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We study in a strip of R 2 a combustion model of flame propagation with stepwise temperature kinetics and zero-order reaction, characterized by two free interfaces, respectively the ignition and the trailing fronts. The latter interface presents an additional difficulty because the non-degeneracy condition is not met. We turn the system to a fully nonlinear problem which is thoroughly investigated. When the width of the strip is sufficiently large, we prove the existence of a critical value Lec of the Lewis number Le, such that the one-dimensional, planar, solution is unstable for 0 < Le < Lec. Some numerical simulations confirm the analysis.

Introduction

This paper is devoted to the analysis of cellular instabilities of planar traveling fronts for a thermodiffusive model of flame propagation with stepwise temperature kinetics and zero-order reaction. In non-dimensional form, the model reads:

Θ t = ∆Θ + W (Φ, Θ), Φ t = 1 Le ∆Φ -W (Φ, Θ), (1.1) 
where Θ and Φ are appropriately normalized temperature and concentration of deficient reactant, Le is the Lewis number and W (Φ, Θ) is a reaction rate given by W (Θ, Φ) = A, if Θ ≥ Θ i and Φ > 0, 0, if Θ < Θ i and/or Φ = 0.

(1.2) Here, 0 < Θ i < 1 is the ignition temperature and A > 0 is a normalizing factor. Combustion models involving discontinuous reaction terms, including the system (1.1)-(1.2), have been used by physicists and engineers since the very early stage of the development of the combustion science (see Mallard and Le Châtelier [START_REF] Mallard | Recherches expérimentales et théoriques sur la combustion des mélanges gazeux explosifs[END_REF]), primarily due to their relative simplicity and mathematical tractability (see, e.g., [START_REF] Brailovsky | Momentum loss as a mechanism for deflagration to detonation transition[END_REF][START_REF] Colella | Theoretical and structure for reacting shock waves[END_REF][START_REF] Ferziger | A Simplified Reaction Rate Model and its Application to the Analysis of Premixed Flames[END_REF], and more recently [START_REF] Bayliss | Solution of adiabatic and nonadiabatic combustion problems using step-function reaction models[END_REF][START_REF] Brailovsky | Diffusive-thermal instabilities in premixed flames: stepwise ignition-temperature kinetics[END_REF]). These models have drawn several mathematical studies on systems with discontinuous nonlinearities and related Free Boundary Problems which include, besides the pioneering work of K.-C. Chang [START_REF] Chang | On the multiple solutions of the elliptic differential equations with discontinuous nonlinear terms[END_REF][START_REF] Chang | The obstacle problem and partial differential equations with discontinuous nonlinearities[END_REF], the references [START_REF] Alexander | Perturbation and bifurcation in a free boundary problem[END_REF][START_REF] Brauner | Stability of travelling waves in a parabolic equation with discontinuous source term[END_REF][START_REF] Gianni | Existence of the free boundary in a multi-dimensional combustion problem[END_REF][START_REF] Gianni | The semilinear heat equation with a Heaviside source term[END_REF][START_REF] Gianni | Existence theorems for a free boundary problem in combustion theory[END_REF][START_REF] Gianni | Some existence theorems for an N -dimensional parabolic equation with a discontinuous source term[END_REF][START_REF] Norbury | Parabolic free boundary problems arising in porous medium combustion[END_REF][START_REF] Norbury | A model for porous medium combustion[END_REF], to mention a few of them. In particular, models with ignition temperature were introduced in the mathematical description of the propagation of premixed flames to solve the so-called "cold-boundary difficulty" (see, e.g., [15, Section 2.2], [START_REF] Berestycki | Traveling wave solutions to combustion models and their singular limits[END_REF]).

More specifically, in this paper we consider the free interface problem associated with the model (1.1)-(1.2). The domain is the strip R × (-/2, /2), the spatial coordinates are denoted by (x, y), t > 0 is the time. The free interfaces are respectively the ignition interface x = F (t, y) and the trailing interface x = G(t, y), G(t, y) < F (t, y), defined by Θ(t, F (t, y), y) = θ i , Φ(t, G(t, y), y) = 0.

The system reads as follows, for t > 0 and y ∈ (-/2, /2):

                                     ∂Θ ∂t
(t, x, y) = ∆Θ(t, x, y), x < G(t, y), Φ(t, x, y) = 0, x < G(t, y), ∂Θ ∂t (t, x, y) = ∆Θ(t, x, y) + A, G(t, y) < x < F (t, y), ∂Φ ∂t (t, x, y) = (Le) -1 ∆Φ(t, x, y) -A, G(t, y) < x < F (t, y), ∂Θ ∂t = ∆Θ(t, x, y), x > F (t, y), ∂Φ ∂t = (Le) -1 ∆Φ(t, x, y), x > F (t, y), (1.3) where the normalizing factor A will be fixed below. The functions Θ and Φ are continuous across the interfaces for t > 0, as well as their normal derivatives. As x → ±∞, it holds Θ(t, -∞, y) = Φ(t, +∞, y) = 1, Θ(t, +∞, y) = 0.

(1.4)

Finally, periodic boundary conditions are assumed at y = ± /2. As was noted in earlier studies (see [START_REF] Brailovsky | Diffusive-thermal instabilities in premixed flames: stepwise ignition-temperature kinetics[END_REF][START_REF] Brauner | An ignition-temperature model with two free interfaces in premixed flames[END_REF]), this system is very different from models arising in conventional thermo-diffusive combustion. Two are the principal differences. (i) The first one is that in the model considered here, the reaction zone is of order unity, whereas in the case of Arrhenius kinetics the reaction zone is infinitely thin. This fact suggests to refer to flame fronts for stepwise temperature kinetics as thick flames, in contrast to thin flames arising in Arrhenius kinetics. (ii) The second, even more important difference, is that, in the case of Arrhenius kinetics, there is a single interface separating burned and unburned gases. In contrast to that, in case of the stepwise temperature kinetics given by (1.2), there are two interfaces, namely the ignition interface where Θ = Θ i located at x = F (t, y), and trailing interface at x = G(t, y) being defined as a largest value of x where the concentration is equal to zero. As a consequence of (i), the normal derivatives are continuous across both interfaces, contrary to classical models with Arrhenius kinetics where jumps occur at the flame front (see e.g., [START_REF] Buckmaster | Theory of Laminar Flames[END_REF]Section 11.8] and [START_REF] Matkowski | An asymptotic derivation of two models in flame theory associated with the constant density approximation[END_REF][START_REF] Sivashinsky | On flame propagation under condition of stoichiometry[END_REF][START_REF] Temam | Infinite-Dimensional Dynamical Systems in Mechanics and Physics[END_REF] for the related Kuramoto-Sivashinsky equation). There have been a number of mathematical works in the latter case based on the method of [START_REF] Brauner | A general approach to stability in free boundary problems[END_REF] that we are going to extend below, see in particular [START_REF] Brauner | Asymptotic analysis in a gas-solid combustion model with pattern formation[END_REF][START_REF] Brauner | A fully nonlinear equation for the flame front in a quasi-steady combustion model[END_REF][START_REF] Brauner | On a strongly damped wave equation for the flame front[END_REF][START_REF] Brauner | Instabilities in a two-dimensional combustion model with free boundary[END_REF][START_REF] Lorenzi | Regularity and analyticity in a two-dimensional combustion model[END_REF][START_REF] Lorenzi | A free boundary problem stemmed from combustion theory. I. Existence, uniqueness and regularity results[END_REF][START_REF] Lorenzi | A free boundary problem stemmed from combustion theory. II. Stability, instability and bifurcation results[END_REF] for the flame front, and the references therein. Finally, note that Free Boundary Problems with two interfaces have already been considered in the literature, especially in Stefan problems, see e.g., [START_REF] Du | Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary[END_REF][START_REF] Du | Erratum: Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary[END_REF][START_REF] Wang | A Free Boundary Problem for a predator-prey model with double free boundaries[END_REF] (one-dimensional problem) and [START_REF] Du | Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, II[END_REF] (radial solutions).

The above system admits a one-dimensional traveling wave (planar) solution (Θ (0) , Φ (0) ) which propagates with constant positive velocity V (see [START_REF] Brailovsky | Diffusive-thermal instabilities in premixed flames: stepwise ignition-temperature kinetics[END_REF]Section 4]). It is convenient to choose the normalizing factor A = 1/R in such a way that V = 1, where the positive number R = R(θ i ) is given by:

θ i R = 1 -e -R , 0 < θ i < 1.
(1.5) Thus, in the moving frame coordinate x = x -t, the system for the traveling wave solution reads as follows:

               D x Θ (0) + D x x Θ (0) = 0, in (-∞, 0], D x Θ (0) + D x x Θ (0) = -R -1 , in (0, R), Le D x Φ (0) + D x x Φ (0) = LeR -1 , in (0, R), D x Θ (0) + D x x Θ (0) = 0, in [R, +∞), Le D x Φ (0) x + D x x Φ (0) = 0, in [R, +∞),
whose solution is

Θ (0) (x ) =          1, x ≤ 0, 1 + 1 -x -e -x R , x ∈ (0, R), θ i e R-x , x ≥ R, Φ (0) (x ) =              0, x ≤ 0, e -Lex -1 Le R + x R , x ∈ (0, R), 1 + 1 -e LeR
Le R e Lex , x ≥ R.

(1.6)

Figure 1. Θ (0) (solid curve) and Φ (0) (dashed curve) with θ i = 0.75, Le = 0.75 (R = 0.60586).

The existence of traveling fronts poses a natural question of one and multidimensional stability, or especially instabilities of such fronts. It is known (see [START_REF] Matkowski | An asymptotic derivation of two models in flame theory associated with the constant density approximation[END_REF][START_REF] Sivashinsky | On flame propagation under condition of stoichiometry[END_REF]) that diffusional-thermal instabilities of planar flame fronts, when the Lewis number is less than unity, generates cellular flames and pattern formation. In this paper, we are not interested in high Lewis numbers, namely Le > 1: in that case, it has been observed that large enough Lewis numbers give rise to pulsating instabilities, i.e., oscillatory behavior of the flame (see [START_REF] Brailovsky | Diffusive-thermal instabilities in premixed flames: stepwise ignition-temperature kinetics[END_REF][START_REF] Brauner | Stability analysis and Hopf bifurcation for large Lewis number in a combustion model with free interface[END_REF]). We focus our attention on instabilities of the traveling wave (Θ (0) , Φ (0) ), and thus for the ignition and the trailing interfaces. Earlier studies have shown (see [START_REF] Brauner | An ignition-temperature model with two free interfaces in premixed flames[END_REF]) that instabilities depend on the Lewis number and occur only when the width of the strip is large enough (in [START_REF] Brailovsky | Diffusive-thermal instabilities in premixed flames: stepwise ignition-temperature kinetics[END_REF], is taken to infinity), which motivates the present study.

The main result of the paper is the following:

Main Theorem. Let 0 < θ i < 1 be fixed. There exist 0 (θ i ) sufficiently large, such that, whenever > 0 (θ i ), there exists a critical value of the Lewis number, say Le c ∈ (0, 1) (see (6.2)). If Le ∈ (0, Le c ), then the traveling wave solution to problem (1.3)-(1.4) is unstable with respect to smooth and sufficiently small two dimensional perturbation. Further, also the ignition and the trailing interfaces are pointwise unstable.

The paper is organized as follows. In Section 2, we introduce the main notation and the functional spaces. Section 3 is devoted to transforming problem (1.3)- (1.4) in the fully nonlinear problem for the perturbation of the traveling wave solution (Θ (0) , Φ (0) ) in (1.6), set in a fixed domain, which reads

D t u(t, •, •) = L u(t, •, •) + F (u(t, •, •)), t ≥ 0, B(u(t, •)) = H (u(t, •)), t ≥ 0, (1.7) 
where L is a second-order linear elliptic operator, B is a first-order linear boundary differential operator, F , H are suitable nonlinear terms and F also depends on traces of second-order derivatives of the unknown u. Here, u(t, •) = (u 1 (t, •), u 2 (t, •)) where u 1 (t, •) is defined in the strip R×[-/2, /2] and u 2 is defined in the half-strip [0, +∞) × [-/2, /2]. Finally, periodic boundary conditions are prescribed at ± /2. We determine that the ignition interface meets the transversality (or nondegeneracy) condition of [START_REF] Brauner | A general approach to stability in free boundary problems[END_REF]. Unfortunately, this is not the case of the trailing interface which is of different nature. In short, the idea is to differentiate the mass fraction equation, taking advantage of the structure of the problems. The theory of analytic semigroups plays a crucial role in all our analysis and is the core of Section 4. We prove (Theorem 4.4) that the realization L of the operator L , with the homogeneous boundary conditions Bu = 0 and periodic conditions on y = ± /2, generates an analytic semigroup e tL in a suitable space of continuous functions. To prove such a result, we take advantage of the Fourier transform. Expanding u into a Fourier series, we are led to solve infinitely many ODE for its modes and, coming back, we can formally write u as a sum of finite number of terms (see (4.17)- (4.21)). The analysis of such terms is the content of Lemmata 4.1-4.3. As it has been already stressed, the nonlinear term F in (1.7) depends on traces of second-order derivatives of u, which are not defined for functions in D(L), since the second-order derivatives of functions belonging to this space are meant in the sense of distributions. To overcome this difficulty, we need to characterize the interpolation spaces D L (α/2, ∞) and D L (1 + α/2, ∞) (α ∈ (0, 1)) and deal with the restriction of the semigroup e tL to the space D L (α/2, ∞). It is well known that such a restriction is still an analytic semigroup and it is associated with the part of L in D L (α/2, ∞), which has D L (1 + α/2, ∞) as domain. Finally, since the boundary conditions in (1.7) are nonhomogeneous, we also need to introduce two lifting operators (say M and N ). This is the content of the last part of Section 4. Theorem 4.4 contains also important results about the structure of the spectrum of operator L, in particular the definition of the dispersion relations.

The first lifting operator is used in Section 5 to show that the linearized version of problem (1.7), i.e., the problem

     D t u(t, •, •) = L u(t, •, •) + f , t ≥ 0, B(u(t, •)) = ψ, t ≥ 0, u(0, •) = u 0 , (1.8)
is uniquely solvable in a suitable space of Hölder continuous functions and its solution u is given by the following formula:

u(t, •) =e tL (u 0 -M ψ(0, •)) + t 0 e (t-s)L (f (s, •) + L M ψ(s, •))ds -L t 0 e (t-s)L (M ψ(s, •) -M ψ(0, •))ds + M ψ(0, •),
for t ≥ 0. Based on this formula and via a fixed-point argument, we then solve problem (1.7) proving an optimal regularity result in Hölder spaces.

Section 6 contains the proof of Theorem 1. To prove instability, we need to determine a range of Lewis numbers Le which lead to eigenvalues of operator L with positive real part. In view of Theorem 4.4, the characterization of the spectrum of operator L plays a very crucial role. In Subsection 6.1, we analyze the reduced dispersion relation

D 0,k (λ, Le) = exp R 2 (Le -1 -X k (λ) -Y k (λ, Le)) -1 + θ i RX k (λ),
where

X k (λ) = √ 1 + 4λ + 4λ k , Y k (λ, Le) = Y k (λ) = Le 2 + 4λLe + 4λ k and λ k = 4π 2 k 2 -2 for k ∈ N ∪ {0}.
In Subsection 6.2, the lifting operator N is used to apply a variant of [28, Theorem 5.1.5] (see Lemma 6.5) in a suitable Banach space to prove instability of the free interfaces.

Finally, Section 7 is devoted to a brief presentation of a numerical method and computational results, which show two-cell patterns (see [START_REF] Brauner | An ignition-temperature model with two free interfaces in premixed flames[END_REF] for further results).

Notation, functional spaces and preliminaries

In this section, we collect all the notation, the functional spaces and the preliminary results that we use throughout the paper 2.1. Notation. We find it convenient to set, for each τ > 0,

S = R × (-/2, /2), S + τ = (τ, +∞) × (-/2, /2), S - τ = (-∞, τ ) × (-/2, /2), H - τ = (-∞, τ ) × R, H + τ = (τ, +∞) × R, R T = [0, T ] × [-/2, /2].
Functions. Given a function f : (a, b) → R and a point x 0 ∈ (a, b), we denote by [f ] x0 the jump of f at x 0 , i.e., the difference f (x + 0 ) -f (x - 0 ) whenever defined. For each function f : [-/2, /2) → C we denote by f its -periodic extension to R. If f depends also on x running in some interval I, we still denote by f its periodic (with respect to y) extension to I × R. For every f ∈ L 2 ((-/2, /2)) and k ∈ Z, we denote by fk the k-th Fourier coefficient of f , i.e., fk = 1 2

-2 f e k dy,
where e h (y) = e 2hπi y for each h ∈ Z and y ∈ R. When f depends also on the variable x running in some interval I, fk (x) stands for the k-th Fourier coefficient of the function f (x, •).

The time and the spatial derivatives of a given function f are denoted by

D t f (= f t ), D x f (= f x ), D y f (= f y ) D xx f (= f xx ) D xy f (= f xy ) and D yy f (= f yy ), respectively. If β = (β 1 , β 2 ) with β 1 , β 2 ∈ N ∪ {0}, then we set D γ = D γ1
x D γ2 y . Finally, we denote by χ A the characteristic function of the set A ⊂ R d (d ≥ 1).

Miscellanea. Throughout the paper, we denote by c λ a positive constant, possibly depending on λ but being independent of k, n, x and the functions that we will consider, which may vary from line to line. We simply write c when the constant is independent also of λ.

The subscript "b" stands for bounded. For instance C b (Ω; C) denotes the set of bounded and continuous function from Ω to C. When we deal with spaces of real-valued functions we omit to write "C".

Vector-valued functions are displayed in bold.

Main function spaces.

Here, we collect the main function spaces used in the paper pointing out the (sub)section where they are used for the first time.

