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Abstract

Mechanical properties of an electrodynamic loudspeaker are mainly determined by its suspensions (surround and spider)

that behave nonlinearly and typically exhibit frequency dependent viscoelastic properties such as creep effect. The

paper aims at characterizing the mechanical behaviour of electrodynamic loudspeaker suspensions at low frequencies

using nonlinear identification techniques developed in recent years. A Generalized Hammerstein based model can take

into account both frequency dependency and nonlinear properties. As shown in the paper, the model generalizes

existing nonlinear or viscoelastic models commonly used for loudspeaker modelling. It is further experimentally shown

that a possible input-dependent law may play a key role in suspension characterization.
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1. Introduction

Suspensions (surround and spider) play an important role in electrodynamic loudspeaker design and operation.

Their role is twofold : first to centre and adjust the voice-coil in the magnetic air gap, allowing an axial motion

of the diaphragm while preventing lateral motion or rocking ; second to provide the restoring force. The materials

used together with the assembly geometry usually result in a complex nonlinear viscoelastic behaviour, even at low

amplitude of excitation.

On the one hand, there are many studies dealing with mechanical systems and their nonlinear dynamics including

viscoelastic properties [1, 2, 3] that take into account many nonlinear phenomena, temperature dependence [4, 5]

or even time-variation [6] of the viscoelastic materials. On the other hand, in the today’s most used classical model

[7], the moving part of a loudspeaker is usually described by a simple mass-spring-damper linear system. Besides,

more accurate linear descriptions have been proposed, taking into account the frequency dependence of damping

and/or stiffness due to viscoelasticity [8, 9]. Since there are many nonlinear phenomena including the viscoelastic

effects of the suspensions [10], the classical linear model is not sufficient for describing the loudspeaker behaviour

for larger amplitudes. In order to describe at least partly these phenomena, the stiffness of the mass-spring damper

model is usually described as a nonlinear function of instantaneous displacement expressed in a polynomial way

[10].

Even if the viscoelastic and nonlinear behaviours are known for decades [11], none of the existing models of

loudspeaker suspensions take simultaneously both effects (frequency dependence of damping and/or stiffness and

nonlinear effects) into account. In this paper, we propose a nonlinear model of the moving part of an electrodynamic

loudspeaker taking into account both the nonlinear behaviour together with the complex viscoelastic phenomena.

The structure of the proposed model, derived from the basis of existing viscoelastic and nonlinear models in

section 2, is shown to be very similar to the structure of the so called Generalized Hammerstein model with

polynomial inputs (section 3) that has been successfully used to model nonlinearities in other fields of physics

[12, 13, 14] and for which several measurement techniques have been developed in recent years [15, 16, 17]. To

apply one of these techniques for the study of dynamical behaviour of loudspeaker suspensions, we propose an

experimental bench (section 4) in which the mechanical part of the loudspeaker is separated from the loudspeaker

to be measured apart. The experimental results from the measurement on an off-the-shelf loudspeaker are presented

in section 6 and a discussion of the main important results is proposed in section 6 with a concluding summary.

2. State of the art

In its simplest form, the behaviour of the moving part of an electrodynamic loudspeaker is described by a mass-

spring-damper equation

Mms
d2x(t)

dt2
+Rms

dx(t)

dt
+Kms x(t) = F (t), (1)

with Mms the mass of the diaphragm, Rms and Kms the damping (also called mechanical resistance) and the

stiffness of the suspension, respectively, F (t) the force created by the current passing through the voice-coil, and

x(t) the displacement of the moving part (considering only a piston motion). The relation (1) suffers from two

drawbacks: first it is valid only for small displacements corresponding to linear behaviour and, second, it does not

take into account the viscoelastic properties of the suspensions. Both drawbacks and existing solutions are briefly

described below in the remaining of this section.

As shown in [10, 18, 19, 20, 21], expression (1) does not succeed in describing the nonlinear behaviour in the large

signal domain. Indeed, in case of high input level, the stiffness factor Kms can no longer be considered as constant-

valued but varies with the displacement x(t). This behaviour can be modelled using polynomial approximations

[10, 22, 23, 24]. Besides, the damping Rms is usually considered independent of displacement or velocity. However,
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as suggested in [25] and later demonstrated in [26], the damping Rms can also vary with instantaneous velocity

and/or displacement [27, 28].

