J§ (2)NJ;”(2) then
there exists j and /in J;(z) such that (z, 0;;(z)) and (c(z), z) are points of C_ . According to Lemma 4.3
i), this is impossible since d(07(z), o7y(z)) < 1. It follows that J5(z) N J; (z) = 0 and identically one
proves that J{7(z) N J7(z) = 0. Let A := 3 jies Aij. Since I7” € I, one checks that

2A,-jAjk < Z AijAkl
(@) DICIE ik, j# (k. D)ET— XTI ik, j#
2
“fe 3 a-S (T L)
@i, jel~ i€y jely JeJT iely
Therefore, setting
2
P (NS N (DA Y 4
ieJy  jeJy JEJT iedy @i, jel—
(65) and (66) imply
(67) lim inf o0 2 f |47 - A+ A(log A - log (A? - A7) 40..

Identically, the lower-bound of liminfy, 0 ¢ () given by Theorem 3.5 provides
.. 1 2 2 72 N
(68) 1151_1)51f Wy, (1) = f[B -B+B (logB — log (B -B ))] doy,

where we set for any z € Z, B(z) := 2, per- Bi(z, 7ij(2)), B(2) = Xy p,knrcre izk, jzt 2Bi(2, orcij(2))
and
B = > (Y Blaoi@) + > (D Blaoy@) = > Bie.oijn>
i€y jely JEJT iedy (i, )el~
Step 2 : By the Cauchy-Schwarz inequality, one has
1 1
A% > , A A%,
2 max[ 33 4) LY (S )]z o
0 ]EJ ]EJ i€

and therefore, (67) together with the concavity property of the logarithmic function yield

. . 77 2 2y
(69) hgl_l)gf @), (1) = f max ]max {A }th.

[IJ o 1Y
Identically (68) gives

(70) hrnlnft//;' (t)>frna ! ]max {32 }d@.

17571 107
Keeping the quantities involving A and B in (69) and (70), and applying Cauchy-Schwarz inequality,
the identities (46) and (47) yield
1 1
. - + . - .
Jmin{l757L 1140 [ min|lg711071] 40

lim 1nf @y, (1) + hrn 1nf Y0 = W1 (v, v1)
Ye—
Since J(‘)_ N JO_’ = ( and JI_ N Jl_’ = (), one has
70 min [[J5 ] 17+ min [17571 10771 < min [l + 1G]+ 17| < minle - &«
and therefore the identity ming, g>0,0+8<1 {é + é} = 4 implies

4
hm 1nf<,0 (1) + hm 1nf vt > ———— le(vo, v1).
e min[n — k, K]
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The first lower bound of C;(r) in Theorem 2.7 then follows applying Lemma 3.1.
Keeping only the quantities involving A and B in (69) and (70) gives

A B P
(72) liminf ¢/ () + liminf ¢/, (1) > f +
70 70 min [|J5"1,1/57l]  min 131177

According to Lemma 3.4 one has for any z € Z yE ?Z and for any ((i, j), (k, 1)) € 17 (2),
ar(z, opoij(2), )Lz, 0 0ij(2))

a(z,y)
Therefore the expression (43) of a,(z, oy 0;j(2), y) with the identity

2A4,ii(z) =

2
r(y, 2, 00ij2), WL (2, oioij(2)) = r(y, 2,2, w),
(G (k. D)CI ik, j#1

give
A= > 2Aui0

{G.))(k.DYCT ik, j#1

1 . _
Ty 2 2o TOsnE WO w) = DA ) = DF v,
077 eX z,z€ly,w]

Working identically with B(z) we finally get

A B _
f 1 — — * : — — th = ffct(x’y) d;['\(x,y),
min |/ | min 19571177

where

! r(x, 2,2, Y)d(x, y)(d(x, y) = 1) p 2 (d(x, 2) - 2)

1, y) =

Y= : r(x, 2,2, )dC, (d(x,y) = D {2 (d(x, 2)).
2o min [lJ3 @)L 7 Q)]

Using the inequality (71), the end of the proof of the second lower bound of C;(xr) involving T, (x) is
exactly the same as in the proof Theorem 2.5. It is left to the reader.

We now turn to the proof of third lower bound on C,(r). Using again (67) and (68) and the concavity
of the logarithmic function, one gets

(73) liminf ¢/ (r) + liminf ¥ () > f A%dO, + f B>dQ,.
)/[—>0 Ye 7[’—’0 Ye
According to the definition of A2, one has

fﬁz do, > fmax[ Z ( Z Aij)z, Z ( Z Aij)2] dQ;

ieJy jes; JeJT iely

- f S max[ 3 (Y A@Laper-o) - D (D As@Laper-o) Jatzy)dvio)

€29 i€[n]  jeln] Jeln]  i€[n]

(74) > frnax [ Z Z ( Z Al‘j(Z)]l(i,j)dH(Z))zdt(Z,y), Z Z ( Z Aij(Z)]l(i,j)eI“(z))zat(z,y)] dvi(y)

7 icin)  jeln] ez jeln]  ieln]

For any y € supp(vy), and any i € Jy(y), j € J1(¥) we note
Efp() = {re XA e 10D,y € Yeouan)  ERO) = {ze Xe

dk € Jo(y), € Y(Z,O'kj(Z))}‘
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Since (i, j)) € I"(z) and z € VA imply z € E;I)(y) and z € E;l(y), one has

SIS Ai@lape-o) ae@n= > S (Y A@) aty.