The spaces X and X k+α (Section 4). By X we denote the set of all pairs f = (f 1 , f 2 ), where f 1 : S → C and f 2 :

S + 0 → C are bounded functions, f 1 ∈ C(S - 0 ; C)∩C([0, R]×[-/2, /2]; C)∩C(S + R ; C), f 2 ∈ C([0, R] × [-/2, /2]; C) ∩ C(S + R ; C) and lim x→±∞ f 1 (x, y) = lim x→+∞ f 2 (x, y) = 0 for each y ∈ [-/2, /2]. It is endowed with the sup-norm, i.e., f ∞ = f 1 L ∞ (S;C) + f 2 L ∞ (S + 0 ;C) . For each α ∈ (0, 1], X α denotes the subset of X of all f such that (i) f 1 ∈ C α b (S - 0 ; C) ∩ C α b ([0, R] × [-/2, /2]; C) ∩ C α b (S + R ; C), (ii) f 2 ∈ C α b ([0, R] × [-/2, /2]; C) ∩ C α b (S + R ; C), (iii) f j (•, -/2) = f j (•, /2) (and ∇f j (•, -/2) = ∇f j (•, /2) if α = 1) for j = 1, 2. It is endowed with the norm f α = f 1 C α b (S - 0 ;C) + 2 j=1 ( f j C α b ([0,R]×[-/2, /2];C) + f j C α b (S + R ;C) ). For k ∈ N and α ∈ (0, 1), X k+α (k ∈ N, α ∈ (0, 1)) denotes the set of all f ∈ X such that D β f = (D γ f 1 , D γ f 2 ) ∈ X, D γ f j (•, -/2) = D γ f j (•, /2) for each |γ| ≤ k, j = 1, 2, and D γ f ∈ X α for |γ| = k. It is endowed with the norm f k+α := |γ|<k D γ f ∞ + |γ|=k D γ f α .
The spaces Y α (a, b) and Y 2+α (a, b) (Section 5). For α ∈ (0, 1) and 0 ≤ a < b, we define by

Y α (a, b) the space of all pairs f = (f 1 , f 2 ) such that f 1 : [a, b] × S → R, f 2 : [a, b] × S + 0 → R and f Yα(a,b) = sup a<t<b f (t, •, •) α + sup (x,y)∈S f 1 (•, x, y) C α/2 ((a,b)) + sup (x,y)∈S + 0 f 2 (•, x, y) C α/2 ((a,b)) < +∞.
Similarly, Y 2+α (a, b) denotes the space of all the pairs u such that 

D γ1 t D γ2 x D γ3 y u belongs to Y α (a, b) for every γ 1 , γ 2 , γ 3 ≥ 0 such that 2γ 1 + γ 2 + γ 3 ≤ 2.

Derivation of the fully nonlinear problem

3.1. The system on a fixed domain. To begin with, we rewrite system (1.3) in the coordinates t = t, x = x -t, y = y, D t = D t -D x . Next, we look for the free interfaces respectively as:

G(t , y ) = g(t , y ), F (t , y ) = R + f (t , y ),
where f and g are small perturbations. In other words, the space variable x varies from -∞ to g(t , y ), from g(t , y ) to R + f (t , y ), and eventually from R + f (t , y ) to +∞. As usual, it is convenient to transform the problem on a variable domain to a problem on a fixed domain. To this end, we define a coordinate transformation in the spirit of [9, Section 2.1], see also, in dimension one, [START_REF] Du | Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary[END_REF]Section 5],

t = τ, x = ξ + β(ξ)g(τ, η) + β(ξ -R)f (τ, η), y = η,
where β is a smooth mollifier, equal to unity in a small neighborhood of ξ = 0, say [-δ, δ], and has compact support contained in (-2δ, 2δ) ⊂ (-R, R). When x = g, ξ = 0, and ξ = R when x = R + f . Then, the trailing front and the ignition front are fixed at ξ = 0 and ξ = R, respectively. Thanks to the translation invariance, (1.6) holds with the variable ξ. For convenience, we introduce the notation

(τ, ξ, η) = β(ξ)g(τ, η) + β(ξ -R)f (τ, η) (3.1) and we expand (1 + ξ ) -1 = 1 -ξ + ( ξ ) 2 (1 + ξ ) -1 . It turns out that D x = D ξ -ξ D ξ + ( ξ ) 2 (1 + ξ ) -1 D ξ , D t = D τ -τ D ξ + τ ξ D ξ -τ ( ξ ) 2 (1 + ξ ) -1 D ξ , D y = D η -η D ξ + η ξ D ξ -η ( ξ ) 2 (1 + ξ ) -1 D ξ and system (1.3) reads: Θ τ =Θ ξ + ∆Θ + ( 2 η -2 ξ -2 ξ )(1 + ξ ) -2 Θ ξξ -2 η (1 + ξ ) -1 Θ ξη + ( τ -ξ -ηη )(1 + ξ ) -1 + 2 η ξη (1 + ξ ) -2 -ξξ (1 + 2 η )(1 + ξ ) -3 Θ ξ , Φ =0 (3.2) in (0, +∞) × (-∞, 0) × (-/2, /2), Θ τ =Θ ξ + ∆Θ + ( 2 η -2 ξ -2 ξ )(1 + ξ ) -2 Θ ξξ -2 η (1 + ξ ) -1 Θ ξη + R -1 + ( τ -ξ -ηη )(1 + ξ ) -1 + 2 η ξη (1 + ξ ) -2 -ξξ (1 + 2 η )(1 + ξ ) -3 Θ ξ , Φ τ =Φ ξ + Le -1 ∆Φ + Le -1 ( 2 η -2 ξ -2 ξ )(1 + ξ ) -2 Φ ξξ -2Le -1 η (1 + ξ ) -1 Φ ξη -R -1 + [( τ -ξ -Le -1 ηη )(1 + ξ ) -1 +2Le -1 η ξη (1 + ξ ) -2 -Le -1 ξξ (1 + 2 η )(1 + ξ ) -3 ]Φ ξ (3.3) in (0, +∞) × (0, R) × (-/2, /2) and Θ τ =Θ ξ + ∆Θ + ( 2 η -2 ξ -2 ξ )(1 + ξ ) -2 Θ ξξ -2 η (1 + ξ ) -1 Θ ξη + ( τ -ξ -ηη )(1 + ξ ) -1 + 2 η ξη (1 + ξ ) -2 -ξξ (1 + 2 η )(1 + ξ ) -3 Θ ξ , Φ τ =Φ ξ + Le -1 ∆Φ + Le -1 ( 2 η -2 ξ -2 ξ )(1 + ξ ) -2 Φ ξξ -2Le -1 η (1 + ξ ) -1 Φ ξη + ( τ -ξ -Le -1 ηη )(1 + ξ ) -1 +2Le -1 η ξη (1 + ξ ) -2 -Le -1 ξξ (1 + 2 η )(1 + ξ ) -3 Φ ξ (3.4)
in (0, +∞) × (R, +∞) × (-/2, /2). Moreover, Θ and Φ are continuous at the (fixed) interfaces ξ = 0 and ξ = R, and so are their first-order derivatives. Thus,

[Θ(τ, •, η)] 0 = [Θ ξ (τ, •, η)] 0 = Φ(τ, 0, η) = Φ ξ (τ, 0, η) = 0 and Θ(τ, R, η) = θ i , [Θ(τ, •, η)] R = [Θ ξ (τ, •, η)] R = [Φ(τ, •, η)] = [Φ ξ (τ, •, η)] = 0.
Conditions (1.4) hold at ξ = ±∞ and periodic boundary conditions are assumed at η = ± /2.

3.2.

Elimination of the interfaces. From now on, with a slight abuse of notation, which does not cause confusion, we write t instead of τ and x, y instead of ξ and η. So, we warn the reader that, in the sections which follow, x and y are not the same as in the introduction.

In the spirit of [START_REF] Brauner | A general approach to stability in free boundary problems[END_REF][START_REF] Lorenzi | A free boundary problem stemmed from combustion theory. I. Existence, uniqueness and regularity results[END_REF], we introduce the splitting:

Θ(t, x, y) = Θ (0) (x) + (t, x, y)Θ (0) x (x) + u(t, x, y), (3.5) 
Φ(t, x, y) = Φ (0) (x) + (t, x, y)Φ (0) x (x) + v(t, x, y), (3.6) 
which is a sort of Taylor expansion of (Θ, Φ) around the traveling wave solution (Θ (0) , Φ (0) ). Thus, the pair (u, v) plays the role of a remainder and, since we are interested in stability issues, we can assume that u and v are "sufficiently small" in a sense which will be made precise later on.

A long but straightforward computation reveals that the pair (u, v) satisfies the differential equations

u t =u x + ∆u + t (1 + x ) -1 ( Θ (0) xx + u x ) -(1 + x ) -3 xx (1 + 2 y )( Θ (0) xx + u x ) -(1 + x ) -1 ( x + yy )( Θ (0) xx + u x ) + 2 y ( y Θ (0) xx + u xy ) + (1 + x ) -2 2 y xy ( Θ (0) xx + u x ) + ( 2 y -2 x )( Θ (0) xxx + Θ (0) xx + u xx ) -2 x ( Θ (0) xxx -2 y Θ (0) xx + u xx ) , (3.7) 
in (0, +∞) × (R \ {0, R}) × (-/2, /2) and

v t =v x + Le -1 ∆v + t (1 + x ) -1 ( Φ (0) xx + v x ) -Le -1 (1 + x ) -3 xx (1 + 2 y )( Φ (0) xx + v x ) -Le -1 (1 + x ) -1 (Le x + yy )( Φ (0) xx + v x ) + 2 y ( y Φ (0) xx + v xy ) + Le -1 (1 + x ) -2 2 y xy ( Φ (0) xx + v x ) + ( 2 y -2 x )( Φ (0) xxx + Φ (0) xx + v xx ) -2 x ( Φ (0) xxx -2 y Φ (0) xx + v xx ) (3.8) 
in (0, +∞) × [(0, R) ∪ (R, +∞)] × (-/2, /2) and v = 0 in (0, +∞) × (-∞, 0) × (-/2, /2). Two steps are still needed: (a) we have to determine the jump conditions satisfied by u and v; (b) again in the spirit of [START_REF] Brauner | A general approach to stability in free boundary problems[END_REF][START_REF] Lorenzi | A free boundary problem stemmed from combustion theory. I. Existence, uniqueness and regularity results[END_REF], we have to get rid of the function from the right-hand sides of (3.7) and (3.8). As we will see, some difficulties appear and, to overcome them, we will differentiate the differential equation (3.8).

The ignition interface

x = R. Note that Θ (0) , Φ (0) belong to C 1 (R). Thus, [u] R = [v] R = 0. Moreover, Θ (0) 
x (R) = -θ i and Φ (0)

x (R) = (1 -exp(-LeR))/R, so that they do not vanish at the interface x = R. The latter is a kind of transversality or non-degeneracy condition (see [START_REF] Brauner | A general approach to stability in free boundary problems[END_REF]). Evaluating (3.5) 

at x = R, we get u(R) = θ i f .
Next, differentiating (3.5) and (3.6) for x = R, and taking the jumps across

x = R, it is not difficult to show that [u x ] R = -R -1 f and [v x ] R = R -1
Le f . This is a key point since we are able to express f in terms of u and write

f (t, y) = θ i -1 u(t, R, y). (3.9)
Summing up, the interface conditions at x = R are the following:

[u] R = [v] R = 0, u(R) + θ i R[u x ] R = 0, Le[u x ] R + [v x ] R = 0. (3.10)
3.2.2. The trailing interface x = 0. Taking the jump at x = 0 of both sides of (3.5) and (3.6), we get the conditions [u] 0 = v(0) = 0 for u and v. The trailing interface has a different nature with respect to the ignition interface. Indeed, since Θ (0)

x (0) = Φ (0)
x (0) = 0, the non-degeneracy condition of [START_REF] Brauner | A general approach to stability in free boundary problems[END_REF] is not verified and we are able to express g in terms neither of u or v. On the other hand, Θ (0)

xx (0 + ) = -R -1 and Φ (0) xx (0 + ) = R -1
Le, so that they do not vanish. Differentiating (3.5) and (3.6) for x = 0, and taking the jumps yields: [u x ] 0 = R -1 g, v x (•, 0 + , •) = -R -1 gLe. Hence, we get the additional interface condition Le [u x ] 0 + v x (•, 0 + , •) = 0, so that the interface conditions at x = 0 are

[u] 0 = v(0) = 0, Le [u x ] 0 + v x (•, 0 + , •) = 0. (3.11)
We can also write g(t, y) = -R Le -1 v x (t, 0 + , y).

(3.12)

Although the front g could be eliminated, the method of [START_REF] Brauner | A general approach to stability in free boundary problems[END_REF] is not applicable since, in contrast to (3.9), g is related to the derivative of v in the equation (3.12).

3.3.

Differentiation and new interface conditions. To overcome the difficulty pointed out above, the trick is to differentiate (3.8) with respect to x, taking advantage of the structure of the system and consider the problem satisfied by the pair (u, v x ). From (3.10) and (3.11) we get the following interface conditions for u and w = v x :

[u] 0 = 0, Le [u x ] 0 + w(0 + ) = 0, [u] R = 0, u(R) + θ i R[u x ] R = 0, Le[u x ] R + [w] R = 0. (3.13)
We missed two jump conditions: one at the trailing interface and the other one at the ignition interface. To obtain the additional condition at the trailing interface x = 0, we differentiate (3.6) twice in a neighborhood of x = 0 and take the trace at x = 0 + . Using (3.12), we get

Φ xx (•, 0 + , •) = Le R -1 + Le w(•, 0 + , •) + w x (•, 0 + , •). (3.14) 
To get rid of Φ xx (•, 0 + , •) from the left-hand side of (3.14), we observe that, for x > 0 sufficiently small, the second equation in (3.3) reduces to

Φ t =Φ x + Le -1 ∆Φ + Le -1 g 2 y Φ xx -2Le -1 g y Φ xy -R -1 + (g t -Le -1 g yy )Φ x . (3.15)
Taking the trace of (3.15) at x = 0 + it is easy to check that Φ xx (•, 0 + , •)(1 + g 2 y ) = Le R -1 . Hence, using (3.12) and (3.14) we get the additional interface condition Le w(•, 0

+ , •) + w x (•, 0 + , •) = Le R -1 {[1 + R 2 Le -2 (w y (•, 0 + , •)) 2 ] -1 -1}. (3.16)
We likewise identify the additional interface condition at the ignition interface x = R. Differentiating twice (3.6) in a neighborhood of x = R, taking the jump at x = R and using (3.9), (3.10) gives

[Φ xx ] R = -R -1 Le + Le [w] R + [w x ] R .
(3.17)

We need to compute [Φ xx ] R : in a neighborhood of R -, the second equation in (3.3) yields

Φ t = Φ x + Le -1 ∆Φ + Le -1 (f y ) 2 Φ xx -2Le -1 f y Φ xy -R -1 + (f t -Le -1 f yy )Φ x ,
while in a neighborhood of R + from the second equation in (3.4) we get

Φ t =Φ x + Le -1 ∆Φ + Le -1 (f y ) 2 Φ xx -2Le -1 f y Φ xy + (f t -Le -1 f yy )Φ x .
Using the previous two equations it can be easily shown that

[Φ xx ] R (1 + (f y ) 2 ) = -R -1
Le, which, together with (3.9) and (3.17), gives

Le[w] R + [w x ] R = -Le R -1 {[1 + θ -2 i (u y (•, R, •)) 2 ] -1 -1}. (3.18)
This is the additional condition we were looking for.

3.4. Elimination of and its time and spatial derivatives. Formulae (3.9) (3.12) enable the elimination of the fronts f and g from the differential equations satisfied by u and w. First, they allow to write the following formula for (see (3.1)):

(t, x, y) = θ i -1 β(x -R)u(t, R, y) -R Le -1 β(x)w(t, 0 + , y). (3.19)
Differentiation of (3.19) with respect to x and y is benign. The right-hand sides of (3.7) and (3.8) depend also on t . Hence, we need to compute such a derivative and express it in terms of (traces of) spatial derivatives of u and w. Since

t (t, x, y) = θ i -1 β(x -R)u t (t, R, y) -R Le -1 β(x)w t (t, 0 + , y), (3.20) 
we need to get rid of u t (t, R, y) and w t (t, 0 + , y). For simplicity, we forget the arguments t and y.

We evaluate (3.7) at x = R + (it would be equivalent at x = R -). Recalling that all the derivatives of with respect of x vanish and taking (3.19) into account, we get

u t (R) =u x (R + ) + ∆u(R + ) + θ -1 i u t (R)(u(R) + u x (R + )) -θ -1 i u yy (R)u x (R + ) -2θ -1 i u y (R)u xy (R + ) + θ -2 i (u y (R)) 2 (u xx (R + ) -u(R) -θ i ) -θ -1 i u(R)u yy (R)
. Since θ i is fixed, assuming that the perturbations are small we may invert and write

u t (R) = [1-θ i -1 (u(R)+u x (R + ))] -1 [u x (R + ) + ∆u(R + ) -θ -1 i u yy (R)u x (R + ) -θ -1 i u(R)u yy (R) -2θ -1 i u y (R)u xy (R + ) + θ -2 i (u y (R)) 2 (u xx (R + ) -u(R) -θ i )]. (3.21)
Similarly, differentiating and evaluating (3.8) at x = 0 + we get

w t (0 + ) =w x (0 + ) + Le -1 ∆w(0 + ) -RLe -1 w t (0 + )(Le w(0 + ) + w x (0 + )) + RLe -2 w yy (0 + )(Le w(0 + ) + w x (0 + )) + 2w y (0 + )w xy (0 + ) + R 2 Le -3 (w y (0 + )) 2 (-Le 2 w(0 + ) + R -1 Le 2 + w xx (0 + )),
so that w t (0 + ) = {Le w x (0 + ) + ∆w(0 + ) + RLe -1 w yy (0 + )(Le w(0 + ) + w x (0 + )) + 2w y (0 + )w xy (0 + ) + R 2 Le -2 (w y (0 + )) 2 (-Le 2 w(0 , we can write the final problem for u = (u, w), which is fully nonlinear since the nonlinear part of the differential equations contains traces at x = 0 + and R of (first-and) second-order derivatives of the unknown u itself. Summing up, the pair u = (u, w) solves the nonlinear system

+ ) + R -1 Le 2 + w xx (0 + ))} × [Le + R(Le w(0 + ) + w x (0 + ))] -1 . ( 3 
D t u(t, •, •) = L u(t, •, •) + F (u(t, •, •)), t ≥ 0, B(u(t, •)) = H (u(t, •)), t ≥ 0, (3.23) 
and satisfies periodic boundary conditions at y = ± /2, where