Considering here both the damping Rms and the stiffness Kms nonlinearly depending on the instantaneous

displacement x(t), we can modify the expression (1) in the following manner

Mms
d2x(t)

dt2
+

( N∑

n=1

rn · xn−1(t)

)
dx(t)

dt
+

( N∑

n=1

kn · xn−1(t)

)
x(t) = F (t), (2)

N ∈ N∗ being the model order, and the parameters rn and kn being the coefficients of the polynomial expansion

respectively for the damping and the stiffness.

As shown in [8, 9, 29, 30], the linear mass-spring-damper equation (1) has a limited use even in small signal

domain. Indeed, materials used for loudspeaker suspensions exhibit viscoelastic properties leading to behaviours

that are far more complex than those described with a simple mass-spring-damper representation. In [8], several

linear models considering frequency dependent parameters are described, the most accurate one being the so-called

LOG (logarithmic) model. In [31], fractional derivatives are successfully used to model the viscoelastic behaviour.

All these models show that either an extra parameter must be added to the mass-spring-damper system, or frequency

dependent parameters Kms and Rms must be considered.

The time domain relation between force and displacement from Eq. (1) can be expressed in the frequency domain

including the frequency dependent parameters Kms(f) and Rms(f) as (with i =
√
−1)

− (2πf)2 Mms X(f) + i2πf Rms(f) X(f) +Kms(f) X(f) = F (f). (3)

X(f)
+

(·)2

(·)3

(·)N

M1−(2πf)2

K1(f)

K2(f)

K3(f)

KN(f)

R1(f)

R2(f)

R3(f)

RN(f)

j 2πf

j 2πf
2

j 2πf
3

j 2πf
N

F {x(t)}

F {x2(t)}

F {x3(t)}

F
{
xN(t)

}

+

+

+

+

F (f)

G1(f)

G2(f)

G3(f)

GN(f)

Figure 1. Block diagram representation of the moving part loudspeaker including stiffness Kn(f) and damping

Rn(f).
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In order to consider both effects presented in this section (the instantaneous displacement dependence and the

frequency dependence of both damping and stiffness) a so-called viscoelastic nonlinear model is proposed in the

next section.

3. Visco-elastic nonlinear model

The model proposed in this paper takes into account the frequency dependence of stiffness and damping from

Eq. (3) together with the nonlinear functions represented in time domain in Eq. (2), we either have to express the

frequency dependence of parameters Kms and Rms in time domain using a convolution or to express the nonlinear

laws in frequency domain. Both solutions being equivalent from the mathematical point of view, we choose to use

the frequency domain for the sake of simplicity.

Considering

X(n)(f) = F {xn(t)} , (4)

and

F
{
xn−1(t)

dx(t)

dt

}
= F

{
1

n

dxn(t)

dt

}
= i

2πf

n
X(n)(f), (5)

F representing the Fourier transform, we propose to express the nonlinear frequency-dependent behaviour in a

polynomial way as

−Mms(2πf)2X(f) +

N∑

n=1

X(n)(f) ·
[
Kn(f) + i

2πf

n
·Rn(f)

]
= F (f). (6)

This relation, describing the nonlinear behaviour of suspensions, is a generalized form of both equations (2) and

(3), and can be represented by a block diagram as depicted in Fig. 1. Note, that this schematic representation is

very similar to a Generalized Hammerstein structure made up of N parallel branches, each branch consisting of a

linear filter Gn(f) preceded by a nth power static nonlinear function. Rewriting the expression (6) into the form of

a Generalized Hammerstein model yields

N∑

n=1

X(n)(f) ·Gn(f) = F (f), (7)

where the kernels Gn(f) of the Generalized Hammerstein model are related to the frequency dependent coefficients

Kn(f) and Rn(f) as

Kn(f) =

{
Re{Gn(f)}+Mms(2πf)2 for n = 1

Re{Gn(f)} for n > 1
(8)

and

Rn(f) =
n

2πf
Im{Gn(f)} ∀n. (9)

Note that the models from Eqs. (1-3) are subclasses of the proposed model from Eqs. (7-9). Taking Kn≥2(f) = 0

and Rn≥2(f) = 0 eliminates all the nonlinear effects of the model and results in Eq. (3). Considering Kn(f) and

Rn(f) as constant-valued functions we get rid of frequency dependent parameters which leads to Eq. (2). Finally,

Eq. (1), in which neither the nonlinear effect nor the frequency dependence is included, arises when both previous

conditions are satisfied.

