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In musculoskeletal modelling, adjusting model parameters is challenging. This paper proposes a multivariate statistical methodology to adjust muscle force-generating parameters optimally. Dynamic residuals are minimized as muscle force-generating parameters are varied (maximal isometric force, optimal fiber length, tendon slack length and pennation angle). First, a sensitivity and a Pareto analyses are carried out in order to sort out and screen the set of parameters having the greatest influence regarding the dynamic residuals. These parameters are then used to create a response surface following a Design of Experiments (DoE) approach. Finally, this surface is used to determine the optimum levels of the design variables (muscle force-generating parameters). The proposed methodology is illustrated by the adjustment of a three-dimensional musculoskeletal model of a sheep forelimb. After adjustment, the reserve actuator values of the elbow and wrist joints were reduced, on average, by 18%, and 16%, respectively. These results demonstrate that the use of multivariate statistical strategies is an effective way to adjust model parameters optimally while reducing dynamic inconsistencies. This study constitutes a step towards a more robust methodology in musculoskeletal modelling, focusing on muscular parameter tuning.

Musculoskeletal modelling allows estimating physical quantities that can be difficult to measure (for instance muscle forces and joint reaction forces) or even studying what-if scenarios. A major challenge in this field is to adjust model parameters reliably, namely geometric parameters, segment inertial parameters and muscle parameters. Geometric parameters can be determined by scaling procedures (from generic models [START_REF] Lund | Scaling of musculoskeletal models from static and dynamic trials[END_REF]), optimization-based procedures (contact surfaces best-fit [START_REF] Klein Horsman | Morphological muscle and joint parameters for musculoskeletal modelling of the lower extremity[END_REF][START_REF] Bartels | Computed tomographybased joint locations affect calculation of joint moments during gait when compared to scaling approaches[END_REF]) or by functional movement analysis [START_REF] Poncery | Effects of realistic sheep elbow kinematics in inverse dynamic simulation[END_REF][START_REF] Kaashoek | Orientation and location of the finite helical axis of the equine forelimb joints[END_REF][START_REF] Reinbolt | Determination of patient-specific multi-joint kinematic models through twolevel optimization[END_REF].

There exist several methods in the literature either to experimentally estimate [START_REF] Amit | Segmental inertial properties in dogs determined by magnetic resonance imaging[END_REF][START_REF] Davidson | Estimating subjectspecific body segment parameters using a 3-dimensional modeller program[END_REF][START_REF] Jensen | Estimation of the biomechanical properties of three body types using a photogrammetric method[END_REF] or to scale inertial parameters from anatomical datasets [START_REF] Lund | Scaling of musculoskeletal models from static and dynamic trials[END_REF][START_REF] Pai | Muscle mass in musculoskeletal models[END_REF]. Muscle parameters are typically scaled from generic models [START_REF] Garner | Musculoskeletal model of the upper limb based on the visible human male dataset[END_REF][START_REF] Winby | Evaluation of different analytical methods for subject-specific scaling of musculotendon parameters[END_REF][START_REF] Heinen | Muscle-tendon unit scaling methods of Hill-type musculoskeletal models: An overview[END_REF] or estimated by functional approaches. Functional approaches require isometric trials using isokinetic ergometers or experimental ones [START_REF] Muller | Non-invasive techniques for musculoskeletal model calibration[END_REF][START_REF] Hasson | Effects of age on mechanical properties of dorsiflexor and plantarflexor muscles[END_REF][START_REF] Garner | Estimation of musculotendon properties in the human upper limb[END_REF], which can be expensive, prone to modeling and experimental errors and difficult to apply when dealing with animals. Modenese et al. [START_REF] Modenese | Estimation of musculotendon parameters for scaled and subject specific musculoskeletal models using an optimization technique[END_REF] proposed a numerical method for estimating the optimal fiber length and tendons slack length of the muscle-tendon units by optimizing the operating range of the muscles simultaneously. In that approach, muscle contraction dynamics are not required to be solved, making the method fast to compute. However, in this approach, each muscle is solved independently, hindering the possibility to solve the whole optimization problem as a multivariate one (pennation angle, tendon slack length, optimal fiber length, maximal isometric force).

