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Abstract

Resonance experiments have already proved the high level of nonlinearity in complex materials, including microcracked
composites. However, the nonlinear parameters related to elastic modulus and damping are defined around a given resonance mode
and are therefore known over a very limited frequency domain. In this contribution, the nonlinear parameters are determined on
intact and damaged metal-based composite plates for several flexural resonances. Furthermore, the use of the theoretical formalism
corresponding to guided flexural waves allowed to define a nonlinear parameter over a larger frequency domain. Finally, the
nonlinear convolution method allowed to take advantage of the harmonics related to the different resonance modes in order to define
new nonlinear parameters whose sensitivity is much greater than the ones determined at the fundamental frequencies.
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1. Introduction

Over the last two decades, studies of nonlinear dynam-
ics in complex materials (rock, damaged materials, bone,
granular media etc.) have increased markedly [1, 2, 3, 4,
5, 6, 7, 8]. The behavior of these materials revealed to be
unusual at relatively low strains. Indeed, at strain ampli-
tudes greater than ~ 107°, the classical Landau theory of
elasticity was found to be unable to describe the observa-
tions related to the specific scaling relations between driv-
ing strains and detected wave harmonics, resonance peak
shift and the presence of conditioning [9, 10]. Nonlinear
techniques particularly probe second order effects on wave
propagation at small strain levels, such as the generation
of harmonics and inter-modulated frequencies, resonance
frequency shift as a function of applied drive voltage, non-
linear attenuation, etc. [11, 12, 13]. In general, the obser-
vation of the higher order effects makes nonlinear param-
eters more sensitive to the presence of micro-cracks than
the classical linear elastic parameters, which are based on
velocity and attenuation changes. Among the theoretical
approaches, the one based on the PM-space (Preisach-
Mayergoyz) was able to describe the non-classical nonlin-
ear behavior of many complex materials. The phenomeno-
logical PM-space model incorporates hysteresis into the
stress-strain relationship, which makes the description of
quasi-static and dynamic nonlinear behaviors possible in-
cluding slow dynamics and conditioning [14, 15, 16, 17].
The very limited number of physical models is related to
the huge variety of mechanisms at the origin of the non-
classical elastic behavior, which could be sliding between
grains in concrete [18], clapping [19], presence of wa-
ter between microcracks, etc. [20, 21]. In nonlinear res-
onance experiments, two nonlinear hysteretic parameters
(NLH) are assessed on the basis of the changes observed
in the resonance frequency and the quality factor of the
monitored resonance mode with increasing strain ampli-
tude [9, 10, 12]. However, NLH parameters are often con-
sidered in the case of a single resonance mode and hence
over a very narrow frequency bandwidth. Including higher
frequency components cannot be done without taking into
account the dispersive nature of the excited resonances. In-
deed, higher order nonlinear parameters related to higher
order compression resonances have great chances to be in-
fluenced by the generated harmonics, since the frequency
recovery is quite perfect. Furthermore, the application of
the higher order nonlinear resonance method to character-
ize a localized damage will not give reliable information
about the existence of a frequency dispersion related to
the NLH parameters [22].

Nonlinear Analysis of Damaged Metallic Composite Plates

In this contribution, we present the characterization of
NLH parameters through the generation of flexural waves
in composite plates. Since the created damage within the
composite plate is diffused, the frequency dispersion of the
NLH parameters will not be influenced by the positioning
of the nodes when considering higher resonance modes.
Furthermore, the work presents the possibility to general-
ize the study to the case of the fundamental antisymmetric
Lamb mode [23]. The application of a signal processing
approach, namely “nonlinear convolution method* is per-
formed in order to determine the NLH parameters related
to harmonics of the excited resonances [22]. This method,
which can be seen as a coupled method between “nonlin-
ear resonance” and “harmonic generation®, has proved to
increase considerably the sensitivity of the proposed non-
linear method to the existence of a localized and diffused
damage created within composites.

2. Nonlinear dynamic elasticity

In the case of a hysteretic nonlinear material, the elastic
modulus can be written as

K(e,€) = Ko(1+ pe(t) + () +...)
+ H(s, sign(é)), (1)

where K is the linear modulus (at weak strains), € is the
strain, f and 6 represent the classical quadratic and cubic
nonlinear parameters, respectively. They can be developed
as a combination of 2", 3™ and 4th order elastic constants.
Ac is the local strain amplitude over the previous period, €
is the strain rate, sign(é¢) = 1 when € > 0 and sign(¢) = —1
when € < 0. The function H (g, sign(¢€)) takes into account
the hysteresis in the stress-strain relationship [14, 15].