Consequently, the Generalized Hammerstein model presented in Eqs. (7-9) is a generalized case of both nonlinear

and frequency dependent models. Hence, we consider in the following, that the mechanical part of the loudspeaker

can be represented by a Generalized Hammerstein model for which identification techniques have been recently

developed [15, 16]. This model is tested in next sections on an off-the-shelf loudspeaker using an experimental

set-up and a measurement procedure focused on the identification of the filters Gn(f) and consequently on the

estimation of Kn(f) and Rn(f).
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4. Experimental set-up

The experimental set-up developed and used to study the dynamical behaviour of loudspeaker suspensions is shown

in Fig. 2. The magnetic motor is removed from the loudspeaker and the basket of the loudspeaker is fixed to a

rigid mechanical structure. The moving part, consisting of the diaphragm, the voice-coil, the surround and the

spider, is then mechanically excited by a shaker (type LDS V406 ). The shaker is coupled to the voice-coil support

using a rigid pushing rod. The force F (t) applied to the moving part of the loudspeaker is measured using an

impedance head (type B&K 8001 ) set between the pushing rod and the voice-coil support. A laser sensor (type

Panasonic LM10 ANR1282 ) is focused on the centre of the diaphragm to measure the displacement x(t) of the

moving part. An OROS analyser, driven by NV Gate software, is used to acquire the sensors signals and generate

the input signals supplied to the power amplifier LDS PA100E connected to the shaker.

This bench is used to identify the unknown filters Gn(f) from the known input and output signals x(t) and F (t)

respectively. For this purpose, sinusoidal input voltage, controlled in both amplitude and frequency, is supplied to

the power amplifier. Since the nonlinear behaviour of suspensions as well as their possible frequency dependence

are known to be most important at low frequencies [8, 25], the frequency range is chosen from 250 mHz up to 40 Hz.

Five input levels are tested corresponding to a maximum displacement xmax of the diaphragm from 0.2 mm up to

3 mm. As the shaker response is not flat with frequency, the input voltage has to be adjusted to impose the same

displacement xmax for each frequency.

Moreover, as the shaker is a nonlinear device, the shaker and the moving part under test can be seen as two

coupled nonlinear systems (NLS) connected in series. Consequently, the unwanted nonlinearities of the shaker are

mixed with the nonlinearities caused by the moving part. Recently, Novak et al. [32] developed a method allowing

the identification of the two NLS in series in term of Nth-order Generalized Hammerstein model (see A.1 for more

details). We use this method here to estimate the filters Gn(f) corresponding to the moving part of the loudspeaker,

getting rid of the nonlinear behaviour of the shaker.

The device under test for this paper is the moving part of a 3.3 inches Visaton Sc8n loudspeaker with a membrane

made of paper, a surround made of filled rubber and a spider made of impregnated fibre. The data sheet indicates

that its maximal elongation is ± 3 mm.

The following three contributions must be taken into account while evaluating the total mass Mms : 1) the mass

of the loudspeaker moving part (membrane and voice-coil) estimated by the Klippel analyser [33] before removing

the motor (1.55 g), 2) the mass of an adaptive aluminium piece inserted between the impedance head and the

moving part of the loudspeaker (9.25 g), and 3) the mass below force gauge of the impedance head (2.1 g). The

sum of these three contributions gives the total mass Mms = 12.9 g.

measured

force F (t)

measured

displacement x(t)

shaker

mechanical part

of loudspeaker

vibrometer

pushing

rod

impedance

head

Figure 2. Experimental setup for testing the loudspeaker moving part mechanical behaviour, excited with a shaker.
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5. Experimental results

5.1 Estimation of filters Gn(f)

Both displacement and force signals are recorded for input frequency f0 ∈ [250 mHz − 40 Hz] and for maximum

input displacement of the diaphragm xmax ∈ [0.2 mm− 3 mm].

These signals are then used as input (displacement) and output (force) of the Generalized Hammerstein model

described by the relation (7). They allow the estimation of the filters Gn(f) for 1 ≤ n ≤ N , for each input level

corresponding to xmax.

As an example, Fig. 3 shows the modulus |G1(f)| as a function of frequency, estimated for each tested xmax

value. Note that for this estimation, the order of the Hammerstein model is chosen to be N = 7. The resonant

frequency corresponding to the minimal value of |G1(f)| decreases with increasing input level. Since the filter G1(f)

varies with the input level, we conclude that the moving part of a loudspeaker cannot be described by a unique

input-independent Generalized Hammerstein model.

