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A multivariate statistical strategy to adjust musculoskeletal models1

Santiago Arroyave-Tobóna,∗, Guillaume Raoa, Jean-Marc Linaresa2

aAix Marseille Univ, CNRS, ISM, Marseille, France3

Abstract4

In musculoskeletal modelling, adjusting model parameters is challenging. This paper5

proposes a multivariate statistical methodology to adjust muscle force-generating parame-6

ters optimally. Dynamic residuals are minimized as muscle force-generating parameters are7

varied (maximal isometric force, optimal fiber length, tendon slack length and pennation an-8

gle). First, a sensitivity and a Pareto analyses are carried out in order to sort out and screen9

the set of parameters having the greatest influence regarding the dynamic residuals. These10

parameters are then used to create a response surface following a Design of Experiments11

(DoE) approach. Finally, this surface is used to determine the optimum levels of the design12

variables (muscle force-generating parameters). The proposed methodology is illustrated13

by the adjustment of a three-dimensional musculoskeletal model of a sheep forelimb. After14

adjustment, the reserve actuator values of the elbow and wrist joints were reduced, on aver-15

age, by 18%, and 16%, respectively. These results demonstrate that the use of multivariate16

statistical strategies is an effective way to adjust model parameters optimally while reducing17

dynamic inconsistencies. This study constitutes a step towards a more robust methodology18

in musculoskeletal modelling, focusing on muscular parameter tuning.19

Keywords: Musculoskeletal modelling, Force-generating parameters, Optimization,20

Multivariate, Response surface21
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Musculoskeletal modelling allows estimating physical quantities that can be difficult to23

measure (for instance muscle forces and joint reaction forces) or even studying what-if scenar-24

ios. A major challenge in this field is to adjust model parameters reliably, namely geometric25

parameters, segment inertial parameters and muscle parameters. Geometric parameters can26

be determined by scaling procedures (from generic models [23]), optimization-based pro-27

cedures (contact surfaces best-fit [20, 2]) or by functional movement analysis [31, 19, 32].28

There exist several methods in the literature either to experimentally estimate [1, 9, 18] or29

to scale inertial parameters from anatomical datasets [23, 30]. Muscle parameters are typ-30

ically scaled from generic models [12, 34, 16] or estimated by functional approaches. Func-31

tional approaches require isometric trials using isokinetic ergometers or experimental ones32

[27, 15, 13], which can be expensive, prone to modeling and experimental errors and difficult33

to apply when dealing with animals. Modenese et al. [25] proposed a numerical method34

for estimating the optimal fiber length and tendons slack length of the muscle-tendon units35

by optimizing the operating range of the muscles simultaneously. In that approach, muscle36

contraction dynamics are not required to be solved, making the method fast to compute.37

However, in this approach, each muscle is solved independently, hindering the possibility to38

solve the whole optimization problem as a multivariate one (pennation angle, tendon slack39

length, optimal fiber length, maximal isometric force).40

The effect of the uncertainty of musculoskeletal parameters has been evaluated by means41

of uncertainty propagation analysis [28, 29] and sensitivity analysis [4, 24, 11, 5]. These42

studies revel a high influence of the force-generating parameters (FGPs) in muscle force43

prediction (MFP). However, these parameters (pennation angle, tendon slack length, optimal44

fiber length, maximal isometric force) are difficult to measure or estimate [3, 25]; therefore,45

the use of numerical methods could be further explored as an option to adjust them.46

Using conventional optimization methods to adjust musculoskeletal models may become47

extremely time consuming due to the large number of optimization variables together with48
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the complexity of the MFP process (nonlinearities). Additionally, conventional optimization49

methods typically vary one parameter at a time, thus the interdependence of variables is not50

considered. Multivariate statistical approaches, such as Design of Experiments (DoE), offer51

means for understanding the contribution of individual factors of a process to determine52

the optimal operating conditions at low computational cost. This methodology consists in53

fitting a multidimensional surface to the response variables through sequential variations of54

the design variables over a specific region of interest. The parameters defining the response55

surface can be determined by a least-squares regression. This surface can then be used56

to determine the optimum levels of the design variables regarding the response variables.57