The effect of the uncertainty of musculoskeletal parameters has been evaluated by means of uncertainty propagation analysis [START_REF] Muller | Uncertainty propagation in multibody human model dynamics[END_REF][START_REF] Myers | A probabilistic approach to quantify the impact of uncertainty propagation in musculoskeletal simulations[END_REF] and sensitivity analysis [START_REF] Charles | Muscle moment arms and sensitivity analysis of a mouse hindlimb musculoskeletal model[END_REF][START_REF] Martelli | Sensitivity of a subject-specific musculoskeletal model to the uncertainties on the joint axes location[END_REF][START_REF] El Habachi | Global sensitivity analysis of the joint kinematics during gait to the parameters of a lower limb multi-body model[END_REF][START_REF] Ackland | Sensitivity of model predictions of muscle function to changes in moment arms and muscle-tendon properties: A monte-carlo analysis[END_REF]. These studies revel a high influence of the force-generating parameters (FGPs) in muscle force prediction (MFP). However, these parameters (pennation angle, tendon slack length, optimal fiber length, maximal isometric force) are difficult to measure or estimate [START_REF] Blemker | Image-based musculoskeletal modeling: Applications, advances, and future opportunities[END_REF][START_REF] Modenese | Estimation of musculotendon parameters for scaled and subject specific musculoskeletal models using an optimization technique[END_REF]; therefore, the use of numerical methods could be further explored as an option to adjust them.

Using conventional optimization methods to adjust musculoskeletal models may become extremely time consuming due to the large number of optimization variables together with the complexity of the MFP process (nonlinearities). Additionally, conventional optimization methods typically vary one parameter at a time, thus the interdependence of variables is not considered. Multivariate statistical approaches, such as Design of Experiments (DoE), offer means for understanding the contribution of individual factors of a process to determine the optimal operating conditions at low computational cost. This methodology consists in fitting a multidimensional surface to the response variables through sequential variations of the design variables over a specific region of interest. The parameters defining the response surface can be determined by a least-squares regression. This surface can then be used to determine the optimum levels of the design variables regarding the response variables. DoE and response surface methodologies have been used in biomechanics [START_REF] Lin | Response Surface Optimization for Joint Contact Model Evaluation[END_REF][START_REF] Nenzi | Application of taguchi's design of experiments to the study of biomechanical systems[END_REF] but, to the knowledge of the authors, it has not been explored as a possibility to adjust musculoskeletal models.

Consequently, the focus of this paper is on the adjustment of the FGPs of the muscles using a multivariate statistical methodology based on the DoE approach. Two algorithms are proposed in this work: one for screening the most influencing parameters, and a second aimed at creating the response surface and determining the optimum levels of the design variables.

In the next section, the methodology to adjust FPGs is detailed. This methodology is applied to a musculoskeletal model of a sheep forelimb. The results are presented in Section 3 and discussed in Section 4.

Methods

The methodology proposed in this paper to adjust FGPs of the muscles is depicted in Figure 1. The methodology is based on three steps. The first step consists in screening the parameters by means of sensitivity analysis to identify those having the greatest impact on the performance of a given MFP. The performance of a simulation, as explained below, is defined in function of the dynamic residuals (reserve actuators). The second step consists in constructing a response surface by means of the DoE approach. This surface represents the response of the simulation in terms of dynamic residuals to the variation of the model FGPs. The third step consists on the FGPs adjustment, looking for the minimum value of the response surface. This corresponds to find the values of the FGPs that minimize the dynamic residuals. In the following sections, the performance metric chosen to evaluate a MFP is presented, and then the three steps of the adjustment methodology are detailed.