L v = (∆ζ + ζ x , Le -1 ∆υ + υ x ), (3.24) 
Bv =              ζ(0 + , •) -ζ(0 -, •) ζ(R + , •) -ζ(R -, •) Le[ζ x (0 + , •) -ζ x (0 -, •)] + υ(0 + , •) Le υ(0 + , •) + υ x (0 + , •) ζ(R + , •) + θ i R[ζ x (R + , •) -ζ x (R -, •)] Le[ζ x (R + , •) -ζ x (R -, •)] + υ(R + , •) -υ(R -, •) Le[υ(R + , •) -υ(R -, •)] + υ x (R + , •) -υ x (R -, •)              , (3.25) 
F (v) =(Λ(v)F 1 (v) -F 2 (v), Λ(v)D x G 1 (v) + D x Λ(v)G 1 (v) -Le -1 D x G 2 (v)), F 1 (v) = θ -1 i β R Θ (0) xx ζ(R + , •) -RLe -1 βΘ (0) xx υ(0, •) + ζ x 1 + θ -1 i β (• -R)ζ(R + , •) -RLe -1 β υ(0, •) , F 2 (v) ={ θ -1 i β (• -R)ζ(R + , •) -RLe -1 β υ(0, •) + θ -1 i β R ζ yy (R + , •) -RLe -1 βυ yy (0, •) × (θ -1 i β R Θ (0) xx ζ(R + , •) -RLe -1 βΘ (0) xx υ(0, •) + ζ x ) + 2(θ -1 i β R ζ y (R + , •) -RLe -1 βυ y (0, •)) 2 Θ (0) xx + 2(θ -1 i β R ζ y (R + , •) -RLe -1 βυ y (0, •))ζ xy }(1 + θ -1 i β (• -R)ζ(R + , •) -RLe -1 β υ(0, •)) -1 -2 θ -1 i β R ζ y (R + , •) -RLe -1 βυ y (0, •) θ -1 i β (• -R)ζ y (R + , •) -RLe -1 β υ y (0, •) × θ -1 i β R Θ (0) xx ζ(R + , •) -RLe -1 βΘ (0) xx υ(0, •) + ζ x + θ -1 i β R ζ y (R + , •) -RLe -1 βυ y (0, •) 2 -θ -1 i β (• -R)ζ(R + , •) -RLe -1 β υ(0, •) 2 × θ -1 i β R Θ (0) xxx ζ(R + , •) -RLe -1 βΘ (0) xxx υ(0, •) + Θ (0) xx + ζ xx -2 θ -1 i β (• -R)ζ(R + , •) -RLe -1 β υ(0, •) × θ -1 i β R Θ (0) xxx ζ(R + , •) -RLe -1 βΘ (0) xxx υ(0, •) -θ -1 i β R ζ y (R + , •) -RLe -1 βυ y (0, •) 2 Θ (0) xx + ζ xx × (1 + θ -1 i β (• -R)ζ(R + , •) -RLe -1 β υ(0, •)) -2 + θ -1 i β (• -R)ζ(R + , •) -RLe -1 β υ(0, •) 1 + θ -1 i β R ζ y (R + , •) -RLe -1 βυ y (0, •) 2 × (θ -1 i β R Θ (0) xx ζ(R + , •) -RLe -1 βΘ (0) xx υ(0, •) + ζ x ) × (1 + θ -1 i β (• -R)ζ(R + , •) -RLe -1 β υ(0, •)) -3 , G 1 (v) = θ -1 i β R Φ (0) xx ζ(R + , •) -RLe -1 βΦ (0) xx υ(0, •) + υ 1 + θ -1 i β (• -R)ζ(R + , •) -RLe -1 β υ(0, •) , G 2 (v) ={[Le θ -1 i β (• -R)ζ(R + , •) -Rβ υ(0, •) + θ -1 i β R ζ yy (R + , •) -RLe -1 βυ yy (0, •)] × [θ -1 i β R Φ (0) xx ζ(R + , •) -RLe -1 βΦ (0) xx υ(0, •) + υ] + 2(θ -1 i β R ζ y (R + , •) -RLe -1 βυ y (0, •)) 2 Φ (0) xx + 2(θ -1 i β R ζ y (R + , •) -RLe -1 βυ y (0, •))υ y }(1 + θ -1 i β (• -R)ζ(R + , •) -RLe -1 β υ(0, •)) -1 -2 θ -1 i β R ζ y (R + , •) -RLe -1 βυ y (0, •) θ -1 i β (• -R)ζ y (R + , •) -RLe -1 β υ y (0, •) × θ -1 i β R Φ (0) xx ζ(R + , •) -RLe -1 βΦ (0) xx υ(0, •) + υ + θ -1 i β R ζ y (R + , •) -RLe -1 βυ y (0, •) 2 -θ -1 i β (• -R)ζ(R + , •) -RLe -1 β υ(0, •) 2 × θ -1 i β R Φ (0) xxx ζ(R + , •) -RLe -1 βΦ (0) xxx υ(0, •) + Φ (0) xx + υ x -2 θ -1 i β (• -R)ζ(R + , •) -RLe -1 β υ(0, •) × θ -1 i β R Φ (0) xxx ζ(R + , •) -RLe -1 βΦ (0) xxx υ(0, •) -θ -1 i β R ζ y (R + , •) -RLe -1 βυ y (0, •) 2 Φ (0) xx + υ x × (1 + θ -1 i β (• -R)ζ(R + , •) -RLe -1 β υ(0, •)) -2 + θ -1 i β (• -R)ζ(R + , •) -RLe -1 β υ(0, •) 1 + θ -1 i β R ζ y (R + , •) -RLe -1 βυ y (0, •) 2 × (θ -1 i β R Φ (0) xx ζ(R + , •) -RLe -1 βΦ (0) xx υ(0, •) + υ) × (1 + θ -1 i β (• -R)ζ(R + , •) -RLe -1 β υ(0, •)) -3 , Λ(v) =(θ i -ζ(R + , •)-ζ x (R + , •)) -1 × ζ x (R + , •) + ∆ζ(R + , •) -θ -1 i ζ yy (R, •)ζ x (R + , •) -2θ -1 i ζ y (R, •)ζ xy (R + , •) + θ -2 i (ζ y (R, •)) 2 (ζ xx (R + , •) -ζ(R, •) -θ i ) -θ -1 i ζ(R, •)ζ yy (R, •) -[Le 2 + RLe(Le υ(0 + , •) + υ x (0 + , •))] -1 × Le υ x (0 + , •) + ∆υ(0 + , •) + RLe -1 υ yy (0 + , •)(Le υ(0 + , •) + υ x (0 + , •)) + 2υ y (0 + , •)υ xy (0 + , •) + R 2 Le -2 (υ y (0 + , •)) 2 (-Le 2 υ(0 + , •) + R -1 Le 2 + υ xx (0 + , •)) , H j (v) =0 if j = 4, 7, H 4 (v) = - RLe(υ y (0, •)) 2 Le 2 + R 2 (υ y (0, •)) 2 , H 7 (v) = Le(ζ y (R + , •)) 2 R(θ 2 i + (ζ y (R + , •)) 2 )
,

on smooth enough functions v = (ζ, υ), where β R = β(• -R).
Remark 3.1. Note that each smooth enough function u, which solves problem (3.23), has its first component u 1 which is continuous on {R} × [-/2, /2]. Therefore, the operator B can be replaced with the operator B which is defined as B with the fifth equation being replaced by the condition

1 2 (v 1 (R + , •) + v 1 (R -, •)) + θ i R[D x v 1 (R + , •) -D x v 1 (R + , •)] = 0.
We will use the above remark in Subsection 4.3.

Tools

In this section we collect some technical results which are used in the next (sub)sections.

4.1.

Preliminary results needed to prove Theorems 4.4 and Proposition 4.5. We find it convenient to set

(F k,ρ f )(x) := 1 Z k R e -ρ 2 s e -1 2 Z k |s| fk (x -s)ds, x ∈ R, f ∈ C b (S; C), k ∈ Z,
where

Z k = Z k (λ, ρ) = ρ 2 + 4λρ + 4λ k for every k ∈ Z and λ k = (4 2 ) -1 k 2 π 2
. Moreover, we denote by Σ 0 the set of λ ∈ C with positive real part. k∈Z (F k,ρ f )e k defines a bounded and continuous function R λ,ρ f in R 2 which, clearly, is periodic with respect to y. Moreover,

(i) R λ,ρ f ∈ p<+∞ W 2,p loc (R 2 ; C) and λR λ,ρ f -ρ -1 ∆R λ,ρ f -D x R λ,ρ f = f in S; (ii) ∇R λ,ρ f ∈ C b (R 2 ; C) × C b (R 2 ; C) and |λ| R λ,ρ f ∞ + |λ| ∇R λ,ρ f ∞ ≤ c f ∞ , λ ∈ Σ 0 ; (4.1) (iii) if further lim x→-∞ f (x, y) = 0 (resp. lim x→+∞ f (x, y) = 0) for every y ∈ [-/2, /2], then (R λ,ρ f )(•, y) vanishes as x → -∞ (resp. x → +∞) for every y ∈ R; (iv) for every f ∈ C α b (S; C), such that f (•, -/2) = f (•, /2), and λ ∈ C with Reλ > -ρ -1 (Imλ) 2 , the function R λ,ρ f admits classical derivatives up to the second-order which belong to C α b (R 2 ; C). Moreover, R λ,ρ f C 2+α b (R 2 ;C) ≤ c λ f C α b (S;C) . (4.2) 
Proof. To begin with, we claim that, for each f ∈ C b (S; C) and λ ∈ C, such that ρReλ + (Imλ) 2 > 0, the series in the statement converges uniformly in R 2 . To prove the claim, we observe that Re(Z k ) > ρ and

|Z k | ≥ Re(Z k ) ≥ c λ (k + 1)
for every k ∈ Z. Thus, we can estimate

|(F k,ρ f )(x)| ≤ sup x∈R | fk (x)| 1 |Z k | R e ρ-Re(Z k ) 2 |s| ds ≤ c λ k 2 + 1 f C b (S;C) , x ∈ R, k ∈ Z, (4.3) 
and this is enough to infer that the series converges locally uniformly on R 2 and, as a byproduct, that the operator R λ,ρ is bounded from

C b (S; C) into C b (R 2 ; C). Moreover, if f (•, y) vanishes at -∞ (resp. +∞) for each y ∈ [-/2, /2],
then by dominated convergence the function F k f vanishes at -∞ (resp. +∞) and, in view of the uniform convergence of the series which defines the function R λ,ρ , this is enough to conclude that this latter function tends to 0 as x → -∞ (resp. x → +∞) for each y ∈ R. Now, we prove properties (i), (ii) and (iv).

(i) Let us prove that the function R λ,ρ f is the unique solution to the equation λu-ρ -1 ∆u-

D x u = f in D = {u ∈ C 1 b (R 2 ; C) ∩ p<+∞ W 2,p loc (R 2 ; C) : ∆u ∈ L ∞ (R 2 ; C) ∩ C b (S; C), u(•, • + ) = u}.
For this purpose, for every n ∈ N we introduce the functions

u n = -1 n k=-n (F k,ρ f )e k and f n = -1 n k=-n f (•, k)e k . Note that λu n -ρ -1 ∆u n -D x u n = f n in R 2 , for every n ∈ N, since the function F k,ρ f (k ∈ Z) solves the differential equation (λ + ρ -1 λ k )w -ρ -1 w -w = f k in R. Thus, u n , ρ -1 ∆ϕ -ϕ x = R 2 u n (ρ -1 ∆ϕ -ϕ x )dxdy = R 2 (λu n -f n )ϕdxdy =: λu n -f n , ϕ for every ϕ ∈ C ∞ c (R 2 ; C).
Letting n tend to +∞ and applying the dominated convergence theorem, it follows that R λ,ρ f is a distributional solution to the equation

λR λ,ρ f -ρ -1 ∆R λ,ρ f -D x R λ,ρ f = f .
By elliptic regularity (see e.g., [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]), we can infer that

R λ,ρ f ∈ p<+∞ W 2,p loc (R 2 ; C). Since R λ,ρ f is bounded and continuous in R 2 and ∆R λ,ρ f + D x R λ,ρ f = λR λ,ρ f -f belongs to L ∞ (R 2 ; C), again by classical results we can infer that R λ,ρ f ∈ C 1+γ b (R 2 ; C) for each γ ∈ (0, 1) and, as a byproduct, that ∆R λ,ρ f ∈ L ∞ (R 2 ; C) ∩ C b (S; C). We can thus conclude that R λ,ρ f belongs to D.
To prove uniqueness, we assume that v is another solution in D of the equation λu-ρ -1 ∆u-u x = f . The smoothness of v implies that, for each k ∈ Z, the function vk belongs to C 1 b (R; C). Moreover, integrating by parts we obtain that

R vk ϕ dx = 1 S ϕ ve k dxdy = 1 S ϕv xx e k dxdy for each ϕ ∈ C ∞ c (R). By Fubini theorem, vk belongs to W 2,p loc (R; C). Since λv -ρ -1 ∆v -v x = f in S, we can write S ϕ(x)v xx e k dxdy = lim n→+∞ S ϕ(x)v xx (x, y)ψ n (y)e k (y)dxdy =λρ R ϕv k dx -lim n→+∞ S ϕv yy ψ n e k dxdy -ρ R ϕv k dx -ρ R ϕf k dx, (4.4) 
where ψ n (y) = ψ(n|y|/ + 1 -n/2) for each y ∈ [-/2, /2), n ∈ N, and ψ is a smooth function such that ψ = 1 in (-∞, 1/2] and ψ = 0 outside (-∞, 3/4]. Clearly, ψ n converges to 1 in L 1 ((-/2, /2)) as n tends to +∞. An integration by parts shows that

lim n→+∞ S ϕ(x)v yy (x, y)ψ n (y)e k (y)dxdy = -lim n→+∞ n R 2 ϕ(x)χ A (x)signum(y)v y (x, y)ψ n |y| + 1 - n 2 χ Bn (y)e k (y)dxdy -λ k R ϕ(x)v k (x)dx, (4.5) 
where A = supp(ϕ) and

B n = y ∈ R : 2 -2n ≤ |y| ≤ 2 -4n for every n ∈ N.
We claim that the first term in the last side of (4.5) is zero. For this purpose, we split

n R 2 ϕ(x)χ A (x)signum(y)v y (x, y)ψ n |y| + 1 - n 2 χ Bn (y)e k (y)dxdy = n R 2 ϕ(x)χ A (x)signum(y)(v y (x, y) -v y (x, /2))ψ n |y| + 1 - n 2 χ Bn (y)e k (y)dxdy + n A ϕ(x)v y (x, /2)dx R signum(y)ψ n |y| + 1 - n 2 χ Bn (y)e k (y)dy = : K 1,n (x, y) + K 2,n (x, y)
for every (x, y) ∈ R 2 . Since v is -periodic with respect to y, D y v is -periodic with respect to y as well. Moreover, this latter function is 1/2-Hölder continuous in R 2 since it belongs to D. Hence, we can estimate

|v y (x, y) -v y (x, /2)| = |v y (x, y) -v y (x, -/2)| ≤ [v y ] C 1/2 (A×[-/2, /2];C) min{|y -/2|, |y + /2|} 1 2
for every x ∈ A and y ∈ [-/2, /2]. Thus,

|K 1,n | ≤ c ϕ ∞ ψ ∞ n 1 2 m(A × B n ) ≤ c ϕ ∞ ψ ∞ n -1 2 , n ∈ N,
where m(A × B n ) denotes the Lebesgue measure of the set A × B n , so that K 1,n vanishes as n tends to +∞. As far as K 2,n is concerned, we observe that

K 2,n (x, y) = - 2in A D y v(x, /2)ϕ(x)dx 2 -4n 2 -2n ψ n y + 1 - n 2 sin 2kπ y dy =c 4kπi 2 -4n 2 -2n ψ n y + 1 - n 2 cos 2kπ y dy -2(-1) k sin kπ n .
Hence, K 2,n vanishes as n tends to +∞. The claim is so proved. From (4.4) and (4.5), we can now infer that ρ

-1 v k = (λ + ρ -1 λ k )v k -v k -fk . Thus, v k = F k f for every k ∈ Z and, as a byproduct, we deduce that v = R λ,ρ f . (ii) By classical results, the realization A ρ in L ∞ (R 2 ; C) of the operator ρ -1 ∆ + D x , with domain D(A ρ ) = {u ∈ C 1 b (R 2 ; C)∩ p<+∞ W 2,p loc (R 2 ; C) : ∆u ∈ L ∞ (R 2 ; C)} ⊃ D, generates an analytic semi- group. Moreover, R(λ, A ρ ) L(L ∞ (R 2 )) ≤ c|λ| -1 for every λ ∈ Σ 0 and ∇v ∞ ≤ c v 1/2 ∞ A ρ v 1/2 ∞ for every v ∈ D(A ρ ). Note that the function R(λ, A ρ )f is -periodic with respect to y. Indeed, R(λ, A ρ )f and (R(λ, A ρ )f )(•, • + ) both solve (in D(A ρ )) the equation λu -ρ -1 ∆u -u x = f and, by uniqueness, they coincide. Finally, since f is continuous in S, ∆R(λ, A ρ )f belongs to C b (S; C).
Hence, R(λ, A ρ )f ∈ D and, by (i), it coincides with R λ,ρ f . Using the above estimates, inequality (4.1) follows immediately.

(iv

) Since f ∈ C α b (S; C) and f (•, -/2) = f (•, /2), the function f belongs to C α b (R 2 ; C). Hence, ∆R λ,ρ f = ρ(λR λ,ρ f -f -D x R λ,ρ f ) is an element of C α b (R 2 ; C).
Classical results (see e.g., [START_REF] Krylov | Lectures on elliptic and parabolic equations in Sobolev spaces[END_REF]) yield (4.2). k∈Z (G k g)e k is bounded and continuous in R 2 . Here, G k g := F k,Le (g) for each k ∈ Z, and g is the trivial extension of

g to R × [-/2, /2]. Moreover, (i) S λ g belongs to p<+∞ W 2,p loc (R 2 ; C) and λS λ g -Le -1 ∆S λ g -D x S λ g = g in S + 0 ; (ii) there exists a positive constant c 1 , independent of λ, such that |λ| S λ g ∞ + |λ| ∇S λ g ∞ ≤ c 1 g ∞ , λ ∈ Σ 0 ; (4.6) (iii) if further lim x→+∞ g(x, y) = 0 for each y ∈ [-/2, /2], then (S λ g)(•, y) vanishes as x → +∞ for each y ∈ R; (iv) if g ∈ C α b (S + 0 ; C) and g(•, -/2) = g(•, /2), then S λ g belongs to C 2+α b (R 2 ; C) for every λ ∈ C such that Reλ > -Le -1 (Imλ) 2 . Moreover, S λ g C 2+α b (R 2 ;C) ≤ c 2,λ g C α b (S + 0 ;C) , (4.7) 
with the constant c 2,λ being independent of g.

Proof. We split the proof into two steps: in the first one we prove properties (i), (ii) and (iii) and in the second step we prove property (iv).

Step 1. Let us fix g and λ as in the statement. Arguing as in the first part of the proof of Lemma 4.1, taking the continuity of the functions G k g (k ∈ Z) into account, it can be checked that the series in the statement converges uniformly in R 2 , so that the function S λ g is well defined and it vanishes as x → +∞ for every y ∈ R, if lim x→+∞ g(x, y) = 0 for every y ∈ [-/2, /2].