ez i€ln]  jeln] i€lo(y) 2€E () JE()

and therefore by Cauchy-Schwarz inequality,

2
(Z ) ZzeE;I)()v) Aij(@a(z, )’))

7 S 3S A Lepero) ez D)

w7 ieln] jein) i) Leers v @z )

For (i, j) € Jo(y) X J1(y), one may compute the quantity }; . ES() A;j(2)a;(z, y) using the two following
observations. First (z,0j(z)) € [y, w] holds if and only if one has yi=zi=wj=0,y;j=z;=w; =1
and z € [y, o;(w)]. Secondly, the generator L is translation invariant which implies for any (z, 07;(z)) €
[y, wl,

LT (y, ayj(w))

r(y’ Z, U-ij(Z),W) = r(y’ 252, O-lj(w))

LAOW)(y, w)
Therefore, using (42), one gets for any (i, j) € Jo(y) X J1(y),
Z Aij(@) a(z,y) = Z a,(z, 07ij(2), y)
Z€E[ () 2€X
d(y,oij(w)) d(y,oi;i(w))
LA (y, ojj(w))
weX, s=0  zely,oi;(W)].d(y,2)=s (y’ "

dy, Wl d(y, w) = 1 = )T (Wly)

LYy, () _
= Z j”‘yi:Wj:O]]'yj:Wizl Ld(y,W) (y’ W) d(y5 W) 71-47 (le)

weX,
ﬂyi:w-:o]]-y'zwizl —
— Z Wﬂx_(wb&a
weXy W

where the last equality holds since LAxY)(y, y) = (d(x,y)!")* for any x,y € X,. Since for i € Jo(y),
Z Tyym=0Lymwimt = d(y, W) Ty, it follows that
JES ()

(76) D DL A@a@y = ) Ty, F(wly).

Jeh () zeE () weXy

Similar computations also provide, for any i € Jo(y),

Da@y =D > Q" @F_(why)

zeE:O ) weX, z€[y,w]

< Z Z Lomy=00" (@7 _(wly)

weX, z€[y,w]

= > Lm0 T ) + D Ty Y Tamy=0 Q™ @) 7. (1),

weX, weX, z€[y,wl]
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Moreover from the expression of Q,"(z) given by (35), one has for y; = 0 and w; = 1,

diyw)=1 (1- t)ktd(y,w)—k

2 T @= 3y (D Mavart) o —

z€[y,wl] k=0 2,2€[y,w],zi=0
d(y,w)-1

- (d(y, W))(d(y, w) — 1) (1 = Pk 0wk
=0 k k (d(yk,w))
=1
It follows that for any i € Jo(y)
Z dt(Z,y) S 1 - (1 - t) fﬂyiiwid;i;(w|y)-

ZEE;I)(y)
As a consequence, since IT._(y) := f 1y, 2w, dm_(wly), (75) and (76) implies
2 I._(y)*
Z Z ( Z Aij(Z)ﬂ(i,j)er(z)) al(z,y) > Z T~ (-0 ()

zezv i€ln]  jeln] i€Jo(y)

By symmetry, the same inequality holds exchanging the role of i and j, and therefore (74) gives

. L (y)? oL (y)?
Pth > fmax - , - dvi(y).
f [l.e;@ 1= (1= DI () ,-E,Zl(y) 1-(1- t)HL(y)]

As in the proof of Theorem 2.4, this inequality implies for any 7 € (0, 1)

f A*dQ, = EL(p),

with

et i= 5 [max| 3 #(a-omiw). Y #( - onlo)]ano

i€Jo(y) Jjeh )
Identically, one proves that
[Bag,> e,
where
1 : j
OES f max[.z h(e 11, (), Z h(e 11, ()| dvo ).
i€Jo(x) JjeJ1(x)

From (73) and the two last estimates, applying Lemma 3.1 provides the third lower bound of C,(r) in

Theorem 2.7.

4. APPENDIX A : BASIC LEMMAS

Lemma 4.1. The transport-entropy inequality (29) implies the W, transport-entropy inequality (30) for

the standard Gaussian measure vy.

Proof. The result follows from the transport-entropy inequality (29) for the uniform probability measure
pon the hypercube (a; = 1/2 for all i € [n]), and by using the central limit Theorem with the projection

map
n

2 n
T,(x) := Tﬁ(;xi — g), x,y € {0, 1}".
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By density, it is sufficient to prove (30) for any probability measure v on R with continuous density f
and compact support K. Let v denotes the probability measure on {0, 1}" with density f,, with respect
to u given by

T,
Sy o= LD oy
f JfoT,du
Applying (29) with vo := g and vy := V", one gets
2

(77) p oW, v") < HOV' ).