MFP performance metric

For a given MFP process, let τ j (t) be the net joint torque of the j-th joint (with j = 1 : N joints). Due to dynamic inconsistencies, the model would not be able to follow the desired kinematics with muscle actuators alone at a given time instant t. In order to allow the simulation to run, it is a common practice (which is the case of OpenSim, for example) to include additional actuators at each joint of the model R j to reach the net joint torque.

These are non-physical actuators that absorb dynamics residuals of the simulation. These actuators are added to each joint to reach the joint net torque:

τ j (t) = R j + N muscles i=1 F 0,i r ij (t) a i (t) f (l i (t)) g(v i (t)) cos(φ i (t)) ∀j ∈ [1; N joints] (1)
where F 0,i is the maximal isometric force of the i-th muscle (which is proportional to the physiological cross sectional area), r ij is the moment arm of the i-th muscle about the j-th joint, a i (t) is the activation level (0 to 100%) of the i-th muscle at the time instant t, f (l i (t))

is the force-length related coefficient, g(v i (t)) is the force-velocity related coefficient and φ i is the pennation angle.

For each time instant of the simulation, these residuals R j should be null if the MFP problem were perfectly solved. In consequence, it is beneficial to keep these values R j at minimum levels. For each time instant t, the sum of the squares of reserve actuators of all joints of the model res (t, P ) has been chosen as the metric to evaluate the performance of an MFP:

res (t, P ) = N joints j=1 R 2 j ( 2 
)
where P is the vector containing all the FGPs of the model. This metric is used in this work to:

1. define the MFP sensitivity regarding variations in FGPs of the muscles, 2. define the cost function used for the adjustment of the model.

Parameter screening

As it would be very time-consuming to adjust the complete set of FGPs of a musculoskeletal model, we propose first, by means of a sensitivity analysis, to screen the parameters having the greatest influence on the MFP performance. This process consists on quantifying the effects of varying each parameter value on the simulation performance. This performance is defined by means of the metric res (t, P ), as explained in the previous section. This process is summarized in Algorithm 1. for each parameter

P k (with k = 1 : d) of M i do 3:
for each increment step do 4:

Increment the value of P k

5:

Estimate muscle forces for time t = t start : t end 6:

Get joint reserve values for time t = t start : t end 7:

for

(t = t start ; t < t end ; t = t + t step ) do 8:
Compute the metric value res (t, P ) (Eq. 2)

9:

end for Compute the numerical derivative ∂ res(t,P )

∂P k (Eq. 3)

13:

end for 14:

Compute sensitivity index S k (Eq. 4)

15:

Found the 20% of parameters that produce, at least, 80% of effects 16:

end for 17: end for

The number of sensitivities to calculate is equal to the number of parameters to consider per muscle times the number of muscles in the model. Each sensitivity calculation requires estimating as many muscle force solutions as the number of points considered for the numerical differentiation. From a numerical point of view, using four points allows to smooth local variations, improving the general estimate of the derivative value. In order to avoid this, we used a four-point strategy (see Figure 2). The value of the k-th parameter of the model is moved around its initial value P * k four times:

P * k -2q k , P * k -q k , P * k + q k and P * k + 2q k .
The value of 2q k corresponds to the variation coefficient and it has been chosen equal to 10%, as in other works [START_REF] Xiao | Sensitivity of estimated muscle force in forward simulation of normal walking[END_REF][START_REF] Groote | Sensitivity of dynamic simulations of gait and dynamometer experiments to hill muscle model parameters of knee flexors and extensors[END_REF].

