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Tarel 23/03/2017 Modified reference for the values of the parameters of the geometric calibration of a camera. Comments on relevance of averaging images over a few minutes instead of using single frames. Nicolas Hautière 23/03/2017 Comments on the impact of cloud cover and plants phenology on the Lambertian map. Clarifications on the initial ideas for computing the Lambertian map and calibrating the contrast-visibility response curve of a camera. Jean-Philippe Tarel 24/03/2017 Comments on the entropy minimization method and the relevance of gradient as a proxy for contrast.

A computer vision method was proposed in 2011 by Ifsttar to estimate the meteorological optical range with a roadside camera in daytime conditions. The method was developed thanks to a set of images collected with a basic CCTV camera installed on a weather observation site alongside with reference visibility and luminance meters, between February 27 and March 1st 2009. In order to validate the method, we are collecting images and weather data from different sites. Meanwhile, we have implemented the method in C, and tested it with images and data collected on the original observation site in March and April 2009. The first Section of this report recalls the visibility estimation method. The second Section describes the implementation of the method. The third Section focuses on the detection of Lambertian surfaces in the scene. The fourth Section shows some results for different low visibility episodes. These results are then discussed and the next steps toward deployment are listed. We found that the Lambertian map is not always successful at suppressing the influence of illumination in the scene. We also found that the calibration of the method is affected by the fact that visibility extracted from an image is instantaneous whereas visibility measured by a scatter meter is averaged over 1 minute or more. Finally, we confirmed that the range of the method is limited by the characteristics of the camera. For further tests, we will use the data which we are currently collecting from other sites. When possible, we will need to collect sequences of images instead of single frames every 10', to smooth out insignificant variations. We will also need to estimate the depth map of the scene, to explore the possibility of calibrating the method without reference meteorological optical range data. We intend to investigate alternative local contrast estimation methods and an alternative calibration method for the response curve.

Introduction

A computer vision method was proposed in 2011 by Ifsttar to estimate the meteorological optical range with a roadside camera in daytime conditions. The method was developed thanks to a set of images collected with a basic CCTV camera installed on a weather observation site alongside with reference visibility and luminance meters, between February 27 and March 1 st 2009.

In order to validate the method, we are collecting images and weather data from different sites. Meanwhile, we have implemented the method in C, and tested it with images and data collected on the original observation site in March and April 2009.

The first Section of this report recalls the visibility estimation method. The second Section describes the implementation of the method. The third Section focuses on the detection of Lambertian surfaces in the scene. The fourth Section shows some results for different low visibility episodes. These results are then discussed and the next steps toward deployment are listed.

Atmospheric visibility from image contrast

In daytime, airborne particles interact with light, causing the attenuation of the luminance of surfaces and the addition of a veiling luminance, both as an exponential function of distance. These effects of haze and fog on the luminance of the surfaces in a scene illuminated by skylight are described by the famous Koschmieder law:

L(d) = L(0) e -kd + ( 1 -e -kd ) L(∞) (1) 
where L(d) is the luminance of a surface observed from a distance d, L(0) is the luminance of the same surface observed at close range, L(∞) is the luminance of the far away horizon, and k is the extinction coefficient of the atmosphere. The latter is related to the meteorological optical range V:

V ≈ 3 / k (2)
The merging of the luminance of distant surfaces with that of the sky at the horizon, also known as atmospheric perspective, results in an extinction of contrast as a function of distance. Consider an object with an intrinsic contrast C(0) resulting from a difference in luminance dL in its texture. Its contrast as seen from a distance d will then be:

