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Abstract

Miniaturized vibrating MEMS devices, active (receivers or emitters) or passive devices, and their use for either new

applications (hearing, meta-materials, consumer devices, ...) or metrological purposes under non-standard conditions,

are involved today in several acoustic domains. More in-depth characterisation than the classical ones available until

now are needed. In this context, the paper presents analytical and numerical approaches for describing the behaviour

of three kinds of planar micro-beams of rectangular shape (suspended rigid or clamped elastic planar beam) loaded by

a backing cavity or a fluid-gap, surrounded by very thin slits, and excited by an incident acoustic field. The analytical

approach accounts for the coupling between the vibrating structure and the acoustic field in the backing cavity,

the thermal and viscous diffusion processes in the boundary layers in the slits and the cavity, the modal behaviour

for the vibrating structure, and the non-uniformity of the acoustic field in the backing cavity which is modelled in

using an integral formulation with a suitable Green’s function. Benchmark solutions are proposed in terms of beam

motion (from which the sensitivity, input impedance, and pressure transfer function can be calculated). A numerical

implementation (FEM) is handled against which the analytical results are tested.
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1. Introduction

In the past decades, much efforts has been put into miniaturizing acoustic elements (tubes, slits, cavities, membranes,

...) used in acoustic devices (absorbers, filters, transducers, ...) in order to reduce the sizes of these devices,

to improve their properties or create new ones, or to lower their manufacturing cost (MEMS devices are more

particularly concerned). More specifically, there has been increasing interest in designing miniaturized vibrating

devices (using MEMS processes) [1], active (receivers or emitters) or passive devices, and in using them for both new

applications which involve several fields of acoustics (hearing, meta-materials, consumer devices,...) and metrological

purposes under non-standard conditions, namely high frequency ranges (typically up to 500 kHz), gas mixtures, and

various static pressures and temperatures [2]. The miniaturisation and these new applications and purposes require

deeper characterisations (analytical, numerical, and experimental) as the classical ones available until now. In this

context, much of the analytic work concerns devices with two-dimensional (circular or square) micro-structures

(membranes or thin plates) for which researches into the effective design have been carried out [3, 4].

The present article is concerned with the analytical and numerical approaches of the behaviour of a one-

dimensional device, a planar micro-beam of rectangular shape whose length is much greater than the width and

whose thickness is much lower than the width, loaded by a backing cavity or a fluid-gap (squeeze film), surrounded

by very thin slits, and excited by an incident acoustic field (assumed to be uniform on the plate). The micro-beam

is either a suspended rigid one-dimensional planar beam or a thin elastic one-dimensional plate clamped to one

end, the other (free) end being eventually loaded by a punctual mass. The suspended rigid planar beam, which

oscillates perpendicularly to its plane, is either fixed at both ends on non-rigid walls (spring-like boundaries) or

attached to one end of a flat spring of negligible mass (the other end of the spring being free) (Fig. 1). The slits

surrounding the beam permit both to ensure the static pressure equilibrium on both faces of the beam (role played

by the vent-holes in the classical devices) and to fit to some extent the damping of the beam, along with avoiding

the design of a complex suspension (note that additional damping due to non-linear phenomena which take place

around the sharp edges is neglected owing to the small amplitude of the oscillations). It is worth noting that a

direct coupling between the incident acoustic field and the acoustic field in the backing cavity could take place

significantly, through the slits.

The literature abounds with many papers in which topics involving flexible microstructures (oscillating masses or

beams, vibrating plates, membranes, or beams) and squeeze-films are of principal focus. The papers deal extensively

with the viscous damping in squeeze-films which are the most significant mechanism of energy dissipation, because

it is essential to understand this damping mechanism to optimise the design of these MEMS devices. The most

important parameter is the Knudsen number Kn, defined as the ratio of the molecular mean free path λmfp (at

the static pressure considered) to the characteristic length of the acoustic flow, namely here the thickness hg of

squeeze-film (Kn = λmfp/hg), where the mean free path λmfp at the static pressure considered Pa is linked to the

mean free path λ
(0)
mfp ' 65 nm at the atmospheric pressure P0 by λmfp = (P0/Pa)λ

(0)
mfp. Based on the value of this

number, the flow inside the squeeze-film can be considered or not as continuous fluid flow. Many MEMS devices

operate at very low pressure with a very small squeeze-film thickness (Kn > 10) so that the continuous fluid flow

regime assumption cannot be assumed (free molecular flow regime treated in using Boltzmann equation) [5, 6, 7].

Note that the frequency involved in these papers is not much lower than the average molecular collision frequency,

ranging typically from 1 MHz to 100 GHz, while in the present paper the frequency is lower than 1 MHz. The MEMS

devices considered in the present paper operate at atmospheric pressure with a fluid gap thickness larger than ten

micrometers (Kn < 0.005); therefore the fluid can be treated as continuum (and it is assumed to be Newtonian),

because the mean free path is much lower than the thickness of fluid-gap, with non-slip conditions at the walls (plate

or beam). Note that in the intermediate regimes, respectively slip flow regime (0.005 < Kn < 0.1) and transitional

flow regime (0.1 < Kn < 10), the validity of the modelling assuming continuous flow can be extended in using the
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so-called ”effective viscosity coefficient” which depends on the Knudsen number [8].

In the review provided in a paper published in 2003 [9, and references 6 to 23 therein], the authors point out

that in much of the literature involving the situations where continuous fluid flow can be assumed, the majority

of the models treat the microplate as a rigid structure, and that only few model account for flexibility of the

microstructure. Moreover, in this last situation, the coupling between the fluid-film and the elastic plate is not

fully modelled and in the two-dimensional situations the lateral pressure variation is neglected when the flexible

microstructure structure is considered as a one-dimensional one. These analytical approaches, while appropriate

to addressing specific situations, have shortcomings which prevent in several situations from obtaining accurate

results, tend to preclude extension to more sophisticated problems, and inhibit more advance insight. Therefore,

in the same paper, the authors present an analytical approach based on modal expansions for both the fluid-film

and a flexible two-dimensional microstructure (elastic plate), which account for the strong coupling between both,

assuming several boundary conditions for the plate (free or clamped edges) and for the fluid-film (pressure or

displacement vanishing). Then the authors use a perturbation method to treat the problem of matching both

expansions near the boundaries and they solve numerically the final system of equations. In a paper published

later on (in 2009) [10], which focuses attention on the fluid-film, an exact solution for the acoustic movement

in the fluid film, which account for both viscosity effect in the boundary layers for the complex velocity field and

complex behaviour varying from adiabatic to isothermal behaviour for the temperature field, is provided, the results

being given in assuming open or closed border conditions, rigid and ideally thermal conducting plates (the moving

and non-moving ones). Effects of viscosity and temperature variations on the movement of the fluid-film are also

accounted for in a recent paper [11] (2016) which consider an oscillating rigid beam (as one of the beams considered

below in the present paper) whose the movement is detected with a nano-gauge (microphone).