To check properties (i) and (ii), for each n ∈ N we set g n := g x ψ n , where x stands for convolution with respect to the variable x and (ψ n ) is a standard sequence of mollifiers. Clearly, S λ g n = R λ,Le g n . The sequence (g n ) converges to g pointwise in R 2 as n → +∞ and g n ∞ ≤ g ∞ for each n ∈ N. Thus, we can infer that F k,ρ g n converges to G k g pointwise in R as n tends to +∞, for every k ∈ N and, by dominated convergence, R λ,Le g n tends to S λ g pointwise in R 2 .

Applying the classical interior L p -estimates for the operator Le -1 ∆ + D x and using (4.1), which allows us to write

|λ| ∇R λ,Le g n ∞ + |λ| 1 2 ∇R λ,Le g n ∞ ≤ c g n ∞ ≤ c g ∞ , n ∈ N, (4.8) 
we can estimate

R λ,Le g n W 2,p (B(0,r);C) ≤c p,r ( R λ,Le g n L p (B(0,2r);C) + Le -1 ∆R λ,Le g n + D x R λ,Le g n L p (B(0,2r);C) ) ≤c p,r [(1 + |λ|) R λ,Le g n C(B(0,2r);C) + g n C(B(0,2r);C) ] ≤c p,r,λ g n ∞ ≤ c p,r,λ g ∞
for every p ∈ [1, +∞) and r > 0. Hence, by compactness, we conclude that R λ,Le g n converges to S λ g in C 1 (B(0, r); C) for each r > 0, S λ g ∈ W 2,p loc (R 2 ; C) for every p ∈ [1, +∞) and λS λ g -Le -1 ∆S λ g -D x S λ g = g in S + 0 . Finally, estimate (4.6) follows at once from (4.8).

Step 2. To complete the proof, here we check property (iv), which demands some additional effort. We begin by checking that the function

ζ = S λ g(0, •) belongs to C 2+α b (R; C). For this purpose, we set ζ n = -1 n k=-n (G k g)(0)e k for n ∈ N.
Clearly, each function ζ n is smooth and where k 0 ∈ N is chosen so that πk 0 > Le. As it is easily seen,

ζ n = 2πi 2 |k|<k0 k Z k e k +∞ 0 e Le 2 s e -1 2 Z k s ĝk (s)ds + 2πi 2 k0≤|k|≤n k Z k - π e k +∞ 0 e Le 2 s e -1 2 Z k s ĝk (s)ds + 2i n |k|=k0 e k +∞ 0 e Le 2 s e -1 2 Z k s -e -
k Z k - π ≤ c λ k 2 + 1 , k ∈ Z, (4.9) 
so that I 1,n converges uniformly in R 2 as n → +∞. On the other hand,

e -1 2 Z k s -e -π|k| 2 s = 1 0 d dr e -1 2 Z k (r)s dr ≤ s 1 0 Le 2 + 4λLe 4Z k (r) e -1 2 Re(Z k (r))s dr,
where we have set

Z k (r) = (Le 2 + 4λLe)r + k 2 π 2 2 1 2 . Note that Re(Z k (r)) ≥ c λ |k| for |k| ≥ k 0 .
For such values of k and for Reλ > 0 (which implies that Re(Z k (r)) > Le for every r ∈ [0, 1] and |k| ≥ k 0 ) we can estimate

+∞ 0 e Le 2 s e -1 2 Z k s -e -π|k| 2 s ĝk (s)ds ≤ |Le 2 + 4λLe| 4|k| g ∞ 1 0 r -1 2 dr +∞ 0 se Le 2 s-1 2 (Re(Z k (r))s ds ≤ c λ k 3 g ∞ , (4.10) 
so that the sequence (I 2,n ) converges uniformly in R 2 . Next, we observe that

I 3,n (y) = 2i +∞ 0 ds 2 -2 K n (s, η)g n (s, y -η)dη, y ∈ R, n ∈ N,
where K n (x, y) = H n (x, y) + H n (x, -y) and

H n (x, y) = e Le 2 x e -π 2 (x-4iy)(k0-1) -e -π 2 (x-4iy)n e π 2 (x-4iy) -1 , g n (x, y) = -1 n k=-n ĝ(x, k)e 2kπi y
for x ≥ 0, y ∈ R 2 and n ∈ N. We set

K(x, y) = e Le 2 - π(k 0 -1) 2 x e -2π(k 0 -1)i y e π 2 (x-4iy) -1 + e 2π(k 0 -1)i y e π 2 (x+4iy) -1 , x ≥ 0, y ∈ R,
and prove that I 3,n converges pointwise in R to the function I 3 , defined by 1

I 3 (y) = i π +∞ 0 ds 2 -2 K(s, η)g (s, y -η)dη, y ∈ R.
For this purpose, we split

J 3,n -J 3 = +∞ 0 ds 2 -2 (g n (s, • -η) -g (s, • -η))K n (s, η)dη
+ +∞ 0 ds 2 -2 g (s, • -η)(K n (s, η) -K(s, η))dη =: A 1,n + A 2,n
for every n ∈ N and observe that

A 1,n ∞ ≤ +∞ 0 g n (s, •) -g(s, •) L 2 ((-/2, /2)) K n (s, •) L 2 ((-/2, /2)) ds, n ∈ N. Since (i) g n (0, •)-g(0, •) L 2 ((-/2, /2);C) vanishes as n → +∞, (ii) g n (x, •)-g(x, •) L 2 ((-/2, /2);C) ≤ 2 g(x, •) L 2 ((-/2, /2);C) ≤ 2 g ∞ , for x ≥ 0 and n ∈ N, and (iii) |K n | ≤ 2|K| in R + × R for every n ∈ N, the dominated convergence theorem shows that A 1,n converges to zero pointwise in R as n tends to +∞. Moreover, A 1,n ∞ ≤ c g ∞ .
That theorem also shows that A 2,n converges to zero pointwise in R as n tends to +∞; moreover, A 2,n ∞ ≤ c g ∞ for each n ∈ N. Now, writing

ζ n (y) = ζ n (0) + y 0 I 0 (r) + 3 h=1 I h,n (r) dr, y ∈ R, n ∈ N,
and letting n tend to +∞, again by dominated convergence we conclude that

ζ = 2πi 2 |k|<k0 k Z k e k +∞ 0 e Le 2 s e -1 2 Z k s ĝk (s)ds + 2πi 2 |k|≥k0 k Z k - π e k +∞ 0 e Le 2 s e -1 2 Z k s ĝk (s)ds + 2i |k|≥k0 e k +∞ 0 e Le 2 s e -1 2 Z k s -e -πk 2 s ĝk (s)ds + i π +∞ 0 ds 2 -2 K(s, η)g (s, • -η)dη.
Denote by φ 1 , . . . , φ 4 the four terms in the right-hand side of the previous formula. Clearly,

φ 1 belongs to C ∞ b (R; C). In particular, φ 1 C 1+α b (R;C) ≤ c g ∞ .
As far as φ 2 and φ 3 are concerned, using (4.9), (4.10), the same arguments here above and in the first part of the proof of Lemma 4.1, it can be easily shown that such functions belong to x min{2(e π 2 x -1) -1 , c(x 2 + y 2 ) -1/2 } for every (x, y) ∈ S + 0 . This shows that I 3 is bounded in R 2 . Moreover, I 3 is the uniform limit as ε → 0 + of the function +∞ ε ds /2 -/2 K(s, •η)g(s, η)dη, which is clearly continuous in R thanks to the above estimate for K. Hence, I 3 is itself continuous in R.

C 1+α b (R; C) and φ 2 C 1+α b (R;C) + φ 3 C 1+α b (R;C) ≤ c g ∞ . The function φ 4 is the limit in C b (R; C) of the sequence (φ 4,n ) defined by φ 4,n = i π +∞ 1 n ds 2 -2 K(s, η)g (s, • -η)dη, n ∈ N.
Clearly, each function φ 4,n is continuously differentiable in R and

φ 4,n = i π +∞ 1 n ds 2 -2 K y (s, η)g (s, • -η)dη,
where for (x, y) ∈ H + 0 . Since K is -periodic with respect to y, it follows that /2

K y (x, y) = 2πi (k 0 -1)e
-/2 K y (s, η)dη = 0. Hence, we can write

φ 4,n (y) = i π +∞ 1 n ds 2 -2 K y (s, η)(g (s, y -η) -g(s, y))dη, y ∈ R, n ∈ N.
By assumptions, g ∈ C α b (S + 0 ; C) and this allows us to estimate

|K y (s, η)(g (s, y -η) -g (s, y))| ≤ c min{(s 2 + η 2 ) α 2 -1 , (e π 2 |s| -1) -1 } g C α b ([0,+∞)×R;C)
for every (s, η) ∈ R × R + and y ≥ 0. Thus, we can let n tend to +∞ in (4.11) and conclude that φ 4,n converges uniformly in R 2 . As a byproduct, φ 4 is continuously differentiable in R, 

φ 4 = +∞ 0 ds 2 -2 K y (s, η)(g (s, • -η) -g(s, •))dη and φ 4 ∞ ≤ c g C α b (S + 0 ;C) . To prove that φ 4 belongs to C α b (R; C) we split φ 4 = +∞ 0 ds 2 -2 (L 1 (s, η) + L 2 (s, η)χ (1,+∞) (s))(g (s, • -η) -g(s, •))dη + 1 0 ds 2 -2 L 2 (s, η)(g (s, • -η) -g(s, •))dη. ( 4 
(e π 2 (x-4iy) -1) 2 = 2 π 2 4x 2 + 32ixy -64y 2 (x 2 + 16y 2 ) 2 + ψ(x, y), (x, y) ∈ (0, 1) × (-/2, /2),
for some function ψ ∈ L 1 ((0, 1) × (-/2, /2); C). Thus,

Ψ(y) = - 128i 2 π 2 1 0 ds 2 -2 s(y -η) (s 2 + 16(y -η) 2 ) 2 (g (s, η) -g(s, y))dη -2 1 0 ds 2 -2 (ψ(s, η) -ψ(s, -η))(g (s, y -η) -g(s, y))dη =: Ψ 1 (y) + Ψ 2 (y) for every y ∈ R. The function Ψ 2 is clearly α-Hölder continuous in [-/2, /2] since ψ ∈ L 1 ((0, 1) × (-/2, /2); C). Moreover, Ψ 2 C α b (R;C) ≤ c g C α b (R;C) .
As far as the function Ψ 1 is concerned, we approximate it with the family of functions Ψ 1,h defined by

Ψ 1,h (y) = - 128i 2 π 2 1 0 ds 2 -2 s(y -η) (s 2 + 16(y -η) 2 + h 2 ) 2 (g(s, η) -g(s, •))dη, h > 0.
Each of these functions is continuously differentiable in R with bounded derivative, so that, we can estimate

|Ψ 1 (y 2 ) -Ψ 1 (y 1 )| ≤|Ψ 1 (y 2 ) -Ψ 1,h (y 2 )| + |Ψ 1,h (y 2 ) -Ψ 1,h (y 1 )| + |Ψ 1,h (y 1 ) -Ψ 1 (y 1 )| ≤2 Ψ 1 -Ψ 1,h ∞ + Ψ 1,h ∞ |y 2 -y 1 | (4.13) for y 1 , y 2 ∈ [-/2, /2]. Note that Ψ 1 -Ψ 1,h ∞ ≤ 256 2 π 2 g C α b (S + 0 ;C) R 2 |sη|h 2 (s 2 + 16η 2 + h 2 ) 2 (s 2 + 16η 2 ) dsdη ≤ch 2 g C α b (S + 0 ;C) +∞ 0 ρ α+1 (ρ 2 + h 2 ) 2 dρ = ch α g C α b (S + 0 ;C) and Ψ 1,h ∞ ≤ 128 2 π 2 g C α b (S + 0 ;C) R 2 (s 2 + 48η 2 + h 2 )|η| α (s 2 + 16η 2 + h 2 ) 3 dsdη ≤c g C α b (S + 0 ;C) +∞ 0 ρ 2+α (ρ 2 + h 2 ) 2 dρ ≤ c g C α b (S + 0 ;C) h α-1 .
Replacing these inequalities into (4.13) and taking h = |y 2 -y 1 |, we conclude that

|Ψ 1 (y 2 ) -Ψ 1 (y 1 )| ≤ c g C α b (S + 0 ;C) |y 2 -y 1 | α . Therefore, φ 4 ∈ C α b (R; C) and φ 4 C α b (R;C) ≤ c g C α b (S + 0 ;C) . Putting everything together it follows that ζ ∈ C 2+α b (R; C) and ζ C 2+α b (R;C) ≤ c g C α b (S + 0 ;C) . Finally, we consider the function S λ g-ζ =: v ∈ C b ([0, +∞)×R; C)∩ p<+∞ W 2,p loc ((0, +∞)×R; C). Since Le -1 ∆v + v x ∈ C α b ((0, +∞) × R; C
) and by construction v(0, •) = 0, by classical results (see e.g., [START_REF] Krylov | Lectures on elliptic and parabolic equations in Sobolev spaces[END_REF]

) v ∈ C 2+α b ((0, +∞) × R) and v C 2+α b (H + 0 ;C) ≤c( v ∞ + Le -1 ∆v + v x C α b (H + 0 ) + ζ C 2+α b (R;C) ) ≤c( v ∞ + λS λ g -g C α b (H + 0 ;C) + ζ C 2+α b (R;C) ) ≤ c g C α b (H + 0 ;C) .
Formula (4.7) follows as once. 

(T ± λ f )(x, y) = e -Le 2 (x-R) k∈Z e ± 1 2 Y k (x-R) F k,1 f (R)e k (y), (x, y) ∈ H ∓ R , (U λ g)(x, y) = e -Le 2 x k∈Z e -Y k 2 x (G k g)(0)e k (y), (x, y) ∈ H + 0 .
Then, the following properties are satisfied.

(i) T ± λ f belongs to C 1 b (H ∓ R ; C) ∩ W 2,p loc (H ∓ R ; C), for each p < +∞, solves the equation λu - Le -1 ∆u -u x = 0 in H ∓ R and, for each M > 0, there exists a constant c M > 0 such that |λ| T ± λ f ∞ + |λ| ∇T ± λ f ∞ ≤ c M f ∞ , |λ| ≥ M ; (4.14) (ii) lim x→+∞ (T - λ f )(x, y) = lim x→-∞ (T + λ f )(x, y) = 0 for every y ∈ R and f ∈ C b (S; C); (iii) if f ∈ C α b (S; C) and f (•, -/2) = f (•, -/2), then the function T ± λ f belongs to C 2+α b (H ∓ R ; C) and T ± λ f C 2+α b (H ∓ R ) ≤ c f C α b (S;C) for each Reλ > -(Imλ) 2 ; (iv) U λ g belongs to C 1 b (H + 0 ; C)∩W 2,p
loc (H + 0 ; C), for each p < +∞, solves the equation λu-Le -1 ∆u-D x u = 0 and, for every M > 0 there exists a positive constant c M such that

|λ| U λ g ∞ + |λ| ∇U λ g ∞ ≤ c M g ∞ , |λ| ≥ M ; (v) lim x→+∞ (U - λ g)(x, y) = 0 for each y ∈ R and g ∈ C b (S + 0 ; C); (vi) if g ∈ C α b (S + 0 ; C) is such that g(•, -/2) = g(•, -/2), then the function U λ g belongs to C 2+α b (H + 0 ; C) and U λ g C 2+α b (H + 0 ;C) ≤ c g C α b (S + 0 ;C) for each λ ∈ C such that Reλ > -(Imλ) 2 . Proof. (i)
The arguments as in the proof of Lemma 4.1 show that the function T ± λ f is continuous in H ∓ R and smooth in its interior, where it solves the equation λu -Le -1 ∆u -u x = 0. Further, the function

v ± = T ± λ f -R λ,1 f is bounded, vanishes on {R} × R and λv ± -Le -1 ∆v ± -v ± x = h in H ∓ R , where L ∞ (H ∓ R ; C) h = -Le -1 f + (Le -1 -1)(λR λ,1 f -D x R λ,1 f
). By classical results, the realization of the operator Le -1 ∆ + D x in L ∞ (H ∓ R ; C) with homogeneous Dirichlet boundary conditions generates an analytic semigroup with domain

{u ∈ C b (H ∓ R ; C) ∩ p<+∞ W 2,p loc (H ∓ R ; C) : Le -1 ∆u + D x u ∈ L ∞ (H ∓ R ; C)}. In particular, for every λ ∈ Σ 0 it holds that |λ| v ± ∞ + |λ| ∇v ± ∞ ≤ c h ∞ .
From the definition of v ± and taking (4.1) into account, estimate (4.14) follows immediately.

(ii) The proof of this property is immediate since the series defining

T + λ f (resp. T - λ f ) converges uniformly in H - R (resp. in H + R
) and each of its terms vanishes as x → -∞ (resp. x → +∞), uniformly with respect to y ∈ R.

(iii

) Fix λ ∈ C with Reλ > -(Imλ) 2 . Since f ∈ C α b (S) and f (•, -/2) = f (•, /2), thanks to Lemma 4.1(iii) we can infer that the function h ∈ C α b (R 2 ; C). Hence, Le -1 ∆v ± + v ± x ∈ C α b (H ∓ R ; C) and by classical results it follows that v ∈ C 2+α b (H ∓ R ; C) and v ± C 2+α b (H ∓ R ;C) ≤ c( v ± ∞ + Le -1 ∆v ± + v ± x C α b (H ∓ R ;C) ).
From the definition of v ± and the above estimate, the assertion follows at once.

(iv)-(vi) The proof of these three properties follows applying the procedure of the first part of the proof, with R λ,1 f being replaced by the function S λ g. The details are left to the reader.

Analytic semigroups and interpolation spaces.

To state the main result of this subsection, for each k ∈ N ∪ {0} we introduce the functions (the so-called dispersion relations)

D k (λ) = (Le -Y k ) exp R 2 (Le -1 -X k -Y k ) -1 + θ i RX k , D k (λ) = (Le -Y k ) exp R 2 (Le -1 -X k -Y k ) -exp R 2 (Le -1 + X k -Y k ) + θ i RX k , where X k = X k (λ) = √ 1 + 4λ + 4λ k , Y k = Y k (λ) = Le 2 + 4λLe + 4λ k , λ k = 4π 2 k 2 -2
, and the sets

Ω k = {λ ∈ C : Reλ ≥ -(Imλ) 2 -λ k and D k (λ) = 0}, (4.15 
)

Ω k = {λ ∈ C : -Le -1 ((Imλ) 2 + λ k ) < Reλ < -(Imλ) 2 -λ k , and D k (λ) = 0}.
Theorem 4.4. The realization L of the operator L in X, with domain

D(L) = u ∈ X : u j (•, -/2) = u j (•, /2), j = 1, 2, u 1 ∈ C 1 b (H - 0 ; C) ∩ p<+∞ W 2,p loc (H - 0 ; C) u 1 , u 2 ∈ C 1 ([0, R] × R; C)∩C 1 b (H + R ; C)∩ p<+∞ W 2,p loc ((R + \{R})×R; C), L u ∈ X, Bu = 0 ,
(see (3.24) and (3.25)) generates an analytic semigroup in X. Moreover,

(i) the spectrum σ(L) of L is the set {λ ∈ C : Reλ ≤ -Le -1 (Imλ) 2 } ∪ k∈N∪{0} (Ω k ∪ Ω k );
(ii) there exist two positive constants M and c such that

|λ| ∇R(λ, L)f ∞ ≤ c f ∞ for λ ∈ C with Reλ ≥ M and f ∈ X; (iii) if f ∈ X α for some α ∈ (0, 1), then for each λ ∈ ρ(L) the function R(λ, L)f belongs to X 2+α and R(λ, L)f 2+α ≤ c λ f α .
Proof. Since it is rather long, we split the proof into four steps. In Steps 1 and 2, we characterize σ(L), whereas in Step 3 we prove that L generates an analytic semigroup in X as well as the estimate for the spatial gradient for the resolvent operator. Finally, in Step 4, we prove property (iii).