DoE and response surface methodologies have been used in biomechanics [22, 8] but, to the58

knowledge of the authors, it has not been explored as a possibility to adjust musculoskeletal59

models.60

Consequently, the focus of this paper is on the adjustment of the FGPs of the muscles61

using a multivariate statistical methodology based on the DoE approach. Two algorithms are62

proposed in this work: one for screening the most influencing parameters, and a second aimed63

at creating the response surface and determining the optimum levels of the design variables.64

In the next section, the methodology to adjust FPGs is detailed. This methodology is65

applied to a musculoskeletal model of a sheep forelimb. The results are presented in Section66

3 and discussed in Section 4.67

2. Methods68

The methodology proposed in this paper to adjust FGPs of the muscles is depicted in69

Figure 1. The methodology is based on three steps. The first step consists in screening the70

parameters by means of sensitivity analysis to identify those having the greatest impact on71

the performance of a given MFP. The performance of a simulation, as explained below, is72

defined in function of the dynamic residuals (reserve actuators). The second step consists73
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Figure 1: Flow chart of the main steps of the proposed methodology to adjust musculoskeletal models. The
methodology is based on three steps. The parameter screening step consists in computing the sensibility
index Sk of the parameter Pk regarding the metric εres(t,P ) (dynamic residuals). The response surface
regression consist in fitting a multidimensional surface to the response variables by sequential variations
of the influencing parameters. The model optimization step consists in finding the parameter values that
minimizes the response variable (dynamic residuals).

in constructing a response surface by means of the DoE approach. This surface represents74

the response of the simulation in terms of dynamic residuals to the variation of the model75

FGPs. The third step consists on the FGPs adjustment, looking for the minimum value of76

the response surface. This corresponds to find the values of the FGPs that minimize the77

dynamic residuals. In the following sections, the performance metric chosen to evaluate a78

MFP is presented, and then the three steps of the adjustment methodology are detailed.79

2.1. MFP performance metric80

For a given MFP process, let τj(t) be the net joint torque of the j-th joint (with j =81

1 : N joints). Due to dynamic inconsistencies, the model would not be able to follow the82

desired kinematics with muscle actuators alone at a given time instant t. In order to allow83

the simulation to run, it is a common practice (which is the case of OpenSim, for example)84

to include additional actuators at each joint of the model Rj to reach the net joint torque.85

These are non-physical actuators that absorb dynamics residuals of the simulation. These86

actuators are added to each joint to reach the joint net torque:87

τj(t) = Rj +
N muscles∑

i=1

F0,i rij(t) ai(t) f(li(t)) g(vi(t)) cos(φi(t)) ∀j ∈ [1;N joints] (1)

where F0,i is the maximal isometric force of the i-th muscle (which is proportional to the88

physiological cross sectional area), rij is the moment arm of the i-th muscle about the j-th89

joint, ai(t) is the activation level (0 to 100%) of the i-th muscle at the time instant t, f(li(t))90

is the force-length related coefficient, g(vi(t)) is the force-velocity related coefficient and φi91
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is the pennation angle.92

For each time instant of the simulation, these residuals Rj should be null if the MFP93

problem were perfectly solved. In consequence, it is beneficial to keep these values Rj at94

minimum levels. For each time instant t, the sum of the squares of reserve actuators of all95

joints of the model εres(t,P ) has been chosen as the metric to evaluate the performance of96

an MFP:97

εres(t,P ) =

N joints∑
j=1

R2
j (2)

where P is the vector containing all the FGPs of the model. This metric is used in this98

work to:99

1. define the MFP sensitivity regarding variations in FGPs of the muscles,100

2. define the cost function used for the adjustment of the model.101

2.2. Parameter screening102

As it would be very time-consuming to adjust the complete set of FGPs of a musculoskele-103

tal model, we propose first, by means of a sensitivity analysis, to screen the parameters hav-104

ing the greatest influence on the MFP performance. This process consists on quantifying the105

effects of varying each parameter value on the simulation performance. This performance is106

defined by means of the metric εres(t,P ), as explained in the previous section. This process107

is summarized in Algorithm 1.108
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Algorithm 1 Parameter screening