Regarding the analytical solutions for the squeeze-films coupled with the micro-beams or micro-plates, when

continuous fluid flow can be assumed (Kn < 0.005), in the most advanced literature [9, 10, 11, for example] the

following approaches are commonly used: i- the basic equations include the Navier-Stokes equation reduced to the

linear Reynolds equation for a laminar flow (assuming pressure field independent of the coordinate normal to the fluid

layer), the conservation of mass equation, the Fourier equation for conduction of heat (often reduced to the adiabatic

or isothermal hypothesis), ii- the boundary conditions include non-slip condition and ideally heat conducting plate

or beam, and always Dirichlet (pressure null) or Neumann (velocity null) conditions at the surrounding of the fluid

gap. Beyond both the equivalent circuit model [8] providing a procedure for the dynamical analysis of the system

in the lower frequency range (which account for the coupling between the vibrating structure and the acoustic field

in the squeeze-film) and the exact solution [10] for the velocity and the temperature fields in the fluid-film in the

highest frequency range considered (up to 10 kHz) which include the thermal effects (the vibrating structure being

considered as a given source of energy), the most common technique employed to solve the coupled (structure/fluid-

gap) problems relies on the sets of the appropriate eigenmodes of both the displacement field of the vibrating wall

and the pressure field in the fluid gap behind it [9, 12, 13], the solutions accounting usually for the strong coupling

between both [9, 13].

In reference [12] the coupling is neglected. In references [9, 13], the authors point out that, when the coupling

is accounted for, matching these expansions near the edge of both the plate and the fluid-gap is a delicate task,

because the mode shapes does not fit together near the edge where the acoustic field can change sharply. The

techniques used to overcome these difficulties are not very simple to handle: in reference [9] the authors make use

of a perturbation analysis and solve equations in using a finite-element method (assuming Dirichlet or Neumann

boundary conditions), while in reference [13] the modal sum for the acoustic field is expressed as an expansion on

the eigenmodes of the wall through a mixed boundary condition at the edge, leading to an equivalent network.

In order to overcome these difficulties, the analytical technique used herein, builds upon a previous work ([4]

two-dimensional device), relies on a simple integral formulation (convolution product, Eq. (23) below) which involves
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Attached (spring)

d0

(rigid)

(a)

Clamped

(elastic)

(b)

Elastically supported

(rigid)

(c)

Figure 1. Sketch of the mechanical system consisting of a rigid planar beam attached to one end of a flat spring

(a), a thin elastic one-dimensional planar beam clamped to one end (b), a suspended rigid planar beam (c).

a suitable Green’s function for the acoustic field inside the fluid-gap, the displacement field of the structure being

expressed as an expansion over orthonormal appropriate eigenfunctions (see Appendix A.3). This Green’s function

(Eq. (25) below) presents two major advantages: it is expressed in using simple functions (here trigonometric

complex functions) avoiding modal expansion and it allows accounting for any complex boundary conditions at the

periphery that cannot be achieved by a set of eigenfunctions. This is relevant whenever acoustic small elements

are connected on the boundaries; this is important for current applications (mentioned above at the beginning of

this introduction). Moreover, the analytical approach used herein to solve the displacement field of the structure

and the acoustic field in the fluid gap, coupled together, account for not only the effects of the viscous boundary

layers but also those of the thermal boundary layers. This is relevant here for the thickness of the fluid gap (around

100 micrometers) and the frequency range (up to 1 MHz) considered, because the compressibility of the gas is a

complex function, tending to the real isothermal one in the lower frequency range and to the real adiabatic one

in the higher frequency range (see Appendix A.4). Finally, the three prototype problems mentioned above (which

could be typically encountered in the devices designed), namely thin elastic planar beam clamped at one end or

rigid planar beam attached to one or two springs, with slits around them, loaded by viscous and thermal conducting

thin fluid-films, are solved analytically. They provide the motions of the beams and the acoustic field in the backing

cavity, leading to sensitivity, input impedance, or acoustic pressure transfer function, depending on the device

considered. A numerical implementation (FEM) is handled against which the analytical results are tested.

To sum up, on the one hand the paper involves three kinds of beams and, on the other hand it involves, among

specific modelling for each kind of beam, a formulation which gives a prominent role to both the viscous and thermal

boundary layer effects (in the slits and in the backing cavity), and to the integral formulation with a suitable Green’s

function (which satisfy any kind of boundary conditions) used to express the acoustic field in the closed backing

cavity. Thus, the paper is divided mainly in three parts: after the presentation of the three kinds of devices (section

2.1) and the analytical approach to describe both the effects of the slits and the pressure field in the backing

cavity (sections 2.2 and 2.3 respectively), equations governing the motion of each kind of beam and corresponding

analytical solutions are presented in sections 3.1 to 3.3, while details on the analytical results are relegated to A.1

and A.2. Finally, after a short presentation of the numerical (FEM) method used and before concluding, the last

section 4 presents respectively several analytical and numerical results, and comparison between them. Appendix

A.3 and A.4 provide details respectively on the orthogonality (and the completeness) of the eigenfunctions of the

elastic beam and on the thermal behaviour of the fluid-gap.
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Figure 2. Sketch of the rectangular planar beam (a) and the slits between the beam and the wall (b).

2. The device, the fluid motions inside it

2.1 The device: micro-beam, slits, backing cavity

The so-called one-dimensional device considered is a planar micro-beam of rectangular shape (one-dimensional plate)

of density ρb and either rigid or elastic (Young modulus E), whose the length L is much greater than the width b

and whose the thickness hb is much lower than the width (hb � b) (Fig. 2(a)). It is loaded by a backing cavity or

fluid-gap (pressure variation pgap), surrounded by very thin slits of thicknesses hs and hL (Fig. 2(b)), and excited

by an incident acoustic field pinc (assumed to be uniform over the plate). The beam is either a suspended rigid

plate (Figs. 1(a) and 1(c)) or a thin elastic one-dimensional plate clamped to one end (Fig. 1(b)). The suspended

rigid plate, which oscillate normally to its plane in the y-direction, is either fixed at both ends on non-rigid walls

(spring-like boundaries) (Fig. 1(c)) or attached to one end of a flat spring of negligible mass (the other end of the

spring being clamped) (Fig. 1(a)), the other end of the beam being eventually loaded by a punctual mass Madd.