The way the nonlinear elastic modulus is expressed in
Equation (1) has several interesting implications on the
acoustic wave propagation. First, it can clearly differen-
tiate between classical and hysteretic nonlinear behaviors.
In a classical nonlinear system, a strain wave of frequency
f and amplitude £ can transform into a strain wave with
frequency components 2f, 3 f, etc. for which the ampli-
tudes are proportional to €2, €3, etc. In the case of a purely
hysteretic material, the second harmonic cannot be gener-
ated, and the third harmonic is found to be quadratic in the
fundamental strain amplitude.
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Modelling of resonant wave experiments, based on the
PM-space approach for instance, shows that when the
modulus K is taken into account in the wave equation, the
nonlinear contribution to the solution leads to a linear de-
crease of the resonance frequency and the quality factor
for increasing strain levels, where

fof—of - Cpe. @)
1 1

o =G 3
0 0 Q€ 3)

where f is the resonance frequency at strain amplitude &,
fo is the linear resonance frequency at low strain ampli-
tude 9. Qp and Q are the quality factors measured at low
(€0) and higher (¢) strain amplitudes. DC; and C; express
the hysteretic nonlinearity existing in real (eas) and imagi-
nary (ag) components of the elastic modulus K [16]. The
abovementioned coefficients were determined for differ-
ent materials and were found to be very sensitive to the
changes existing in their microstructures [9, 17]. In the
following, we present an original approach, which allows
following the frequency dispersion of a; and ap by us-
ing flexural waves propagating in metal based composite
plate. This was done under guided waves conditions.

3. Theoretical models

Flexural waves propagating in a thin plate can be described
by the Bernoulli-Euler theory of beams using the follow-
ing governing equation [24, 25, 26]:
*u ~ u

Elax4 +pH s =0, @
E being the Young modulus, p the density, H the air of
the cross section and I is the moment of inertia of the
cross section. Note that Bernoulli-Euler beam model ne-
glects the deformation of the cross section due to the shear
and rotary-inertia effects. If we consider a dynamic pertur-
bation u given by

u(x, 1) = U(x) exp (a)t) (©)

where U is the amplitude of vibrations along x-axis and w
is the angular frequency, the dynamic beam equation can
therefore be expressed as

o*U

— —k*'U =0. 6

It (6)

The solution of Equation (6) is written in the general form,
U(x) = Acosh (kx) + Bsinh (kx)

+ Ccos (kx) + Dsin (kx), (7

where the wavenumber k is expressed as

k=1 ”ﬁwz.
ET

Nonlinear Analysis of Damaged Metallic Composite Plates

The allowable values of the quantity k are given by
the roots k; L = m;, where L is the length of the consid-
ered sample. By considering the four boundary conditions
necessary to determine the relationship between the four
constants of integration A, B, C and D, the series of al-
lowable pulses w; (and hence the resonance frequencies
fi = w;/2x) are given by

El
o =my [ ——. ®)
pHL*

With the help of the Bernoulli-Euler model, we can define

the velocity Vg) corresponding to the i bending vibra-
tion, which can be expressed as a function of the thickness
h and the mechanical properties of the thin plate,

i Eﬂ.’zhzf.2

(O] 4 i
V., = —_— 9
B V 3p ©)

More recent theories have also been proposed to describe
flexural waves in thin plates. Indeed, when the effect due
to the shear distortion is not neglected, the Rayleigh beam
equation [27, 28] can be written as
o*u o*u ~ 0%u

o) gy AL
Proxzor TP o

= = 0. (10)

With the help of this equation, the flexural velocity can be
written as

: 2ET
v = . (11)

pL+\[pl> + pHEL/ (2 f2)

A more complete description, proposed by Timoshenko
[29, 30, 31, 32, 33], can be found by taking into account
the rotary-inertia and shear deformation. These parameters
affect natural bending frequencies since they reduce reso-
nance frequencies due to the growth of the inertia and flex-
ibility of the system. Therefore, the governing equation of
motion can be written as

E N o' p1 0
Elﬂ—pl(u—) L pcy
ox* KG/ 9x%0t2 KG ot*
Y L (12)
P =

K and ,G are the shear coefficient and the shear modulus of
the thin plate, respectively. Therefore, the flexural velocity
using Timoshenko model is given by

1/2

vy = [2E1)"- [pl(l +E/KG) (13)

-1/2
p*T1*(1 + E/KG)>

2
| w2t
47r2f,.2 KGQ2rfi)'®
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CCU A Flexural velocities of the abovementioned models were
Z ﬂ>) compared in the case of a metal-based composite plate. F 1000
o — Figure 1 shows that at low frequencies, the shear and E
oL rotary-inertia effects can be neglected, since the three mod- 2
S els overlap. At higher frequencies, shear effects become é
E more important and flexural velocities start to be different > 500 = Rayleigh
at the frequency fcp & 17 kHz. Therefore, it would be Bernouli-Euler
. . . = Timoshenko
reasonable to consider Equation (9) as representative of
the velocity dispersion corresponding to flexural waves as o5 : 5 5 : p

Baccouche et al.

4. Theoretical models and nonlinear acous-

long as the involved frequencies are below fcpy.