From the results of the four simulations for each time instant t, the sensitivity of each parameter P k regarding the metric res (t, P ) can be estimated numerically using the fourpoints central difference approximation:

∂ res (t, P ) ∂P k ≈ -1 12q k (8 res (t, P * k -q k ) -8 res (t, P * k + q k ) + res (t, P * k + 2q k ) -res (t, P * k -2q k )) (3) 
Figure 2: Representation of the computation of ∂ res(t,P ) /∂P k . At the left-hand side it is represented the evolution of the metric value res (t, P ) in function of the time t and the parameter value P k . At the righthand side, the sensitivity of res (t, P ) regarding variations on the P k around a given value P * k is approximated by a four-point numerical derivative. The variation coefficient is 2q k .

As Eq. 3 is formulated for a given instant t, a set of sensitivities is obtained when considering all time instants from t start to t end of the simulation. From these values, a global sensitivity index is defined for the k-th parameter as follows:

S k = max ∂ res (t, P ) ∂P k -min ∂ res (t, P ) ∂P k , ∀t ∈ [t start ; t end ] (4) 
In order to determine the set of FGPs having the greatest sensitivity, a Pareto heuristic (also known as the 80/20 rule) can be used. This heuristic, which is used in decision making, suggests that 20% of parameters produce 80% of the effects. In our case, these effects correspond to the cumulative sum of sensitivity factors. These FGPs are those that are going to be adjusted for reducing the dynamic inconsistencies of the computation, as explained in the next section.

Response surface regression and model optimization

The set of FGPs identified as significant after screening are those chosen for optimization.

The cumulative sum of squared reserve actuators was chosen as the cost function to be minimized: Compute the metric value res (t, P ) (Eq. 2)

Given P = [P
9:
end for 10:

Compute the sum of the squares of reserves: y[run] = C res (P ) (Eq. 2.3 )

11:
Compute the surface response coefficient vector b (Eq. 9)

12:

Find x min = [x 0 , ... , x d ] that minimizes y(x 0 , ... , x d )

13:

Evaluate the predicted results by means of the SCB(ŷ) (Eqs. 13 and 14)

14:

Validate the predicted results 15: end for In the response surface methodology, a typically employed model is a second-order hypersurface y(x 0 , ... , x d ) ∈ R d :

y(x 0 , ... , x d ) = d k=0 d j=k x k x j b kj (6) 
where d corresponds to the number of FGPs chosen for the experiment after screening, b kj are the surface coefficients, x 0 = 1 and x k is the normalized value of the parameter P k (with

k = 1 : d).
The number of terms in Eq. 6 is defined by both the order of the surface (2 in our case)

and the dimension d of the space, and it is 

n = C(d + 2, 2) = (d + 2)!/(2!d!).
      y 1 . . . y m       =       1 x 11 . . . x 1n . . . . . . . . . . . . 1 x m1 . . . x mn             b 0 . . . b n       (7) 
In matrix form, Eq. 7 becomes:

y = Xb ( 8 
)
where y is the response vector (m × 1), the matrix X (m × n) is called matrix of independent variables and it is obtained from the design matrix and the vector b (n × 1) contains the coefficients b kj of the response surface. As X is in general a non-square matrix (m > n), one can compute an equivalent vector b that best estimate of the surface response coefficients using the pseudo-inverse method as follows:

b = (X T X) -1 X T y (9) 
From the calculated surface, a local minimum y min = C pre res can be predicted, which is to search for a set of normalized parameter values x min = [x 0 , ... , x d ] that minimizes the response value y(x 0 , ... , x d ). This is a nonlinear optimization that can be soled by using, for example, the generalized reduced gradient method [START_REF] Lasdon | Nonlinear optimization using the generalized reduced gradient method[END_REF].

In order to asses the quality (or inaccuracy) of the fit of the surface regarding the experimental values can be assessed by means of the root mean square (RMS) of the residues (Eq. 10). These residues are calculated as the difference between the experimental results (y) and the corresponding points on the response surface (X b) :

E = RMS(y -X b) (10) 
The E value can also be used to calculate the statistical confidence boundary (SCB) (or error bar) of a predicted value ŷ. This is based on classical uncertainty propagation method as explained as follows (for more details refer to [START_REF] Bachmann | Aide in decision-making: contribution to uncertainties in three-dimensional measurement[END_REF]).