Require: Musculoskeletal model, kinematic data, external forces
Ensure: Parameter sensibility

1: for each muscle Mi (with i = 1 : N muscles) of the model do
2: for each parameter Pk (with k = 1 : d) of Mi do
3: for each increment step do
4: Increment the value of Pk
5: Estimate muscle forces for time t = tstart : tend
6: Get joint reserve values for time t = tstart : tend
7: for (t = tstart; t < tend; t = t+ tstep) do
8: Compute the metric value εres(t,P ) (Eq. 2)
9: end for

10: end for
11: for (t = tstart; t < tend; t = t+ tstep) do

12: Compute the numerical derivative ∂εres(t,P )
∂Pk

(Eq. 3)
13: end for
14: Compute sensitivity index Sk (Eq. 4)
15: Found the 20% of parameters that produce, at least, 80% of effects
16: end for
17: end for

The number of sensitivities to calculate is equal to the number of parameters to consider109

per muscle times the number of muscles in the model. Each sensitivity calculation requires110

estimating as many muscle force solutions as the number of points considered for the numer-111

ical differentiation. From a numerical point of view, using four points allows to smooth local112

variations, improving the general estimate of the derivative value. In order to avoid this, we113

used a four-point strategy (see Figure 2). The value of the k-th parameter of the model is114

moved around its initial value P ∗
k four times: P ∗

k − 2qk, P
∗
k − qk, P ∗

k + qk and P ∗
k + 2qk. The115

value of 2qk corresponds to the variation coefficient and it has been chosen equal to 10%, as116

in other works [35, 14].117

From the results of the four simulations for each time instant t, the sensitivity of each118

parameter Pk regarding the metric εres(t,P ) can be estimated numerically using the four-119

points central difference approximation:120
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∂εres(t,P )

∂Pk
≈ − 1

12qk
(8εres(t, P

∗
k − qk)− 8εres(t, P

∗
k + qk)

+εres(t, P
∗
k + 2qk)− εres(t, P ∗

k − 2qk)) (3)

121

Figure 2: Representation of the computation of ∂εres(t,P )/∂Pk. At the left-hand side it is represented the
evolution of the metric value εres(t,P ) in function of the time t and the parameter value Pk. At the right-
hand side, the sensitivity of εres(t,P ) regarding variations on the Pk around a given value P ∗

k is approximated
by a four-point numerical derivative. The variation coefficient is 2qk.

As Eq. 3 is formulated for a given instant t, a set of sensitivities is obtained when122

considering all time instants from tstart to tend of the simulation. From these values, a global123

sensitivity index is defined for the k-th parameter as follows:124

Sk = max

(
∂εres(t,P )

∂Pk

)
−min

(
∂εres(t,P )

∂Pk

)
, ∀t ∈ [tstart; tend] (4)

In order to determine the set of FGPs having the greatest sensitivity, a Pareto heuristic125

(also known as the 80/20 rule) can be used. This heuristic, which is used in decision126

making, suggests that 20% of parameters produce 80% of the effects. In our case, these127

effects correspond to the cumulative sum of sensitivity factors. These FGPs are those that128

are going to be adjusted for reducing the dynamic inconsistencies of the computation, as129

explained in the next section.130

2.3. Response surface regression and model optimization131

The set of FGPs identified as significant after screening are those chosen for optimization.132

The cumulative sum of squared reserve actuators was chosen as the cost function to be133

minimized:134
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Given P = [P1, P2, ..., Pd]

minimize Cres(P ) =

tend∑
t=tstart

εres(t,P ) (5)

with t = t+ tstep

where tstep is the time frame of the experimental data.135

The response surface methodology was used to perform this optimization. This method-136

ology consists in generating an empirical mathematical model that relates some design vari-137

ables with a response variable. A hypersurface is fitted to the response variable on a region138

of interest by a systematic variation of the design variables. In our case, the design variables139