The above presented theoretical models have been de-
veloped in the framework of linear elasticity, where the
elastic parameters (E, G, etc.) do not depend on the strain
generated by a standing or propagating elastic wave. In-
deed, in the case of nonlinear hysteretic materials (rocks,
concrete, damaged composites, etc.), Equation (1) shows
that an increase of the dynamic strain will affect the ma-
terials elasticity. As a consequence, resonance frequency

and Young modulus appearing in Equation (9) should be @700

strain-dependent. Therefore, in the case of cracked mate- >.600

rials, the flexural velocity ¥ should be written as %jgg
>

252
vo =4l %\/ﬁ(e). (14)

Nonlinear Analysis of Damaged Metallic Composite Plates

f (Hz) x10°

Figure 1. (Colour online) Velocity frequency dispersion by con-
sidering Timoshenko, Rayleigh and Bernoulli-Euler theories in
the case of a metal-based composite TA6V (3 mm thick).

© V(Bernoulli
@ 2o

2 4 6 8 10 12 14 16 18 20
Frequency (kHz)

1.2
4L ® -vAo-V@emoul) e

However, one should keep in mind that the elastic modulus £ 08 e

is involved in Equation (14) explicitly through E(e) and é 06 e

implicitly through f;(¢). This point will be discussed later. Q 04 L

i it is i 1,02 ™
Finally, it is 1mp0rtapt t'o note that the proposed ap- = L m"‘“

proach can also be applied in the framework of the Lamb . ‘ ‘ ‘ ‘ : : ‘ ‘

%46 8 10 12 14 16 18 20

wave theory. Indeed, Figure 2 shows the possible superim-
position of the flexural wave velocities with the antisym-
metric Lamb mode velocity VAO, which is true as long as
the involved frequency remains less than fcy,.

5. Metal-based composite sample and fa-
tigue test

5.1. Material

Development of metal-based composites started in the
early 1970s with a production directed primarily to the
aerospace field. Since then, the range of applications of
theses composites is constantly growing thanks to their
excellent mechanical strength at high temperatures [34].
These composites are a combination between a low-den-
sity metal such as aluminum or titanium and reinforce-
ments such as nano/micro particles, which offer high spe-
cific strength and stiffness on lighter materials. However,
the addition of a reinforcement can weaken these alloys
in terms of fatigue failure. Indeed, the presence of micro
reinforcements can facilitate crack propagation within the
sample and lead to significantly reduced lifetime [34].

Frequency (kHz)

Figure 2. (Colour online) Velocities of the flexural wave and
the fundamental antisymmetric Lamb wave A0 in a metal-based
composite TA6V(3mm thick) . The relative difference between
both velocities is less than 1% below 17 kHz.

The studied composite, named TA6V, is made with a ti-
tanium matrix, which is reinforced with titanium carbide
(TiC) nanoparticles. The material is elaborated by MECA-
CHROME company in the framework of the FUI project
AMETIS “Advanced Metallurgical Technologies for In-
novative Systems”. The project aims at undergoing tech-
nology locks that limit the emergence of nanostructures-
reinforced-materials, notably through their mechanical fa-
tigue behaviors. The studied specimens have a plate-like
geometry (180 x 20 x 3 mm?). Their structure is isotropic
and is characterized by the following mechanical prop-
erties: E = (126 — 7 £ 2.5)GPa, v = (0.305 £ 0.06),
p = 4410kg/m3, where E, v, and p are the Young modu-
lus, Poisson ratio and density, respectively.
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)} 1000
(7)) .17, Composite plates are submitted to a tensile fatigue me- 00 (a)
| chanical test at room temperature in order to create dif- 800k
) ﬂ>) fused micro-cracks. The loading steps were performed | ; “u
>3 = on a universal Instron™ testing machine, where the mean s Bn
o £ stress was fixed at o,y = 72 MPa. When o,, is reached, 8 goor .
S the fatigue cycles are applied using a frequency and am- E 500¢
plitude corresponding to 10 Hz and o,,, = 140 MPa, re- £ 400}
E spectively. Figure 3a shows the evolution of the number of = 300l
cycles to failure as a function of the applied stress. These 2000
experimental data show that for the same o, (720 MPa)
the lifetime of the sample depends on the applied 6, and 1oor

Baccouche et al.

5.2. Fatigue test

changes from ~ 9 - 10° to ~ 107 cycles.

One of the aims of the FUI project AMETIS is to test
the consolidation of these metals-based composites during
the fatigue tests. This has been performed through numer-
ous fatigue tests in collaboration with MECACHROME
and EADS. Indeed, fatigue tests were performed on pol-
ished samples and interrupted at different cycles in order to
observe the evolution of the microstructure using a scan-
ning electronic microscope. Figure 3b represents the mi-
crostructure of the TA6V sample submitted to a fatigue test
applied at ¢ = (720+140) MPa, which is considered as the
highest maximum stress (see Figure 3a). The image shows
that when the fatigue test is interrupted at 6000 cycles, we
observe the appearance of porosities and microcracks that
did not coalesce yet to form the same macro-crack. This
image, and others as well, allow to conclude that at this
stage, the characterized damage is still diffused within the
TAG6V sample.