C(d) = dL e -kd / L(∞) = e -kd C(0) (3) 
We see here that the lower the meteorological visibility, i.e. the higher the atmospheric extinction coefficient, the lower the contrast at a given distance. Hence the idea to use contrast as a proxy for visibility (see for instance Xie et al, 2008, or Taylor and[START_REF] Taylor | Determination of visual range during fog and mist using digital camera images[END_REF].
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Babari et al (2011) investigated that idea for the purpose of using traffic surveillance cameras to monitor atmospheric visibility along road networks. They looked into the mean of contrast over the entire image grabbed by a given camera. They used the Sobel gradient operator to approximate local luminance differences, and simply used the maximum pixel intensity (Imax = 2 8 -1 = 255 for an 8-bit digital camera) as a reference to compute the contrast at every pixel:

Cij = Gij / Imax = ( Gx 2 + Gy 2 ) 1/2 / Imax (4)
with Gx the Sobel gradient in the horizontal direction and Gy the Sobel gradient in the vertical direction at any given pixel of coordinates (i,j). Note that the Sobel operator is normalized to ensure that Cij ≤ 1 .

The major difficulty is that contrast varies not only with visibility, but also with illumination. So the authors introduced a weighting factor w based on the correlation between pixel intensity and sky luminance in high visibility conditions, in an attempt to focus on regions in the image where contrast is independent of lighting conditions. Hence the final expression of the weighted mean of contrast:

C = Σ w G / Imax (5)
with Σ w = 1 . They called the weight map a Lambertian map, as it provides an indication of the diffuse character of the surfaces in the scene.

As can be seen in Figure 1, they obtained satisfactory results with that approach when they tested it on the 3-day dataset collected between February 27 and March 1 st 2009 on a weather observation site in Trappes (France). Then they studied the theoretical relation between contrast C and visibility V based on the distribution of distance in the field of view of the camera. Hypothesizing an exponential distribution function, they found an analytic model for the response function of the camera as a visibility meter:

C(V) = a / ( 1 + b / V ) + c (6)
where C(0) = c is the contrast caused by image noise only, C(∞) = a + c is the theoretical contrast when the scene is imaged in ideal visibility conditions (asymptote of the model when V is large), and Vmax = 3 b indicates the visibility beyond which the model is expected to produce prohibitively large errors.

Setting the noise term to c = 2/255, and using the Levenberg-Marquardt algorithm (LMA) to fit the model to the data, this method provides acceptable estimations of the atmospheric visibility. The authors obtained even better results, as can be seen in Table 1, by introducing the uncertainty of visibility measurements into the fit (using the multiplicative inverse of the reference visibility as a weight), and by using only low visibility data ( V < 1000 m ) to fit the model. Table 2 presents the 90 th centile of the relative error for the different fitting methods. The models are confronted with the data in Figure 2. 

Implementation in C language

The method to estimate atmospheric visibility from the mean of weighted contrast was programmed in C language. It consists of 4 command-line programs: dosel, domap, docal and dotst.

The first program produces a list of data which can then be processed by the three other programs. It allows selecting data between two dates, for a given interval of time each day, for a given interval of luminance and for a given interval of visibility. These criteria are provided by means of an ASCII parameter file.

The second program computes a Lambertian map based on a selection of images and associated luminance. The solar angle can be used as a proxy for luminance. Several possibilities are available to compute the values in the map (using positive, negative or all Pearson coefficient values). The resulting weight map is saved in the portable float map file format.

The third program fits the model relating contrast to visibility, using Levenberg-Marquardt algorithm. It works on a selection of data generated with the first program. The data must contain low visibility episodes. The program computes the mean of the contrast in every images, weighted by a specified Lambertian map. The parameters of the fitted model are saved into an ASCII file.

The last program evaluates the mean and the 90 th centile of the relative error between the visibility estimated with the model and the reference visibility for a selection of data generated with the first program. The parameters of the model and the selection of data are specified by means of an ASCII parameter file. The results are given for several classes of visibility.

In order to convert the images of the dataset to the portable grey map file format, the programs make system calls to a widely used, free, portable and open-source third party program called ImageMagick®; the path to that program must be specified in the input parameter files. The calibration program docal uses the Levenberg-Marquardt algorithm as implemented by Joachim Wuttke.