(or factors) correspond to the model FGPs P = [P1, P2, ..., Pd] and the response variable to140

the dynamic residuals Cres. This surface is used to find the design variable values (FGPs)141

that minimize the response variable (dynamic residuals). The definition of the response142

surface and the optimization process are summarized in Algorithm 2 and explained below.143
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Algorithm 2 Parameter adjustment via response surface regression

Require: Musculoskeletal model, kinematic data,
Require: external forces, set of influencing FGPs
Ensure: Set of optimal FGP values

1: d = get the number of influencing FGPs (from §2.2)
2: Create the design matrix
3: for run = 1 : m do
4: Modify the Pk value ∀k ∈ [1 : d] according to the experiment design
5: Estimate muscle forces for time t = tstart : tend
6: Get joint reserve values for time t = tstart : tend
7: for (t = tstart; t < tend; t = t+ tstep) do
8: Compute the metric value εres(t,P ) (Eq. 2)
9: end for

10: Compute the sum of the squares of reserves: y[run] = Cres(P ) (Eq. 2.3 )
11: Compute the surface response coefficient vector b̂ (Eq. 9)
12: Find xmin = [x0, ... , xd] that minimizes y(x0, ... , xd)
13: Evaluate the predicted results by means of the SCB(ŷ) (Eqs. 13 and 14)
14: Validate the predicted results
15: end for

In the response surface methodology, a typically employed model is a second-order hy-144

persurface y(x0, ... , xd) ∈ Rd:145

y(x0, ... , xd) =
d∑

k=0

d∑
j=k

xkxjbkj (6)

where d corresponds to the number of FGPs chosen for the experiment after screening, bkj146

are the surface coefficients, x0 = 1 and xk is the normalized value of the parameter Pk (with147

k = 1 : d).148

The number of terms in Eq. 6 is defined by both the order of the surface (2 in our case)149

and the dimension d of the space, and it is n = C(d + 2, 2) = (d + 2)!/(2!d!). Hence, in150

order to determine the n coefficients that define the surface, it is necessary to run at least n151

experiments.152

According to DoE methodology, more than n experiments are usually executed. For153

the execution of these experiments, the values of the design variables (factor levels) are154
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systematically moved around an initial value. These initial values, which are assumed to be155

near to a locally optimal solution, define the central point of the experiment. The variation156

of the values of these parameters around the central point is defined by the design type.157

For fitting a second-order model, a central composite design (CCD) type is a popular158

choice. This type of design defines the same number of levels for the different factors. For159

each factor, five levels are considered. Factor levels are normalized in such a way that their160

inputs were coded as +1, +1/
√
d, 0, −1/

√
d and -1. A CCD can be constructed using a full or161

a fractional factorial design. Choosing a full or a fractional factorial design type depends on162

the number of factors to consider. This choice defines the number of experiments to perform163

and the fidelity (or the uncertainty) of the empirical model regarding the represented process164

(see [7] for more details). For a full factorial design, which is recommended when d ≤ 4, the165

number of required runs is m = 2d + 2d + 1. For d > 4, a half factorial design can be used166

(number of runs: m = 2(d−1) + 2d+ 1).167

According to the design type and the number of factors, the design matrix can be ob-168

tained. This matrix provides a program for the m experiments by defining the normalized169

values of the xk factors (with k = 1 : d) for each run. This matrix can be obtained, for170

example, using the Matlab (Mathworks Inc.) function ccdesign. From the execution of the171

m experiments, a set of m values of the response variable are obtained:172


y1
...

ym

 =


1 x11 . . . x1n
...

...
. . .

...