The flat spring, which is commonly designed, could be modelled as follows: the end of the beam is attached to its

rigid surrounding frame with a pivot link, and at a small distance from this end a restoring force and a damping

force are applied respectively by a spring and a dashpot (that provide viscous damping). The cartesian coordinate

system used (x,y,z) has its origin at the attach end x = 0 of the beam, the Ox-axis is directed towards the other end

of the beam, the Oy-axis is perpendicular to the plate beam and outwardly directed, and the Oz-axis is oriented

as indicated in Fig. 2. The local w−axes have their origins on the edges of the beam and are directed towards the

walls surrounding the beam.

The behaviour of both the particle velocity and the pressure variations in the slits and in the backing cavity is

investigated analytically in the next sections (2.2) and (2.3) respectively. This makes possible the detailed analytic

modelling of the behaviour of the beam, which includes the effects of the slits and of the backing cavity, presented

beyond in sections (3.1) to (3.3).

2.2 Slits effects: viscous forces acting on the beam, acoustic pressure coupling through the slits

Consider the thin slits trapped between the planar beam (of thickness hb) and the walls with an outward (i.e.

directed towards the wall) local w-axis (its origin being set on the edges of the beam) (Fig. 3) and let hs and hL

designate the thickness of the lateral slits (along the side wall of the beam) and the thickness of the slit at the end

of the beam, respectively (Fig. 2(b)).

Assume that a viscous fluid (of density ρ0, shear viscosity µ, and speed of sound c0) oscillates back and forth
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hb

w = 0

hs

vy(x,w)

y

w

Figure 3. Sketch of the peripheral slit between the beam and the wall.

inside the slits due to the pressure gradient between the pressure field inside the backing cavity pgap(x) and the

external pressure field pinc (incident uniform pressure field), and that this incident field pinc is harmonic (given that

the time dependence is eiωt). The viscous force along the y-axis dFs,y(x) acting on an elementary surface (area

hbdx ) of any lateral side (set at w = 0) of the beam and the viscous force FL,y acting on the surface (area hbb) of

the end x = L of the beam takes respectively the following forms

dFs,y(x) = µhbdx

(
∂vy(x,w)

∂w

)
w=0

, (1)

FL,y = µhbb

(
∂vy(L,w)

∂w

)
w=0

, (2)

where equations for the particle velocity profile vy(x,w) include on the one hand the diffusion equation [14].

∂2vy(x,w)

∂w2
+ k2vvy(x,w) =

1

µ

∂p

∂y
(3)

and on the other hand, assuming non-slip conditions on the walls (w = hs or w = hL) and on the lateral surface

w = 0 of the beam respectively, the boundary conditionsvy(x,w) = 0, w = hs

vy(x,w) = iωη(x), w = 0,
(4)

with

kv =
1− i√

2

√
ω
ρ0
µ
, (5)

η(x) denoting the displacement field of the planar beam.

This system of equations (3, 4) is satisfied by

vy(x,w) =

[
iωη(x) +

1

iωρ0

∂p

∂y

]
cos(kvw)−

[
iωη(x) cot(kvhs)−

1

iωρ0

∂p

∂y
tan

(
kvhs

2

)]
sin(kvw)− 1

iωρ0

∂p

∂y
. (6)

Then, invoking these expressions for the particle velocity distribution across the thickness of the slits, equations (1)

and (2) lead readily to

dFs,y(x) =

[
−1

2
Kv,shs

(
pinc − pgap(x)

)
+ iωη(x)Πs

]
dx, (7)

FL,y =

[
−1

2
Kv,LhL

(
pinc − pgap(L)

)
b+ iωη(L)ΠL

]
b, (8)
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Figure 4. Sketch of the backing cavity (a), of its cross section (b), and of an elementary volume inside it (length

dx) (c).

after relying on the following approximation

∂p

∂y
∼= pinc − pgap(x)

hb
, (9)

with

Kv,a =
tan

(
kvha

2

)
kvha

2

, (10)

Πa = −kvµhb cot(kvha) (11)

the subscript a designating either s or L.

It is worth noting that these forces (7, 8) involve the sum of two terms: the first one, proportional to the pressure

difference between the pressure fields across the beam (acoustic pressure coupling through the slits), originates the

velocity field inside the slit, whereas the second one involves the velocity of the beam which affects the viscous force

on the sides and the end of it.

2.3 Acoustic pressure in the fluid gap (backing cavity)

Consider the thin backing cavity (of thickness hg, width b, and length L) and an elementary volume (of thickness

hg, width b, and length dx) inside it, and let qs , qb, and qL designate the input volume velocity in this elementary

volume of an element (length dx) of the lateral slits, of an element (length dx) of the beam, and of the slit at the

end of the beam (when x = L), respectively (Fig. 4).

Assume that the fluid is not only viscous but also heat conducting (of thermal conductivity λh and heat coefficient

at constant pressure per unit of mass CP ), and that both the velocity field and the pressure field are uniform over
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the width b of the fluid-gap inside the backing cavity (the pressure field being also uniform through the thickness

hg). The total input volume velocity q(x) = qs(x) + qb(x) + qL(x) takes the following form:

q(x) = −2
hs vs,y(x)

hg b
− iωη(x)

hg
− hLvL,y

hg
δ(x− L), (12)

where vs,y and vL,y denote the mean value of the velocity field (6) across the lateral slits and the slit at the end L

of the beam respectively

vs,y(x) = − 1

iωρ0

pinc − pgap(x)

hb
Fv,s +

1

2
iωη(x)Kv,s, (13)

vL,y = − 1

iωρ0

pinc − pgap(L)

hb
Fv,L +

1

2
iωη(L)Kv,L, (14)

with

Fv,a = 1−Kv,a, (15)

the expression of Kv,a being given by equation (10).

Then the acoustic pressure field pgap(x) is governed by the following equation of propagation [13](
∂2

∂2x
+ χ2

0

)
pgap(x) = − iωρ0

Fv,g
q(x), (16)

and is subjected to mixed boundary conditions at both ends x = 0, L(
∂

∂x
− ζ(0)

)
pgap(0) = 0,

(
∂

∂x
+ ζ(L)

)
pgap(L) = 0. (17)

Invoking equations (12 - 15), equation (16) can be written as:(
∂2

∂2x
+ χ2

)
pgap(x) = −U(x), (18)

with

χ2 = −2
Fv,s

Fv,g

hs
hg hb b

+
ω2

c20

γ − (γ − 1)Fh,g

Fv,g
, (19)

where

Fh,g = 1−
tan

(
khhg

2

)
khhg

2

, (20)

with

kh =
1− i√

2

√
ω
ρ0Cp

λh
. (21)

and

U(x) = − iωρ0
Fv,g

hL
hg
vL,y δ(x− L) + 2

Fv,s

Fv,g

hs
hg hb b

pinc +
ρ0ω

2

Fv,ghg

[
1 +

hs
b
Kv,s

]
η(x), (22)

which depends on x only through the coupled displacement field of the beam (see comments on Eq. (19) in Appendix

A.4).