Influence of the Lambertian map

The so-called Matilda dataset selected by [START_REF] Babari | A model-driven approach to estimate atmospheric visibility with ordinary cameras[END_REF] to develop their method contains data collected between February 27 and March 1, 2009. This period was chosen because it offered a wide variety of visibility (with fog in the morning of February 27 and 28) and sky conditions (sunny, cloudy and overcast). The Lambertian map presented by the authors was computed using the data from the afternoon of March 1, with L > 500 cd/m -2 and V > 5 km.

We tried building the Lambertian map with data from before the fog episodes of the Matilda dataset.

We tried with data from February 25, which was a sunny day, and with data from February 26, which was an overcast day (as observed from the shadows cast by vertical objects in the scene). We can see in Figure 3 that the Lambertian map built with data from the sunny day fails to improve the tightness of the data along the response curve, contrary to the weight map from the overcast day. The estimation errors are presented in Table 3. The Lambertian maps are presented in Figure 4. We see that the map from February 25 (sunny) is not really selective, especially in low contrast areas (the lawn), contrary to the map from February 26 (overcast). There are large differences between the map from February 26 and that of March 1, which is also an overcast day. 

Evaluation on different low visibility episodes

Although the Matilda dataset only contains data collected between February 27 and March 1, the data collection actually started on February 5 and lasted until April 10. There were 7 low visibility episodes during that period, always around sunrise: February 7, February 21, February 27, February 28, March 5, March 23 and April 4. Having used the data from the episodes of February 27 & 28 to calibrate the meteorological visibility estimation system, we focused on the last 3 episodes, and then on the whole period, to evaluate the method. We used the model obtained by fitting low visibility data without weight (parameters are given in line 3 of Table 1). The data for the last episode and for the whole period is plotted versus the model in Figure 5. 

Discussion

Babari et al ( 2011) found that their physically-based method could estimate atmospheric visibility with reasonable accuracy (under 20% relative error in more than 90% of the cases) for meteorological optical range up to more than 2 km. Two limitations prevent a generalization of this result, however. The first limitation is that they tested their method on the same data that was used to calibrate it. The second limitation is that they applied the Lambertian map backwards in time.

When we apply the calibrated model to estimate visibility from data collected on the same site with the same camera but at different times (Table 4), or even when we use a Lambertian map computed from data collected before the data used for the test (Table 3), the results are less accurate, even when we focus on very low visibility. The shape of the model does however seem to fit the data, only not as accurately as expected.

We can draw a parallel between the hyperbolic increase of the deviation between estimated and measured atmospheric visibility and the hyperbolic relation between the distance in the scene and the line number in the image. With the flat world hypothesis, this relation is:

d = λ / (v -vh) ( 7 
)
where d is the distance from the camera to the ground at line v in the image, and vh is the horizon line:

vh = v0 -tan β0 (8)
where v0 is the vertical position of the optical center in the image, and β0 is the pitch angle of the camera; λ depends on various characteristics of the camera:

λ = H f / ( µ cos²β0 ) ( 9 
)
where H is the mounting height, f is the focal length and µ is the pixel size. For the particular camera installed in Trappes, with H = 8.3 m, β0 = 9.8°, f = 4 mm, µ = 9 µm and v0 = 240, we have λ = 3799 and vh = 163. Furthermore, we can estimate the distance δ spanned by one line at distance d:

δ(d) = λ / ( E( vh + λ / d ) -vh ) -λ / ( E( vh + λ / d ) + 1 -vh ) ( 10 
)
where E(x) is the integer part of x. These equations are taken from [START_REF] Hautière | Automatic fog detection and estimation of visibility distance through use of an onboard camera[END_REF] and the parameter values are taken from [START_REF] Hautière | Measurements and Observations of Meteorological Visibility at ITS Stations[END_REF]. We can thus compute the distance beyond which δ(d) is more than 20% of d, and we find 640 m, which corresponds to the line number 169.