By the weak convergence of T,,#u to the standard Gaussian law 7y, one has
(78) lim HO/l) = HOP),

and fork=1ork =2,

@9 gim [t a o = tim [T,0F ) du) = [k dvon

Since d(x,y) > # |T,,(x) — T,(y)| and the monotonicity property of the function ¢; : R — R* on
[2, +c0) implies

2 2 (n
S ed(xy) 2 S (7 1T, () - Tn(y)|) 1 -

and therefore

2 1
cz(:u Vn) 5 H(T #“ T, ) ff cn(z, w)dmy(z, w),

)

where for any z,w € R

cn(z, w) = 4ncy L isasvm

2 40 +log(Vn/2)) 4 1 1
|z —wl” - VT |z —wl- N |z = wlloglz = wl| Lj;_ 54/ va-

Let c(z, w) := |z — w|%, z,w € R. One has, for any z,w € R, ¢(z, w) > ¢,(z, w) and

4(1 + log(Vn/2)) 4

|12l + bl + 1+ 212 + 20w,

c(z,w) = culz,w) = |z - WI21|Z_W|<4/W +

< 1_6 . 4(1 + log n)
T

where the last inequality follows from |ulogu| < 1 + u?,u > 0. Since

1/2 1/2
f 1 d(Tn#u)(as( f Izlzd(Tn#,U)(z)) =( f T,%dy) -1,

it follows that for any r,, € II(T,#u, T,,#"),

16  4(1+1
[[[nana> [[ean -2 Og”)ff [l + Il + 1+ 212 + 20wi?] (2, w)

> ffcdﬂn - %\/logn) [1 + flwld(T,,#v”)(w)—i—j‘lwl2 d(T,,#v”)(w)],
n

16(1 + logn)
Vi

and therefore

2
= Tey( V") 2 WZ(T #u, T, #v") —

1+f|w|d(Tn#v")(w)+f|w|2d(Tn#v”)(w)].
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From the weak convergence in P,(R) of the sequences (T,#u) and (T,#v") and using (79), the last
inequality implies as n goes to infinity
CE 2 n 1 2
liminf — T, (u, V") > = W5 (v, 7).
n—+00 1 2
Finally, Talagrand’s inequality sz(v, v) < 2H(v|y), follows from (77) and (78). |
Lemma 4.2. If the convexity property (4) holds, then for any vg, v, € Pp(X),
’ ’ 1 . .
H(volw) < Howp + 3 > (log(f(x) ~log f(x')) TI¥,(x) vo(x) ~ 5 lim inf C,(7).
t—0

xeX X eX, X' ~x

where 1% (x) := f Ly epeyd(x, Y)r(x, x', x', y) dm_, (ylx).

Proof. The convexity property (4) implies, for any vg, v; € P,(X) and for any ¢ € (0, 1)

HQlw) - H 1-
(80) H%MsHmw—(th(m”—(;%ﬁy

The first step is to compute the left-hand side of this inequality as ¢ goes to zero. According to the

expression (28) of O/, for any x,y, z € {0, 1}",

d(x,y)
d(x,z)

010" (2) = r(x,2,2,y) ( ) Ly (@) (dCx, "7 (1 = %Y — d(z, yy @D (1 = &)

and therefore

d(x,y)

8,0 @y=0 = r(x,2,2,y) ( dx.2)

) (ﬂ[x,y] (DL —d(x, y)ﬂx:z)

= ), deyr K, X,y 6 (@) ~ 642

x'elx,yl,x’ ~x
Since Bt@ (D=0 = Lxyex 8,07 (2)y=0 T(x, ), it follows that

; H(Olu) — Hvolu)
t1—r>I(l) t

= :H(Q) y=0 = ), 8:0:(2)y=0 log f(2) u(2)

zeX
d(X, )’) (log f(x’) - log f(.X)) d(-x’ )’) r(x, -x/’ -x/’ )’)’7?()5, )’)

x,yeX x'€[x,y],x’ ~x

-, Z(mmwA%m% d(x y)rx, o, x )T O | vo(x)
xeX X’ eX,x' ~x yeX,x'€[x,y]
The proof of Lemma 4.2 ends from (80) as ¢ goes to 0. O

Lemma 4.3. Let X be a graph with graph distance d. Let vy, vy € P(X) and assume that 7w € P(X x X)
is a Wi-optimal coupling of vo and v, namely

Wivo,v1) = f f d(x,y) dm(x, ).

(i) Let
C.i={@w) € Xx X|z #w,3(x,)) € supp(, (&, w) € [x,y1).

If (z1,w) € C_, and (w,z2) € C_ then d(z1,22) =2 2 and w € [z1,22].
(ii) Let
C_:={@w eXx X| (w.2)eC.}
The sets C_, and C_ are disjoint.
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(iii) If d is the Hamming distance then the following sets D_, and D _ are disjoint,

D_ = {w e supp(n) [T € X, w # x. (x, w) € supp(@).

—

and
D_ := {w € supp(vp) | dyeX,w#y,w,y) € SUPP@}-

Proof. (i) Let (z1,w) € C_, and (w,z2) € C_,. There exists (x,y) € supp(n) such that (z;,w) € [x,y]
and there exists (x’,y") € supp(7) such that (w, z5) € [x/,y’]. One has
d(zi,w) +d(w,22) = ((d(x,y) = d(x,21) = d(w,y)) + (d(x',y") = d(x', w) — d(z2,)")).

It is well known that the support of any optimizer of W;(vp, v1) is d-cyclically monotone (see
[43, Theorem 5.10]. By definition, it means that for any family (x1,y;),..., (xn,yn) of points

in the support of 7
N N
D dxiy) < ) i, yin),
i=1 i=1

with the convention yy.; = y;. It follows that
d(x,y) +d(x',y") < d(x,y") +d(¥',y),
and therefore, from the above identity,
d(zi,w) +dw,22) < d(x,y") +d(x',y) —d(x,z1) = d(w, y) = d(x', w) = d(z2, y").
By the triangular inequality, it follows that
2 <d(z1,w) +dw,2) < (d(x,z1) + d(z1,22) + d(z2,Y"))
+(d(X,w) +dw,y)) = d(x,z1) = d(w,y) = d(x', w) = d(z2,¥") = d(z1,22).