In order to calculate the SCB value at a given point, it is required to start calculating the covariance matrix of b by the following expression:

cov( b) = (X T X) -1 E 2 (11) 
The deviation of the response surface at a given point ŷ can be evaluated by calculating the mean square error (MSE):

MSE(ŷ) = J cov( b) J T ( 12 
)
where J is the Jacobian of the function y = f (x 0 , ... , x d ) (Eq. 6) with respect to the b kj coefficients. In other words, J is the vector of the partial derivatives ∂y ∂b kj . Using equation 12, the SCB of the surface at a given point ŷ can be calculated:

SCB(ŷ) = ŷ ± k n MSE(ŷ) ( 13 
)
where k n is calculated using a normal law distribution for a given two-sided confidence level.

Even if the response variable C res is based on a squared value (Eqs. 2.3 and 2), the lower bound of the SBC of a given predicted value ŷ could be negative. In this case, the SBC value must be corrected using a folded normal distribution, as follows:

SCB(ŷ) = 0 + k r MSE(ŷ) ( 14 
)
where k r is calculated using the folded normal distribution for a given one-sided confidence level.

Case study: adjustment of a sheep forelimb model

In order to illustrate the proposed approach, a sheep forelimb musculoskeletal model was used. The musculoskeletal model was composed by 4 segments and 16 hill-type muscletendon units (see Figure 3). The external geometry of the bones was obtained by 3D optical scanning. The extensor and flexor groups of the digital joints were treated each one as a whole unit as no degree of freedom at these joints were considered. Elbow and carpal joints were modeled as hinge joints and shoulder joint as a ball-and-socket joint. Inertial parameters were estimated using a CAD software. A geometrical model of the segments was created by considering all soft tissue (see Figure 4). The model and the gait trial data used in this case study are available at https://simtk.org/projects/sheepforelimb. The considerations made for carrying out this study were:

• Bones were considered as rigid bodies,

• Segments' inertial properties were considered time-independent,

• Biological joints were modelled as frictionless joints,

• The initial values of the FGPs were considered near to a locally optimal solution. The open source tool OpenSim [START_REF] Delp | Opensim: Open-source software to create and analyze dynamic simulations of movement[END_REF][START_REF] Seth | Opensim: Simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement[END_REF] was used to perform MFP of the gait cycle. For these computations, the static optimization algorithm was used. The algorithms proposed in this paper were implemented in Jython and the computations were automatically performed through the OpenSim API on a standard laptop (64-bit i7 processor @ 2.7GHz, 16 GB RAM, running Microsoft Windows 7). For the screening process, four FGPs per muscle (those assumed to be specific to each actuator) were considered, namely maximal isometric force, optimal fiber length, tendon slack length and pennation angle. For the numerical derivative computations, a variation coefficient of 2q k = 0.1P * k , ∀k was chosen. This is a commonly used value in biomechanics [START_REF] Xiao | Sensitivity of estimated muscle force in forward simulation of normal walking[END_REF][START_REF] Groote | Sensitivity of dynamic simulations of gait and dynamometer experiments to hill muscle model parameters of knee flexors and extensors[END_REF]. According to Algorithm 1, that implies running 16×4×4 computations to calculate each sensitivity index. Muscle forces were computed before and after FGPs adjustment. Reserve actuator values were compared with the net joint torques for each time instant from the results of the two computations.

Results

Initial simulation

When computing muscle forces with the initial set of FGP values, a cumulative sum of squared reserve actuators of C ini res = 21.385e-3 (BW m) 2 was obtained. This value was normalized according to the body weight (BW) of the specimen. Figure 5 shows the behaviour of these reserves during the whole computation at the shoulder, elbow and wrist regarding the net torque of each joint. At the shoulder, the peak reserve actuator was 9% of the peak joint torque. At the elbow, the peak reserve actuator was 51% of the peak joint torque.