6. Experimental set-up and linearity

The experimental set up used to perform the nonlinear
measurements consists of a DAQ card (16 bits dynamic
resolution and up to SMHz sampling frequency) con-
nected to a power amplifier (Figure 4). DAQ card is re-
motely controlled to generate swept-sine signals at fre-
quencies corresponding to the desired resonance modes
at different amplitudes. Generated waveforms are ampli-
fied at 46 dB using a wideband power amplifier which
finally excites the piezoelectric emitter transducer PZ27
attached at one extremity of the composite plate. At the
other extremity, a similar transducer (PZ27) is used to re-
ceive the generated guided waves. The experimental con-
figuration and the sample plate-like geometry favor the
generation of bending resonance modes. The sample is
excited around its first flexural modes at intact as well
as damaged states using excitations starting from 10 mV
and amplified at 46 dB. Note that working with harmonics
of higher order modes is difficult due to the existence of
mixed modes (flexural /torsion) based on boundary con-
ditions that might affect the nonlinearity shift. Therefore,
obtaining strain values for these mixed modes becomes
very difficult [6, 7]. In that sense, we have given a great
attention to the boundary conditions which give repeatable
frequency resonance and consequently frequency shift pa-

Nonlinear Analysis of Damaged Metallic Composite Plates

Figure 3. (Colour online) (a) Number of cycles to failure as a
function of the applied mean stress on the metal-based composite
TA6V; (b) The microstructure of the TA6V after 6000 fatigue
cycles using a scanning electronic microscope where porosities
and microcracks are present.

rameters. Among the different boundary conditions, we
have verified that only two are able to give repeatable and
accurate results where the frequency is measured with an
error not exceeding 0.1 Hz. The first one is when the sam-
ple is suspended and the second one is when the sample is
positioned on a soft sponge put on an isolated optical ta-
ble. In this contribution, we have retained the second one
which is very close to the first one (the same resonance
frequencies) and easy to implement in the case of sam-
ples instrumented with piezoelectric transducers. Strains
were determined by measuring the displacement of each
mode using a Laser Doppler Vibrometer (LDV). This pro-
cedure has been performed at every excitation frequency
and level in order to take into account the changes that
appear as a function of the excitation conditions. LDV dis-
placement measurements are performed on the PZT discs.
They correspond to the out-of-plane displacement compo-
nent i.e. change in thickness of the PZT ceramic created by
the induced strains within the composites plate. In view of
the dimensions of the PZT discs (20 mm diameter x 2 mm
thick) the change in thickness (Ae) of the PZT ceramic
is obtained as: Ae ~ d33 V, where d33 is the piezoelectric
coefficient for thickness change (d;; = 425m/V and V'

5/12
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is the measured voltage across the thickness. Strains are
then determined as: € ~ Ae/e where e is the thickness of
the PZT ceramic at rest (2mm). In order to obtain reliable
nonlinear measurements, it is essential to verify the con-
ditions at which the experimental setup is linear. Indeed,
the detection of nonlinearity resulting from the material
requires the elimination of nonlinearities related to the dif-
ferent components of the measurement setup such as non-
linearities due to amplification, coupling, etc. Therefore,
the choice of the piezoelectric transducers, the coupling
and the power amplifier becomes an important issue.

The linearity of the experimental set-up was character-
ized by following the evolution of amplitude and phase
corresponding to monochromatic acoustic waves gener-
ated at increasing excitation levels and propagating in an
intact aluminum bar. Figure 5 shows that the experimen-
tal device can be reasonably considered as linear up to
an excitation voltage of 640mV before amplification. In-
deed, within this interval both the ratio and phase differ-
ence between output and input signals at different ampli-
tudes remain constant, where Ratio = (—31.7 + 0.05) dB
and Ap = (166.2° = 0.2°). Therefore, all nonlinearities
detected will be due to the wave interaction with the sam-
ple particularities as long as the excitation remains below
640mV.