This implies that d(z;,z2) > 2 and w € [z1, 22].

(i) Assume there exists (z,w) € C_, N C_. Then (w,z) € C_ and therefore, according to (i),
z € [w,w] = {w}. This is impossible since z # w.

(iii) We assume that d(x,y) = 1., for any x,y € X. If the two sets D_, and D_ intersect, then there
exists (x,w) € C_, and (w,y) € C_ . Point (i) implies w € [x,y], and since d(x,y) = 1, we get
either w = x or w =y, which is impossible.

Lemma 4.4. Let vy and v some probability measures in P(X) with bounded support.
(i) If (13) holds (AS > 1,sup,.x |L(x, x)| < S ), then for any x,y € X and any integer k,
L*(x,y) < (28)~.

(ii) If (14) holds (A1 € (0, 11,infy yex x~y L(x,y) = I), then for any x,y € X, LY (x,y) > 1909,
(iii) If (13) and (14) hold, then for any x,y € X, any t € [0, 1], and any y € (0, 1), one has

LI, y)
d(x,y)!

where K := 25 /1 and O(1) denotes a quantity uniformly bounded in x,y,t and .
(iv) If (13) holds then for any x,y,z € X and for any t € [0, 1]

lim 07™(2) = 01 (@) 1= 11y (@) 132,21 A (. ).

Pl(x,y) = )" (1 + K 0(D)),
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(v) If (13) holds then for any x,y € X,

L&) (x, y)
P(x,y) > ————222 ()& eS|
(x5, Y) 2! (ty)

For a fixed xy € X, let D := max (d(xo, x), d(xq,y)). It follows that if (13) and (14)
xesupp(vo),yesupp(vy)

hold then for any y € (0,1) and t € (0, 1),
tyl
d(xp,z2)+1+D

(vi) If (13) holds then Egy[€]1 Xy = x, X1 = y] < Pngy)‘
1 9,

(vii) Assume (13) and (14) hold. For a fixed xy € X, let D := max (d(xo, x), d(xg,¥)).
xesupp(vo),yesupp(vi)
For any x € supp(vg) and y € supp(vy), one has for any t € (0, 1) and any y € (0, 1)

X,y [2d(x,2)—-4D—1],
07" = 0 (L@ + (1 = ey (@) v (v&?) 0 7)

where K := 28 /I and O(1) denotes a constant that only depends on S, 1, D and K := 25 /1.
As a consequence, setting

min_ fY(w) < P/ fY(z) < max _fY(w).

d(xo,z)+1+D
) wesupp(vp) wesupp(vo)

(81) 0< e—S(

>

B:= ) e
xesupp(vo),yesupp(vi)

one has
(82) 0)(z) < 0()y (yK* ,  VzeX\B.

(viii) Assume (13) and (14) hold. Let xo € X, t € (0,1) and vy € (0,1). For any w,z,7 € X with
d(z,7') <2 and w € supp(vy) one has

P/ w)  max(1,d(xp, 7)) Kd0od 0(1)
<

)[Zd(xo,z)—4D—1]+

Plzw) ~ (y)?e) ’
where K = 25 /I and O(1) is a positive constant that does not depend on z,7',7v,t. It follows
that
() P/ fr(zy  max(1,d(xo, 2)%) K402 O(1)
83) 1) Kd@a o) = PP aG7) ‘
max (1, d(x, 2)/@)) K40 O(1) — P] f(2) (yn@=*

(ix) Let (y¢)een be a sequence of positive numbers converging to zero. If (12), (13), (14) and (15)
hold, then for any t € [0, 1]

limo H(Q)lm) = H(Q"m).
Ye—

Proof. (i) Given (13), we want to show that for any x € X, S(y) := sup,cy ILF(x, y)| < (2S)F. Tt
follows by induction on k from the inequality

Sk () = sup|[Lx DL e y) + ) L Lk )| < 250p |L(x, 2] Sk

xeX 2
(ii) For x =y, one has LY0Y)(x,y) = 1 and by definition for x # y,
LYY y) 1= ) L,
a
where the sum is over all path @ from x to y of length d(x,y), @ = (2o, ..., Z4(xy) With zo = x
and z4(y,) = y, and

Lo = L(z0,21)L(21, 22) - - - L(Zd(x,y)-15 Zd(x.y))-
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Such a path « is a geodesic. Since we assume in this paper that L(x, y) > 0 if and only if x and
y are neighbour, one has L, > 0. By irreducibility it always exists at most one geodesic path
from x to y, and from assumption (13), for such a path a, L, > I’ . As a consequence we get
LAY (x, y) > [96D),

(iii) According to (16), for any x,y € X,

LG (x,y)

Lf(x,y)  d(x,y)! d(ey) fd(ry)-1
Y
d(x,y)!

d(x.y)
( t) 1+ Y Ld(xy)(x y) k!

kk>d(x,y)+1

Pl(x,y) =

Applying Lemma 4.4 (i) and (ii), we get

d(x.y)
PY( )_m (yt)d(x,y)|

d(x,y)!
<y L) (yr) ) dixyy (2S)7I
=7 dy)! ol G de!