Step 1. Fix f ∈ X and λ ∈ C such that Reλ > -(Imλ) 2 and λ ∈ Ω k for each k ∈ N ∪ {0}, and assume that the equation λu -L u = f admits a solution u = (u 1 , u 2 ) in D(L). The arguments in the proof of Lemma 4.1(i) show that for every k ∈ Z the functions û1,k and û2,k (see Subsection 2.1), solve, respectively, the differential equations

λû k -û k -û k + λ k ûk = f1,k in R \ {0, R} and λv k - v k -Le -1 v k + Le -1 λ k vk = f2,k in R + \ {R}. Moreover, they belong to C 1 b (R; C) and C 1 b ([0, +∞); C), respectively. Thus, û1,k (x) = (F k,1 f 1 )(x) + c 1,k e ν + k x χ (-∞,0] (x) + (c 2,k e ν - k x + c 3,k e ν + k x )χ (0,R) (x) + c 4,k e ν - k x χ [R,+∞) (x) for every x ∈ R, k ∈ Z and û2,k (x) = (G k f 2 )(x) + (d 1,k e µ - k x + d 2,k e µ + k x )χ [0,R) (x) + d 3,k e µ - k x χ [R,+∞) (x) (4.16)
for every x ≥ 0 and k ∈ Z, where

µ ± k = -Le 2 ± 1 2 Y k , ν ± k = -1 2 ± 1 2 X k and c 1,k , c 2,k , c 3,k , c 4,k , d 1,k , d 2,k , d 3,k (k ∈ Z)
are complex constants determined imposing the conditions B(û 1,k , û2,k ) = 0 that the infinitely many functions û1,k and û2,k have to satisfy. It turns out that the above constants are uniquely determined if and only if D k (λ) = 0, as we are assuming, and as a byproduct,

u 1 = R λ,1 f 1 + 1 k∈Z p 1,k (F k,1 f 1 )(R)e k + 2 Le k∈Z p 2,k (G k f 2 )(0)e k , in H - 0 , (4.17 
)

u 1 = R λ,1 f 1 + 1 k∈Z p 3,k (F k,1 f 1 )(R)e k + 2 Le k∈Z p 4,k (G k f 2 )(0)e k , (4.18) 
u 2 = S λ f 2 - Le 2θ i R T + λ f 1 + 1 U - λ f 2 + Le 2 k∈Z q 1,k (F k,1 f 1 )(R)e k + 1 k∈Z q 2,k (G k f 2 )(0)e k , (4.19) 
in (0, R) × R, and

u 1 = R λ,1 f 1 + 1 k∈Z p 5,k (F k,1 f 1 )(R)e k + 2θ i R Le k∈Z p 6,k (G k f 2 )(0)e k , (4.20) 
u 2 = S λ f 2 + Le 2θ i R T - λ f 1 + Le 2 k∈Z q 3,k (F k,1 f 1 )(R)e k + 1 k∈Z q 4,k (G k f 2 )(0)e k , (4.21) 
in H + R , where R λ,1 f and S λ g have been introduced in Lemmata 4.1 and 4.2,

p 1,k (x) = e -ν + k R -e -µ + k R W k e ν + k x , p 2,k (x) = (θ i RX k -1 + e -X k R )Y k X k W k (Y k -Le) e ν + k x p 3,k (x) = e ν + k (x-R) -e ν - k x-µ + k R W k , p 4,k (x) = Y k [(θ i RX k -1)e ν - k x + e -X k R e ν + k x ] X k W k (Y k -Le) , p 5,k (x) = e -ν - k R -e -µ + k R W k e ν - k x , p 6,k (x) = Y k (Y k -Le)W k e ν - k x , q 1,k (x) = e (ν - k -µ + k )R -1 θ i RW k e µ + k (x-R) - X k e -µ + k R Y k W k [(Le + Y k )e µ - k x -Le e µ + k x ], q 2,k (x) = 2Le(θ i RX k -1) W k (Y k -Le) e µ - k x - e (ν - k -µ + k )R W k (e µ - k x + e µ + k x ), q 3,k (x) = 1 -e (ν - k -µ + k )R θ i RW k e µ - k (x-R) - Le(e µ - k x-µ + k R -e µ - k (x-R) )X k Y k W k - X k e µ - k x-µ + k R W k , q 4,k (x) = Y k (θ i RX k -1)e µ - k x -Le e µ - k x+(ν - k -µ + k )R + (Y k + Le)e ν - k R+µ - k (x-R) W k (Y k -Le) and W k = W k (λ) = θ i RX k -1 + e (ν - k -µ + k )R .
In view of Lemmata 4.1 to 4.3, to prove that the pair u defined by (4.17)-(4.21) belongs to D(L) and λu -L u = f we just need to consider the series in the above formulae, which we denote, respectively by P λ,2k+j f j (j = 1, 2, k = 0, 1, 2), Q λ,2h+j f j (j = 1, 2, h = 0, 1). To begin with, we observe that, by (i) in the proof of Lemma 4.1, we already know that Re(X k ) + Re(Y k ) ≥ c λ |k| and

|X k | + |Y k | ≤ c λ (|k| + 1) for each k ∈ Z. As a byproduct, taking also (4.3) into account, we can infer that |(F k,1 f 1 )(R)| ≤ c λ (1 + k 2 ) -1 f 1 ∞ and |(G k f 2 )(0)| ≤ c λ (1 + k 2 ) -1 f 2 ∞ for each k ∈ Z.
Moreover, we can also estimate

|W k | ≥ θ i R|X k | -1 -e Re(ν - k -µ + k )R ≥ θ i R|X k | -1 -e Le-1 2 R ≥ c λ |k|, k ∈ Z \ {0}. (4.22)
Putting everything together, we conclude that

p 1,k C h b ((-∞,0];C) ≤ c 1 e -c2k
for each h ∈ N and

p 2,k C j b ((-∞,0];C) + 2 i=1 [ (p i+2,k , q i,k ) C j ([0,R];C 2 ) + (p 4+i,k , q i+2,k ) C j b ([R,+∞);C 2 ) ] ≤ c λ |k| j-1
for each k ∈ Z\{0}. Using these estimates, it is easy to check that P λ,1

f 1 ∈ C β b (H - 0 ; C) for β > 0 and P λ,2 f 2 ∈ C ∞ (H - 0 ; C) ∩ C 1 b (H - 0 ; C).
Moreover, they solve the equation λw -∆ x w -D x w = 0 in H - 0 . Since the series which define P λ,1 f 1 and P λ,2 f 2 converge uniformly in H - 0 and each term vanishes as x → -∞, uniformly with respect to y ∈ R, we immediately infer that lim x→-∞ (P λ,1 f 1 )(x, y) = lim x→-∞ (P λ,1 f 2 )(x, y) = 0 for each y ∈ R. On the other hand, the functions

P λ,3 f 1 , P λ,4 f 2 and Q λ,1 f 1 , Q λ,2 f 2 belong to C ∞ ((0, R) × R; C) ∩ C 1 b ([0, R] × R; C) and solve, in (0, R) × R, the equations λw 1 -∆ x w 1 -D x w 1 = 0 and λw 2 -Le -1 ∆ x w 2 -D x w 2 = 0, respectively. Finally, the functions P λ,5 f 1 , P λ,6 f 2 and Q λ,3 f 1 , Q λ,4 f 2 belong to C ∞ (H + R ; C) ∩ C 1 b (H + R ; C) solves, in H + R , the equations λw 1 -∆ x w 1 -D x w 1 = 0 and λw 2 -Le -1 ∆ x w 2 -D x w 2 =
0, respectively, and vanish as x tends to +∞ for each y ∈ R. Therefore, the function u defined by (4.17)-(4.21) belongs to

p<+∞ W 2,p loc ((R \ {0, R}) × R) × p<+∞ W 2,p loc ((R + \ {R}) × R)
, solve the equation λu -L u = f and lim x→±∞ u 1 (x, y) = lim x→+∞ u 2 (x, y) = 0 for each y ∈ R. Moreover, ∇u ∞ ≤ c f ∞ . To conclude that u ∈ D(L), we have to check that Bu = 0, but this is an easy task taking into account that all the series appearing in the definition of u may be differentiated term by term and B(û 1,k , û2,k ) = 0 for every k ∈ Z. We have so proved that u ∈ D(L) and that

k∈N∪{0} Ω k ⊂ σ(L) ⊂ {λ ∈ C : Reλ ≤ -(Imλ) 2 } ∪ k∈N∪{0} Ω k .
Step 2. To complete the characterization of σ(L), let us check that σ(L) ⊃ {λ ∈ C : Reλ ≤ -Le -1 (Imλ) 2 } ∪ k∈N∪{0} Ω k . Clearly, each λ ∈ C such that Reλ ≤ -Le -1 (Imλ) 2 belongs to σ(L), since in this case ν ± 0 and µ ± 0 have nonpositive real parts so that the more general solution to the equation λu -Lu = 0, which belongs to X and is independent of y, is determined up to 8 arbitrary complex constants and we have just 7 boundary condition. Thus, the previous equation admits infinitely many solutions in X. Similarly, if λ ∈ Ω k for some k ∈ N ∪ {0}, then the pair u = (û 1,k e k , û2,k e k ), where

û1,k (x) = (F k,1 f 1 )(x)+(c 1,k e ν - k x +c 2,k e ν + k x )χ (0,R) (x)+(c 3,k e ν - k x +c 4,k e ν + k x χ [R,+∞) (x), x ∈ R,
and û2,k is still given by (4.16), is smooth, belongs to X and solves the differential equation λu -L u = f for every choice of c i,k , d j,k (i = 1, . . . , 4, j = 1, 2, 3). Imposing the condition Bu = 0, we get to a linear system of 7 equations in 7 unknowns whose determinant is D k (λ). Since λ ∈ Ω k , the above equation admits infinitely many solutions in D(L).

Step 3. Since the roots of the dispersion relation have bounded from above real part (see also the forthcoming computations), Step 1 shows that the resolvent set ρ(L) contains a right-halfplane. Hence, to prove that L generates an analytic semigroup it remains to prove that |λ| R(λ, L)f ∞ ≤ c f ∞ for each λ in a suitable right-halfplane. Again, in view of Lemmata 4.1, 4.2 and 4.3, we can limit ourselves to dealing with the functions P λ,2k+j f j and Q λ,2h+j f j .

For each λ ∈ C with positive real part, we can refine the estimate for Re(X k ) and Re(Y k ); it turns out that

|X k | ≥ Re(X k ) = |1+4λ+4λ k |+Re(1 + 4λ + 4λ k ) 2 ≥ 2|λ| ∨ 1 ∨ 2 λ k ≥ √ 3 3 |λ| + 1 + λ k , |X k | ≤ 2 1 + |λ| + λ k and, similarly, c 1 1 + |λ| + λ k ≤ Re(Y k ) ≤ |Y k | ≤ c 2 1 + |λ| + λ k for each k ∈ Z and λ ∈ C with positive real part. As a byproduct, we get |(F k,1 f 1 )(R)| + |(G k f 2 )(0)| ≤ c R (|λ| + 1 + k 2 ) -1 f X for
each k and λ as above. Moreover, using (4.22) we can also estimate

|W k | ≥ c R 1 + |λ| + λ k for each k ∈ Z and λ ∈ Σ M := {λ ∈ C : Reλ ≥ M } with M large enough. Finally, |Y k -Le| = 4Leλ + 4λ k Le 2 + 4Leλ + λ k + Le ≥ Le|λ| + λ k Le 2 + Le|λ| + λ k ≥ Le 2 1 + |λ| + λ k
for each λ ∈ Σ 1 and k ∈ Z, since Le ∈ (0, 1). Hence, up to replacing M with M ∨ 1, if necessary, we can estimate

2 j=1 (|p j,k (x)| + |q j,k (x )|) + 4 j=3 (|p j,k (x )| + |q j,k (x )|) + 6 j=5 |p j,k (x )| ≤ c R (1 + |λ| + λ k ) -1 2
for each k ∈ Z, λ ∈ Σ M , x < 0, x ∈ (0, R) and x > R. We are almost done. Indeed, taking the above estimates and the fact that

k∈Z f ∞ (|λ| + 1 + k 2 ) 3/2 ≤c f ∞ +∞ 0 (|λ| + 1 + r 2 ) -3 2 dr ≤ c 1 + |λ| f ∞
into account, we easily conclude that

3 k=1 ( P λ,2k-1 f 1 ∞ + P λ,2k f 2 ∞ ) + 2 k=1 ( Q λ,2k-1 f 1 ∞ + Q λ,2k f 2 ∞ ) ≤ c M |λ| -1 f X
for every λ ∈ C with Reλ ≥ M and some positive constant c M independent of λ. Similarly,

k 1-j {|D (j) x p i,k (x)| + |D (j) x p i+2,k (x )| + |D (j)
x q i,k (x )| + |D (j)

x q i,k (x )| + |D (j) x p i+4,k (x )|} ≤ c M , for each x ≤ 0, x ∈ [0, R], x ≥ 0, i = 1, 2, j = 0, 1 and k∈Z f ∞ |λ| + 1 + k 2 ≤c f ∞ +∞ 0 (|λ| + 1 + r 2 ) -1 dr ≤ c 1 + |λ| f ∞ .
Thus, we deduce that

3 k=1 ( ∇P λ,2k-1 f 1 ∞ + ∇P λ,2k f 2 ∞ ) + 2 k=1 ( ∇Q λ,2k-1 f 1 ∞ + ∇Q λ,2k f 2 ∞ ) ≤ c M |λ| -1 2 f ∞ .
Step 4. Finally, we show that if f ∈ X α then u ∈ X 2+α . Again, in view of Lemmata 4.1-4.3 and the estimate

p 1,k C h b ((-∞,0];C) ≤ c 1 e -c2k (for every h ∈ N) in Step 3, which shows that the function P λ,1 f 1 belongs to C β b (H - 0 ) for every β > 0 and P λ,1 f 1 C β b (H - 0 ) ≤ c λ f 1 ∞
, it suffices to deal with the other functions P λ,2k+j f j and Q λ,2h+j f j . We adapt the arguments in Step 2 of the proof of Lemma 4.2. To begin with, we consider the function

P λ,2 f 2 ∈ C 2 b (H - 0 ) which solves the equation λP λ,2 f 2 -∆P λ,2 f 2 -D x P λ,2 f 2 = 0 in H - 0 . To prove that it belongs to C 2+α b (H - 0 ), we check that (P λ,2 f 2 )(0, •) ∈ C 2+α b (R). Note that p 2,k (0) = (πk) -1 + p 2,k for every k ∈ Z \ {0}, where p 2,k = O(k -2
). Therefore, we can split

(P λ,2 f 2 )(0, •) = 2 Le π k∈Z k -1 (G k f 2 )(0)e k + 2 Le k∈Z p 2,k (G k f 2 )(0)e k = ψ 1 + ψ 2 . Since | p 2,k (G k f 2 )(0)| ≤ c|k| -4 f 2 ∞ for every k ∈ Z \ {0}, it follows immediately that ψ 2 ∈ C 2+α b (R) and ψ 2 C 2+α b (R) ≤ c f 2 ∞ . As far as ψ 1 is concerned, a straightforward computation reveals that ψ 1 = c(S λ f 2 )(0, •) so that, by Lemma 4.2, ψ 1 ∈ C 1+α b (R) and ψ 1 C 1+α b (R) ≤ c f α . Thus, (P λ,2 f 2 )(0, •) belongs to C 2+α b (R) and (P λ,2 f 2 )(0, •) C 2+α b (R) ≤ c λ f α .
By classical results for elliptic problems (see [START_REF] Krylov | Lectures on elliptic and parabolic equations in Sobolev spaces[END_REF]

), P λ,2 f 2 belongs to C 2+α b (H - 0 ) and P λ,2 f 2 C 2+α b (H - 0 ) ≤ c λ f α .
Next, we split P λ,3 f 1 into the sum of the functions

P 3,λ,1 f 1 = 1 k∈Z e ν + k (•-R) W k (F k,1 f 1 )(R)e k , P 3,λ,2 f 1 = 1 k∈Z e -µ + k R W k (F k,1 f 1 )(R)e ν - k • e k .
The first function belongs to

C 2 b (H - R ; C) and λP 3,λ,1 f 1 -∆P 3,λ,1 f 1 -D x P 3,λ,1 f 1 = 0 in H - R . Since ((P 3,λ,1 f 1 )(R, •)) = c(R λ,1 f 1 )(R, •) + 1 k∈Z p 3,k (F k,1 f 1 )(R)e k and | p 3,k | ≤ ck -1
, the same arguments as above and Lemma 4.1 allow to show first that the function

((P 3,λ,1 f 1 )(R, •)) belongs to C 1+α b (R) and then to conclude that P 3,λ,1 f 1 ∈ C 2+α b (H - R ) and P 3,λ,1 f 1 C 2+α b (H - R ) ≤ c λ f α .
The smoothness of the function P 3,λ,2 f 1 is easier to prove, due to the uniform (in [0, R]) exponential decay to zero of the terms of the series. It turns out that

P 3,λ,2 f 1 C 2+α b (H - R ) ≤ c λ f 1 ∞ .
Let us consider the function P 4,λ f 2 , which we split it into the sum of the functions P 4,λ,1 f 2 and P 4,λ,2 f 2 defined, respectively, by

P 4,λ,j f 2 = 2 Le k∈N p 4,j,k (G k f 2 )(0)e k , j = 1, 2,
where

p 4,1,k (x) = θ i R W k e ν - k x , p 4,2,k (x) = θ i RLe e ν - k x W k (Y k -Le) - Y k e ν - k x X k W k (Y k -Le) + Y k e -X k R+ν + k x X k W k (Y k -Le) . Function P 4,λ,1 f 2 belongs to C 2 b (H + 0 ) and λP 4,λ,1 f 2 -∆P 4,λ,1 f 2 -D x P 4,λ,1 f 2 = 0 in H + 0 . More- over, (P 4,λ,1 f 2 )(0, •) is an element of C 2+α b (R) and (P 4,λ,1 f 2 )(0, •) C 2+α b (R) ≤ c λ f α , so that P 4,λ,1 f 2 ∈ C 2+α b (H + 0 ) and P 4,λ,1 f 2 C 2+α b (H + 0 ) ≤ c λ f α .
On the other hand, the series, which defines

P 4,λ,2 f 2 is easier to analyze since it converges in C 2+α b (H - R ) and P 4,λ,2 f 2 C 2+α b (H - R ) ≤ c λ f α .
All the remaining functions P λ,2k+j f j and Q λ,2h+j f j can be analyzed in the same way. The details are left to the reader. Now, we characterize the interpolation spaces D L (α/2, ∞) and D L (1 + α/2, ∞). To simplify the notation, we introduce the operator B 0 , defined by

B 0 u = (u 1 (0 + , •) -u 1 (0 -, •), u 1 (R + , •) -u 1 (R -, •)), u ∈ X, (4.23) 
and the sets

X α,B0 = {u ∈ X α : B 0 u = 0} (α ∈ (0, 1]) and X 2+α,B = {u ∈ X 2+α : Bu = 0, B 0 Lu = 0, lim x→±∞ (Lu) 1 (x, y) = lim x→+∞ (Lu) 2 (x, y) = 0} (α ∈ (0, 1 
)), equipped with the norm of X α and X 2+α , respectively.