7. Multimodal characterization of damage

7.1. Resonance analysis

Depending on the excitation level, mesoscopic materials
exhibit a nonlinear hysteretic behavior more or less pro-
nounced according to the excited resonance mode. The vi-
bration spectrum of the studied material allows determin-
ing five flexural resonance modes below fcys. Before and
after fatigue tests, we monitor the evolution of different
flexural resonances in terms of resonance frequency and
quality factor as a function of excitation levels. Nonlinear
effects observed at damaged states allow to assess varia-
tions of resonance frequency a, and quality factor agp as
a function of the strain amplitude at resonance. Figure 6
shows the evolution of the NLH parameters a and ag as
a function of the frequency. At the intact initial state, o
and ap are equal to zero for the five resonance modes,
which confirms the linearity of the experimental setup.
However, at the three damaged states (1000, 5000, and
6000 fatigue cycles), a; and @y show important changes
depending on the excited resonance. Indeed, at the time
when the intact state didn’t show any nonlinear hysteretic
behavior (ay ~ 0 and ap = 0), we can readily notice that
all the bending modes are sensitive to the induced damage
at 1000 fatigue cycles. However, the sensitivity of a, to
damage is much more important than the one correspond-
ing to ap, where 0 < @p < 10 and 10 < a; < 100. When
damage cycles are increased up to 5000 fatigue cycles, we
can notice that both parameters a; and ap do not change
significantly where their evolutions are very small for all
the concerned bending modes. However, the situation is
completely different at 6000 fatigue cycles. Indeed, non-

Nonlinear Analysis of Damaged Metallic Composite Plates

| PC | <) |Digita||/0 Card

Power amplifier

:

Figure 4. (Colour online) Experimental device to generate non-
linear vibrations using a dynamic resolution of 16 bits and SMHz
sampling frequency.

oo 0. o Ooooog
0o

i i
10° 10° 10
Drive level before amplification (mV)
1691
168.5F

& 1e8f
< I
167.5 o

1671

166.5
10

i i
10° 10° 10
Drive level before amplification (mV)

Figure 5. Linearity of the experimental device evaluated through
the evolution of the ratio and phase shift between input and out-
put signals. The system behaves linearly up to 640 mV drive be-
fore amplification.

linear parameters reach large values at the 5™ resonance
mode ay = (5300 £ 480) and ap = (1150 £ 150). Note
that nonlinear parameters a, and @ related to the same
bending mode do not change simultaneously. Indeed, we
can see on the same figure that a, corresponding to the
1st bending resonance, does not change when damage is
increased whereas ag clearly increases. When the fatigue
test was conducted until the failure of the sample (1st point
on Figure 3), we discovered that the high values are due to
the case where an antinode of vibration is created in the
vicinity of the failure zone. Note also the values extremely
low of ay = (28 £ 3) and ap = (0.00 £ 0.05) correspond-
ing to the 2" bending resonance and for which a node of
vibration is situated in the vicinity of the failure zone. In
view of the microstructure evolution as a function of the
fatigue cycles, it seems to be clear that the evolution of
nonlinear parameters related to damping and elastic mod-
ulus is strongly depending on the created porosities and
microcracks during the fatigue cycles as well their posi-
tions relative to nodes/ anti-nodes of the different bending
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modes. However, it is not easy to confirm, for instance,

O that porosities contribute to the evolution of @p and micro- 10° ¢
7, cracks to the one corresponding to a ;. Such a statement is S fggg 332 o
= ﬂ out of the scope of the present contribution whose aim is o| O S000cycles
C O to follow the evolution of damage through sensitive non- M
. . (€]
Z _2 linear acoustic parameters. e o
Q c 107 - v}
S ) 7.2. Phase velocity analysis o g v] ®
Under the conditions presented in section (4), one can use 10
the flexural vibration spectrum to determine the dispersion
of the phase velocity corresponding to the fundamental an- 1wl
tisymmetric Lamb mode A0 as shown in Figure 7 based on
Equation (14). The phase velocity presentation offers the B @
possibility to monitor the nonlinear behavior of the TA6V 10 AR A 6000 dovo 120002
composite not only for a given resonance mode through Frequency (kHz)
the parameters oy and ap but on a larger frequency band- 10° ¢
width. Indeed, we have the possibility to take advantage S fzzzziz::
of the geometrical frequency dispersion observed through oL 2 |5°(°°|cv0'es o
the five flexural resonances (Figure 6) and define a global e
nonlinear hysteretic parameter through the evolution of o
the phase velocity corresponding to the A0 mode. The A0 0 0
phase velocity is calculated based on Equation (17). How- e ©
ever, it is important to remember that in this equation the 10t L 9 x o o
elastic modulus intervenes explicitly through E(g) and im- x x
plicitly through f;(€). The experimental data allows to get N x
easily f;(¢) from resonance curves at increasing ampli- o
tudes. The Young modulus is measured through the res- ®)
onance frequency drop as E = EO(I —Af(fo)), where E 107 Ay A B o000
and f; are the resonance frequency and the Young modu- Frequency (kHz)
lus of the TA6V at rest (more details can be found in [23]).
At the weakest excitation amplitude, the slope VAO vs. Figure 6. (Colour online) Evolution of a; and a as a function
\/7 was found to be the same at the intact as well as of the excited resonance mode in the case of TA6V metal-based

composite sample taken at intact and damaged states at 1000,

damaged states. Furthermore, the slope remains the same 5000, and 6000 fatigue cycles.

at higher excitation levels, which means that the nonlin-
ear signature in the phase velocity formulation is different
from the one we can expect when using resonance curves.