1.4xy) (x,5)

<y (y t)d(x ))Kd(x)) 25
d(x,y)!
from which the expected result follows.
(iv) Let x,y,z € X and t € [0, 1]. If (13) holds, according to (16), the Taylor expansion of PZ(x, y)
as y goes to zero is given by

L0,
( )’) (yt)d(x’y)

d(x,y)
d(x,y)! o,

Pl (x,y) =

As a consequence, the Taylor expansion of Q;yx’y(z), defined by (9), is

d(x, dtz,
07 (2) = A=) LO9x, LG y)  d(xy)! D1 = @
; L&) (x, y) d(x,2)!d(z, y)!

+ oy =)y

The expected result follows since one has y-+d@y)=d(xy) = 1 if 7 € [x,y], and
lim,,_, yd®2+dGEN=d() = ( otherwise.

(v) On some probability space (Q', A, P), let (N;)s>0 be a Poisson process with parameter yS and
(Y,)nen be a Markov chain on X with transition matrix K given by

L (x, S + (2,
Kz, w) = 5 W), forw#ze X, and K(z,2) := L(ZZ)
1) VS

We assume that (Y,),en and (Ny)s>0 are independent. It is well known that the law of the process
(Xp)r=0 under R given Xy = x is the same as the law of the process (X,),>0 under P given Xo =X
defined by X, = Yy,. As a consequence, one has for any y € X,

P)(x,y) = R (X, = y|Xo = x) = P(X, = y| Xp = x).
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Letn = d(x,y) and ﬁ, denotes the number of jumps of the process Z, one has
Pl(x.y) 2 B(X; = y.N; = n|Xp = )
= P(Yl, ..., Y, are all different, Y, = y, N; = nl)?o = x)
= P(Nt =n)P(Yy,...,Y, are all different, Y,, = ylfo = x)

_ IS s

Y K(xo, x1) - - - K(xp—1, X5)

a=(x0,...,xp), @ geodesic from x to y
O s e,
This ends the proof of the first part of (v). Observe that from the Schrodinger system (7),
SY(w) > 0 if and only if w € supp(vp). Since v( has bounded support, it follows that for any

w € supp(vo),

0< min f7(u) < f"(w) < max f(u),

uesupp(vo) uesupp(vo)

and therefore for any z € X,

min  f(u) min Pl(z,w) < Z PPz, w) = P]fY(x) < max _f(u).

uesupp(vo) wesupp(vo) Wwesupp(vo) uesupp(vo)
From (14) and (ii) and since d(z, w) < d(z, x9) + 1 + D for any w € supp(vp), one gets

tyl
d(xg,2)+1+D

2

)d(xo,z)+ 1+D

min PZ(z, w) > e (
wesupp(vo)

from which the second part of (v) follows.
(vi) The length {(w) of a path w € € represents the number of jumps of the process X; between
times 0 and 1. Therefore according to the definition of the process (X;);>o above,

Emll1Xo = x,X; =] =B [N11Xo = x, X; =)

s 5 _EP[NI]]-)?:)JiO:x:I Ep [Ni]
<Br [Mi1%o = x Xy =] = P(}E:lyﬁfo:x) = Py

which ends the proof since Ep [N;] = ¥S.
(vii) From (iii) and (v), one gets for any x,z,y € X,

Pl (x,2)P]_(z.y)

0" =
! PT(x, y)
NI d(x,y)! :
< XD =dOy) py o o 14D pd@y) prS
<y ( y) A 2)ldz )] (1-1
(84) (1+yK“20D) (1 +yK“0(D)).

If z € [x,y] then thanks to (i) and (ii), the right-hand side of this inequality is bounded from
above by

2S d(x.y)
(T) ed(x,y) 675 4K2d(x,y) o),

and the maximum of this quantity over all x € supp(vp) and y € supp(v) is a constant O(1),
independent of x, z,y and .
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If z ¢ [x,y], then d(x, z) + d(z,y) — d(x,y) > max{l1, 2d(xg, z) — 4D}, and the right-hand side of
(84) is bounded by
d(x,2)+d(z,
dxayrdey)-dey) 2S)TEIHED d(x,y)! e?S 4K A=+AED (1)

Y Jd(x.y)

1+[2d(x0,2)-4D—-1] s )Zd(xo’Z)+2D S 2d(x0,2)+2D
<vy 0,2 * W d(x, y)‘ e’ 4K~z 0(1)

The maximum over all x € supp(vp) and y € supp(v;) of the right-hand side quantity is bounded
by O(1) y!*12d(x0.9-4D-1]s g4d(x0.2)  Thjs ends the proof of the first inequality of (vii). The second
inequality easily follows since

Q= > TPy,
xesupp(vo),yesupp(vi)
(viii) Using (iii) and (v), one gets for any z,z’ € X and any w € supp(vy),

’ 4 ’ d 8 —d /,
Pr@w) LI w) dzw)! (i) e & (1+yK*0(1))
Pl(z,w) = LI&W(z,w) d(Z,w)!

d(z,7')
< K000 max (1, d(z, w)?) (lt) 265 K4 dGx A0 1)
Y

K2d4(z%0) max (1, d(z, x0)2) o

N (yn)?=<) ’
where one maximizes over all w € supp(vp) to get the last inequality. Inequality (83) follows
since
PIf@) _ D P, w) fY(W)P](z,w)
PIf@ ooy Pl@w) Pl
w)PY (z, w
B A
wesappro) L1 /7@

(ix) Recall that

Q' |m) = Zl ( ) 0 (2).