1 xm1 . . . xmn



b0
...

bn

 (7)

In matrix form, Eq. 7 becomes:173

y = Xb (8)
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where y is the response vector (m×1), the matrix X (m×n) is called matrix of independent174

variables and it is obtained from the design matrix and the vector b (n × 1) contains the175

coefficients bkj of the response surface. As X is in general a non-square matrix (m > n), one176

can compute an equivalent vector b̂ that best estimate of the surface response coefficients177

using the pseudo-inverse method as follows:178

b̂ = (XTX)−1XTy (9)

From the calculated surface, a local minimum ymin = Cpre
res can be predicted, which is179

to search for a set of normalized parameter values xmin = [x0, ... , xd] that minimizes the180

response value y(x0, ... , xd). This is a nonlinear optimization that can be soled by using, for181

example, the generalized reduced gradient method [21].182

In order to asses the quality (or inaccuracy) of the fit of the surface regarding the ex-183

perimental values can be assessed by means of the root mean square (RMS) of the residues184

(Eq. 10). These residues are calculated as the difference between the experimental results185

(y) and the corresponding points on the response surface (Xb̂) :186

E = RMS(y −Xb̂) (10)

The E value can also be used to calculate the statistical confidence boundary (SCB) (or187

error bar) of a predicted value ŷ. This is based on classical uncertainty propagation method188

as explained as follows (for more details refer to [6]).189

In order to calculate the SCB value at a given point, it is required to start calculating190

the covariance matrix of b̂ by the following expression:191

cov(b̂) = (XTX)−1E2 (11)
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The deviation of the response surface at a given point ŷ can be evaluated by calculating the192

mean square error (MSE):193

MSE(ŷ) = J cov(b̂) JT (12)

where J is the Jacobian of the function y = f(x0, ... , xd) (Eq. 6) with respect to the bkj194

coefficients. In other words, J is the vector of the partial derivatives ∂y
∂bkj

. Using equation195

12, the SCB of the surface at a given point ŷ can be calculated:196

SCB(ŷ) = ŷ ± kn
√

MSE(ŷ) (13)

where kn is calculated using a normal law distribution for a given two-sided confidence level.197

Even if the response variable Cres is based on a squared value (Eqs. 2.3 and 2), the lower198

bound of the SBC of a given predicted value ŷ could be negative. In this case, the SBC199

value must be corrected using a folded normal distribution, as follows:200

SCB(ŷ) = 0 + kr
√

MSE(ŷ) (14)

where kr is calculated using the folded normal distribution for a given one-sided confidence201

level.202

2.4. Case study: adjustment of a sheep forelimb model203

In order to illustrate the proposed approach, a sheep forelimb musculoskeletal model204

was used. The musculoskeletal model was composed by 4 segments and 16 hill-type muscle-205

tendon units (see Figure 3). The external geometry of the bones was obtained by 3D optical206

scanning. The extensor and flexor groups of the digital joints were treated each one as207

a whole unit as no degree of freedom at these joints were considered. Elbow and carpal208

joints were modeled as hinge joints and shoulder joint as a ball-and-socket joint. Inertial209

parameters were estimated using a CAD software. A geometrical model of the segments was210
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created by considering all soft tissue (see Figure 4). The model and the gait trial data used211

in this case study are available at https://simtk.org/projects/sheepforelimb. The212

considerations made for carrying out this study were:213

• Bones were considered as rigid bodies,214

• Segments’ inertial properties were considered time-independent,215

• Biological joints were modelled as frictionless joints,216

• The initial values of the FGPs were considered near to a locally optimal solution.217

Figure 3: Musculoskeletal model of sheep forelimb used as case study. The musculoskeletal model was
composed by 4 segments and 16 hill-type muscle-tendon units (represented as red lines) Anconaeus (ACN),
Biceps brachii (BCB), Brachialis (BRC), Caput mediale tricipitis brachii (MET), Caput laterale tricipitis
brachii (LAT), Caput longum tricipitis brachii (LOT), Coracobrachialis (CCB), Deltoideus (DET), Extensor
group (EXT), Flexor group (FLE), Infraspinatus (ISP), Subscapularis (SUB), Supraspinatus (SUP), Tensor
fascie antebranchii (TFA), Teres major (TMA), Teres minor (TMI).