0 10 20 30 40
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10
−1

10
0

Frequency [Hz]

|G
1| [

N
 m

−
1 ]

 

 

0.2 mm
0.5 mm
1 mm
2 mm
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Figure 3. |G1(f)| for different values of xmax.

5.2 Stiffness Kn(f) and damping Rn(f)

The stiffness Kn(f) and damping Rn(f) can be deduced from the estimated filters Gn(f) using Eqs. (8-9), for each

input level. K1(f) and R1(f) respectively describe linear contributions of stiffness and damping, while Kn(f) and

Rn(f) (for n ≥ 2) code their higher-order nonlinear contributions. Fig. 4 shows K1(f) and R1(f) for different values

of xmax. Except very low frequencies, where the results are affected by the noise, the stiffness K1(f) (Fig. 4(a))

may by considered as quasi-constant with frequency for any value of xmax.

Indeed, the stiffness of the mechanical part of an electrodynamic loudspeaker is often considered to be frequency

dependent. An increasing value of stiffness (or a decreasing value of compliance) with increasing frequency has

been reported by several authors [9, 31, 34, 35]. However, in these works, the variation of stiffness with frequency is

observed for measurements for which the amplitude of the voltage excitation is kept constant. In such measurements,

however, the displacement drops with increasing frequency as a natural consequence of voltage driven loudspeakers.

On the other hand, the measurements provided in these experiments are conducted for a constant amplitude of

the displacement. Moreover, it appears from Fig. 4(a) that K1(f) decreases when xmax increases, whatever the

frequency. The value of linear stiffness contribution K1(f) is constant with frequency and decreases with increasing

amplitude. Consequently, for a loudspeaker driven by voltage, the amplitude of the displacement would decrease

with increasing frequency leading to an increase of the stiffness.
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Figure 4. K1(f) (a) and R1(f) (b), for different values of xmax. Loudspeaker : Visaton Sc8n.
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Figure 5. K3(f) (a) and R3(f) (b), for different values of xmax. Loudspeaker : Visaton Sc8n.

For a given value of xmax, the damping R1(f) (Fig. 4(b)) highlights a power law decreasing behaviour with

frequency. Such a frequency dependence has already been observed and described by Thorborg et al. [9, 34], and is

justified by two physical phenomenon; the viscous losses (frequency independent), and the elastic losses (decreasing

when the frequency increases). Lastly, it appears that for all frequencies, R1(f) decreases when xmax increases.

The third-order stiffness K3(f) and damping R3(f) are depicted in Fig. 5 for the three highest amplitude levels

(1,2, and 3 mm). Lower levels, as well as higher or even orders, are not depicted due to low signal-to-noise ratio

(SNR). The problematic of noise influence on the higher order kernels is detailed in section 6. Both the stiffness

K3(f) and the damping R3(f) show very similar behaviour as the linear contributions K1(f) and R1(f). The

third-order stiffness K3(f) is almost constant, especially for levels xmax=2 mm and xmax=3 mm and within the

frequency range [10 - 40 Hz]. Below 10 Hz, the results are affected by the noise. While the frequency dependence

of the third-order stiffness K3(f) and damping R3(f) behaves similarly compared to the linear stiffness K1(f) and

damping R1(f), the dependence with amplitude xmax is less obvious to interpret for the third-order stiffness K3(f)

and damping R3(f).

5.3 Polynomial expressions of stiffness and resistance

In the frequency domain, it has been shown that the mechanical behaviour of the loudspeaker moving part, repre-

sented by Kn and Rn, depends on both frequency f and driving amplitude xmax. In order to describe this behaviour
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in the time domain, the following mathematical procedure is applied.

The coefficients kn and rn of the polynomial expansions of mechanical stiffness Kms ≡ k{x(t)}

k{x(t)} =

N∑

n=1

kn · xn−1(t), (10)

and damping Rms ≡ r{x(t)}

r{x(t)} =

N∑

n=1

rn · xn−1(t). (11)

are estimated from the stiffness Kn(f) and damping Rn(f), as detailed in A.2. Coefficients kn and rn contribute

to the time domain description of the mechanical behaviour of the loudspeaker moving part at driving frequency f .