zeX

Let us consider the finite set B defined in Lemma 4.4 (vii). From the weak convergence of the
sequence (Qy “to @ and since supp(@to) C B, one has

(Z) "'y
lim » log ‘“(29=H
lim, § () = H(Q}m).
Therefore it remains to prove that
. (Z) ’\y,
lim E log —— () =
70 Sy M@

From Lemma 4.4 (vii) and hypothesis (12) one has, for any z € X'\ B,

[2d(x0.2)-4D~1],
0/ (2) - Oyye (veK?) ™"

m(z) inf cx m(z)
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infex m(z) L)
ol °kK2)

Using the inequality [v1log v| < +/v for v € (0, 1], we get for 0 < y, < min(
lo _’;”f(z) 0

[2d(x0,2)-4D—-1]./2
<O()supm K? .
i & @< 0Wsup @ e ) (vek?)

zeX\B zeX

Hypothesis (15) then implies that there exists ¥ > 0 such that for any 0 < y, < ¥

e
S 10e 22 51 < 001) v

zeX\B m (Z)

and the expected result follows.

5. AppPenDIX B : Proors oF LEMMaAS 3.1, 3.2, 3.3, anp 3.4

Proof of Lemma 3.2 and Lemma 3.3. Lety denotes a fixed parameter of temperature that can be chosen
as small as we want. To simplify the notations, the dependence in the temperature parameter 7y is
sometimes omitted. For # € (0, 1), let us note f; := PZ [ and g; = P’ll_ ,8” and recall that F; := log fi,
G, :=log g, and

¢(t)=thft8tdm, l,l/(l‘)=fG,f,g,dm.

Observe that for y sufficiently small, these two functions are well defined on (0, 1) since (81) and (82)
implies

[ 1Eifgam = Y el re| @0

zeX

1 2d(x0.2)-4D-1],
<O +0(1) Y (@x0.2)+1+D) logt—l+10g(d(x0,z)+1+D))y(yK2)[ vombl
Y
zeX\B

According to hypothesis (15), the right-hand side of this inequality is finite if (yK?)?> < y,. Identically,
one could check that f |G| f; g+ dm is finite for y sufficiently small.

The proof is based on I';-calculus by using backward equations, d,f; = Lf;, ;g = —Lg;. We only
present the proof of the expression of ¢’(¢) and ¢”'(f). Same arguments provide the expression of ()
and /"’ (t). We start with a general statement that we will apply twice. Let (z,z) € (0, 1) XX — Vi (2) € R
denotes some differentiable function in 7 (that also depends of the parameter ) satisfying for any ¢ €
(0,1/2), and any xj € X,

d(x0,2)
(85) sup [Vi(2)l < 0(1)7,

te(e,1-¢g)

and

Bi(x0,9)
(86) sup_[0:Vi(2) < O() =5~

te(e,1-¢)
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for all z € X where O(1), A, B denote constants that do not depend on 7,y and z. Then the following
identity holds: for any ¢ € (0, 1),

a ( f Vifig: dm) - f 3,(Vify g0) dm

= [@vosisi+Vith g - Vi figodm
= f(atvt)ftgt + Vi(Lf1) g — L(Vif1)g: dm
87) = f [ovi) = > DV, 2) L )| Rgi() dm().

It suffises to justify this identity for any € € (0, 1/2) and any ¢ € (g, 1 — &). The second equality of (87)
is due to the backward equations. The first equality of (87) is justified by applying Lebesgue’s theorem
with hypothesis (15), provided that for y sufficiently small, one has

sup 10:(V.f: g)(z) m(z)| < O(I)Vz(XO’Z)-

te(e,1-¢)
This is indeed the case, since for any z € X,

LP] f(2) LPI_g"(2)

oV, =@,V +V, -V 0 (2),
{(Vifr 8)(2) m(2) [( V(@) + Vi) P70 1(2) P o 0/ (2)
with according to (83), for any 7 € (¢, 1),
LP’)’ P7’ / d(x0,2) d(x0,2)
‘ ytfy(a <5 dmax(l . tyf%z)) < sq, (Lo, K90 _ ) KD
Pz f7(2) 77~z Pt f(2) YE Y
LP] g'()

d(x().2) .
o0 <o(HK yO ,forany r € (0,1 — &) and z € X. Together with (82),

we get the bound, forany z€ X and 7 € (g,1 — ),

One identically shows that

( 2)2d(x0,z)

10:(Vifs g)(@m(2)] < O(1) (BY0) + (AK)" ) < 0(1) 7,7,

,yll

for any y > 0 with y*(B + AK)K* < y,. The third equality of (87) is due to Fubini’s theorem together
with the reversibility property of m with respect to L. The last equality of (87) is a simple rearrangement
of the terms.

At first, one applies (87) with V; = F}, since according to (81), for any 7 € (g, 1 — &), for any z € X,

d(x0,2)
|Fi(z)] < O(1) (d(x0,2) + 1 + D) (log # +log (d(xp,2) + 1+ D)) <0(1) v

and

Kd(x0.2)

Y
LP,fy(z)<0(1) —.

P f7(2)

|0:F(2)| = ‘

GFi@) = ) L = Y (T 1) L), zekX,

7eX 7,7~z
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one gets the expected result

¢'(0) = f D (7D — 1= V(2 )e ) Lz, ) ful2)gi () dm(2)

7,7~z

f D 2(e7) Lz, ) d0) (2).