And at the wrist, the peak reserve actuator was 100% of the peak joint torque. Following modelling good practices [START_REF] Hicks | Is My Model Good Enough? Best Practices for Verification and Validation of Musculoskeletal Models and Simulations of Movement[END_REF], these values must be less than 10%, which indicates that the model must be adjusted. influencing model parameters can be identified. We chose a set of 9 FGPs, that corresponds to 14% of the whole set. This set generates 97% of the sum of the sensitivity factors. As it can be noticed, among the whole set of muscle-tendon units of the model, three have a high influence on the dynamic consistency of the simulation: the extensor group of the digital joints (EXT), the biceps brachii (BCB) and the brachialis (BRC). Among the four FGPs considered, muscle pennation angles had less influence.

Surface regression

A response surface was calculated in the neighborhood of the initial values of these FGPs.

The computation of this response surface required simulating 275 (2 (9-1)+2×9+1 ) gait trials, which took approximately 48 minutes. The obtained surface coefficients are presented in Table 1. The convexity of a second-order surface depends on the sign of the second-order coefficients. As it can seen, all the second order coefficients are positive, which indicates that the obtained surface is convex. 

Validation of the results

The obtained surface predicted an optimal design solution at C pre res = 0 (BW m) 2 with a statistical confidence boundary of 0 ≤ SCB(C pre res ) < 4.763e-3 (BW m) 2 . The confidence boundary was calculated considering a folded normal distribution (Eq. 14) and it is depicted in Figure 7. From both the initial model and the adjusted one, we computed the radiohumeral reaction force (Figure 8). The magnitude of this force in both axial and anterior-posterior directions shows differences before and after the FGPs adjustment. These differences are more significant especially during the stance phase. 

Discussion and conclusions

In response to the multiple challenges in estimating model parameters in musculoskeletal modelling, this paper proposes a multivariate statistical strategy to adjust FGPs. The methodology follows a DoE-based approach to generate a response surface, which is used to determine optimal levels of the FGPs. In contrast to conventional optimization methods, DoE-based methodologies offer a means to determine the optimal operating conditions of a process at low computational cost while considering the interdependence of the factors.

We found that the use of response surfaces in musculoskeletal dynamics computations is an effective way to optimally adjust model FGPs, making the model more dynamically consistent. In agreement with the findings of Modenese et al. [START_REF] Modenese | Investigation of the dependence of joint contact forces on musculotendon parameters using a codified workflow for image-based modelling[END_REF], the results of our computation suggest that the reserve actuators have an impact on the predicted joint reaction forces. Such an impact reached, in our case study, magnitudes of up to 1.7 BW. As reserve actuators are applied directly over the joint (as a pure torque) without a moment arm, they do not generate reaction forces at the joints. In consequence, if a joint reaction analysis is performed with high reserve actuator values the calculated reaction forces are underestimated.

Depending on the cost function used to generate the response surface, this methodology can be used to adjust geometrical, inertial or muscle parameters. The focus of this paper is on the adjustment of FGPs to reduce joint reserve actuators. However, its application for a geometrical or a inertial adjustment is straightforward.

It should be stressed out that the proposed method does not ensure the robustness of the model, but it does help in the adjustment of the parameters during the model development process. Furthermore, a model adjustment carried out following this approach is valid for the used experimental data and it may not be for another dataset.

This work has several limitations. First, as in the case of most of optimization techniques, the response surface methodology is very sensitive to the initial values of the optimization variables. Thus, the method proposed in this study should be employed using a realistic set of initial FGP values. During the optimization, keeping parameter values in physical levels depends on the chosen variation coefficient. Having small variation levels prevents the optimization process to allocate a non-physical value to a given parameter. Second, the proposed methodology could become impractical when the number of parameters to optimize is significant (greater than 15), hence the importance of the parameter screening before the optimization. Future work is in progress to develop a DoE-based strategy that uses several locomotion trials for the adjustment of the FGPs.