Hypothesizing that it is impossible to get any accuracy from pixels pointing at surfaces beyond that distance, we tried to compute the unweighted mean of contrast over the lower part of the image, below line number 169. After calibrating the model proposed by [START_REF] Babari | A model-driven approach to estimate atmospheric visibility with ordinary cameras[END_REF] and inversing it to estimate the visibility from the contrast, we got the results in the graph on the left in Figure 6, with the 90 th centile of the relative error at 18% for V < 400 m and 34% for V < 1 km. The parameters of the model are a = 0.0225176 and b = 418.636 . We find that the results are similar to what was obtained on the same dataset (the so-called Matilda dataset) by [START_REF] Caraffa | Daytime Fog Detection and Density Estimation with Entropy Minimisation[END_REF] using their entropy minimization method, as can be seen in the graph on the right in Figure 6. We then tested the model calibrated from the Matilda dataset (i.e. February 27 to March 1st) on data from the low visibility episode of April 1-3. We found the 90 th centile of the relative error to be higher than 20% even for V < 400 m. We also tried calibrating the model with the data from the April 1-3 episode, but surprisingly, the results were worst (see Figure 7). The poor quality of the last results led us to question the quality of the reference data. We see in Figure 8 that the MOR, as measured with a scatter meter, varies literally by the minute, although the measurements are actually averaged over 6 minutes to smooth out non-significant instantaneous variations. The visibility estimated with the camera, on the other hand, is an instantaneous value. Therefore, we should also test averaging the results extracted from several images. Unfortunately, only 1 image every 10 minutes were collected in Trappes, so we need new data to pursue this line of investigation. Meanwhile, we tried using the median value of the MOR over 10-minute periods around the time each image was captured. The results were noticeably improved, as can be seen in Figure 9, although the 90 th centile of the relative error is still 58% for V < 400 m and 65% for V < 2 km (there is no data for V between 400 m and 1 km). The parameters of the model are a = 0.0223199 and b = 357.314 , which is quite close to the model obtained earlier with the data from the Matilda dataset using the contrast in the lower part of the image. This raises our hopes that the model calibrated using a low visibility episode might remain valid for later episodes. 

Conclusions and future work

We have implemented the physically based method proposed by [START_REF] Babari | A model-driven approach to estimate atmospheric visibility with ordinary cameras[END_REF] to estimate atmospheric visibility from the weighted mean of contrast in the image of a scene captured by a CCTV camera. We found that the so-called Lambertian weight map does not successfully suppress the influence of illumination in the scene outside the time frame originally tested by the authors. Simply using the mean of contrast below a certain line in the image seems to provide results with similar accuracy. We also found that calibrating the model outside the timeframe originally tested by the authors does not always produce an acceptable model (one that can be inversed to estimate visibility from contrast with reasonable accuracy). However, it does not necessarily follow that the method is invalid: imprecision in the results may come from the instantaneous nature of the computed contrast, compared to the reference data where visibility is averaged over a period of several minutes. The same remark holds for the more recent method proposed by [START_REF] Caraffa | Daytime Fog Detection and Density Estimation with Entropy Minimisation[END_REF]. Whatever the method, it seems impossible to obtain reasonably accurate results beyond a certain visibility value which depends on the intrinsic and extrinsic characteristics of the camera (basically its resolution, mounting height and pitch angle).

We have started collecting data from other sites to complete the evaluation of the camera based visibility estimation method(s). When possible, we will collect sequences of images (e.g. 10 images at 1 Hz) instead of single frames every 10 minutes, in order to smooth out non-significant variations. We will also need to estimate the depth map of the scene when possible (e.g. using a stereo vision system), in order to explore the possibility of building the model relating contrast and visibility without need for the reference visibility data required for calibration as proposed in Babari's PhD thesis (2012).