The viscous factor Fv,g arises from the mean value, across the thickness of the fluid-gap, of the velocity profiles

along the x-axis, expressed as mentioned in the previous section (Eq. 6) when both boundary conditions are

homogeneous (i. e. when the backing wall and the beam are at rest in the x-direction). Similarly, the thermal

factor Fh,g results from the same formalism as the one that leads to the factor Fv,g (diffusion process in the thermal

boundary layers with isothermal conditions on the walls).
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With the inhomogeneous source function U(x) in the right hand side of Eq. (18), and with both the pressure

variation pgap and a Green’s function G(x, x0) satisfying the same admittance boundary conditions (17) at the ends

x = 0 and x = L of the backing cavity, the solution for pgap is given by

pgap(x) =

L∫
0

G(x, x0)U(x0)dx0. (23)

The Green function G(x, x0) which is the solution to the differential equation [the same operator as in the left-hand

side of equation (18)] (
∂2

∂2x
+ χ2

)
G(x, x0) = −δ(x), (24)

with the boundary conditions (17) at x = 0 and x = L, is [15]

G =
−1

χ sin (χL+ α0 + αL)
cos
(
χx< + α0

)
cos
(
χ(x> − L)− αL

)
, (25)

where
(
x<, x>

)
designate the smaller/larger of x, x0 respectively, and where α0 and αL are given by

ζ(0) = −χFv,g tan(α0), ζ(L) = −χFv,g tan(αL). (26)

Given the Green’s function displayed above, what follows is (23)

pgap(x) =

x∫
0

G(x ≡ x>, x0 ≡ x<)U(x0)dx0 +

L∫
x

G(x ≡ x<, x0 ≡ x>)U(x0)dx0. (27)

The analysis can be readily adapted, furthermore, to include (for example) a small hole described by its input

volume velocity as a function of the pressure variation at its entrance, which could be of practical interest. It

may be noted that the integral involving the term (iωρ0/Fv,g)(hL/hg)vL,y δ(x− L) (Eq. 22) describes a boundary

condition at x = L expressed by (
∂

∂x
+ ζ(L)

)
pgap(L) =

iωρ0
Fv,g

vx(L), (28)

where (velocity flow conservation)

b hg vx(L) = −b hLvL,y. (29)

This result is verified by substituting successively the boundary condition (28) for the pressure variation and the

boundary condition (17) for the Green’s function into the integral (23), invoking equation (29):

−
L∫

0

G(x, x0)

[
iωρ0
Fv,g

hL
hg
vL,y δ(x− L)

]
dx0 = G(x, L)

[
iωρ0
Fv,g

vx(L)

]

= G(x, L)
∂pg(x0 = L)

∂x0
+ pg(L)ζ(L)G(x, L) = G(x, L)

∂pg(x0 = L)

∂x0
− p(L)

∂G(x, x0 = L)

∂x0

(30)

where the last expression is the 1-D integral representation of the boundary condition at x = L, as expected.

Note that, for the study of the dynamical behaviour of the system considered in this paper, we are left here

with two coupled equations, namely equation (27) which relates the acoustic pressure inside the fluid-gap to both

itself and the displacement field of the planar beam [that are included in functions (14) and (22)] and, conversely,

equation which relates the displacement field of the planar beam to itself and to the acoustic pressure inside the

fluid-gap. This last equation, which governs the displacement field of the planar beam, is presented in the next

section, for each beam considered.
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3. The motion of the beams

3.1 Rigid one-dimensional planar beam attached to one end of a flat spring of negligible mass

The differential equation which governs the amplitude of the displacement field η(x, t) = xθ(t) (positive when

directed along the y-axis) of the rigid planar beam of mass moment of inertia J , attach to one end of a flat spring

of negligible mass, of force moment Cb and damping coefficient Db (the upper figure 1(a)), can be written as:

[
−ω2J + iωDb + Cb

]
θ = b

L∫
0

(pgap(x)− pinc)x dx− 2

L∫
0

(
dFs,y

dx

)
x dx− LFL,y, (31)

where the three external moments in the right hand side are descriptive respectively of the acoustic pressure fields

on both sides of the beam, of the lateral slits (7), and of the slit at the end L of the beam (8), with

L∫
0

pinc x dx =
L2

2
pinc, (32)

because the harmonic incident pressure field pinc is assumed to be uniform over the planar beam. The sketch of the

lower figure 1(a) shows an equivalent suspension where the end (x = 0) is attached to its surrounding frame with

pivot link, restoring force and damping force being applied on the beam near its end.

It follows from expression (27) of pgap and (22) of U , after a lengthy but straightforward calculation (see the

procedure in Appendix A.1), that the angle θ is expressed by:

θ = −pinc

(
b−Kv,shs

)(
L2

2 +A1B1 +A2

)
− 1

2Kv,L hL b L
(

1 +B1

)
−ω2J + iω

(
Db + 2Πs

L3

3 +ΠLbL2
)

+ Cb +
(
b−Kv,shs

)(
A1B2 +A3

)
− 1

2Kv,LhLb LB2

, (33)

where the frequency dependent integration constant A1, A2, A3, B1, and B2 are given by Eqs. (A.4)-(A.8) and

where Πs and ΠL are defined in Eq. (11).