Knowing the coefficients kn, polynomials k{x(t)} are then calculated for each input frequency and for each input

level from Eq. 10. Polynomials k{x(t)} are presented in Fig. 6 for the frequencies 5 Hz, 10 Hz, and 15 Hz, and

for N = 7. On the one hand, these results highlight a stiffening of the moving part when x(t) increases, and
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Figure 6. Polynomials k{x(t)} based on estimated kn parameters (n ∈ [1, 7]), for 3 input levels and 3 frequencies f0, depicted for

amplitudes 3 mm (red), 2 mm (orange), and 1 mm (green).
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Figure 7. Polynomials r{x(t)} based on estimated rn parameters (n ∈ [1, 7]), for 3 input levels and 3 frequencies f0, depicted for

amplitudes 3 mm (red), 2 mm (orange), and 1 mm (green).

this is especially true for high values of xmax, i.e. 2 or 3 mm. This is in agreement with the variations of stiffness

Kms(x) that is usually represented as a static polynomial [25]. On the other hand, k{x = 0} decreases when xmax is

increasing and consequently k{x(t)} polynomials differ for each level. These observations are coherent with those of
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several authors [25, 26, 35, 36, 37, 38]. Note also a small asymmetry of k{x(t)} related to input frequency of 15 Hz

(Fig. 6). This kind of asymmetry is created by even order of kn (n ∈ (2, 4, 6, . . .)) and, contrary to the asymmetry

due to static offset of the voice coil rest position, this kind of asymmetry is created purely by the nonlinear dynamic

behaviour.

The variation of the damping r{x(t)} with instantaneous displacement x(t) (Fig. 7) shows very similar behaviour.

6. Discussion

The nonlinear model proposed in this paper for describing the nonlinear viscoelastic behaviour of the mechanical

part of an electrodynamic loudspeaker shows some interesting results. First, since the filter G1(f) varies with

the input level, the moving part of a loudspeaker cannot be described by a unique input-independent Generalized

Hammerstein model. Second, since the most common model describing the nonlinearity of the moving part of the

loudspeaker and based on a static nonlinear stiffness Kms(x) is a subclass of the Generalized Hammerstein model

used in this paper, the very same conclusion holds if the simple static nonlinear stiffness Kms(x) is used. Such a

conclusion is not surprising. This kind of behaviour is well known for example in filled rubber isolators where for a

single harmonic excitation they exhibit a strong amplitude dependence, where stiffness is high for small excitation

amplitudes and low for large amplitudes [3]. Nevertheless, these well known properties are often neglected in

loudspeaker suspension modelling.

We have furthermore shown that the linear stiffness K1(f) as well as the third order stiffness K3(f) remain

almost constant with frequency and that the linear stiffness K1(f) depends slightly on the driving amplitude xmax.

The linear damping R1(f) and third-order damping R3(f) exhibit a similar power law as a function of frequency,

and the value of xmax also influences the linear damping R1(f). These findings can be used in future works for

real-time modelling and prediction of the loudspeaker behaviour. Since the frequency dependency seems to be very

small for higher orders of Kn and Rn, these might be simplified to constant values.

We have also noted that the higher order stiffness Kn(f) and damping Rn(f) are difficult to be measured due to

the effect of noise. Indeed, SNR decreases when tested level decreases and Gn(f) estimations consequently lead to

a large variance for low levels. Likewise, because of the Gn(f) estimation method, the noise has a greater effect for

higher order Gn(f) filters. This leads to a cautious use of higher order Gn(f) filters, especially for low levels, and

consequently of interpretation of Kn(f) and Rn(f). However, the values of G1(f) and of the linear contributions

K1(f) and R1(f) are almost noise-free except for very low frequencies. Moreover, the higher orders are also involved

into the calculation of the time domain nonlinear stiffness and resistance parameters kn and rn. These parameters

determine the k{x(t)} and r{x(t)} polynomials, respectively describing the stiffness and the resistance in time

domain as a function of the instantaneous displacement x(t). As depicted in Figs. 6 and 7, the curves do not exhibit

large noisy fluctuations even if the order N=7 was used.

While measuring and analysing the nonlinear effects of loudspeaker suspensions many precautions must be taken

so that the estimated data are not influenced by other effect not related to the suspensions. A very important step is

to get rid of all the nonlinearities generated by the devices used for the measurement, mainly the excitation device.