There are several things that we want to investigate in future work. First, we want to look into the definition of the local contrast that we extract in the images. Up to this point, we have implemented a contrast which is actually a gradient (as can be seen in Equation 5). Other possibilities are listed in Hautiere's early work (2005) which might be more relevant for computing contrast maps. We will also consider visibility level as an alternative to contrast [START_REF] Jean | Comparison between optical and computer vision estimates of visibility in daytime fog[END_REF]. Secondly, we want to look into the two-steps calibration method of calibrating the response curve of the camera proposed in Babari's PhD thesis (2012): 1. implement a calibration-free meteorological visibility estimation method which gives reasonably accurate results for very low visibility conditions, such as the inflection point method [START_REF] Hautiere | Détection des conditions de visibilité et estimation de la distance de visibilité par vision embarquée[END_REF] or the entropy minimization method [START_REF] Caraffa | Daytime Fog Detection and Density Estimation with Entropy Minimisation[END_REF], to learn the slope of the lower part of the response curve, i.e. a/b from Equation (6); 2. Use images acquired in the best visibility conditions to learn the asymptotic value of the response curve, i.e. a+c from Equation (6). 
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 1 Figure 1. Mean of contrast in a digital image versus atmospheric visibility, (a) without and (b) with Lambertian map.

Figure 2 .

 2 Figure 2. Model fitted to the all data without weight (allV), to all data with weight (allV weighted), to low visibility data without weight (lowV) and to low visibility data with weight (lowV weighted).

  (a) Lambertian map from sunny day (Feb 25). (b) Lambertian map from cloudy day (Feb 26).

Figure 3 .

 3 Figure 3. Influence of the Lambertian map on the response function of the camera-based visibility estimation system.

Figure 4 .

 4 Figure 4. Lambertian maps built with data from days with different sky conditions ((a) sunny and (b) overcast), compared with the original map (c).

Figure 5 .

 5 Figure 5. Data of April 1-3, computed with the Lambertian map and the model computed from the Matilda dataset.

Figure 6 .

 6 Figure 6. Visibility estimated from the mean of contrast in the lower part of the image (left), and visibility estimated by entropy minimization as proposed by Caraffa and Tarel (2014) (right), using the Matilda dataset.

Figure 7 .

 7 Figure 7. Left: average contrast in the lower part of the image as a function of MOR for the April 1-3 episode, with models calibrated from different datasets. Right: visibility estimated with two models versus measured visibility.

Figure 8 .

 8 Figure 8. Variations of MOR between 08:00 and 10:00 in the morning of 3 low visibility episodes (the dots correspond to the values that are associated with images).

Figure 9 .

 9 Figure 9. Left: data and model for the April 1-3 episode using the median value of the MOR over 10' periods, along with the model from the Matilda dataset. Right: visibility estimated by inversing the model, versus measured visibility.

Table 1 . Model parameters and resulting average relative errors between estimated and reference atmospheric visibility, for different fitting methods and for different classes of visibility.

 1 

	a	b < 400 m	< 1 km	< 2 km	< 5 km < 10 km
	allV 0,0234525 497,126	12%	16%	20%	23% > 100%
	allV weighted 0,0240172 490,171	9%	12%	17%	25% > 100%
	lowV 0,0256141 516,038	9%	11%	16%	30%	37%
	lowV weighted 0,0283758 612,260	8%	10%	18%	35%	47%

Table 2 . 90 th centile of the relative errors between estimated and reference atmospheric visibility, for different fitting methods and for different classes of visibility.

 2 

		< 400 m	< 1 km	< 2 km	< 5 km < 10 km
	allV	25%	35%	58%	58% > 100%
	allV weighted	20%	27%	42%	59% > 100%
	lowV	16%	20%	47%	63%	68%
	lowV weighted	15%	21%	52%	67%	77%

Table 3 . 90 th centile of the relative errors between estimated and reference atmospheric visibility, depending on the data which served to build the Lambertian map.