3.2 Thin elastic one-dimensional flat beam clamped at one end and free at the other end, with an added mass

at the free end

The thin elastic one-dimensional flat beam considered in this section is clamped at its end (x = 0) and free at its

end (x = L) (figure 1(b)). The following notations are used, among others (see previous sections): µL mass per

unit length of the beam, E Young modulus, (I/Σ = (1/Σ)
∫
y2dΣ) radius of gyration (where the integration is over

the whole area of the cross section of the beam) which is here equal to (h2b/12) for the rectangular cross-section,

and localised mass Madd at the end x = L. The set of equations which govern the amplitude of the displacement

field η(x, t) (positive when directed along the y-axis) of the elastic beam, can be written classically as [16]:[
EI

∂4

∂x4
− µLω

2

]
η(x) = b

[
pgap(x)− pinc

]
− 2

dFs,y

dx
−
(
FL,y −Madd ω

2
)
δ(x− L), 0 < x < L, (34)

∂3η

∂x3
= 0 and

∂2η

∂x2
= 0, x = L, (35)

∂η

∂x
= 0 and η = 0, x = 0, (36)

where the three external forces in the right hand side of the equation are descriptive respectively of the acoustic

pressure fields on both sides of the beam, of the lateral slits (7), of the slit at the end L of the beam (8), and of the

inertial force due to the localized mass Madd. Note that both the viscous force at the edge x = L and the inertial

force has been removed from the boundary condition involving the elastic force EI∂3η(x = L)/∂x3 [first equation
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(35)] and added to the right hand side of the propagation equation with a δ-function. It is worth noting that, when

dealing with a plate fixed on non-rigid walls, the force function fL,y could include the force from the boundary (a

spring-like force for example) and that, at x = 0, the same kind of boundary conditions as at x = L could occur

(giving an additional term f0 δ(x) in the right side of equation 34).

The construction of solutions of equations (34) to (36) in terms of eigenmodes of the 1-D planar beam makes

use of modal wave functions that are solutions of the homogeneous equation[
∂4

∂x4
−K4

m

]
ψm(x) = 0, (37)

and subject to the boundary conditions (35) and (36).

These orthonormal eigenfunctions (see Appendix A.3) have the form

ψm(x) =
1√
L

{[
cos(Kmx)− cosh(Kmx)

]
+ βm

[
sin(Kmx)− sinh(Kmx)

]}
, (38)

with

βm =
sin(KmL)− sinh(KmL)

cos(KmL) + cosh(KmL)
= −cos(KmL) + cosh(KmL)

sin(KmL) + sinh(KmL)
. (39)

and the corresponding eigenvalues are solutions of equation cos(KmL) cosh(KmL) = −1 whose the roots are ap-

proximately given by

KmL ∼=


1.2

π

2
m = 0

(2m+ 1)
π

2
m = 1, 2, 3, . . .

(40)

The forced vibrations of the plate beam, driven by the incident uniform time-periodic acoustic pressure pinc and

loaded by both the acoustic pressure in the air-gap pgap(x) and the velocity fields in the surrounding slits, are

expressed by an expansion on this set of orthogonal functions as follows:

η(x) =
∑
m

ξmψm(x), (41)

with

ξm =

(b−Kv,shs)

[∫ L

0

pgap(x)ψm(x)dx− pinc
∫ L

0

ψm(x)dx

]
−
[
FL,y −Madd ω

2
]
ψm(L)

EIK4
m − ω2µL + iω2Πs

(42)

after relying on equations (7) and (8). Three terms in the right hand side, including those which involve pgap, are

related to the displacement η, so they involve the coefficients ξm themselves. Therefore, it follows from expressions

(27) of pgap and (22) of U(x), after a lengthy but straightforward calculation (see the procedure in Appendix A.2),

that the unknown coefficients ξm, which lead to η(x) then to pgap(x), are solution of the following set of linear

algebraic equations where the matrix elements Pn and Qn,m are known (Eqs. A.26 and A.27):([
I
]
−
[
Q
])[

ξ
]

= pinc

[
P
]

+
[
M
]
, (43)

I denoting the identity matrix and M being a column vector of elements Mn given in Eq. (A.28).

3.3 Rigid one-dimensional flat beam suspended at both ends on non-rigid walls (spring-like boundaries)

The differential equation which governs the uniform amplitude of the displacement field η(t) (positive when directed

along the y-axis) of the rigid planar beam of mass M , attach at both ends x = 0 and x = L to spring-like boundaries
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of same stiffness Kc and damping coefficient (mechanical resistance) Rc, driven by the incident uniform time-periodic

acoustic pressure pinc, can be written as:

[
−ω2M + iωRc +Kc

]
η = b

 L∫
0

pgap(x)dx− Lpinc

− 2

∫ L

0

[
dFs,y(x)

dx

]
dx, (44)

where the second term in the right hand side of the equation, descriptive of the lateral slits (Eq. (7)), is given by∫ L

0

[
dFs,y(x)

dx

]
dx = −1

2
Kv,shs

[
Lpinc −

∫ L

0

pgap(x)dx

]
+ iωηΠsL. (45)

Here, expression of pgap(x) differs slightly from the one given in section 2.3 because there is no slit at the end

(x = L). So, in a manner similar to that described in the derivation of the right-hand side of equation (18), the

source function U here is found to have the same form as in equation (22) except that the term involving the Dirac

function δ(x− L) is removed (no slit effect at the end x = L):

U = 2
Fv,s

Fv,g

hs
hg hb b

pinc +
ρ0ω

2

Fv,ghg

[
1 +

hs
b
Kv,s

]
η. (46)

Then equation (27) gives readily the solution for the pressure variation pgap:

pgap(x) =
U

χ2

[
cos(χ(x− L)− αL)

sin(α0)

sin (χL+ α0 + αL)
+ cos(χx+ α0)

sin(αL)

sin (χL+ α0 + αL)
− 1
]
. (47)

On substituting expressions (45) to (47) into equation (44) it is found that

η = −pinc
(b−Kv,shs) (L+ Υs (L−D0))

−ω2M + iω(Rc + 2ΠsL) +Kc + Γsχ(b−Kv,shs)(L−D0)
, (48)

where

D0 =
sin(αL + χL) sin(α0) + sin(α0 + χL) sin(αL)− 2 sin(αL) sin(α0)

χ sin (χL+ α0 + αL)
. (49)

and where Υs and Γs are given in equations (A.12) and (A.14).

4. Numerical (FEM) implementation, comparison between analytical and numerical

results

The remaining of the paper presents: -i/ the analytical results obtained from using the solutions presented above,

providing the mean displacement of the planar beams, which is the primarily desired descriptor that can be used

further to provide sensitivity, input impedance, and transfer function of the device, -ii/ comparisons with results

obtained from the numerical implementation presented below. Comparison with experimental results available in

the literature is not really possible because both the devices and/or the parameters of interest always differ from

each other on many points. At the most, one could say that the comparisons of our results with the experimental

results on the dynamic response of a cantilever in air near a solid wall [17, Fig. 5 for example] show a qualitative

agreement (same order of magnitude for the amplitudes of oscillations and successive resonance frequencies).