In this paper, we use a technique developed in [32] in which a single harmonic excitation is used. Expanding the

measurements to a multiple harmonic excitation or to other broadband signals would require a different technique

allowing the separation of the nonlinear effects of the suspensions from the nonlinear effects of devices used for

the measurement. Such a technique, being part of our perspectives, could reveal more details about the nonlinear

properties of the loudspeaker suspension. A future work should also focus on the temperature dependence and the

time-varying properties of the loudspeaker suspensions since there are both closely related to the nonlinear effects

of the loudspeaker. Nevertheless, an emphasis should be placed on simplicity of the model so that it can be easily

used by researchers and engineers from the loudspeaker industry.
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7. Conclusion

To sum up, the paper presents a model of loudspeaker suspensions that takes into account the nonlinear effects

(usually modelled as a static nonlinearity of Kms) as well as the viscoelastic behaviour (usually represented by

frequency varying coefficients Kms (representing the stiffness) and Rms (representing the mechanical resistance)).

While both concepts are well known, the models used for loudspeaker modelling take rarely into account both the

viscoelastic effect (frequency dependent Kms and Rms) and nonlinear behaviour.

The model and the measurement method presented in this paper show several interesting phenomena. First,

from the nonlinear point of view, the estimated stiffness depends on the instantaneous displacement which is in

agreement with the results found in the literature (stiffness increasing with positive and negative instantaneous

displacement). Moreover, this behaviour seems to be dependent not only on the instantaneous displacement but

also on the peak displacement as already pointed out in [26]. From the point of view of the frequency dependence of

the viscoelastic parameters Kms and Rms, an important frequency dependence of Rms has been found in agreement

with the results in the literature. On the other hand, Kms has shown a very little variation with frequency in

the studied frequency range contrary to what can be found in the literature. One of the possible explanation is

that the variation of stiffness with frequency is often estimated from measurements for which the amplitude of

the loudspeaker voltage excitation is kept constant. In such measurements, however, the displacement drops with

increasing frequency as a natural consequence of voltage driven loudspeakers. On the other hand, the measurements

provided in these experiments are conducted for a constant amplitude of the displacement. As shown in this paper

the stiffness decreases when the peak displacement increases, whatever the frequency. The value of the linear

contribution of the stiffness K1(f) is thus found to be independent of frequency but decreases with increasing

amplitude. Consequently, the results found in this paper are in agreement with those found in the literature. For

a loudspeaker driven by voltage, the amplitude of the displacement decreases with increasing frequency which,

according to our findings, results in an increase of the stiffness.

Moreover, as shown in this paper, even if the considered model is a generalisation of existing models of loud-

speaker suspensions, its parameters still vary with the amplitude of the peak displacement of the diaphragm. If one

needs a precise model of the suspension (e.g. for a nonlinear compensator), these variations should be taken into

account.L
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Appendix

A.1 Matrix for HHFRs

Since the measurement technique described in this paper uses a shaker as the excitation device to create the

displacement of the mechanical part of the loudspeaker under test, the nonlinearities caused by the shaker must be

taken into account. The problem is depicted in Figure 8 in which the first NLS (NL1) represents the shaker and

the second NLS (NL2) represents the mechanical part of the loudspeaker.

The excitation swept-sine signal s(t) is the input of the first NLS. The displacement x(t) is the output of the

first NLS and the input of the second NLS. The force f(t) is the output of the second NLS. Consequently, f(t) may

be seen as the output of the whole system for the input signal s(t).

The method presented in [32] then allows the identification of the second NLS. The identification of the system

is equivalent to estimating the linear filters Gn(f), n = 1, N , from the measured signals x(t) and f(t). The

identification process is based on the off-line estimation of both the Higher Harmonic Frequency Responses (HHFRs)

H(x,s)
m (f) between s(t) and x(t), and the HHFRs H(f,s)

m (f) between f(t) and u(t), for m = 1,M , M being the total

number of harmonics taken into account. We recall that, given an input signal a(t) and an output signal b(t) of a

NLS, the HHFR H(b,a)
m (f) may be seen as the contribution, in both amplitude and phase, of the m-th harmonic at

the output, for a sine at frequency f at the input, as

H(b,a)
m (f) = |H(b,a)

m (f)|ejϕ(b,a)
m (f). (A.1)

First, the HHFRs H(x,s)
m (f) and H(f,s)

m (f) are estimated using the synchronized swept sine method (for more

details see [32] and [39]). Next, the displacement signal x(t), already distorted by the shaker (NL1), is taken to the

powers of n and HHFRs H(xn,s)
m (f) for n = 1, N are calculated.