 3 

	a	b < 400 m	< 1 km	< 2 km	< 5 km < 10 km
	Feb 25 (sunny) 0,0156364 385,327	24%	39%	54% > 100% > 100%
	Feb 26 (overcast) 0,0251376 566,246	32%	46%	62%	76%	79%

Table 4 . Mean and 90 th centile of the relative errors between estimated and reference atmospheric visibility, for different periods with low visibility episodes (italicized when computed with less than 10 data).

 4 

		< 400 m	< 1 km	< 2 km	< 5 km	< 10 km
	Mar 03-05	11%	29%	11%	25%	15%	33%	16%	33%	53%	94%
	Mar 21-23	37%	37%	25%	37%	22%	37%	29%	78%	54%	80%
	Apr 01-03	23%	65%	26%	66%	29%	67%	51%	91%	88% > 100%
	Mar 02 -Apr 10	16%	33%	17%	33%	20%	55%	42%	86%	74%	91%

  images acquired in a given period (based on their timestamp) in given weather conditions (based on weather data, specially visibility and luminance). Syntax: .\dosel sel_in.txt > sel_out.txt Input: arguments are provided by means of an ASCII file (sel_in.txt); the parameters are documented in the comments of that file. Output: the matching images are listed with the weather data in an ASCII file (sel_out.txt) which can then serve to compute the Lambertian surface map, to calibrate the camera-based visibility meter or to test the results.