Several numerical implementations (FEM) taking into account the effects of thermal and viscous boundary layers

in thermoviscous fluids have been proposed in the literature [18, 19, 20]. The numerical implementation handled

herein, against which the approximate analytical results can be tested, relies on 3-D simulation performed using the

software Comsol Multiphysics, version 5.1. The linear formulation used to perform the numerical modelling in the

slits, fluid gap, and peripheral cavities is based upon the following coupled equations involving the particle velocity

~v, the temperature variation τ and the acoustic pressure p [20, 21].
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iωρ0v −∇ ·
[
−pI + µ(∇v +∇vT)−

(
2

3
µ− µB

)
(∇ · v) I

]
= 0

iωρ+ ρ0∇ · v = 0

iω (ρ0CP τ − pT0α0) +∇ · (−λh∇τ) = 0,

(50)

where
ρ = ρ0 (βT p− α0τ) ,

α0 = − 1

ρ0

∂ρ0
∂T0

∣∣∣∣
P0

,

βT =
1

ρ0

∂ρ0
∂P0

∣∣∣∣
T0

,

(51)

where the dependence of the equilibrium density ρ0 on the static pressure P0 and the static temperature T0 is

given by ρ0(P0, T0) = 0.02897P0/(8.314T0) [21], and where the particle velocity and the temperature variation are

subjected to Dirichlet conditions on the rigid isothermal boundaries (v = 0 and τ = 0).

The numerical modeling of the motion of the beams is based on the classical linear formulation [22]

−ω2u = ∇σ,
σ = C : ε,

ε =
1

2

(
[∇u]T +∇u

)
,

(52)

where u is the displacement vector, σ and ε are the stress and strain tensor respectively, ’:’ stands for a double

contraction over two indices (σij = Cijkl εkl), C being the elasticity tensor whose elements depend on the Young’s

modulus E and Poisson’s ratio ν [22] (linear elastic isotropic material). At the interface between the acoustical

and the mechanical domains, the continuity of the velocity (v = iωu) along with the isothermal condition (τ = 0)

are applied. The time-periodic adiabatic acoustic pressure field with amplitude of 1 Pa, representing the uniform

excitation at the input of the device, and the properties of the thermoviscous fluid (air in this case) given in Table 1

are used in both analytical and numerical modelling. The analytical displacement of the beam η is compared with

the y-component (according to Fig. 2) of the numerically calculated displacement vector u.

Figs. 5, 6, 7 display the amplitude and the phase of the mean displacement of silicon microbeams (ρb =

2329 kg/m3), in using the values of the parameters given in table 2, as a function of the frequency in the fre-

quency range (100 Hz, 1 MHz). These beams are called: beam A - a rigid one-dimensional planar beam attached

to one end of a flat spring; beam B - a thin elastic one-dimensional flat beam clamped at one end and free at the

other end; and beam C - a rigid one-dimensional flat beam suspended at both ends on non-rigid walls (spring-like

boundaries). In these results small cavities (with dimensions being chosen the same as those of the gap) are set at

both ends (x = 0, x = L) of the beam B, at one end of the beam C, and at the free end (x = L) of the beam A.

The minor differences highlighted by the comparison between the analytical results (full line) and the numerical

FEM results (circular marks) validate the relevance of the theoretical modelling even though several assumptions

have been retained. The most important of these assumptions would be that used for describing the behaviour of

the very small slits, the effects of discontinuity being omitted.

5. Conclusion

The original motivation for this study was to characterise the motion of three kinds of planar micro-beams (one

dimensional plate) when a reaction pressure on this plate is provided by the motion of a fluid layer in a backing

cavity, the acoustic field in this fluid layer being both subjected to appropriate boundary conditions and coupled

L
A

U
M

,
C

N
R

S
U

M
R

6
6

1
3



Novak et al. Planar micro-beam loaded by a fluid-gap — 14/23

10
2

10
3

10
4

10
5

10
6

10
−12

10
−11

10
−10

10
−9

 

 

Analytical resuts
Numerical results

10
2

10
3

10
4

10
5

10
6

−3

−2

−1

0

1

2

3

frequency [Hz]

frequency [Hz]

|η̄
|[

m
]

∠η̄
[r

ad
]

Figure 5. Beam A: Rigid one-dimensional planar beam attached to one end of a flat spring of negligible mass.

Parameter Value Unit

Static pressure P0 101330 Pa

Static temperature T0 293.15 K

Density ρ0 1.204 kg m−1

Adiabatic speed of sound c0 343.2 m s−1

Shear dynamic viscosity µ 1.814 × 10−5 Pa s

Bulk dynamic viscosity µB 1.088 × 10−5 Pa s

Thermal conductivity λh 25.77 × 10−3 W m−1 K−1

Ratio of specific heats γ 1.400 -

Specific heat coefficient CP 1005 J kg−1 K−1

Table 1. Parameters of the thermoviscous fluid.
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Figure 6. Beam B: Thin elastic one-dimensional flat beam clamped at one end and free at the other end.
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Figure 7. Beam C: Rigid one-dimensional flat beam suspended at both ends on non-rigid walls (spring-like

boundaries)
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to the incident pressure field through slits at the periphery of the beam. A general approach, based on the exact

description of the strong coupling between the moving structure and the fluid layer, is used for the analysis of the

motion of both the fluid layer and the beam (it includes viscous and thermal effects which depend strongly on the

thickness profile of the fluid gap and the slits). The solution of the problem of two coupled differential and integral

equations describing respectively the displacement field of the beam and the pressure field in the backing cavity is

derived.

The main contribution of the paper is thus a systematic framework to estimate accurately the motion or the

shape of the displacement field of the micro-beam for a given external pressure field, accounting for the complex

coupling mentioned above. Further frequency dependent quantities may then be obtained, namely the sensitivity

of these kinds of device when they are used as receivers, and the input impedance or the acoustic transfer function

when they are used as passive components. The system considered here is described with a refinement that should

be consistent with the requirements of the devices which could appear in a near future, when miniaturisation

(using MEMS technique), when very large bandwidth (up to 1 MHz, even more), and when precise analysis or

measurement, among others, would be required. Actually, in the lower frequency range (up to 20 kHz for example)

and for small dimensions, lumped circuit elements that could be derived assuming appropriate approximations

would provide accurate modelling in the usual situations (such modelling is beyond the scope of this paper).

The theoretical results presented in this paper convey an interpretation of physical phenomena, giving the role

played by several parameters as mentioned above. These results for the acoustic field in the backing cavity and

the motion or the shape profile of the beam are obtained in a straightforward manner, irrespective of frequency. A

numerical implementation (FEM) has been handled which permits to validate the analytical results. Thus finally,

requirements that have to be taken into account in the design of such vibrating devices could be addressed with a

very good accuracy, using the theoretical results obtained in this work.