7,7~z

We want now to apply again (87) with Vi(z) = >/ .. { (eVF f(z’zl)) L(z,7'), z € X. From the inequality,
|£(a)l <2+ a?,a > 0 and using (83), one may check as above that (85) holds. The backward equations
ensure that

~ Lfi@)  fiLA@) . ¢ vhe) ’
atVt(Z) - Z,’Z,~Z( ﬁ(z) ‘](;Z(Z) )g (e )L(Z’Z )

_ VFi(z,7) Lfi(z) _ Lft(Z))VF YL ’
2 ¢ (ﬁ(z’) fiw ) e )

VF(z,7) eVFi@?) (eVFt(z’,z”) _ 1) Lz 7))L, 7))

2,7 2~ ~T

- DL VR (D 1) L ) L w).

2w, ~z, W~z

7,7~z

Simple computations together with (83) show that (86) holds too.
Applying the identity (87), since
R LD S (O S LCESLCRS

7,7~z 2,7, 2~7'~7"

B Z eVFr(z,Z/)év (eVFt(Z’W/)) L(z,7") L(z,w"),

7w, ~, W~z

one gets for any ¢ € (0, 1),

&(0) = f S (€7 = VE () (¥~ 1) [T L ) Lz w)

7w, ~ W~z

- Z [VF,(z, ) (7 — 1) = £ (V1) |1z ) L z”)]d@y @)

7,7, 2~ ~7"
f | ((VFiew) = VFi(5,2)) = 1) T TECD1E, ) Lz, w)
zZ,w, Z ~Z,W~zZ
(VF(z,2)+ 1) "Lz, 2) Liz, ')

W, ~, W~z

— Y TR D)L L)
ZI, ZH, 7~z ~7!"

=Y p(EED, TR 1, ) L, 2|0 ),
7,7 7~ ~7"

where the last equality holds since VF(z,7") + VF:(Z',7"") = VF(z,7"). The expected expression of
¢" (1) follows by symmetrization of the first sum in 2’ and w’, and since 3}, /.. L(z,w') = =L(z,z). O

Proof of Lemma 3.1. Let € € (0,1/2). We first prove that if (13), (14) and (15) hold then go '(1) is
uniformly lower bounded over all ¢ € [g, 1] and y € (0,¥] for some ¥ € (0, 1). According to (48) and
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inequality (50) and (51), for any ¢ € [g, 1] and y > 0,
lo 1
go;,’(t) > —0(1) [b’ Sg 04 fdz(x(),Z)Kd(xO’Z)d@(Z) + ; f(dz(Xo,Z) + I)KZd(xo’Z)d@(Z)]
>-0(1) f & (x0, DK*09d Q] (2),
where O(1) denotes a positive constant that only depends on ¥ and €. Using Lemma 4.4 (vii) and the
fact that vy and v have bounded support, it follows that
)[Zd(xo,z)—4D—l]+

¢/ =-0) > max (d?(xo, DK*9) = 0(1) »" d(x0,2) (vK
z€[xy]
xesupp(vo).yesupp(vi) €eX

=-0(1) - O(1) Z d*(x0,2) (,yK3)[2d(x0,Z)—4D—l]+

zeX

From hypothesis (15), choosing ¥ so that (¥K>)? < v,, one gets

") > -0(1
ye(Oy)te[s 1](’07() (-

One may similarly proved by symmetry that if (13), (14) and (15) hold, then 1// /(1) is also uniformly
lower bounded, namely

inf ") > -0(1).
ye(07)06l0.1-¢) vy ) 2 ~0)
Let e € (0,1/2), and for y € [0, 1), let
F5) = HQ)_pypipm), 1 €10, 11.

We will first prove a convexity property for the function F; from a convexity property of F. Y0 as the
sequence (y¢) goes to zero. We use the identity, for any ¢ € (0, 1)

1
fo K (s)(F3,)" (s)ds,

(88) (1= OF2,(0) + (F2,(1) - FE, (1) = 0 > )

where the kernel K; is defined by (38). Observe that

1 1-&
fo Ki(s)(FS,)" (s)ds = (1 - 2¢) f Ko+ ) (o500 + 0, 0)

The above uniform bounds on ¢ and ¢/ for y € (0,%) allow to apply Fatou’s Lemma. Together with
Lemma 4.4 (ix) it implies, for any € € (0, 1/2)

89) (1 =nF((0) +tF(1) = F(t) >

1-& _
D1 - 26 f K, hmmf (. () + ), (w)) du

For any r € [0, 1] the support of the measure Q, is finite, included in the set B defined Lemma 4.4
(vii). As a consequence, the function ¢ € [0, 1] — H(Q,|m) is continuous as a finite sum of continuous
functions. It follows that for any 7 € [0, 1],

lim F{(1) = H(Qlm).
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Consequently, using hypothesis (39) and applying Fatou’s Lemma as & goes to zero, equality (89)
provides

—~ (-1 (!
(1 = HH(vo|m) + tH(v1lm) — H(Q;|m) > ( ) f K; (1) (lirn inf go;’[(u) + liminf w;f[(u)) du
2 0 y[—)o )/[—>0
(-0 (! ,
> 0 [k wd
0
= (1 - 0&(0) +1£(1) - £@0)
were the last equality is a consequence of identity (88) applied with &. O

Proof of Lemma 3.4. Letz € Z and 7" € V(z). One will only compute the expression of lim,, o (ygA;”(z, z’))

and similar calculations provide lim,,_,o (’)/gBZ[(Z, Z’)). For any y > 0, let

al(z,y) = Q'(X, = 2X1 = y) = f 7" (@) dr? (wly),
and
P]_,(,P] (7, w)
P, w)

Using equality (11) and since PT f7(y) > 0 for any y > 0, one easily check that for any y > 0,

PIf(Z) al(z7.y)
A')’ , ’ — t — t .
)= s T )

al(z,7,y) = f @ (v.z. 2, wydn’ (wly), with o] (y,z,2',w) =

From the expression (41) of a,(z, y) and since supp(7¥(-[y)) C supp(vp), one has

@@y -—a@y|< s [V -0"W @)+ YL R0 —F_(wly)].