Proposition 4.5. For each α ∈ (0, 1) the following characterizations hold:

(i) D L (α/2, ∞) = X α,B0 , (ii) D L (1 + α/2, ∞) =X 2+α,B , (4.24) 
with equivalence of respective norms. Moreover,

X 1,B0 → D L (1/2, ∞). (4.25)
Proof. Throughout the proof, we assume that α is arbitrarily fixed in (0, 1).

Step 1: proof of (4.24)(i) and (4.25). Given f = (f 1 , f 2 ) ∈ X α,B0 and t > 0, we introduce the functions f t,1 and f t,2 defined by

f t,1 (x, y) = H + 0 f 1 (x + tx , y + ty )ϕ(x , y )dx dy , (x, y) ∈ R 2 , f t,2 (x, y) = H + 0 f 2 (x -tx , y + ty )ϕ(x , y )dx dy , (x, y) ∈ [0, R] × R, f t,2 (x, y) = H + 0 f 2 (x + tx , y + ty )ϕ(x , y )dx dy , (x, y) ∈ H + R ,
where ϕ is a positive smooth function with compact support in (0, R) × R, ϕ L 1 (R 2 ) = 1 and

f 2 : H - R → C equals the function f 2 ϑ in [0, R] × R, whereas f 2 (x, •) = f 2 (0, •)ϑ(x) if
x < 0 and ϑ is a smooth function compactly supported in (-1, +∞) and equal to 1 in (-1/2, +∞). Since B 0 f = 0 and f j (•, -/2) = f j (•, /2) for j = 1, 2, the function f 1 belongs to C α b (R 2 ; C). On the other hand, the functions f 2 and f 2 belong to C α (H - R ; C) and to C α b (H + R ; C), respectively. Moreover, f 1 (•, y) and f 2 (•, y) vanish at ±∞ and at +∞, respectively, for every y ∈ R. Hence, if we set x ,y )dx dy = 0 for every multi-index γ, we can write

f t = (f t,1 , f t,2 ), then f t belongs to X, f -f t ∞ ≤ ct α f α and f t ∞ ≤ c f α for every t > 0. Similarly, since H + 0 D γ ϕ(
D γ f t,1 (x, y) = t -|γ| H + 0 (f 1 (x + tx , y + ty ) -f 1 (x, y))D γ ϕ(x , y )dx dy , (x, y) ∈ R 2 , so that |D γ f t,1 (x, y)| ≤ ct α-|γ| f α for every (x, y) ∈ R 2 .
In the same way we can estimate the derivatives of the function f t,2 , and conclude that t |γ|-α D γ f t ∞ ≤ c T f α for every t ∈ (0, T ] and

T > 0. Now, we split ω α/2 LR(ω, L)f = ω α/2 LR(ω, L)(f -f ω -1/2 ) + ω α/2 LR(ω, L)f ω -1/2
for each ω ∈ ρ(L) ∩ R. By Theorem 4.4, for ω ∈ R sufficiently large (let us say ω ≥ ω 0 > 0), it holds that LR(ω, L) L(X) ≤ M for some positive constant M , independent of ω. Hence, using the above estimates, we can infer that ω α/2 LR(ω, L)(f -f ω -1/2 ) ∞ ≤ c f α . Next, we consider the term v = LR(ω, L)f ω -1/2 , which belongs to D(L) and solves the equation ωv -

Lv = Lf ω -1/2 . If ω ≥ ω 0 , then we can estimate ω v ∞ ≤ c Lf ω -1/2 ∞ ≤ cω 1-α/2 f α .
Putting everything together, we conclude that ω α/2 LR(ω, L)f ∞ ≤ c f α for each ω ≥ ω 0 and this shows that f ∈ D L (α/2, ∞) and

f D L (α/2,∞) ≤ c f α .
Formula (4.25) can be proved just in the same way observing that, if f belongs to X 1,B0 , then the functions f 1 , f 2 and f 2 are bounded and Lipschitz continuous in R 2 in [0, R] × R and in H + R , respectively.

The embedding " →" in (4.24)(i) is a straightforward consequence of two properties:

(a) ∇u ∞ ≤ c u 1 2 ∞ u 1 2 D(L) , u ∈ D(L), (b) (X, X 1,B0 ) α,∞ → X α,B0 .
Indeed, property (a) shows that X 1,B0 belongs to the class J 1/2 between X and D(L), so that applying the reiteration theorem, we get

D L (α/2, ∞) = (X, D(L)) α/2,∞ ⊂ (X, X 1,B0 ) α,∞ and conclude using (b). Proof of (a). It is an almost straightforward consequence of the estimate ∇R(λ, L)f ∞ ≤ c|λ| -1/2 f ∞ for each λ ∈ C with Reλ ≥ M , contained in Theorem 4.4. Indeed, let L M = L -M I.
As it is easily seen, ρ(L M ) ⊃ (0, +∞) and R(λ, L M ) = R(λ + M, L) for each λ > 0. It thus follows that √ λ ∇R(λ, L M ) L(X;X×X) ≤ c for each λ > 0, so that we can estimate

∇u ∞ = ∇R(λ, L M )(λu -L M u) ∞ ≤ cλ -1 2 λu -L M u ∞ ≤ c(λ 1 2 u ∞ + λ -1 2 L M u ∞ )
for each u ∈ D(L) = D(L M ) and λ > 0. Minimizing with respect to λ > 0, we conclude the proof.

Proof of (b). Let us fix a nontrivial f ∈ (X, X 1,B0 ) α,∞ . Since (X, X 1,B0 ) α,∞ → (X, X 1,B0 ) α/2,1 and X 1,B0 is dense in (X, X 1,B0 ) α/2,1 , we immediately deduce that f j (•, -/2) = f j (•, /2) for j = 1, 2 and B 0 f = 0. Next, we recall that inf { g ∞ + t h 1 : f = g + h, g ∈ X, h ∈ X 1,B0 } ≤ t α f (X,X 1,B 0 )α,∞ , t > 0.
Fix (x j , y j ) ∈ S - 0 , j = 1, 2, and take

t = |x 2 -x 1 | 2 + |y 2 -y 1 | 2 .
Then, we can determine g ∈ X and h ∈ X 1,B0 such that f = g + h and

g ∞ + |x 2 -x 1 | 2 + |y 2 -y 1 | 2 h 1 ≤ 2 f (X,X 1,B 0 )α,∞ (|x 2 -x 1 | 2 + |y 2 -y 1 | 2 ) α 2 .
From this estimate we can infer that

|f 1 (x 2 , y 2 ) -f 1 (x 1 , y 1 )| ≤|g 1 (x 2 , y 2 ) -g 1 (x 1 , y 1 )| + |h 1 (x 2 , y 2 ) -h 1 (x 1 , y 1 )| ≤ 2 g ∞ + |x 2 -x 1 | 2 + |y 2 -y 1 | 2 h 1 ≤4 f (X,X 1,B 0 )α,∞ (|x 2 -x 1 | 2 + |y 2 -y 1 | 2 ) α 2 . Hence, f 1 ∈ C α b (S - 0 ) and f 1 C α b (S - 0 ) ≤ 5 f (X,X 1,B 0 )α,∞ . The same argument can be used to prove that f 1 , f 2 ∈ C α ((0, R) × (-/2, /2); C) ∩ C α b (S + R ; C) and f 1 C α b (S + R ;C) + 2 j=1 f j C α ((0,R)×(-/2, /2);C) + f 2 C α b (S + R ;C) ≤ c f (X,X 1,B 0 )α,∞ .
The proof of (b) is now complete.

Step 2: proof of (4.24)(ii). The embedding "← " easily follows from the first part of the proof. The other embedding follows from Theorem 4.4. Indeed, fix u

∈ D L (1 + α/2, ∞) and λ ∈ ρ(L). Then, the function f := λu -Lu belongs to D L (α/2, ∞) = X α,B0 and f α ≤ c u D L (1+α/2,∞) for some positive constant c, independent of u. Since u = R(λ, L)f , Theorem 4.4 implies that u ∈ X 2+α and u 2+α ≤ c f α ≤ c u D L (1+α/2,∞) . Clearly, Bu = 0, B 0 Lu = 0 and lim x→±∞ (Lu) 1 (x, y) = lim x→+∞ (Lu) 2 (x, y) = 0,
and this completes the proof. Remark 4.6. From the classical theory of analytic semigroups (see e.g., [START_REF] Lunardi | Analytic Semigroups and Optimal Regularity in Parabolic Problems[END_REF]) and Proposition 4.5 it follows that the part L α of L in X α,B0 , i.e., the restriction of L to X 2+α,B0 , generates an analytic semigroup for each α ∈ (0, 1).

The lifting operators.

In this subsection we introduce some lifting operators which are used in the proof of the Main Theorem and Theorem 5.1.

To begin with, we consider the operator M defined by

M ψ = (0, M ψ 1 + 1 2 (M ψ 2 )(• -R, •)) on functions ψ ∈ C([-/2, /2]; R 2 ) such that ψ(-/2) = ψ( /2), where (M ψ 1 )(x, y) := |x|η(x) R ϕ(ξ)ψ 1 (y + ξx)dξ, (x, y) ∈ R 2 .
Here, η and ϕ are smooth functions such that χ (-R/4,R/4) ≤ η ≤ χ (-R/2,R/2) , ϕ is an even nonnegative function compactly supported in (-1, 1) with ϕ L 1 (R) = 1. As it is easily seen, M ψ ∈ X 2+α , BM ψ = (0, 0, 0, ψ 1 , 0, 0, ψ 2 ) for each ψ as above.

Next, we introduce the operator N defined by

(N h) 1 =N 1 h 1 + (N 1 h 2 ) • τ R + N 2 h 3 2Le + (N 2 h 5 ) • τ R 2θ i R + N 3 h 8 - 1 Le h 3 -h 1 + N 3 h 9 - 1 θ i R h 5 -h 2 • τ R , (N h) 2 = N 1 h 6 - Le θ i R h 5 • τ R + N 2 h 4 + 1 2 N 3 h 7 -Leh 6 + Le 2 θ i R h 5 • τ R on smooth enough functions h : [-/2, /2] → R 9 , where τ R (x, y) = (x -R, y), (N 1 ζ)(x, y) = 1 2 η(x)[χ [0,+∞) (x) -χ (-∞,0] (x)] R ϕ(σ)ζ (y + σx 3 )dσ, (N 2 ζ)(x, y) =|x|η(x) R ϕ(σ)ζ (y + σ|x|)dσ, (N 3 ζ)(x, y) = x 4 (N 2 ζ)(x, y), for each (x, y) ∈ R 2 . Moreover, we set B * v = ( Bv, B 0 L v) for each v ∈ X 2+α
, where B is the operator in Remark 3.1 and the operator B 0 is defined in (4.23).

In the next lemma, we deal with real valued spaces. In particular, by D(L α ) we denote the subset of D(L α ) of real valued functions.

Lemma 4.7. The following properties are satisfied.

(i) The operator N is bounded from the set (X 2+α )2 × (X 1+α ) 5 × (X α ) 2 into X 2+α . Moreover, the operator

P = I -N B * : X 2+α → X 2+α is a projection onto the kernel of B * which coincides with D(L α ) 2 . (ii) Let I denote the set of all functions u ∈ X 2+α such that Bu = H (u), B 0 (Lu + F (u)) = 0.
Then, there exist r 0 , r 1 > 0 such that I ∩ B(0, r 0 ) is the graph of a smooth function Υ :

B(0, r 1 ) ⊂ D(L α ) → (I -P )(X 2+α ) such that Υ(0) = 0.
Proof. (i) Showing that N is a bounded operator is an easy task. Some long but straightforward computations reveal that B * N = I on (X 2+α ) 2 × (X 1+α ) 5 × (X α ) 2 and allow to prove that P is a projection onto Ker(B * ) = D(L α ). In particular, we can split

X 2+α = D(L α ) ⊕ (I -P )(X 2+α ).
The details are left to the reader.

(ii) Let K : B(0, r 0 ) ⊂ D(L α ) ⊕ (I -P )(X 2+α ) → (X 2+α ) 2 × (X 1+α ) 5 × (X α ) 2
be the operator defined by K (u, v) = (B(u+v)-H (u+v), B 0 (Lu+Lv+F (u+v))) for each (u, v) ∈ B(0, r 0 ), with r 0 small enough to guarantee that K is well defined. Since the functions F and H are quadratic at 0, it follows that K (0, 0) = 0 and K is Fréchet differentiable at (0, 0), with K u (0, 0) = B * . In view of (i), B * is an isomorphism from (I -P )(X 2+α ) to (X 2+α ) 2 × (X 1+α ) 5 × (X α ) 2 . Thus, we can invoke the implicit function theorem to complete the proof.

Solving the nonlinear problem (3.23)

Now we are able to solve the nonlinear Cauchy problem

     D t u = L u + F (u), Bu = H (u), D γ1 x D γ2 y u(•, •, -/2) = D γ1 x D γ2 y u(•, •, /2), γ 1 + γ 2 ≤ 2, (5.1) 
for the unknown u = (u, w). Also in this section we assume that the function spaces that we deal with are real valued ones.

Theorem 5.1. Fix α ∈ (0, 1) and T > 0. Then, there exists r 0 = r 0 (T ) > 0 such that, for each u 0 ∈ B(0, r 0 ) ⊂ X 2+α satisfying the compatibility conditions Bu 0 = H (u 0 ), B 0 (L u 0 +F (u 0 )) = 0 and D γ u 0 (•, -/2) = D γ u 0 (•, /2) for each multi-index γ with length at most two, problem (5.1) admits a unique solution u ∈ Y 2+α with u(0, •) = u 0 . Moreover, u Y2+α ≤ c u 0 2+α .

Proof. The proof can be obtained arguing as in the proof of [START_REF] Lorenzi | Regularity and analyticity in a two-dimensional combustion model[END_REF]Theorem 4.1]. For this purpose, we just sketch the main points. We first need to prove optimal regularity results for the linear version of problem (5.1), i.e., with the problem

         D t u(t, •, •) = L u(t, •, •) + f (t, •, •), t ∈ [0, T ], B(u(t, •, •)) = h(t, •), t ∈ [0, T ], D γ1 x D γ2 y u(t, •, -/2) = D γ1 x D γ2 y u(t, •, /2), t ∈ [0, T ], γ 1 + γ 2 ≤ 2, u(0, •) = u 0 , (5.2) when f ∈ Y α , u 0 ∈ X 2+α , when h j ≡ 0 if j = 4, 7, h 4 = ψ 1 , h 7 = ψ 2 , ψ = (ψ 1 , ψ 2 ) ∈ C (1+α)/2,1+α ((0, T ) × (-/2, /2); R 2 ) satisfy the compatibility conditions • Bu 0 = h(0, •), B 0 (L u 0 (0, •) + f (0, •)) = 0; • f (0, •, -/2) = f (0, •, /2), D γ u 0 (•, -/2) = D γ u 0 (•, /2) and D (j) y ψ(•, -/2) = D (j)
y ψ(•, /2) for every multi-index γ with length at most two and j = 0, 1. We also need to show the estimate

u Y2+α ≤ c 0 ( f Yα + u 0 2+α + ψ C (1+α)/2,1+α ((0,T )×(-/2, /2);R 2 ) ).
(

for its unique solution u ∈ Y 2+α . This is the content of Steps 1 to 3.

Step 1. To begin with, we note that

M h ∈ C (1+α)/2,2+α b ((0, T ) × H - 0 ) ∩ C (1+α)/2,2+α b ((0, T ) × H + 0 ) for all h ∈ C (1+α)/2,1+α ((0, T ) × (-/2, /2)) such that D (j) y h(•, -/2) = D (j) y h(•, /2) (j = 0, 1), and M h C (1+α)/2,2+α b ((0,T )×H - 0 ) + M h C (1+α)/2,2+α b ((0,T )×H + 0 ) ≤ c h C (1+α)/2,1+α ((0,T )×(-/2, /2)) .
Thus, the function f + L M ψ belongs to C α/2 ([0, T ]; X). Moreover, by Proposition 4.5 and the compatibility conditions on u 0 it follows that u 0 -M (ψ(0,

•)) ∈ D(L), L u 0 + f (0, •) ∈ D L (α/2, ∞).
The theory of analytic semigroups (see e.g., [START_REF] Lunardi | Analytic Semigroups and Optimal Regularity in Parabolic Problems[END_REF]Chapter 4]), Theorem 4.4 and Proposition 4.5 show that there exists a unique function v ∈ C 1+α/2 ([0, T ]; X) ∩ C([0, T ]; D(L)) which solves the equation

D t v = L v + f + L M ψ and satisfies the condition v(0, •) = u 0 . In addition D t v is bounded with values in X α,B0 (which implies that D t v ∈ Y α ) and L v ∈ C α ([0, T ]; X). By difference, L v = Lv is bounded in [0, T ] with values in X α and, in view of Theorem 4.4, v is bounded in [0, T ] with values in X 2+α . In particular, Bv = 0 and D γ v(•, •, -/2) = D γ v(•, •, /2) for every |γ| ≤ 2. Further, v(t, •) 2+α + D t v Yα ≤ c( f Yα + u 0 2+α + ψ C (1+α)/2,1+α ((0,T )×(-/2, /2);R 2 ) ) for every t ∈ [0, T ].
Step 2. Let w be the function defined by w(t,

•, •) = t 0 e (t-s)L (M ψ(s, •) -M ψ(0, •))ds for every t ∈ [0, T ],
where {e tL } is the analytic semigroup generated by L in X.