The HHFRs H(f,s)
m (f) of the output signal f(t) result in the combination of all HHFRs H(xn,s)

m (f) after filtering

by filters Gn(f). The relation between the HHFRs H(xn,s)
m (f), H(f,s)

m (f) and the linear filters Gn(f) can indeed be

written in a matrix form as [32]




H(f,s)
1 (f)

H(f,s)
2 (f)

...

H(f,s)
M (f)




=




H(x,s)
1 (f) H(x2,s)

1 (f) · · · H(xN ,s)
1 (f)

H(x,s)
2 (f) H(x2,s)

2 (f) · · · H(xN ,s)
2 (f)

...
...

. . .
...

H(x,s)
M (f) H(x2,s)

M (f) · · · H(xN ,s)
M (f)




×




G1(f)

G2(f)
...

GN (f)



. (A.2)

Equation (A.2) can then be solved for unknown Gn(f) by using a square matrix inversion in the case M = N , or

by using a pseudo-inversion in the case M > N . The number of harmonics M chosen for the estimation of HHFRs

must be equal or greater than the number of the branches N of the Generalized Hammerstein model. The matrix

(pseudo)-inversion must be computed for each frequency f separately.
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NL1

G1

G2

G3

...
GN

(·)2

(·)3

...

(·)N

+
s(t) x(t)

x(t)

x2(t)

x3(t)

xN (t)

f(t)

NL2

Figure 8. Two dynamic nonlinear systems in series, the first one represents the shaker, the second one, represented

by a Generalized Hammerstein model, is the mechanical part of the loudspeaker under test.

A.2 Time-domain coefficients kn and rn

We first replace Kms of Eq. (10) and Rms of Eq. (11) in the equation of movement Eq. (1). We then use Eq. (4-5)

for expressing the equation in the Fourier domain, which leads to

F (f) = (i2πf)
2
MmsX(f) +

N∑

n=1

((
i2πfrn
n

+ kn

)
X(n)(f)

)
, (A.3)

with X(n)(f) the Fourier transform of xn(t). In Eq. (A.3), we suppose that both rn and kn depend on frequency

f . We respectively note them Rn(f) and Km(f) and we finally have

F (f) = (i2πf)
2
MmsX(f) +

N∑

n=1

[(
i2πfRn(f)

n
+Kn(f)

)
X(n)(f)

]
, (A.4)

with Rn(f),Kn(f) ∈ R, ∀n ∈ [1, N ], ∀f . This equation now has to be compared with the equation of the Generalized

Hammerstein Model Eq. (7). For doing this, we suppose that the input of the system is x(t) = X0 cos(2πf0t).

In the time domain, we then have

F (t) = −M(2πf0)
2
x(t) +

N∑

n=2
n even

Xn
0

2n

(
n

n/2

)
Kn(0) + I1 + I2 + I3 + I4, (A.5)

the integrals Ik checking




I1 =
N∑

n=1
n odd

Xn
0

2n−1

n−1
2∑

p=0

(
n

p+n+1
2

)
Kn

(
(2p+ 1)f0

)
2p+1

2

p∑
k=0

(−1)
k
22(p−k)+1 (2p−k) !

k ! (2(p−k)+1) ! (x(t))
2(p−k)+1

,

I2 =
N∑

n=2
n even

Xn
0

2n−1

n
2∑

p=1

(
n

p+n
2

)
Kn

(
2pf0

)
p

p∑
k=0

(−1)
k
22(p−k) (2p−k−1) !

k ! (2(p−k)) ! (x(t))
2(p−k)

,

I3 =
N∑

n=1
n odd

Xn
0

n 2n−1

n−1
2∑

p=0

(
n

p+n+1
2

)
Rn

(
(2p+ 1)f0

)
2p+1

2

p∑
k=0

(−1)
k
22(p−k)+1 (2p−k) !

k ! (2(p−k)+1) !
d
dt

[
(x(t))

2(p−k)+1]
,

I4 =
N∑

n=2
n even

n Xn
0

2n−1

n
2∑

p=1

(
n

p+n
2

)
Rn

(
2pf0

)
p

p∑
k=0

(−1)
k
22(p−k) (2p−k−1) !

k ! (2(p−k)) !
d
dt

[
(x(t))

2(p−k)]
.