Wesupp(vo) wesupp(vo)

Therefore, the weak convergence of (777*)ien to 7 and Lemma 4.4 (iv) imply

(90) lim a’(z,y) = a/(z,y).
ve—0

Let us now consider the behaviour of y;a?" (z,7,y) as y, goes to zero. Lemma 4.4 (iii) provides the
following Taylor expansion,

d(y,2)+1+d(Z .w)—d(y,w)

d(y, w)! e
e[ (,2,2,w) = D) () _ gyt

dy,2)ld(Z ,w)!
. (1 + y(Kd(y,z) + Kd(z’,w) + Kd(y,w)) 0(1)) ,

r(y,z,2,w)

where O(1) is a quantity uniformly bounded in t,vy,z,7’, x,y. By the triangular inequality and since
z ~ 7', one has d(y,w) < d(y,z) + 1 +d(z’, w), with equality if and only if (z,z’) € [y, w]. Therefore, one
gets

il—rf% ya) (v, 2,2 w) = (v, 2,2, w),

with

(3,27 W) = Liepyun) FOn 202 WA w)p ™ ™ (d(z, w) = 1).
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Moreover, Lemma 4.4 (i), (ii) and (iii) ensures that for any w € supp(vp) and y € supp(v;),

ya't)’(y’ Z, Z’, W) S 0(1) ,yd(y,z)+l+d(z/,w)—d(y,w) (2S )d(y,z)-l-d(z’ ,w)—d(y,w) Kd(y,z)+d(z/,w)

(28)OM d(y, w) K40
. max
wesupp(vo).yesupp(v) 140w)
< 0(1) (,)/25 K)d(y,z)+d(z/,w)+l—d(y,w)’

where O(1) is a constant independent of ¢,y,z,z’,w. Therefore ya/ty(y, 7,7/ ,w) < O(1) as soon as y <
1/(25 K). As a consequence, for any y, < 1/(25 K), it holds
|yea)' (2.7, y) — ai(z.7.y) |

< sup |yl Ghnd W) - e w|+0() Y[R wly) —F(wly)|

wesupp(vo) wesupp(vo)
As y, goes to 0, this inequality with the weak convergence of 7 to 7" implies
lim y,a)'(z,7,y) = a(z, 7, ),
ye—0
The set ?Z is not empty since z € Z. Since for any y € ?Z, a;(z,y) # 0, it follows from (90) that
Y¢AY (z,7') converges as y, goes to zero with for any y € Y,

a(z,7,y)

lim y,A”(z,7) = )
Yf_>078 t ( ) a[(Z,y)

The proof of the first part of Lemma 3.4 is completed.

We now turn to the proof of the second part of Lemma 3.4. One will only compute lim,, (y?A;” (z, z”))

forzeZ,7' € V(z) and the expression of lim,, o (y{%BZ[(z, z”)) follows from similar calculations. For
any y € X and any ¢ > 0, one has
al(z,77,y)

AV(z.7)) =
! al(z,y)

with
al(z,7',y) = f a) (v, 2,27, w)da” (wly).

It remains to compute lim,, o y{%a;” (z,7”,y) to prove (45). As above, Lemma 4.4 (iii) provides
e d(y,w)! ”
Y 7 _ Ad,2)+2+d(Z” ,w)—d(y,w) 17 > d(y,2) ,dE@" . w)
a; (¥,2,2,w) = ry, 2,2 w)———— (1 —t 13
ya, (y )= O )d(y’z)!d(z,,,w)!( )
(14 y (K09 4 K9 4 K1OW) 0(1))

where O(1) is a quantity uniformly bounded in t,v, z,z”, x, y. Since d(y, w) < d(y,z) + 2+ d(z”, w) with
equality if and only if (z,z”) € [y, w], it follows that

’}ll_r)r(l) ')’20/2/(% <, ZN, W) = Olt(y, <, ZN’ W) = ]]'(Z,Z”)ELV,W] r(y9 2, Z”’ W) d(y’ W)(d(.y, W) - l)p;i(y’W)_z(d(Z’ W) - 2)
Moreover, Lemma 4.4 (i), (ii) and (iii) gives that for any w € supp(vp) and y € supp(vy),
yzag’(y, Z Z”, W) S 0(1) (,)/25 K)d(y,z)+d(z’,w)+2—d(y,w)’
where O(1) is a constant independent of ¢,y,z, 7", w. As above, the proof ends as vy, goes to 0 from the
inequality
|vza) (z.2".y) — ar(z.2".y) |

< sup |yl Onz 2 w) - a2, 2 w) [+ O(1) Z |7 why) =7 (wly) |,

wesupp(vo) wesupp(vo)
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for all v, < 1/(25 K). The end of the proof of the second part of Lemma 3.4 is identical to the one the
first part. O
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