Taking (4.25) into account, it follows that M ψ C (1+α)/2 ([0,T ],D L (1/2,∞)) ≤ c ψ C (1+α)/2,1+α ((0,T )×(-/2, /2);R 2 ) .
Again by the theory of analytic semigroups we infer that w

∈ C([0, T ]; D(L)), D t w is bounded in [0, T ] with values in X 2+α,B , L w ∈ C 1+α/2 ([0, T ]; X), D t w = L w + M ψ -M ψ(0, •) and D t w C 1+α/2 ([0,T ];D(L)) + sup t∈[0,T ] LD t w(t, •) X α,B 0 ≤ c ψ C (1+α)/2,1+α ((0,T )×(-/2, /2);R 2 )
. From these properties and using the same arguments as above, it can be easily checked that the function w = -L w +M (ψ(0, •)) is as smooth as v is. Moreover, D t w = L w -L M ψ, Bw = (0, 0, 0, ψ 1 , 0, 0, ψ 2 ), w(0, •, •) = M (ψ(0, •)) and D γ w(•, -/2) = D γ w(•, /2) for every |γ| ≤ 2.

Step 3. Clearly, the function u = v + w ∈ Y 2+α solves the Cauchy problem (5.2), satisfies (5.3) and it is the unique solution to the above problem in (5.4) To conclude that u ∈ Y 2+α and it satisfies estimate (5.3), we use an interpolation argument. It is well known that

C 1 ([0, T ]; X) ∩ C([0, T ]; D(L)). Moreover, sup t∈[0,T ] u(t, •) 2+α + D t u Yα ≤ c( f Yα + u 0 2+α + ψ C (1+α)/2,1+α ((0,T )×(-/2, /2);R 2 ) ).
• C 2 b (H + R ;R 2 ) ≤ c • α/2 C α b (H + R ;R 2 ) • 1-α/2 C 2+α b (H + R ;R 2 )
. Using this estimate and the formula

u(t, x, y) -u(s, x, y) = t s D t u(r, x, y)dr, s, t ∈ [0, T ], (x, y) ∈ H + R , to show that u(t, •) -u(s, •) C α b (H + R ;R 2 ) ≤ D t u Yα |t -s|, we get u(t, •) -u(s, •) C 2 b (H + R ;R 2 ) ≤ c D t u α/2 Yα sup r∈[0,T ] u(r, •) 1-α 2 2+α |t -s| α/2 .
In the same way, we can show that

u 1 ∈ C α/2 ([0, T ]; C 2 b (H - R ; R 2 )), u ∈ C α/2 ([0, T ]; C 2 b ([0, R] × [-/2, /2]; R 2 )) and u C α/2 ([0,T ];C 2 b ([0,R]×[-/2, /2];R 2 )) + u 1 C α/2 ([0,T ];C 2 b (H - R ;R 2 )) ≤ c D t u Yα + sup t∈[0,T ] u(t, •) 2+α .
Taking (5.4) into account we complete this step of the proof. In particular, from all the above results it follows that

u(t, •, •) = e tL u 0 + t 0 e (t-s)L [f (s, •, •) + L M (ψ(s, •))]ds -L t 0 e (t-s)L M (ψ(s, •))ds, t ∈ [0, T ].
(5.5)

Step 4. Let r > 0 and C r be the space of all u ∈ Y 2+α such that D γ1 x D γ2 y u(•, •, -/2) = D γ1

x D γ2 y u(•, •, /2), for every 0 ≤ γ 1 , γ 2 such that γ 1 + γ 2 ≤ 2, u Y2+α ≤ r and u(0, •, •) = u 0 . In view of Steps 1-3, for every u 0 ∈ B(0, r 0 ) ⊂ Y 2+α satisfying the compatibility conditions in the statement of the theorem, we can define the operator Γ, which to every u ∈ C r (with r sufficiently small norm to guarantee that the nonlinear terms F (u(t, •, •)) and H (u(t, •, •)) are well defined for every t ∈ [0, T ]) associates the unique solution v of the Cauchy problem (5.2) with f = F (u) and ψ = H (u). Since the maps u → F (u), u → H (u) are smooth in C r and quadratic at u = 0, we can estimate

F (u) Yα ≤ c u 2 Y2+α , F (u) -F (v) Yα ≤ cr u -v Yα , H (u) C (1+α)/2,1+α ((0,T )×(-/2, /2);R 2 ) ≤ c u 2 Y2+α , H (u)-H (v) C (1+α)/2,1+α ((0,T )×(-/2, /2);R 2 ) ≤ cr u -v Yα .
(5.6) These estimates combined with (5.3) show that r and r 0 can be determined small enough such that Γ is a contraction in C ρ .

Uniqueness of the solution u to (5.1) follows from standard arguments, which we briefly sketch here. At first, for every t 0 ∈ [0, T ], R, δ > 0 and u 1 ∈ X 2+α , which satisfies the compatibility conditions B(u 1 ) = H (u 1 ), B 0 (L u 1 + F (u 1 )) = 0 and D γ u 1 (•, -/2) = D γ u 1 (•, /2) for each multi-index γ with length at most two, we set

Z t0 δ,R (u 1 ) := {u ∈ Y 2+α (t 0 , t 0 + δ) : u(t 0 , •) = u 1 , u -u 1 Y2+α(t0,t0+δ) ≤ R}.
Given R > 0 we can determine r 1 > 0 and δ > 0 (independent of t 0 ) with δ α/2 R sufficiently small such that, if u 1 belongs to B(0, r 1 ) ⊂ X 2+α , then the Cauchy problem

         D t w = L w + F (w), Bw = H (w), D γ1 x D γ2 y w(•, •, -/2) = D γ1 x D γ2 y w(•, •, /2), γ 1 + γ 2 ≤ 2 w(t 0 , •) = u 1 , (5.7) 
admits a unique solution w ∈ Z t0 δ,R (u 1 ). We are almost done. Indeed, let u ∈ C r be the unique fixed point of Γ, and take r 0 small enough such that u ∈ B(0, ρ 1 ) ⊂ Y 2+α . Assume that v ∈ Y 2+α is another solution to (5.1), and let t 0 > 0 denote the supremum of the set {τ ∈ [0, T ] : u(t, •) = v(t, •), t ∈ [0, τ ]}. Suppose by contradiction that t 0 < T . Then, both u and v are solutions in Y 2+α (t 0 , t 0 + δ) to the Cauchy problem (5.7), with u 1 := u(t 0 , •) = v(t 0 , •). Taking R ≥ 2 max{ u Y2+α , v Y2+α } large enough and δ > 0 small enough, it follows that u and v both belong to Z t0 δ,R (u 1 ), so that they do coincide, leading us to a contradiction. 

D 0,k (λ, Le) = exp R 2 (Le -1 -X k (λ) -Y k (λ, Le)) -1 + θ i RX k (λ). We recall that X k (λ) = √ 1 + 4λ + 4λ k , Y k (λ, Le) = Y k (λ) = Le 2 + 4λLe + 4λ k and λ k = 4π 2 k 2 -2 for each k ∈ N ∪ {0}.
Throughout this subsection we assume θ i is fixed in (0, 1); so is R > 0 via (1.5). Lemma 6.1. There exists 0 (θ i ) such that, for all > 0 (θ i ), D 0,1 (0, Le) = 0 has a unique root Le c = Le c (1) ∈ (0, 1). Moreover, for each fixed as above, there exists a maximal integer K ≥ 1 such that, for k ∈ {1, . . . , K}, D 0,k (0, Le) = 0 has a unique root Le c (k) ∈ (0, 1). Finally, it holds:

0 < Le c (K) ≤ . . . ≤ Le c (2) ≤ Le c (1). (6.1)
Proof. An easy but formal computation shows that, if Le c (k) is a root of D 0,k (0, •), then

Le c (k) = 1 + X k (0) + Y k (0, Le c (k)) + 2R -1 ln(1 -θ i RX k (0)),
or equivalently:

Le c (k) = (1 + X k (0))[R 2 + 2R log(1 -θ i RX k (0))] + 2| log(1 -θ i RX k (0))| 2 R 2 (1 + X k (0)) + 2R log(1 -θ i RX k (0)) . (6.2)
However, Formula (6.2) makes sense only if 1 -θ i RX k (0) > 0. Hence, for each fixed > 0 there exists K ∈ N such that 1 -θ i RX k (0) > 0 if and only if k ≤ K. Further, Le c (k) is required to meet the physical requirement that 0 < Le c (k) < 1. In this respect, should be large enough:

Le c (1) = Le 0 + 16π 2 θ i e R (1 -θ i e R ) (2θ i e R -1) 2 + o( -2 )
as → +∞, where Le 0 = R(2e R -R -2) -1 belongs to (0, 1) see [START_REF] Brailovsky | Diffusive-thermal instabilities in premixed flames: stepwise ignition-temperature kinetics[END_REF]Formula (43), p. 2083]. Thus, there exists 0 (θ i ) > 0 such that, if > 0 (θ i ), then Le c (1) ∈ (0, 1). Finally, it remains to prove property (6.1), for a fixed > 0 (θ i ) which in turn defines the integer K ≥ 1. The latter property follows from the following estimate (see [START_REF] Brauner | An ignition-temperature model with two free interfaces in premixed flames[END_REF]Proposition 3.1]):

(Le c (k)) 2 + 4λ k -Le c (k) dLe c (k) dλ k < 4 1 - θ i 1 -θ i R .
Obviously,

θ i 1 -θ i R = 1 -e -R Re -R = e R -1 R > 1, which implies that d Le c (k) dλ k < 0.
In view of Lemma 6.1 our focus will be on the case when Le ∈ (0, Le c (1)). Hereafter we will simply denote the critical value Le c (1) by Le c , keeping in mind that Le c at fixed 0 < θ i < 1 depends on > 0 (θ i ). Lemma 6.2. The function D 0,1 is smooth in [0,

√ λ 1 ] × [0, Le c ]. Moreover, ∂D 0,1 ∂λ is positive in [0, √ λ 1 ] × [0, Le c ], ∂D 0,1 ∂Le is positive in [0, √ λ 1 ) × [0, Le c ] and vanishes on √ λ 1 × [0, Le c ].
Proof. The proof of the positivity of ∂D 0,1 ∂Le is straightforward and based on the observation that

Y 1 (λ, Le) -Le -2λ > 0 for λ > √ λ 1 and Y 1 ( √ λ 1 ), Le) = Le + 2 √ λ 1 .
On the other hand, we observe that

∂D 0,1 ∂λ (λ, Le) = -R exp R 2 (Le -1 -X 1 (λ) -Y 1 (λ, Le)) (X -1 1 + Le Y -1 1 ) + 2(1 -e -R )X -1 1 . Since Le Y -1 1 < (X 1 ) -1 and Le -1 -X 1 (λ) -Y 1 (λ, Le) < -2, we can estimate ∂D 0,1 ∂λ (λ, Le) > 2(1 -(R + 1)e -R )X -1 1 , (λ, Le c ) ∈ [0, λ 1 ] × [0, Le c ],
and the positivity of

∂D 0,1 ∂λ in [0, √ λ 1 ] × [0, Le c ] follows immediately.
We can now prove the following result.

Proposition 6.3. Under the assumptions of Lemma 6.1, there exist λ * ∈ (0, √ λ 1 ) and a decreasing, continuously differentiable function ϕ : (0, Le c ) → (0, λ * ) such that D 0,1 ( ϕ(Le), Le) = 0 for all Le ∈ (0, Le c ).

Proof. From Lemma 6.2 it follows that ∂D0,1 ∂Le (0, Le c ) > 0. We can thus apply the implicit function theorem, which shows that there exist δ 1 , δ 2 > 0 and a unique function To complete the proof, we need to show that Le * = 0. If Le * > 0 then λ * = √ λ 1 otherwise, applying the implicit function theorem again, we could extend ϕ in a left-neighborhood of Le * , contradicting the maximality of ϕ. On the other hand, it is not difficult to check that D 0,1 ( √ λ 1 , Le * ) = 0 whenever R > 0. Indeed, using condition (1.5) we can easily show that

ϕ ∈ C 1 ([Le c -δ 1 , Le c + δ 1 ]) such that, if (λ, Le) ∈ [Le c -δ 1 , Le c + δ 1 ] × [-δ 2 , δ 2 ]
D 0,1 ( λ 1 , Le * ) = e -R(1+2 √ λ1) -1 + θ i R(1 + 2 λ 1 ) = e -R(1+2 √ λ1) + 2 λ 1 -e -R (1 + 2 λ 1 ) and the function x → f (x) = e -x(1+2 √ λ1) + 2 √ λ 1 -e -x (1 + 2 √ λ 1
) vanishes at x = 0 and its derivative is positive in (0, +∞). Proof. By Theorem 4.4 we know that if λ = 0 is an element in the spectrum of L with nonnegative real part, then it is an eigenvalue and it belongs to Ω k for some k ∈ N ∪ {0}. Hence, D k (λ) = 0 or, equivalently, D 0,k (λ) = 0 for some k ∈ N∪{0}. As it is immediately seen, each function λ → D 0,k (λ) is holomorphic in the halfplane Π = {λ ∈ C : Reλ ≥ 0} and it does not identically vanish in it. Therefore, its zeroes in Π are at most finitely many. Moreover, for each λ ∈ Π and k ∈ N ∪ {0} we can estimate

ReX k (λ) ≥ 1 2 + 2λ k , ReY k (λ, Le) ≥ Le 2 2 + 2λ k ,
so that the real part of D 0,k (•, Le) diverges to +∞, as k → +∞, uniformly with respect to λ ∈ Π.

As a byproduct, we deduce that there exists k 0 ∈ N such that the nontrivial eigenvalues λ ∈ Π lie in k0 k=0 Ω k and this completes the proof.

6.2. Proof of Main Theorem. To prove the main result of this section, we also need the following result which is a variant of [28, Theorem 5.1.5] and [START_REF] Brauner | Instabilities in a two-dimensional combustion model with free boundary[END_REF]Theorem 4.3].

Lemma 6.5. Let X be a complex Banach space, r > 0 and T n : B(0, r) ⊂ X → X (n ∈ N) be a bounded operator such that T n (x) = M x + O( x p ) as x → 0, for some p > 1 and some bounded linear operator M on X with spectral radius ρ > 1. Further, assume that there exists an eigenvector u of M with eigenvalue λ ∈ C such that |λ| p > ρ and that there exists x ∈ X such that x (u) = 0. Then, there exist c > 0 and, for any δ > 0, x 0 ∈ B(0, δ) and n 0 ∈ N (depending on δ) such that the sequence x 0 , . . . , x n0 , where x n = T n (x n-1 ) for any n = 1, . . . , n 0 , is well defined and |x (x n0 )| ≥ c|x (u)|.

Proof. Without loss of generality, we assume that u = 1 and x ≤ 1. Moreover, we choose a, b > 0 such that T n (x) -M x ≤ b x p for each x ∈ B(0, a) ⊂ X and n N. Since |λ| p > ρ, we can fix η > 0 such that |λ| p > ρ + η and, from the definition of the spectral radius of a bounded operator, we can also determine a positive constant K such that M n L(X) ≤ K(ρ + η) n for any n ∈ N. Finally, we fix δ > 0, choose n 0 ∈ N be such that |λ| -n0 < δ, and set x 0 := σu|λ| -n0 , where σ ∈ (0, 1) is chosen so as to satisfy the conditions

σ ≤ a 2 , 2 p bK |λ| p -ρ -η σ p-1 ≤ 1 2 |x (u)|. ( 6.3) 
To begin with, we prove that the sequence x 0 , . . . , x n0 is well defined. For this purpose, in view of the condition in (6.3) it suffices to check that, if x k is well defined, then x k ≤ 2σ|λ| k-n0 . We prove by recurrence. Clearly, x 0 satisfies this property. Suppose that the claim is true for k = 0, . . . , n -1. Then, x n is well defined and it easy to check that

x n = M n x 0 + n-1 k=0 M n-1-k (x k+1 -M x k ) = M n x 0 + n-1 k=0 M n-1-k (T k+1 (x k ) -M x k ). (6.4) 
Thus, we can estimate

x n ≤ |λ| n x 0 + Kb n-1 k=0 (ρ + η) n-1-k x k p . (6.5) 
Let us consider the second term in the right-hand side of (6.5), which we denote by S n . Since we are assuming that x k ≤ 2σ|λ| k-n0 for each k = 0, . . . , n -1, we can write

S n ≤2 p Kbσ p |λ| p(n-n0-1) n-1 k=0 ρ + η |λ| p n-1-k ≤ σ|λ| n-n0 2 p Kb |λ| p -ρ -η σ p-1
and, using the second condition in (6.3) and the fact that x has norm which does not exceed 1, we conclude that

S n ≤ 1 2 σ|λ| n-n0 |x (u)| ≤ 1 2 σ|λ| n-n0 . (6.6) 
Since |λ| n x 0 ≤ σ|λ| n-n0 , from (6.5) and (6.6) the claim follows at once. To conclude the proof, it suffices to use (6.4) with n = n 0 , as well as (6.5) and (6.6) again, to estimate

|x (x n0 )| ≥|x (M n0 x 0 )| -|x (S n0 )| ≥ σ|x (u)| - 1 2 σ|x (u)| = 1 2 σ|x (u)|.
The assertion follows with c = σ/2. Now, we can state and prove the following theorem.

Theorem 6.6. Let 0 < θ i < 1 be fixed, > 0 (θ i ) as in Lemma 6.1, Le c = Le c (1) defined by (6.2).

Then, for each Le ∈ (0, Le c ), the null solution u of problem (5.1) is pointwise unstable with respect to small perturbations in X 2+α . More precisely, there exists a positive constant C such that for each y 0 ∈ R and δ > 0 there exist u 0 , u * 0 ∈ B(0, δ) ⊂ X 2+α and n, n * ∈ N depending on δ such that min{| u 2 ( n, 0, y 0 )|, |u * 1 (n * , R, y 0 )|} ≥ C, where u = ( u 1 , u 2 ) and u * = (u * 1 , u * 2 ) denote the solution to the Cauchy problem with initial datum u 0 and u * 0 , respectively. Proof. We split the proof into two steps. The first one is devoted to prove an estimate which will allow us to apply Lemma 6.5. Then, in Step 2, we prove the pointwise instability.

Step 1. The smoothness of Υ implies that there exists c > 0 such that Υ(v 0 ) 2+α ≤ c v 0 2+α , for each v 0 ∈ D(L α ) with sufficiently small norm. Here, Υ is defined in Lemma 4.7(ii). Fix r so small such that v 0 + Υ(v 0 ) 2+α ≤ r 0 for each v 0 ∈ B(0, r) ⊂ D(L α ), where r 0 = r 0 (1) is defined in the statement of Theorem 5.1.