Indeed, experimental observation showed that at the dam- 40 -800

aged state the linear dependence VAO vs. \/f shifts data Floxural resonances

along the same slope. Therefore, an interesting way to ob- 600

. . . 0

tain a broadband nonlinear signature would be to define a _

parameter called .S that takes into account all the changes g -
S “of 400 E
2 =
s <
<

200

-3
S
T

|:| High amplitude

: : :

0
0 5 10 15 20

f (kHz)

Vao(m/s)

Figure 7. (Colour online) The phase velocity of the fundamental
Lamb mode AOQ is deduced from the flexural resonance frequen-
cies.

5=

\/E(m/s)’

observed over the five flexural resonances, where .S is con-
sidered at every excitation level as

Figure 8. (Colour online) Definition of the calculated area .S un-
der the velocity dispersion curve. The figure shows the evolution

of the area S for two excitation levels. S(e) = J

fs5(€) (E(s)ﬂ2h2
fi(e)
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Q of the hysteresis averaged over the excited frequency do- " O 6000 cycles o
"7, main can be determined as AS = S(gg) — S(¢), where &) X 1000 cycles oo
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where 4 is the thickness of the plate. Therefore, the effect

tude). Figure 8 shows the way we have determined S'(¢).
Figure 9 shows the evolution of AS as a function of
the excitation, where it can be seen that AS = 0 at the
intact state. After 1000 fatigue cycles, the behavior is “lin-
ear” even at the highest excitation level. Note that when a
is considered for each mode independently form the oth-
ers, the behavior was found to be nonlinear, which means
that there is a real interest in broadening the frequency
domain analysis when dealing with resonances. When the
5000 fatigue cycles are reached, the behavior remains lin-
ear as long as the excitation remains below 430 mV (be-
fore amplification). Indeed, A.S increases with a slope p =
0.016 (m/s)*>2 V~! (the same one found at 1000 cycles)
and starts deviating at excitations greater than ~430 mV
indicating thereby a change in the NLH regime over the
considered frequency domain. After the 6000 fatigue cy-
cles, the behavior is “linear* with the same slope p as long
as the excitation remains below ~300mYV, which means
that the global nonlinear behavior threshold has decreased
when damage has increased. Note that the deviation from
this linear behavior is done with an equivalent dynamic
slope p' = 0.033 (m/s)*>2 V=1, which is twice greater than
the slope found at 1000 fatigue cycles (p’ &~ 2p).
However, it is important to note that the variation of
the NLH parameter A.S seems to be highly dependent on
the material, the distribution and the nature of the created
damage. Indeed, in the case of a polymer based compos-
ite locally damaged using a three-point bending test, re-
sults were completely different. In this case AS is calcu-
lated for the first five bending modes using the same ex-
perimental setup mentioned in section 6. Contrary to what
we found for the metal-based composite, results presented
in Figure 10 show that AS corresponding to the polymer
composite has an asymptotic behavior which seems to be
regular starting from the early excitation levels. Here we
should mention that the behavior of the polymer-based
composite was found to be of the same nature i.e. non-
linear from the very early excitations, when higher order
bending resonances are taken into account (the first ten
bending modes). Unfortunately, since we have to respect
the linearity of the experimental device, we couldn’t com-
pare the first ten bending modes for both materials.
Experimental results corresponding to metal and poly-
mer composites show that there is a real interest in broad-
ening the frequency domain for a precocious detection of
damage in heterogeneous materials. Indeed, by consider-
ing higher frequency components one can considerably
decrease the geometrical effect related to the relative posi-
tioning between nodes/antinodes and cracks. Furthermore,
nonlinear observations based on ag and « corresponding
to a given resonance mode are qualitatively the same for
both composites, but show huge differences when the con-
sidered frequency domain is larger. Finally, it is important
to note that the frequency domain could also be considered

Nonlinear Analysis of Damaged Metallic Composite Plates

AS (m/s)¥?

A
0 100 200 300 400 500 600
Excitation (mV)

Figure 9. (Colour online) Evolution of AS as a function of drive
level in the case of TA6V metal-based composite at intact and the
three damaged states. Note the deviation from the initial linear
behavior starts earlier and increases as well when fatigue cycles
increase (note that AS = 0 at intact state).

A Intact
-©- Damaged

The shift assumed linear

AS (mis)*?

Real shift
measured at

damaged state
Polymer-based composite 9

R e
0 100 200 300 400 500 600
Excitation (mV)

Figure 10. (Colour online) In the case of the locally damaged
polymer-based composite AS doesn’t show the linear behavior
found for TAG6V. In this case AS has a regular asymptotic evolu-
tion. Note that this result concerns the first five bending modes
for a better comparison with TA6V.

differently by taking into account the higher harmonics of
the excited resonances. This point will be developed in the
next section.