Figure 4: Computation of the inertial parameters (inertia matrix, mass and center of gravity) of the model’s
segments using a CAD software. For each segment, soft tissues were considered.

The open source tool OpenSim [10, 33] was used to perform MFP of the gait cycle. For218

these computations, the static optimization algorithm was used. The algorithms proposed in219

this paper were implemented in Jython and the computations were automatically performed220

through the OpenSim API on a standard laptop (64-bit i7 processor @ 2.7GHz, 16 GB RAM,221

running Microsoft Windows 7). For the screening process, four FGPs per muscle (those222

assumed to be specific to each actuator) were considered, namely maximal isometric force,223

optimal fiber length, tendon slack length and pennation angle. For the numerical derivative224

computations, a variation coefficient of 2qk = 0.1P ∗
k , ∀k was chosen. This is a commonly225

used value in biomechanics [35, 14]. According to Algorithm 1, that implies running 16×4×4226

computations to calculate each sensitivity index. Muscle forces were computed before and227
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after FGPs adjustment. Reserve actuator values were compared with the net joint torques228

for each time instant from the results of the two computations.229

3. Results230

3.1. Initial simulation231

When computing muscle forces with the initial set of FGP values, a cumulative sum of232

squared reserve actuators of Cini
res = 21.385e−3 (BW m)2 was obtained. This value was nor-233

malized according to the body weight (BW) of the specimen. Figure 5 shows the behaviour234

of these reserves during the whole computation at the shoulder, elbow and wrist regarding235

the net torque of each joint. At the shoulder, the peak reserve actuator was 9% of the peak236

joint torque. At the elbow, the peak reserve actuator was 51% of the peak joint torque.237

And at the wrist, the peak reserve actuator was 100% of the peak joint torque. Following238

modelling good practices [17], these values must be less than 10%, which indicates that the239

model must be adjusted.240

(a) Shoulder (b) Elbow

(c) Wrist

Figure 5: Evolution of the joint net torque (continuous line) for the three joints during the simulation in
comparison with the reserve actuators required to run the simulation with the initial model (dashed line)
and with the adjusted model (dotted line): (a) for the shoulder joint, (b) for the elbow joint, (c) for the
wrist joint.

3.2. Parameter screening241

For screening purposes, a total of 256 MFP were executed, which took approximately 40242

minutes. These results are summarized in Figure 6 by means of a Pareto chart. This chart243

represents the sensitivity factors sorted by magnitude. The curve over the bars represents244

the percentage of the cumulative sum of sensitivity factors. By means of this chart, the most245

influencing model parameters can be identified. We chose a set of 9 FGPs, that corresponds246
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to 14% of the whole set. This set generates 97% of the sum of the sensitivity factors. As it247

can be noticed, among the whole set of muscle-tendon units of the model, three have a high248

influence on the dynamic consistency of the simulation: the extensor group of the digital249

joints (EXT), the biceps brachii (BCB) and the brachialis (BRC). Among the four FGPs250

considered, muscle pennation angles had less influence.251

3.3. Surface regression252

A response surface was calculated in the neighborhood of the initial values of these FGPs.253

The computation of this response surface required simulating 275 (2(9−1)+2×9+1) gait trials,254

which took approximately 48 minutes. The obtained surface coefficients are presented in255

Table 1. The convexity of a second-order surface depends on the sign of the second-order256

coefficients. As it can seen, all the second order coefficients are positive, which indicates257

that the obtained surface is convex.258

Figure 6: Pareto chart of the sensitivity analysis. FGPs are represented in the horizontal axis sorted its
own sensitivity index (vertical left-hand axis). The curve over the bars represents the percentage of the
cumulative sum of sensitivity factors (vertical right-hand axis).