	/*	
	CAM2 toolbox: DOSEL =================== Appendix 1: program codes dosel.C (page 2) Object: selects images acquired in a given period (based on their timestamp) in given weather conditions (based on weather data, specially visibility and luminance). Syntax: .\dosel sel_in.txt > sel_out.txt Object: selects */
	Input: arguments are provided by means of an ASCII file (sel_in.txt); the parameters are #include <stdio.h> #include <string.h> documented in the comments of that file. #include <time.h>
	Output: the matching images are listed with the weather data in an ASCII file (sel_out.txt) which can then serve to compute the Lambertian surface map, to calibrate the camera-based #include <sys/stat.h> #include <math.h>
	visibility meter or to test the results. #define BUFSIZE 1024 #define PI 3.14159265358979323846
	#define RAD (PI/180)
	domap.c (page 9) #define TWOPI (2*PI) #define EMR 6371.01 // earth mean radius in km
	#define AU 149597890 // astronomical unit in km
	Object: computes the time correlation between pixel intensity and a given weather parameter typedef struct struct_data (normally luminance, or sun elevation) as an indicator of the Lambertian character of { surfaces, from data selected using DOSEL. int valid; // 1 for valid data, 0 for invalid data int hour; Syntax: .\domap map_in.txt int min;
	Input: arguments are provided by means of an ASCII file (map_in.txt). The parameters are int sec; float vi; documented in the comments of that file. float bl;
	Output: the map of Lambertian surfaces is stored into a PFM file, the name of which is } type_data; #define sizeof_data sizeof(type_data) specified in the input file. typedef unsigned char uchar;
	const char * codestr[] = { "Date\0", "Time\0", "VI\0", "BL\0" };
	docal.c (page 14) typedef enum { Object: computes the parameters of the response function of the camera-based visibility meter, codeDate = 0, from data selected using DOSEL. codeTime = 1, codeVI = 2,
	codeBL = 3 Syntax: .\docal cal_in.txt > cal_out.txt } type_code;
	Input: arguments are provided by means of an ASCII file (cal_in.txt). The parameters are #define Oops(m) {fprintf(stderr, "\n\nOops! %s\n\n", m); exit(-1);} documented in the comments of that file. #define Warn(m) {fprintf(stderr, "\n\nHum... %s\n\n", m);}
	Output: the weighted mean of gradient in each image is given (to plot the response) are stored // from http://www.psa.es/sdg/sunpos.htm into an ASCII file, at the end of which and the values of the model parameters are given. float SunPos(float longitude, float latitude, int year, int mon, int mday, int hour, int min, int sec)
	{	
	dotst.c (page 20) // Main variables double dElapsedJulianDays;
	double dDecimalHours; Object: computes the error between estimated and reference visibility with data selected using DOSEL. double dEclipticLongitude; double dEclipticObliquity;
	double dRightAscension; Syntax: .\dotst tst_in.txt > tst_out.txt double dDeclination; double dZenithAngle; Input: arguments are provided by means of an ASCII file (tst_in.txt). The parameters are documented in the comments of that file. double dAzimuth;
	// Auxiliary variables Output: the mean and the 90th-centile of the relative error are tabulated for several classes double dY;
	of visibility. double dX;
	// Calculate difference in days between the current Julian Day
	// and JD 2451545.0, which is noon 1 January 2000 Universal Time {
		double dJulianDate;
		long int liAux1; long int liAux2;
		// Calculate time of the day in UT decimal hours
		dDecimalHours = hour + (min + sec / 60.0 ) / 60.0; // Calculate current Julian Day
		liAux1 = (mon-14)/12;
		liAux2 = (1461*(year + 4800 + liAux1))/4 + (367*(mon-2-12*liAux1))/12
		-(3*((year + 4900 + liAux1)/100))/4
		+ mday-32075; dJulianDate = (double)(liAux2)-0.5+dDecimalHours/24.0;
		// Calculate difference between current Julian Day and JD 2451545.0
	}	dElapsedJulianDays = dJulianDate-2451545.0;
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// Calculate ecliptic coordinates (ecliptic longitude and obliquity of the // ecliptic in radians but without limiting the angle to be less than 2*Pi // (i.e., the result may be greater than 2*Pi) { double dMeanLongitude; double dMeanAnomaly; double dOmega; dOmega = 2.1429-0.0010394594*dElapsedJulianDays; dMeanLongitude = 4.8950630+ 0.017202791698*dElapsedJulianDays; // Radians dMeanAnomaly = 6.2400600+ 0.0172019699*dElapsedJulianDays; dEclipticLongitude = dMeanLongitude + 0.03341607*sin( dMeanAnomaly ) + 0.00034894*sin( 2*dMeanAnomaly )-0.0001134 -0.0000203*sin(dOmega); dEclipticObliquity = 0.4090928 -6.2140e-9*dElapsedJulianDays +0.0000396*cos(dOmega); } // Calculate celestial coordinates ( right ascension and declination ) in radians // but without limiting the angle to be less than 2*Pi (i.e., the result may be // greater than 

/ 24

printf("# Location: %c %f , %c %f \n", (latitude<0)?'S':'N', latitude, (longitude<0)?'W':'E', longitude); printf("# Time period: %4d/%02d/%02d (%02d)", yy1, mm1, dd1, ww1 = getWeek(yy1, mm1, dd1)); printf(" to %4d/%02d/%02d (%02d) \n", yy2, mm2, dd2, ww2 = getWeek(yy2, mm2, dd2)); printf("# %02d:%02d <= T <= %02d:%02d \n", h1, m1, h2, m2); printf("# %g <= L (cd/m2) < %g \n", Lmin, Lmax); printf("# %g <= V (m) < %g \n", Vmin, Vmax); printf("Image\tDate\tTime\tSE\tBL\tVI\n"); fprintf(stderr, "\n\n No problemo. \n\n"); return 0; } 9 / 24 /* CAM2 toolbox: DOMAP =================== Object: computes the time correlation between pixel intensity and a given weather parameter (normally luminance, or sun elevation) as an indicator of the Lambertian character of surfaces, from data selected using DOSEL. Syntax: .\domap map_in.txt Input: arguments are provided by means of an ASCII file (map_in.txt). The parameters are documented in the comments of that file. Output: the map of Lambertian surfaces is stored into a PGM file, the name of which is specified in the input file. 