For n ∈ N, let R n : B(0, ρ) ⊂ D(L α ) → D(L α ) be the map defined by R n (v 0 ) = P (u n (n, •, •)) for each v 0 ∈ B(0, ρ) (see Lemma 4.7), where u n is the solution to problem (5.1) with initial condition u 0 = v 0 +Υ(v 0 ) at t = n-1. (Note that, by Lemma 4.7(ii), u 0 satisfies the compatibility conditions in Theorem 5.1. Further, by Remark 5.2, u n is well defined in the time domain

[n -1, n].) We claim that R n (v 0 ) -e Lα v 0 2+α ≤ c v 0 2 2+α , v 0 ∈ B(0, r). (6.7) 
Estimate (6.7) follows from the integral representation of the solution of problem (5.1) and estimates (5.6). Indeed, again by Remark 5.2, u n (n, •, •) is the value at t = 1 of the solution u to problem (5.1), with u(0, •) = u 0 and, by the proof of Theorem 5.1 (see, in particular, formula (5.5)),

u(1, •, •) -e L u 0 = 1 0 e (1-s)L [F (u(s, •, •))+L M (H (u(s, •, •))]ds-L 1 0 e (1-s)L M (H (u(s, •, •))ds.
Since F and H are quadratic at 0, it follows immediately that u

(1, •, •) -e L u 0 2+α ≤ c v 0 2 2+α . Noting that P (u(1, •, •) -e Lα u 0 ) = R n (v 0
) -e Lα v 0 , formula (6.7) follows at once.

Step 2. Let us begin by proving that there exists C > 0 such that for any y 0 ∈ R and δ > 0 there exists u 0 ∈ B(0, δ) ⊂ X 2+α and n 0 ∈ N depending on δ such that |u 2 (n 0 , 0 + , y 0 )| ≥ C, where u = (u 1 , u 2 ) is the solution to (5.1) with initial datum u 0 at time t = 0. For this purpose, we want to apply Lemma 6.5 with X = D(L α ) endowed with the norm of X 2+α . To begin with, we observe that, by Corollary 6.4, there exists only a finite number of eigenvalues of L (and hence of L α ) with positive real part. From the spectral mapping theorem for analytic semigroups it thus follows that the spectral radius ρ of the operator M = e Lα is larger than one and there exists an eigenvalue λ such that |λ| = ρ. Let us fix y 0 ∈ R and δ > 0. It is not difficult to show that a corresponding eigenfunction is the function w = (w 1 e 1 (• -2π -1 y 0 )), w 2 e 1 (• -2π -1 y 0 ))), where setting T n (v 0 ) = P u(n, v 0,1 + Υ(v 0,1 ), n -1) + iP u(n, v 0,2 + Υ(v 0,2 ), n -1) for each v 0 ∈ B(0, r), where P is the projection in Lemma 4.7(i). By the arguments in Step 1 we deduce that T n (v 0 )e Lα v 0 X ≤ C v 0 2 X for some positive constant C and each v 0 ∈ B(0, r). We can thus apply Lemma 6.5 with M = e Lα , p = 2 and conclude that there exist c > 0 and, for each δ > 0, a function v 0 = v 0,1 + iv 0,2 ∈ B(0, δ) ⊂ D(L α ) and n 0 ∈ N such that v n = T n (v n-1 ) is well defined for each n ∈ {1, . . . , n 0 } and |x (v n0 )| ≥ c. Since v n0 = P u(n 0 , v 0,1 + Υ(v 0,1 ), 0) + iP u(n 0 , v 0,2 + Υ(v 0,2 ), 0), where u(n 0 , u 0 , 0) denotes the value at n 0 of the unique solution to problem (3.23) with initial datum u 0 at time t = 0, we have so proved that

|(P u(n 0 , v 0,1 + Υ(v 0,1 ), 0)) 2 (0 + , y 0 )| 2 + |(P u(n 0 , v 0,2 + Υ(v 0,2 ), 0)) 2 (0 + , y 0 )| 2 ≥ c 2 . (6.8)
By definition, P = I -N B * (see Lemma 4.7(i)) and (N u) 2 (0 + , •) = 0 for any function u. Hence, (P u(n 0 , v 0,j + Υ(v 0,j ), 0)) 2 (0 + , y 0 ) = (u(n 0 , v 0,j + Υ(v 0,j ), 0)) 2 (0 + , y 0 ) for j = 1, 2. From (6.8) it thus follows that there exists j such that |(u(n 0 , v 0, j + Υ(v 0, j ), 0)) 2 (0 + , y 0 )| ≥ c/2 and the thesis follows with C = c/2, n = n 0 and u = u( n, v 0, j + Υ(v 0, j ), 0). To prove the existence of u * as in the statement of the theorem, it suffices to take as x the functional defined by x (f ) = f 1 (R, y 0 ) for each f ∈ D(L α ). The missing easy details are left to the reader. Remark 6.7. Clearly, Theorem 6.6 implies the C 2+α -instability of the null solution u to (5.1). Remark 6.8. The C 2+α -instability of the null solution u to (5.1) can be directly obtained by applying [28, Theorem 5.1.5], taking advantage of Step 1 of Theorem 6.6 and arguing as in [START_REF] Brauner | Instabilities in a two-dimensional combustion model with free boundary[END_REF]Corollary 4.5]. Finally, it can also be proved in a slightly different way adapting the arguments in [START_REF] Lorenzi | A free boundary problem stemmed from combustion theory. II. Stability, instability and bifurcation results[END_REF]Theorem 3.4].

From Theorem 6.6 we can now easily derive the proof of the main result of this paper. 

Numerical simulation

In this section, we are going to use some high resolution numerical methods, including Chebyshev collocation and Fourier spectral method (see, e.g., [START_REF] Shen | Spectral Methods. Algorithms, Analysis and Applications[END_REF][START_REF] Wang | A new method for numerical differentiation based on direct and inverse problems of partial differential equations[END_REF][START_REF] Wang | Regularized optimization method for determining the space-dependent source in a parabolic equation without iteration[END_REF]). We consider the problem (3.23) 7.1. The linear system. Here, we consider the linearized system around the null solution (5.2) with f = 0 and h = 0 and we map Ω -, Ω 0 and Ω + to D = [-1, 1]×[0, 2π]. Then, we consider in D the system for the three pairs of unknowns (u 1 , w 1 ), (u 2 , w 2 ) and (u 3 , w 3 ), corresponding respectively to (u, w) in Ω -, Ω 0 and Ω + . The new independent variables are denoted by x ∈ [-1, 1] and y ∈ [0, 2π]. Therefore, the system is equivalent to: 

                 D t u 1 = 2 A D x u 1 + 4 A 2 D x x u 1 + 4π
               u 1 (•, -1, •) = u 3 (•, 1, •) = w 3 (•, 1, •) = 0, u 1 (•, 1, •) = u 2 (• -1, •), w 2 (•, -1, •) = 2Le A D x u 1 (•, 1, •) -2Le R D x u 2 (•, -1, •), D x w 2 (•, -1, •) = -LeR 2 w 2 (•, -1, •), D x w 2 (•, 1, •) = R B-R D x w 3 (•, -1, •) + LeR 2 (w 3 (•, -1, •) -w 2 (•, 1, •)), D x u 3 (•, -1, •) = B-R R D x u 2 (•, 1, •) -B-R 2Le (w 3 (•, -1, •) -w 2 (•, 1, •)), u 2 (•, 1, •) = -2θiR B-R D x u 3 (•, -1, •) + 2θ i D x u 2 (•, 1, •), u 3 (•, -1, •) = u 2 (•, 1, •). (7.2)
Let us give a brief overview of the numerical method. Hereafter, we denote by (u, w) any pair of unknowns (u i , w i ), 1 ≤ i ≤ 3. We discretize system (7.1)-(7.2) using a forward-Euler explicit scheme in time. Then, we use a discrete Fourier transform in the direction y ∈ (0, 2π), namely: Finally, we use a Chebyshev collocation method in x ∈ (-1, 1). Let {l j ( x)} N x j=0 be the Lagrange polynomials based on the Chebyshev-Gauss-Lobatto points { x j } N x j=0 = {cos(jπ/N x )} N x j=0 . We set: ûk (t, x) = As initial data, we take w 2 (0, y) = ε 1 + sin 2 ( y) , y ∈ [0, 2π], which corresponds to x = R/2; the other unknowns are taken as 0. The following pictures are for ε = 10 -2 , A = B = 10, = 100, ∆t = 10 -3 . As expected, the two profiles blow up for Lewis number below critical. (A) u(t, 0, y) varies from 0 to 10 -4 , 0 < t < 1, 0 < y < 2π, (B) w(t, 0, y) varies from 0 to 2.10 -2 , 0 < t < 1, 0 < y < 2π. 7.2. The fully nonlinear system. By treating the nonlinearities explicitly, we can use the same algorithm as in the linear case. We approximate the mollifier β by the following trapezoid, see Figure 5:

β(x) =          2 + x/δ, -2δ < x < -δ, 1,
-δ ≤ x ≤ δ, 2 -x/δ, δ < x < 2δ, 0, elsewhere, Then, the fully nonlinear terms in system (3.23), namely F 1 , F 2 , G 1 , G 2 , G 3 , as well as τ , τ ξ , have Hereafter, we present some typical numerical results for the fully nonlinear problem. Simulations were performed using a standard pseudo-spectral method with small time step ∆t = 10 -5 and small amplitude of initial perturbations (of order 10 -4 to 10 -3 ), to ensure sufficient accuracy.

We consider the situation when ignition temperature is fixed at θ i = 0.75 and = 100, in such a case Le c 0.5641. Three significant values of the Lewis number have been chosen in the interval (0, Le c ), namely Le = 0.10, Le = 0.20 and Le = 0.50. Figures 6 and7 represent the interface patterns and temperature levels. Numerically, we observe that, after a rapid transition period, a steady configuration consisting of "two-cell" patterns for the ignition and trailing interfaces is established. These simulations confirm the theoretical analysis, that is instability of the planar fronts for Le ∈ (0, Le c ). 

(R + ) θ i 2 w+ 4β R R w x + 2β 2 R R 2 w x x - 4u(R + ) R 2 2+ u(R + ) θ i w x x , (6) 
For x ∈ [R -δ, R] and x = R 2 ( x + 1),

F 1 (u) = - u(R + ) θ i R e -R 2 ( x+1) + 2 R u x , G 1 (u, w) = - Le 2 u(R + ) θ i R e -Le R( x+1) 2 

  These are Banach spaces with the norms • Yα(a,b) and u Y2+α(a,b) = 2γ1+γ2+γ3≤2 D γ1 t D γ2 x D γ3 y u Yα(a,b) . If a = 0 and b = T then we simply write Y α and Y 2+α instead of Y α (0, T ) and Y 2+α (0, T ), respectively.

Lemma 4 . 1 .

 41 For every ρ ∈ (0, +∞), λ ∈ C with Reλ > -ρ -1 (Imλ) 2 and f ∈ C b (S; C), the series -1

Lemma 4 . 2 .

 42 For g ∈ C b (S + 0 ; C) and λ ∈ C, such that Reλ > -Le -1 (Imλ) 2 , the function S λ g = -1

1 I 3

 3 belongs to C b (R; C). Indeed, H ∈ L 1 (S + 0 ; C) as it follows observing that |e π 2 (x±4iy) -1| ≥ e π 2 x -1, which implies the inequality |K(x, y)| ≤ e

2 (

 2 x+4iy) -1) 2 =: L 1 (x, y) + L 2 (x, y) (4.11)

. 12 )

 12 Since the function L 1 +L 2 χ (1,+∞) ∈ L 1 (S + 0 ; C), the first term in the right-hand side of (4.12) belongs to C α b (R; C) and its C α b (R; C)-norm can be estimated from above by c g C α b (S + 0 ;C) . To estimate the other term, which we denote by Ψ, we observe that e π 2 (x-4ik0y)

Lemma 4 . 3 .

 43 For each λ ∈ C such that Reλ > -(Imλ) 2 , f ∈ C b (S; C) and g ∈ C b (S + 0 ; C), we denote by T ± λ f : H ∓ R → C and U λ g : H + 0 → C, respectively, the functions defined by

Remark 5 . 2 . 6 . 6 . 1 .

 52661 Since problem (5.1) is autonomous, under the same assumptions as in Theorem 5.1, for each a > 0 and T > 0 there exists a unique solution u ∈ Y 2+α (a, a + T ) such that u(a, •) = u 0 . Proof of the main result Study of the dispersion relation and the point spectrum. Since we are interested in the instability of the traveling wave solution (Θ (0) , Φ (0) ) to problem (1.3)-(1.4), we need to determine a range of Lewis numbers Le which lead to eigenvalues of L α (see Remark 4.6) with positive real part. In view of Theorem 4.4, such eigenvalues will lie in Ω k (see(4.15)). For simplicity, we will look for positive real elements of Ω k . Note that Le -Y k vanishes for no λ's with positive real part. To determine elements of σ(L α ) with positive real part we need to analyze the reduced dispersion relation

  is a root of D 0,1 , then λ = ϕ(Le). In view of the previous lemma, ϕ is a decreasing function. As a byproduct, taking the restriction of ϕ to [Le c -δ 1 , Le c ], we have constructed a (small) branch λ = ϕ(Le) of positive roots of D 0,1 (λ, Le) = 0. We may reiterate the implicit function theorem and continue this branch up to a left endpoint (λ * , Le * ) ∈ [0, √ λ 1 ] × [0, Le c ]. By continuity, D 0,1 (λ * , Le * ) = 0. This maximal extension of ϕ is a non-increasing, C 1 -function ϕ : (Le * , Le c ] → [0, λ * ).

Figure 2 .

 2 Figure 2. Numerical computation of the implicit curve λ = ϕ(Le) for Le ∈ (0, Le c ), extended beyond Le c . Here θ i = 0.75, = 100, Le c 0.5641, λ * 0.0315. Note that √ λ 1 = π/50 0.0628.

  Proof of Main Theorem. Taking the changes of variables and unknown in Subsections 3.1 and 3.2 into account, the result in Theorem 6.6 allows us to conclude easily that the normalized temperature Θ and the normalized concentration of deficient reactant in problem (1.3)-(1.4) are unstable with respect to two dimensional C 2+α perturbations. Similarly, using formulae (3.9) and (3.12) and again Theorem 6.6, we can infer that there exist initial data ( Θ, Φ) and (Θ * , Φ * ) with C 2+α -norm, arbitrarily close to the traveling wave solution (1.6) such that the trailing front G (resp. the ignition front F ) to problem (1.3)-(1.4) with initial datum (Θ(0, •), Φ(0, •)) = ( Θ, Φ) (resp. (Θ(0, •), Φ(0, •)) = (Θ * , Φ * )) is not arbitrarily close to 0 (resp. R).

  in the finite domain Ω = Ω -∪ Ω 0 ∪ Ω + = ([-A, 0] ∪ [0, R] ∪ [R, B]) × [-/2, /2],where A > 0 and B > 0 are large enough, see Figure3. The independent variables are -A ≤ x ≤ B, -/2 ≤ y ≤ /2.

Figure 3 .

 3 Figure 3. Computational domain.

N y / 2 k=-N y / 2 k 2 N y / 2 k=-N y / 2 k 2

 222222 u(t, x, y) = N y /2 k=-N y /2 ûk (t, x)e ik y , w(t, x, y) = N y /2 k=-N y /2ŵk (t, x)e ik y , and D y y u(t, x, y) = -ûk (t, x)e ik y , D y y w(t, x, y) = -ŵk (t, x)e ik y .

  l j (t, x), ŵk (t, x) = N x j=0 ŵkj l j (t, x).Denoting the differential matrix of order m associated with{ x j } N x j=0 by D m = (d (m) ij ) i,j=0,••• ,N x , where d x i ) and l j (•, x i ) = δ ij , we eventually obtain ûk (•, x i ) = N x j=0 ûkj δ ij , D x ûk (•, x i ) =

  Evolution of u(t, 0, y) Evolution of w(t, 0, y)

Figure 4 .

 4 Figure 4. Evolution of (u, w) solution of the linear problem (3.23) (with f = 0 and h = 0) for θ i = 0.75, Le = 0.3 < Le c0.56. (A) u(t, 0, y) varies from 0 to 10 -4 , 0 < t < 1, 0 < y < 2π, (B) w(t, 0, y) varies from 0 to 2.10 -2 , 0 < t < 1, 0 < y < 2π.

Figure 5 .

 5 Figure 5. Approximation of the mollifier β.

Figure 6 .Figure 7 .

 67 Figure 6. Patterns of ignition (above) and trailing (below) interfaces. Here θ i = 0.75, = 100, Le c 0.5641.

+ 8π 2

 2 u 2 y

  2 2 D y y u 1 , w 1 ≡ 0,D t u 2 = 2 R D x u 2 + 4 R 2 D x x u 2 + 4 π 2 2 D y y u 2 , D t w 2 = 2 R D x w 2 + 4 LeR 2 D x x w 2 + 4π 2 Le 2 D y y w 2 , D t u 3 = 2 B-R D x u 3 + 4 (B-R) 2 D x x u 3 + 4π 2 2 D y y u 3 , D t w 3 = 2 B-R D x w 3 + 4 Le (B-R) 2 D x x w 3 + 4π 2Le 2 D y y w 3 ,

	(7.1)
	together with the boundary conditions:

seeRemark 4.6 
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Note that

Hence, if we set x (f ) = f 2 (0 + , y 0 ) for any f ∈ D(L α ), then |x (w)| = 0. As in Step 1, we fix r > 0 such that v 0,j + Υ(v 0,j ) 2+α ≤ r 0 for j = 1, 2 for each v 0 = v 0,1 + iv 0,2 ∈ B(0, r) ⊂ D(L α ). By Theorem 5.1 both u(n, v 0,1 + Υ(v 0,1 ), n -1) and u(n, v 0,2 + Υ(v 0,2 ), n -1) are well defined for any n ∈ N. We can thus introduce the operator

Appendix

In this Appendix, we write explicitly the formulae for the fully nonlinear terms in system (3.23), namely

They have to be computed separately in 8 intervals, as they are zero elsewhere: 5. The formulae for t and tx can be easily derived. We refer to Subsection 7.1 for the notation x, y. Moreover, we recall that β R = β(• -R) where β is as in Subsection 7.2.

(1) For x ∈ [-2δ, -δ] and x = A 2 ( x -1),

(2) For x ∈ [-δ, 0] and x = A 2 ( x -1),

(3) For x ∈ [0, δ] and x = R 2 ( x + 1),

(4) For x ∈ [δ, 2δ] and x = R 2 ( x + 1),
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