8. Harmonic Frequency Response of Reso-
nances

One of the most important symptoms of nonlinear systems
is the appearance of higher harmonics at its output when
excited by sine-like signals. The nonlinear resonance char-
acterization presented above measures the frequency re-
sponse functions by comparing input and output signals
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only at the frequency of excitation. Consequently, the in-
formation about the behavior of materials at higher har-
monics is lost. It is through a generation and analysis of
higher harmonics that we can determine the above men-
tioned NLH parameters ay and a¢ at intermediate frequen-
cies (between two consecutive resonances) to better assess
the NLH behavior.

One way to achieve this level of analysis would be to
use a spectrum analyzer to determine the harmonic fre-
quencies related to each mono-frequency excitation. How-
ever, this type of experience is heavy to achieve for all
associated frequencies to the different resonance modes
that must be excited at different levels. In this section,
we present a damage characterization method which cou-
ples the nonlinear resonance and harmonic generation
methods providing access to original nonlinear param-
eters and exhibit a strong dependence on damage. The
nonlinear convolution method (NLCM), idea of which
was first described in [35, 36] with mathematical sup-
port provided later in [22, 37, 38], is performed in order
to measure simultaneously the linear acoustic frequency
response function FRF of the material over one or sev-
eral resonance modes and the usually out-of-reach higher-
order FRF (showing the resonances of the higher harmonic
modes) [22].

The method uses a so-called Synchronized Swept-Sine
(SSS) signal defined as

x(t) = sin |2z fil exp (1/1)], (16)
where [ is the rate of frequency change defined as

=T
In(f2/f1)

T is a duration of the swept-sine and f; and f, are initial
and final frequency, respectively. The signal x(z) is used as
an excitation signal of the material under test.

The output signal y(¢) is recorded and the procedure
detailed in [38] (including a Matlab™ code) is applied
to extract the so-called Higher Harmonic Frequency Re-
sponse Functions (HHFRF), is briefly described in Fig-
ure 11. Indeed, Figure 11a depicts the spectrogram of the
input swept-sine signal (note that y-axis has a logarithmic
scale). Figure 11b depicts the spectrogram of the output

a7
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signal which includes several higher harmonics created by
the nonlinear system under test (a damaged state), and Fig-
ure 11c shows the HHFRF separated from each other by
the NLCM. The same figure shows the fundamental vi-
bration spectrum (blue), its second harmonic (green), and
its third harmonic (red) as well. The time of the measure-
ment equals the duration of the swept sine signal (usually
few seconds). The time of processing the measured data
is usually much shorter that the measurement itself. Thus,
HHFREF revealed to be very fast and gives valuable infor-
mation about the harmonics of the vibration modes that
can be used for further analysis.

Finally, note that the existence of the harmonics spec-
tra will not concern systematically all the vibration modes
that can be generated in the fundamental vibration spec-
trum, since their creation depends on the interaction with
the micro-cracked areas.

9. Harmonic frequency response of reso-
nances to characterize damage

Nonlinear convolution method was applied to characterize
TA6V with the help of the experimental device presented
in Figure 4. By analogy to a; and ap presented earlier,
we can define new hysteretic nonlinear parameters corre-
sponding to frequency and damping of the generated har-
monic resonances with the help of

YRR VACEY
" Sn £ Sno

A(é) - é(in(a - an0>‘ (19

a,s and a,p are the hysteretic nonlinear parameters cor-
responding to the n™ resonance harmonic. (f;, fu0) and
(Qn, Ono) are the frequencies and quality factors of the nth
harmonic resonance at the highest and lowest excitation
amplitudes, respectively.

. (18)

0

Evolution of a; as a function of the frequency is pre-
sented in Figure 12. These values are of the same order of
magnitude than the ones found in literature, where depend-
ing on the material ay can be 63 + 14 (Pyrex) or 167 &+ 25
(Perlite/graphite metal), see [9] for more details. Note that
ay is very dispersive since it varies between 28 £ 5 and

INPUT SPECTROGRAM

Frequency [Hz]
Frequency [Hz]

OUTPUT SPECTROGRAM

10° 10°
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Time [s]

6
Time [s] Frequency [Hz]

Figure 11. (Colour online) Description of the nonlinear convolution method. (a) Spectrogram of the input swept-sine signal; (b)
spectrogram of the output signal including several higher harmonics; (c¢) Higher Harmonic Frequency Response Functions separated

from each other by the NLCM method.
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5270 % 100 depending on the considered mode. This dis-
persion is very different from the one found in [22] in
which damage was localized in space. Furthermore, the
new experimental configuration allows to find resonance
harmonic hysteretic parameters created by the diffused mi-
crocracks existing in the metal-based composite. Results
show the existence of 2"¢ and 3" harmonics corresponding
to the third fundamental bending resonance, namely H»(3)
and H3(3). We have also detected 3™ and 2" harmonics
corresponding to the fourth and fifth fundamental bend-
ing resonance, namely H3(4) and H,(5). The first funda-
mental bending modes didn’t show any harmonics. Results
show that ay;(3) ~ (48 +£7)10% and a37(3) ~ (26 +5)10°
are much higher than ay(3) ~ (168 * 25).