Acknowledgement

This research was funded by the Region Pays de la Loire within the Le Mans Acoustic Project and partially supported

by the Grant Agency of the Czech Technical University in Prague, grant

No. SGS15/226/OHK2/3T/16. The authors are indebted to Dr. Nicolas Joly from LAUM for substantial help

in providing numerical facilities. They would like to express their appreciation to Dr. François Fohr from CTTM

for helpful discussions.

L b hb hg hs hL Cb Db E ν Kc Rc

[mm] [mm] [µm] [µm] [µm] [µm] [µN m] [N s m] [GPa] [-] [N/m] [N s/m]

beam A 1.0 0.2 20 50 10 10 0.125 0 - - - -

beam B 1.0 0.4 20 100 10 10 - - 170 0.28 - -

beam C 3.0 1.0 50 150 30 30 - - - - 3.4 0

Table 2. Parameters of the three beams used in the numerical comparisons. Beam A is a rigid one-dimensional

planar beam attached to one end of a flat spring, beam B is a thin elastic one-dimensional flat beam clamped at

one end and free at the other end, and beam C is a rigid one-dimensional flat beam suspended at both ends on

non-rigid walls (spring-like boundaries).
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Appendix

A.1 Expression of pgap (Eq. 27) associated with the oscillations of the rigid beam attached to one end of a

flat spring (section 3.1)

The pressure variation pgap in the backing cavity (fluid-gap) admits the integral representation (27) wherein G(x, x0)

denotes the Green function (25) and U(x0) is proportional to the total input volume velocity (22). The function

U(x0) involves, among others, the mean value of the velocity profile vL,y (Eq. 14) in the slit set at x = L and

the displacement field of the planar beam η(x) = x θ. These last functions depend respectively on pgap(L) and∫ L

0
pgap(x)x dx, which are independent of the integration variable x. Therefore, the integrands in Eq. (27) contains

only simple trigonometric functions of x that can be integrated readily. After effecting these integrations, it follows

that pgap(x) can be expressed as a linear function of pgap(L), pinc and θ, which leads readily to, when writing x = L,

pgap(L) = −B1pinc −B2θ, (A.1)

then in turn, after relying on (A.1), to

pgap(x) = C1(x)pgap(L)− C2(x)pinc − C3(x)θ, (A.2)

and finally to
L∫

0

pgap(x)x dx = A1pgap(L)−A2pinc −A3θ, (A.3)

where

A1 =
1

χ2

ΥL cos(αL)

sin (χL+ α0 + αL)

[
χL sin(χL+ α0) + cos(χL+ α0)− cos(α0)

]
, (A.4)

A2 =
1

χ2

{ΥL cos(αL)−Υs sin(αL)

sin (χL+ α0 + αL)

[
χL sin(χL+ α0) + cos(χL+ α0)− cos(α0)

]
+ Υs

[ (χL)2

2
+ sin(α0)

χL sin(αL) + cos(χL+ αL)− cos(αL)

sin (χL+ α0 + αL)

]}
,

(A.5)

A3 =
1

χ2

{ΓLχL cos(αL) + Γs

(
cos(αL)− χL sin(αL)

)
sin (χL+ α0 + αL)

(
χL sin(χL+ α0) + cos(χL+ α0)− cos(α0)

)
+ Γs

[ (χL)3

3
+ cos(α0)

χL sin(αL) + cos(χL+ αL)− cos(αL)

sin (χL+ α0 + αL)

]}
.

(A.6)

B1 =
ΥL cos(χL+ α0) + Υs

(
sin(χL+ α0)− sin(α0)

)
sin (χL+ α0 + αL)

cos(αL)
−ΥL cos(χL+ α0)

, (A.7)

B2 =
χΓLL cos(χL+ α0) + Γs

(
χL sin(χL+ α0) + cos(χL+ α0)− cos(α0)

)
sin (χL+ α0 + αL)

cos(αL)
−ΥL cos(χL+ α0)

, (A.8)

and

C1(x) =
cos
(
χx+ α0

)
cos(αL)

sin (χL+ α0 + αL)
ΥL, (A.9)
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C2(x) = C1(x) + Υs

[
1−

cos
(
χ(x− L)− αL

)
sin(α0) + cos(χx+ α0) sin(αL)

sin(χL+ α0 + αL)

]
, (A.10)

C3(x) =
Γs + ΓLχL

sin (χL+ α0 + αL)
cos(χx+ α0) cos(αL)

+ Γs

[
χx−

cos(α0) cos
(
χ(x− L)− αL

)
+ χL sin(αL) cos

(
χx+ α0

)
sin (χL+ α0 + αL)

]
,

(A.11)

with (additional parameters)

Υs =
2

χ2

Fv,s

Fv,g

hs
hg hb b

, (A.12)

ΥL =
1

χ

Fv,L

Fv,g

hL
hghb

, (A.13)

and (pressure dimension)

Γs =
ρ0ω

2

χ3Fv,ghg

[
1 +

hs
b
Kv,s

]
, (A.14)

ΓL =
ρ0ω

2

χ2

Kv,L

2Fv,g

hL
hg
. (A.15)

A.2 Expression of pgap (Eq. 27) associated with the oscillations of the elastic beam clamped to one end (section

3.2)

The procedure presented in this appendix is similar to the one presented in Appendix A.1, apart from the dis-

placement field of the planar beam η(x) = x θ which is replaced by the modal expression η(x) =
∑

m ξmψm(x)

(41). Therefore, the integrands in equation (27) contain either simple trigonometric functions or the product of two

trigonometric functions that can be integrated readily. After effecting these integrations, it follows that pgap(x) can

be expressed as a linear function of pgap(L), pinc, and an expansion involving the unknown modal coefficients ξm,

which leads readily to, when writing x = L,

pgap(L) = pinc
Φ2(L)

1− Φ1(L)
+
∑
m

ξm
ϕm(L)

1− Φ1(L)
, (A.16)

then to the pressure variation in the backing cavity

pgap(x) = pinc

[
Φ2(x) + Φ2(L)

Φ1(x)

1− Φ1(L)

]
+
∑
m

ξm

[
ϕm(x) + ϕm(L)

Φ1(x)

1− Φ1(L)

]
, (A.17)

where

Φ1(x) =
ΥL cos(αL)

sin (χL+ α0 + αL)
cos(χx+ α0), (A.18)

Φ2(x) =
Υs sin(α0)

sin (χL+ α0 + αL)
cos(χ(x− L)− αL) +

Υs sin(αL)−ΥL cos(αL)

sin (χL+ α0 + αL)
cos(χx+ α0)−Υs, (A.19)

and

ϕm(x) =
2χ√
L

cos(χ(x− L)− αL)χΓsK
2
mW

+
m(α0)− (−1)m cos(χx+ α0)