This study showed that the use of multivariate statistical strategy seems to be a good alternative to optimally adjust FGPs. This contribution constitutes a step towards a more robust methodology in musculoskeletal modelling, methodology that can be applied both to human and non-human studies.

Figure 1 :

 1 Figure1: Flow chart of the main steps of the proposed methodology to adjust musculoskeletal models. The methodology is based on three steps. The parameter screening step consists in computing the sensibility index S k of the parameter P k regarding the metric res (t, P ) (dynamic residuals). The response surface regression consist in fitting a multidimensional surface to the response variables by sequential variations of the influencing parameters. The model optimization step consists in finding the parameter values that minimizes the response variable (dynamic residuals).

Algorithm 1

 1 Parameter screening Require: Musculoskeletal model, kinematic data, external forces Ensure: Parameter sensibility 1: for each muscle M i (with i = 1 : N muscles) of the model do 2:

  Hence, in order to determine the n coefficients that define the surface, it is necessary to run at least n experiments.According to DoE methodology, more than n experiments are usually executed. For the execution of these experiments, the values of the design variables (factor levels) are systematically moved around an initial value. These initial values, which are assumed to be near to a locally optimal solution, define the central point of the experiment. The variation of the values of these parameters around the central point is defined by the design type. For fitting a second-order model, a central composite design (CCD) type is a popular choice. This type of design defines the same number of levels for the different factors. For each factor, five levels are considered. Factor levels are normalized in such a way that their inputs were coded as +1, +1/ √ d, 0, -1/ √ d and -1. A CCD can be constructed using a full or a fractional factorial design. Choosing a full or a fractional factorial design type depends on the number of factors to consider. This choice defines the number of experiments to perform and the fidelity (or the uncertainty) of the empirical model regarding the represented process (see [7] for more details). For a full factorial design, which is recommended when d ≤ 4, the number of required runs is m = 2 d + 2d + 1. For d > 4, a half factorial design can be used (number of runs: m = 2 (d-1) + 2d + 1). According to the design type and the number of factors, the design matrix can be obtained. This matrix provides a program for the m experiments by defining the normalized values of the x k factors (with k = 1 : d) for each run. This matrix can be obtained, for example, using the Matlab (Mathworks Inc.) function ccdesign. From the execution of the m experiments, a set of m values of the response variable are obtained:

Figure 3 :

 3 Figure 3: Musculoskeletal model of sheep forelimb used as case study. The musculoskeletal model was composed by 4 segments and 16 hill-type muscle-tendon units (represented as red lines) Anconaeus (ACN), Biceps brachii (BCB), Brachialis (BRC), Caput mediale tricipitis brachii (MET), Caput laterale tricipitis brachii (LAT), Caput longum tricipitis brachii (LOT), Coracobrachialis (CCB), Deltoideus (DET), Extensor group (EXT), Flexor group (FLE), Infraspinatus (ISP), Subscapularis (SUB), Supraspinatus (SUP), Tensor fascie antebranchii (TFA), Teres major (TMA), Teres minor (TMI).

Figure 4 :

 4 Figure 4: Computation of the inertial parameters (inertia matrix, mass and center of gravity) of the model's segments using a CAD software. For each segment, soft tissues were considered.

Figure 5 :

 5 Figure 5: Evolution of the joint net torque (continuous line) for the three joints during the simulation in comparison with the reserve actuators required to run the simulation with the initial model (dashed line) and with the adjusted model (dotted line): (a) for the shoulder joint, (b) for the elbow joint, (c) for the wrist joint.

3. 2 .