(A.6)
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By

1. noting n = 2n′ + 1 (odd cases) and n = 2n′ (even cases), N1 = (N − 1)/2 (N odd) and N1 = N/2 − 1 (N

even), N2 = (N − 1)/2 (N odd) and N2 = N/2 (N even),

2. replacing
∑N1

n′=0

∑n′

p=0 by
∑N1

p=0

∑N1

n′=p (odd cases),
∑N2

n′=1

∑n′

p=1 by
∑N2

p=1

∑N2

n′=p (even cases),

3. replacing
∑N1

p=0

∑p
k=0 by

∑N1

r′=0

∑N1

p=r′ (odd cases),
∑N2

p=1

∑p
k=0 by

∑N2

r′=0

∑N2

p=max(r′,1) (even cases),

we then have




I1 =
N1∑
r′=0

(
N1∑
p=r′

N1∑
n′=p

X2n′+1
0

22n′

(
2n′+1
p+n′+1

)
K2n′+1

(
(2p+ 1)f0

)
2p+1

2 (−1)
p−r′ (p+r′) !

(p−r′) ! (2r′+1) !

)
22r
′+1(x(t))

2r′+1
,

I2 =
N2∑
r′=0

(
N2∑

p=max(r′,1)

N2∑
n′=p

X2n′
0

22n′−1

(
2n′

p+n′

)
K2n′

(
2pf0

)
p(−1)

p−r′ (p+r′−1) !
(p−r′) ! (2r′) !

)
22r
′
(x(t))

2r′
,

I3 =
N1∑
r′=0

(
N1∑
p=r

N1∑
n′=p

X2n′+1
0

(2n′+1) 22n′

(
2n′+1
p+n′+1

)
R2n′+1

(
(2p+ 1)f0

)
2p+1

2 (−1)
p−r′ (p+r′) !

(p−r′) ! (2r′+1) !

)
22r
′+1 d

dt

[
(x(t))

2r′+1]
,

I4 =
N2∑
r′=0

(
N2∑

p=max(r′,1)

N2∑
n′=p

X2n′
0

2n′ 22n′−1

(
2n′

p+n′

)
R2n′

(
2pf0

)
p(−1)

p−r′ (p+r′−1) !
(p−r′) ! (2r′) !

)
22r
′ d
dt

[
(x(t))

2r′]
.

(A.7)

Consequently, the coefficients kn and rn of the polynomial expansions of Kms and Rms check, for r′ ∈ [1, N1]

(odd cases) or for r′ ∈ [1, N2] (even cases),





k2r′+1 =
N1∑
p=r′

2p+1
2 (−1)

p−r′ (p+r′) !
(p−r′) ! (2r′+1) !

N1∑
n′=p

22(r
′−n′)+1 (2n′+1) !

(p+n′+1) ! (n′−p) !X
2n′+1
0 K2n′+1

(
(2p+ 1)f0

)
,

k2r′ =
N2∑

p=max(r′,1)

p(−1)
p−r′ (p+r′−1) !

(p−r′) ! (2r′) !

N2∑
n′=p

22(r
′−n′)+1 (2n′) !

(p+n′) ! (n′−p) !X
2n′

0 K2n′
(
2pf0

)
,

r2r′+1 =
N1∑
p=r′

2p+1
2 (−1)

p−r′ (p+r′) !
(p−r′) ! (2r′+1) !

N1∑
n′=p

22(r
′−n′)+1 2r′+1

2n′+1
(2n′+1) !

(p+n′+1) ! (n′−p) !X
2n′+1
0 R2n′+1

(
(2p+ 1)f0

)
,

r2r′ =
N2∑

p=max(r′,1)

p(−1)
p−r′ (p+r′−1) !

(p−r′) ! (2r′) !

N2∑
n′=p

22(r
′−n′)+1 r′

n′
(2n′) !

(p+n′) ! (n′−p) !X
2n′

0 R2n′
(
2pf0

)
.

(A.8)

L
A

U
M

,
C

N
R

S
U

M
R

6
6

1
3



Maillou et al. Nonlinear viscoelastic behaviours of loudspeaker suspensions — 14/16

References

[1] G. Kerschen, K. Worden, A. F. Vakakis, J.-C. Golinval, Past, present and future of nonlinear system identifi-

cation in structural dynamics, Mech. Syst. Signal Process. 20 (3) (2006) 505–592.
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[12] K. Ege, X. Boutillon, M. Rébillat, Vibroacoustics of the piano soundboard:(non) linearity and modal properties

in the low-and mid-frequency ranges, J. Sound Vib. 332 (5) (2013) 1288–1305.
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