The only harmonic detected for the fourth fundamen-
tal bending mode corresponds to the 3™ harmonic, where
a3p(4) ~ (92 £ 25)10°, again much higher than a,(4) ~
(370 £ 25). Evaluation of the parameter relative to the
2" harmonic of the 5" fundamental bending resonance
gives arr(5) ~ (57 £ 11)10*, which is clearly greater than
as(5) ~ (5270 £+ 100).

Evolution of ap as a function of the frequency is pre-
sented in Figure 13. These values are reasonably of the
same order of magnitude than the ones found in [9], where
ap = (81%10) for the Pyrex or ag = (487+37) for the Per-
lite/graphite metal. Furthermore, the values ayp and a3p
are clearly greater than those obtained for agp, where ag =
(1150 + 45), whatever the excited mode. For the first de-
tected harmonics, we measured ayp(3) ~ (17 + 1)10% and
a30(3) ~ (7.0 + 0.8)10%. On the other hand, the parame-
ters azp(4) and ap(5) were found as azp(4) = (49+3) 10°
and a0 (5) = (157 £8)10°.

The harmonics cited above were not the only ones we
have found during these experiments and they all corre-
spond to the damage state at 6000 fatigue cycles. Indeed,
other harmonics have been clearly detected and identified
(ex. H2 (2), H2 (4), H3 (1), etc.) at 1000, 5000 and 6000
fatigue cycles as well but they didn’t show any evolution
as a function of the excitation amplitude.

Indeed, the frequency and the quality factor of these har-
monics did not show any softening (frequency drop) as a
function of the dynamic strain. Consequently, it turns out
that resonance harmonic hysteretic parameters a,, s and a,o
corresponding to these harmonics are zero.

However, one should note that the existence of the har-
monics is in itself interesting, since it allows the calcula-
tion of other nonlinear parameters (quadratic, cubic, etc.),
which are not in the scope of the present work.

10. Conclusion

We have discussed in this paper the determination of non-
linear hysteretic parameters a; and o by considering dif-
ferent resonance modes. a s and @ revealed to be very de-
pendent on the resonance mode for diffused (metal com-
posite) and localized (polymer composite) damage [23].
In order to take into account the limitations related to the

Nonlinear Analysis of Damaged Metallic Composite Plates
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Figure 12. (Colour online) Evolution of a; as a function of the
excited resonances and their corresponding harmonics in the case
of metal-based composite sample TA6V.
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Figure 13. (Colour online) Evolution of @, as a function of the
excited resonances and their corresponding harmonics in the case
of metal-based composite sample TA6V.

relative positioning between nodes/antinodes and cracks,
we proposed an evaluation of the nonlinear hysteretic be-
havior over a larger frequency bandwidth, which was per-
formed using a guided wave approach. At the time where
the modulus softening is qualitatively the same for all the
micro-cracked materials, the approach using A.S show that
differences appear when the frequency domain is larger
(Figures 9 and 10). However, the question of linking AS
behavior to damage is still open, even though the results
reported here seem to indicate that AS can help in un-
derstanding the global nonlinear behavior of materials in
terms of nonlinear sources distribution and/or the involved
micro-mechanisms. In this work, we have also determined
harmonics related to the generated bending resonances and
defined nonlinear hysteretic parameters (a,s, @0, n > 2)
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for the harmonics whose frequencies decrease at increas-
ing excitation level. Results show that @, (or a,p) can
be from one to several orders of magnitudes higher than
a,r (or a,p). The use of harmonics in nonlinear acous-
tics is abundant in literature (See [6] for instance). How-
ever, these works are based on the use of compression res-
onances, where resonances are not dispersive and are gen-
erated at the same frequencies of the different harmonics.
This makes the separation between compression modes
and harmonics very difficult or may be impossible, since
the amplitude of harmonics are not only due to damage
present within the material but are amplified by the higher
order resonances as well. The originality of this work is to
use bending resonances, which are dispersive and hence
offer the possibility to separate easily both contribution
since the superposition between harmonics and higher or-
der bending resonance is natural. To our knowledge, a;, s
and a,p have only been determined for fundamental res-
onance modes (n = 1) for compression and bending res-
onances, and we did not find any equivalent values cor-
responding to harmonics in the literature. Finally, the di-
rect perspective of this work would be to consider nonlin-
ear measurements based on the propagation of A0 Lamb
waves propagating in plates with larger dimensions. This
topic is of great interest for modern science and modern in-
dustry as well since it concerns impact or bonding defects
existing within larger composite plates.
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