Table 1: Set of 55 bkj coefficients of the response surface calculated from the results of the experiments by
least-squares fitting.

k b0k b1k b2k b3k b4k b5k b6k b7k b8k b9k
0 5.24
1 -7.72 3.72
2 -6.85 9.48 3.72
3 -11.01 7.56 6.64 2.70
4 -7.48 4.95 4.35 8.16 2.90
5 -6.32 4.16 3.66 6.85 4.29 2.48
6 -2.81 1.90 1.66 1.32 2.09 1.75 1.53
7 -0.67 0.47 0.41 0.83 -0.58 -0.49 0.21 1.36
8 -0.67 0.50 0.44 -0.74 0.59 0.49 -0.14 0.06 1.36
9 -0.37 0.01 0.01 0.36 0.23 0.19 0.09 0.03 0.03 1.38
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3.4. Validation of the results259

The obtained surface predicted an optimal design solution at Cpre
res = 0 (BW m)2 with260

a statistical confidence boundary of 0 ≤ SCB(Cpre
res ) < 4.763e−3 (BW m)2. The confidence261

boundary was calculated considering a folded normal distribution (Eq. 14) and it is depicted262

in Figure 7.263

Figure 7: Folded normal distribution used to calculate the corrected statistical confidence boundary of the
predicted value Cpreres for a confidence level of 95%.

The adjusted FGP values (shown in Table 2) were introduced in the model and the MFP264

executed again. The obtained sum of reserve actuators was significantly reduced compared265

to the computation performed using the initial set of FGP values. The new computed value,266

which is included in the confidence boundary, was of Ccmp
res = 0.120e−3 (BW m)2. Reserve267

actuator values of the simulation with the adjusted model are presented in Figure 5. After268

adjustment, peak reserve values reached a maximum of 9%, 11% and 23% of the peak joint269

torque of the shoulder, elbow and wrist, respectively. The average reduction of the reserve270

value vs the net joint torque all along the simulation was of 1% for the shoulder, 18% for271

the elbow and 16% for the wrist.272

From both the initial model and the adjusted one, we computed the radiohumeral re-273

action force (Figure 8). The magnitude of this force in both axial and anterior-posterior274

directions shows differences before and after the FGPs adjustment. These differences are275

more significant especially during the stance phase.276

(a) (b)

Figure 8: Radiohumeral reaction forces predicted from the sheep forelimb musculoskeletal model before
(continuous line) and after FGPs adjustment (dashed line). Force values were normalized according to the
body weight (BW) of the specimen. (a) axial force and (b) anterior-posterior force
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Table 2: Set of initial and adjusted values of the 9 FGPs selected after screening.

Variable Unit Initial values Adjusted values
Opt. Fiber Len. EXT m 0.0900 0.1116
TendonLen EXT m 0.1700 0.1508
Opt. Fiber Len. BRC m 0.0680 0.0843
Opt. Fiber Len. BCB m 0.0680 0.0843
Tendon Len BCB m 0.0910 0.1128
Tendon Len BRC m 0.0340 0.0421
Max Force BCB N 488.1200 509.1856
Max Force BRC N 361.5700 375.1500
Max Force EXT N 1193.1820 1201.3149

4. Discussion and conclusions277

In response to the multiple challenges in estimating model parameters in musculoskeletal278

modelling, this paper proposes a multivariate statistical strategy to adjust FGPs. The279

methodology follows a DoE-based approach to generate a response surface, which is used to280

determine optimal levels of the FGPs. In contrast to conventional optimization methods,281

DoE-based methodologies offer a means to determine the optimal operating conditions of a282

process at low computational cost while considering the interdependence of the factors.283