(
Γsχ

3W+
m(αL)− ΓL cos(αL)

)
sin (χL+ α0 + αL)

+
χ3Γs√
L

(
cosh(Kmx) + βm sinh(Kmx)

χ2 +K2
m

− cos(Kmx) + βm sin(Kmx)

χ2 −K2
m

)
,

(A.20)

where

W±
m(α) =

χ sin(α)± βmKm cos(α)

χ4 −K4
m

. (A.21)
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Note that these last expressions has been obtained after accounting for the following relationships

sin(KmL) sinh(KmL)

cos(KmL) + cosh(KmL)
= (−1)m, (A.22)

sin(KmL) sinh(KmL)

sin(KmL) + sinh(KmL)
= −(−1)mβm, (A.23)

that readily arise from equation cos(KmL) cosh(KmL) = −1 whose the roots can be written as

KmL = (2m+ 1)
π

2
+ (−εm)

m
, (A.24)

with ε0 ∼= 0.2
π

2
and 0 < εm �

π

2
,m = 1, 2, 3, . . .

Finally, utilizing (A.16) and the expressions readily obtained for the integrals which appear in equation (42),

namely
∫ L

0
pgap(x)ψm(x)dx and

∫ L

0
ψm(x)dx, the unknown coefficients ξm are, therefore, solutions of the linear set

of algebraic equations

ξn = pincPn +
∑
m

ξmQn,m +Mn, (A.25)

that can be written in the form of the square matrix equation (43), where

Pn =(b−Kv,shs)

(∫ L

0

Φ2(x)Ψn(x)dx+

∫ L

0

Φ1(x)Ψn(x)dx
Φ2(L)

1− Φ1(L)
− 2βn

Kn

√
L

)

− Kv,LhLb√
L

(−1)n
(

1− Φ2(L)

1− Φ1(L)

)
,

(A.26)

Qn,m =(b−Kv,shs)

(∫ L

0

ϕm(x)Ψn(x)dx+

∫ L

0

Φ1(x)Ψn(x)dx
ϕm(L)

1− Φ1(L)

)

+ (−1)n
Kv,LhLb√

L

ϕm(L)

1− Φ1(L)
− (−1)m+njω

4ΠLb

L
,

(A.27)

and

Mn =

−(−1)n
2√
L
ω2 Madd

EIK4
n − ω2µL + iω2Πs

(A.28)

where ∫ L

0

Φ1(x)Ψn(x)dx = −χΥL cos(αL)
2√
L
V −
n (χL+ α0, α0), (A.29)∫ L

0

Φ2(x)Ψn(x)dx =
2χ√
L

[
Υs sin(α0)V +

n (αL, χL+ αL)

+
(

ΥL cos(αL)−Υs sin(αL)
)
V −
n (χL+ α0, α0)− Υs

χ

βn
Kn

] (A.30)

and ∫ L

0

ϕm(x)Ψn(x)dx =
4χ2

L

[
(−1)m

(
Γsχ

3W+
m(αL)− ΓL cos(αL)

)
V −
n (χL+ α0, α0)

+ ΓsχK
2
mW

+
m(α0)V +

n (αL, χL+ αL)
]
− Γsχ

3

χ4 −K4
m

Xm,n

(A.31)

with

Xm,n =


4

L
K2

m(βmKm − βnKn)
(−1)m+nK2

m +K2
n

K4
m −K4

n

, m 6= n

βmKm

(
2

L
+ βmKm

)
+ χ2, m = n,

(A.32)
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and

V ±
n (αx, αy) =

(−1)nχ2W±
n (αx) +K2

nW
∓
n (αy)

χ sin (χL+ α0 + αL)
. (A.33)

Reporting these solutions in equation (41) yields directly the sought-after solution for the displacement field of

the beam η(x).

A.3 On the orthogonality and the completeness of the eigenfunctions ψm(x)

Equation (37)

[
∂4

∂x4
−K4

m

]
ψm(x) = 0 leads readily to the following equation:

ψm(x)
∂4

∂x4
ψn(x)− ψn(x)

∂4

∂x4
ψm(x) =

[
K4

n −K4
m

]
ψm(x)ψn(x), (A.34)

which can be written as

∂

∂x

{
ψm(x)

∂3

∂x3
ψn(x)− ∂

∂x
ψm(x)

∂2

∂x2
ψn(x) +

∂2

∂x2
ψm(x)

∂

∂x
ψn(x)− ψn(x)

∂3

∂x3
ψm(x)

}
=
[
K4

n −K4
m

]
ψm(x)ψn(x).

(A.35)

Integrating over the domain x ∈ (0, L) and accounting for the boundary conditions (35) and (36) shows straight-

forwardly the orthogonality property of the eigenfunctions:

0 =
[
K4

n −K4
m

]
ψm(x)ψn(x). (A.36)

Note that this result can be verified by substituting expression (4) for ψm(x) into the right hand side of this equation

and by accounting for the eigen-equation cos(KmL) cosh(KmL) = −1.

When m = n, what result is
L∫
0

ψ2
m(x)dx = 1 due to the normalisation constant

√
1/L chosen (Eq. 4). Finally,

considering that these orthonormal eigenfunctions are merely a generalization of the familiar functions of Fourier

series, there is no doubt that their completeness is well established.

A.4 On the thermal behaviour of the fluid gap

Concerning the thermal behaviour of the fluid-film, relaxation phenomena occur that involve complex compressibility

coefficient and energy dissipation [14]. Fig. 8 shows readily that this thermal behaviour should be accounted for

in the frequency range considered here (up to 1 MHz) when the air-gap thickness is of the order of magnitude of

100 micrometers. This figure represents the modulus and the phase of the factor [γ− (γ−1)Fh,g] in Eq. (19), which

tends to the specific heat ratio γ at the lower frequencies leading to the isothermal speed of sound c0/
√
γ and tends

to 1 at the highest frequencies leading to the adiabatic speed of sound c0. This quantity is approximately real at

these limiting frequencies and complex between them.

L
A

U
M

,
C

N
R

S
U

M
R

6
6

1
3



Novak et al. Planar micro-beam loaded by a fluid-gap — 22/23

10
2

10
3

10
4

10
5

10
6

1

1.2

1.4

Frequency [Hz]

A
b
s
[-
]

10
2

10
3

10
4

10
5

10
6

−0.1

−0.05

0

Frequency [Hz]

P
h
a
se

[r
a
d
]

Figure 8. Modulus and phase of the factor [γ − (γ − 1)Fh,g] as a function of the frequency.
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