 2 Parameter screening For screening purposes, a total of 256 MFP were executed, which took approximately 40 minutes. These results are summarized in Figure 6 by means of a Pareto chart. This chart represents the sensitivity factors sorted by magnitude. The curve over the bars represents the percentage of the cumulative sum of sensitivity factors. By means of this chart, the most

Figure 6 :

 6 Figure 6: Pareto chart of the sensitivity analysis. FGPs are represented in the horizontal axis sorted its own sensitivity index (vertical left-hand axis). The curve over the bars represents the percentage of the cumulative sum of sensitivity factors (vertical right-hand axis).

Figure 7 :

 7 Figure 7: Folded normal distribution used to calculate the corrected statistical confidence boundary of the predicted value C pre res for a confidence level of 95%.

Figure 8 :

 8 Figure 8: Radiohumeral reaction forces predicted from the sheep forelimb musculoskeletal model before (continuous line) and after FGPs adjustment (dashed line). Force values were normalized according to the body weight (BW) of the specimen. (a) axial force and (b) anterior-posterior force

  Modify the P k value ∀k ∈ [1 : d] according to the experiment design Estimate muscle forces for time t = t start : t end Get joint reserve values for time t = t start : t end 7: for (t = t start ; t < t end ; t = t + t step ) do

	Algorithm 2 Parameter adjustment via response surface regression	
	Require: Musculoskeletal model, kinematic data,	
	Require: external forces, set of influencing FGPs	
	Ensure: Set of optimal FGP values	
	t end 1: d = get the number of influencing FGPs (from §2.2)	
	2: Create the design matrix	res (t, P )	(5)
	3: for run = 1 : m do	t=tstart	
	4: 5:	with t = t + t step	
	6:		
	where t step is the time frame of the experimental data. 8:	

1 , P 2 , ..., P d ] minimize C res (P ) =

The response surface methodology was used to perform this optimization. This methodology consists in generating an empirical mathematical model that relates some design variables with a response variable. A hypersurface is fitted to the response variable on a region of interest by a systematic variation of the design variables. In our case, the design variables (or factors) correspond to the model FGPs P = [P 1 , P 2 , ..., P d ] and the response variable to the dynamic residuals C res . This surface is used to find the design variable values (FGPs) that minimize the response variable (dynamic residuals). The definition of the response surface and the optimization process are summarized in Algorithm 2 and explained below.

Table 1 :

 1 Set of 55 b kj coefficients of the response surface calculated from the results of the experiments by least-squares fitting.

	k b 0k	b 1k	b 2k	b 3k	b 4k	b 5k	b 6k	b 7k	b 8k	b 9k
	0 5.24									
	1 -7.72 3.72								
	2 -6.85 9.48 3.72							
	3 -11.01 7.56 6.64 2.70						
	4 -7.48 4.95 4.35 8.16 2.90					
	5 -6.32 4.16 3.66 6.85 4.29 2.48				
	6 -2.81 1.90 1.66 1.32 2.09 1.75 1.53			
	7 -0.67 0.47 0.41 0.83 -0.58 -0.49 0.21 1.36		
	8 -0.67 0.50 0.44 -0.74 0.59 0.49 -0.14 0.06 1.36	
	9 -0.37 0.01 0.01 0.36 0.23 0.19 0.09 0.03 0.03 1.38

Table 2 :

 2 Set of initial and adjusted values of the 9 FGPs selected after screening.

	Variable	Unit Initial values Adjusted values
	Opt. Fiber Len. EXT m	0.0900	0.1116
	TendonLen EXT	m	0.1700	0.1508
	Opt. Fiber Len. BRC m	0.0680	0.0843
	Opt. Fiber Len. BCB m	0.0680	0.0843
	Tendon Len BCB	m	0.0910	0.1128
	Tendon Len BRC	m	0.0340	0.0421
	Max Force BCB	N	488.1200	509.1856
	Max Force BRC	N	361.5700	375.1500
	Max Force EXT	N	1193.1820	1201.3149
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