f = fopen(pfm, "wb"); fprintf(f, "Pf\n# Created using dolamb\n"); fprintf(f, "# Indicator: %s\n", str); if (total<0) { s = 0.0; for (h=0; h<height; h++) for (w=0; w<width; w++) s += data[h][w]; } else s = total; fprintf(f, "# Total: %g\n", s); fprintf(f, "%d %d\n-1\n", width, height); if (doflip) for (h=height-1; h>=0; h--) fwrite(data[h], width*sizeof(float), 1, f); else for (h=0; h<height; h++) fwrite(data[h], width*sizeof(float), 1, f); fclose(f); } int main(int argc, char **argv) { /*================*/ char * parcodestr[] = { "Image\0", "Date\0", "Time\0", "SE\0", "BL\0", "VI\0" }; char * indcodestr[] = { "none\0", "corr\0", "pcor\0", "ncor\0", "asdv\0 // series near -em1 in sqrt(q) { double q = z+em1, r = sqrt(q), q2 = q*q, q3 = q2*q; return -1.0 +2.331643981597124203363536062168*r -1.812187885639363490240191647568*q +1.936631114492359755363277457668*r*q -2. 

; p++; } /* simple fit lmcurve( 2, par, p, X, Y, fct, &control, &status ); printf("\n\n C = 2/255 + %lg / ( 1 + %lg / V ) ", par[0], par[1]); lmcurve( 2, par, p, Y, X, invfct, &control, &status ); printf("\n\n V = %lg / ( %lg / ( C -2/255 ) -1 ) ", par[1], par[0]); */ // direct fit data_struct data = { X, Y, fct }; if (doWeight) lmmin( 2, par, p, (const void*) &data, evalw, &control, &status ); else lmmin( 2, par, p, (const void*) &data, eval, &control, &status ); printf("\n%sweighted fit ", doWeight?"yes":"no"); if (!Vmax) printf("for all data."); else printf("for visibility < %g m.", Vmax); printf("Fit status: %s\n", lm_infmsg[status.outcome]); printf("Nb of iterations: %d\n", status.nfev); printf("Fitted model: C = 2/255 + A / ( 1 + B / V )\n"); printf("Model parameters:\tA=%g\tB=%g\n", par[0], par[1]); /* // inverse fit data.x = Y; data.y = X; data.f = invfct; lmmin( 2, par, p, (const void*) &data, eval, &control, &status ); printf("\n\nInverse fit\n %s (%d) \n V = %lg / ( %lg / ( C -2/255 ) -1 ) ", lm_infmsg[status.outcome], status.nfev, par[1], par[0]); // inverse weighted fit lmmin( 2, par, p, (const void*) &data, evalw, &control, &status ); printf("\n\nInverse weighted fit\n %s (%d) \n V = %lg / ( %lg / ( C -2/255 ) -1 ) ", lm_infmsg[status.outcome], status.nfev, par[1], par[0]); */ // clean memory for (h=0; h<height; h++) free(map[h]); free(map); free(mor); free(sob); free(X); free(Y); fprintf(stderr, "\n\n No problemo. \n\n"); return 0; } 20 / 24 /* CAM2 toolbox: DOTST =================== Object: computes the error between estimated and reference visibility with data selected using DOSEL. Syntax: .\dotst tst_in.txt > tst_out.txt Input: arguments are provided by means of an ASCII file (tst_in.txt). The parameters are documented in the comments of that file. Output: the mean and the 90th-centile of the relative error are tabulated for several classes of visibility. 

if (sscanf(buf, "# Total: %f", Smap)<1) Oops("Lambertian map header error."); gotTotal = 1; } } // if (!gotTotal) Oops("Lambertian map does not contain its total value."); sscanf(buf, "%d %d", width, height); fgets (buf, 256, f)