We found that the use of response surfaces in musculoskeletal dynamics computations284

is an effective way to optimally adjust model FGPs, making the model more dynamically285

consistent. In agreement with the findings of Modenese et al. [26], the results of our com-286

putation suggest that the reserve actuators have an impact on the predicted joint reaction287

forces. Such an impact reached, in our case study, magnitudes of up to 1.7 BW. As re-288

serve actuators are applied directly over the joint (as a pure torque) without a moment289

arm, they do not generate reaction forces at the joints. In consequence, if a joint reaction290

analysis is performed with high reserve actuator values the calculated reaction forces are291

underestimated.292

Depending on the cost function used to generate the response surface, this methodology293

can be used to adjust geometrical, inertial or muscle parameters. The focus of this paper is294
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on the adjustment of FGPs to reduce joint reserve actuators. However, its application for a295

geometrical or a inertial adjustment is straightforward.296

It should be stressed out that the proposed method does not ensure the robustness of the297

model, but it does help in the adjustment of the parameters during the model development298

process. Furthermore, a model adjustment carried out following this approach is valid for299

the used experimental data and it may not be for another dataset.300

This work has several limitations. First, as in the case of most of optimization techniques,301

the response surface methodology is very sensitive to the initial values of the optimization302

variables. Thus, the method proposed in this study should be employed using a realistic303

set of initial FGP values. During the optimization, keeping parameter values in physical304

levels depends on the chosen variation coefficient. Having small variation levels prevents305

the optimization process to allocate a non-physical value to a given parameter. Second,306

the proposed methodology could become impractical when the number of parameters to307

optimize is significant (greater than 15), hence the importance of the parameter screening308

before the optimization. Future work is in progress to develop a DoE-based strategy that309

uses several locomotion trials for the adjustment of the FGPs.310

This study showed that the use of multivariate statistical strategy seems to be a good311

alternative to optimally adjust FGPs. This contribution constitutes a step towards a more312

robust methodology in musculoskeletal modelling, methodology that can be applied both to313

human and non-human studies.314
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[28] Muller, A., Pontonnier, C., and Dumont, G. Uncertainty propagation in multibody human394

model dynamics. Multibody System Dynamics 40, 2 (June 2017), 177–192.395

[29] Myers, C. A., Laz, P. J., Shelburne, K. B., and Davidson, B. S. A probabilistic approach to396

quantify the impact of uncertainty propagation in musculoskeletal simulations. Annals of Biomedical397

Engineering 43, 5 (May 2015), 1098–1111.398

[30] Pai, D. K. Muscle mass in musculoskeletal models. Journal of Biomechanics 43, 11 (2010), 2093 –399

2098.400

[31] Poncery, B., Arroyave-Tobón, S., Picault, E., and Linares, J.-M. Effects of realistic sheep401

elbow kinematics in inverse dynamic simulation. PLOS ONE 14, 3 (03 2019), 1–17.402

[32] Reinbolt, J. A., Schutte, J. F., Fregly, B. J., Koh, B. I., Haftka, R. T., George, A. D.,403

and Mitchell, K. H. Determination of patient-specific multi-joint kinematic models through two-404

level optimization. Journal of Biomechanics 38, 3 (2005), 621 – 626.405

[33] Seth, A., Hicks, J. L., Uchida, T. K., Habib, A., Dembia, C. L., Dunne, J. J., Ong, C. F.,406

DeMers, M. S., Rajagopal, A., Millard, M., Hamner, S. R., Arnold, E. M., Yong, J. R.,407

Lakshmikanth, S. K., Sherman, M. A., Ku, J. P., and Delp, S. L. Opensim: Simulating408

21



musculoskeletal dynamics and neuromuscular control to study human and animal movement. PLOS409

Computational Biology 14, 7 (07 2018), 1–20.410

[34] Winby, C., Lloyd, D., and Kirk, T. Evaluation of different analytical methods for subject-specific411

scaling of musculotendon parameters. Journal of Biomechanics 41, 8 (2008), 1682 – 1688.412

[35] Xiao, M., and Higginson, J. Sensitivity of estimated muscle force in forward simulation of normal413

walking. Journal of Applied Biomechanics 26, 2 (2010).414

22


	Introduction
	Methods
	MFP performance metric
	Parameter screening
	Response surface regression and model optimization
	Case study: adjustment of a sheep forelimb model

	Results
	Initial simulation
	Parameter screening
	Surface regression
	Validation of the results

	Discussion and conclusions

