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Abstract

A lot of materials used in loudspeaker suspensions exhibit significant frequency dependence of damping and compliance

due to their various viscoelastic properties. Few empirical models have been proposed to take into account these

variations, the most used one is the LOG model proposed by Knudsen and Jensen. On the other hand, the fractional

calculus has been successfully applied to characterize the rheological properties of viscoelastic materials including their

frequency dependence. This study shows that the loudspeaker suspension can be successfully modeled using fractional

derivatives. The traditional low-frequency loudspeaker model is extended by a simple fractional element. It is shown

on four loudspeakers with different types of suspension with different properties that the proposed model fits well with

all the studied cases.
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1. INTRODUCTION

A traditional electrodynamic loudspeaker is equipped with a suspension which is usually formed by both a surround

attached to the outer edge of the diaphragm and a spider attached to the voice-coil. The purpose of the suspension

is to center and adjust the voice-coil in the air gap and to allow a desired axial motion of the diaphragm while

preventing lateral motion or rocking. The stiffness of the surround, along with the moving mass, determines the

resonance frequency of the loudspeaker and the cone excursion.

Materials used for loudspeaker suspensions have been improved dramatically over the last ten years and will

probably keep improving within next decades. While the spider is usually made of impregnated textiles (cotton,

poly-cotton, nomex), the surround can be made of different types of materials such as rubber, foam, coated fabric

or diaphragm material (rigid mounting). These materials exhibit various viscoelastic properties leading to different

loudspeaker characteristics.

It has been shown is several studies [1, 2, 3] that the traditional model of loudspeaker fails to describe the

complicated viscoelastic behavior of these materials. Thus, several different models have been proposed based

either on rheological or on empirical approaches [1, 2, 3]. These models are discussed in section 2.

On the other hand, many physical processes, including the viscoelastic materials, exhibit fractional order be-

havior [4]. The fractional derivatives, discussed in section 3, provide an adequate description of real viscoelastic

behavior with a limited number of material parameters [5]. Moreover, there exists a physical interpretation of the

fractional derivatives [6, 7, 8, 9] giving them a full credit over the purely empirical models.

This paper shows how fractional derivatives can provide a suitable method of describing the properties of

viscoelastic materials used for loudspeaker suspensions. The aim of the paper is not to evaluate a general theory of

fractional derivatives, nor to provide an extensive comparison of viscoelastic models, but to show how to successfully

use fractional derivatives for suspension modeling. Adding a single fractional viscoelastic element to the traditional

model of loudspeaker, discussed in section 4, leads to a very good agreement between the measured data and the

model. Four loudspeakers, each of them equipped with different types of surround, are used to test the proposed

fractional model. The loudspeakers, the experimental setup and the results are discussed in section 5. Moreover,

the frequency dependence of the compliance and the mechanical losses is studied in section 6 and a comparison

between the measured data and the model based on fractional derivatives is provided. The proposed fractional

model provides a very good fit with the measured data in all studied cases.

2. VISCOELASTIC MODELS OF SUSPENSION

The materials used for loudspeaker suspensions exhibit both viscous and elastic characteristics. The rheological

models describing these characteristics consist of a combination of basic elements such as linear elastic springs

(Fig. 1a) and viscous dampers (Fig. 1b) [10]. Simple models, such as Kelvin-Voigt and Maxwell ones, use one spring

and one damper connected in parallel and in series respectively. More complicated models consist of more springs

and dampers, such as a Standard Linear Solid model (SLS), also known as the Zener model, combining 3 elements

[11]. Obviously, the greater the number of springs and dampers, the better the fitting the material behavior of

the suspension. The most general viscoelastic models used in rheology, such as Generalized Kelvin-Voigt or the

Generalized Maxwell ones, consist of an arbitrary number of elements [11, 12, 13].

2.1 Traditional model

The traditional well-known loudspeaker model [14, 15] is based on a simple mass-spring-damper system (Fig. 2a).

In such a model the mechanical part consists of a mass m attached to a parallel combination of a Newtonian

damper defined by its viscous damping coefficient r and a Hookean elastic spring defined by its stiffness k. The

electro-mechanical analogy to such a system is depicted in (Fig. 2b) in which the mass, damping coefficient (also
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Figure 1. Basic rheological elements: (a) a purely elastic element = spring, (b) a purely viscous element = damper,

(c) a fractional element = interpolation between the spring and the damper.

ř

Figure 2. (a) A traditional mass-spring-damper system based on Kelvin-Voigt viscoelastic model consisting of a

Newtonian damper and a Hookean elastic spring connected in parallel. (b) Its electro-mechanical analogy.
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called mechanical resistance) and compliance (the inverse of stiffness) are represented by symbols Mms, Rms and

Cms as it is a common practice in the field of audio engineering. Such a model is widely used not only by audio

engineers, but also by many scientists most likely due to its low number of parameters and its simplicity.

It is, however, commonly experienced that the traditional 3 parameters model based on a simple mass-spring-

damper does not describe correctly the real-world behavior of a viscoelastic material. One of the drawbacks of

the traditional model is that its mechanical losses are represented purely by viscous damper, omitting possible

elastic or viscoelastic losses. Another important drawback is that it does not account for the viscoelastic creep

at low frequencies observed in many previous works dealing with loudspeaker suspensions [1, 16, 17]. A natural

consequence of such drawbacks is an effort to improve the classical viscoelastic model in such a way that it fits the

real-world behavior of a viscoelastic material correctly while still keeping the number of parameters low.

2.2 Linear Solid models

A straightforward solution to improve the model is to add spring and damper elements to the Kelvin-Voigt model

in series, parallel or in combination of both.

The Standard Linear Solid (SLS) model is a commonly used rheological model for viscoelastic materials. It

ameliorates the Kelvin-Voigt model by putting a spring element in series. The study of Knudsen and Jensen [1], in

which the spring of the traditional model is replaced by the SLS model, has shown that such a model improves the

traditional model. Such a conclusion is not surprising as two extra parameters are added to the model.

More general linear solid models such as the Generalized Maxwell model [12], or parallel connection of so-called

three-parameter model [13] may also better fit the material behavior of the suspension, yet at the cost of a greater

number of parameters.

2.3 Models with Frequency Dependent Parameters

In the study of Knudsen and Jensen [1], two models containing only one extra parameter have been tested: the

EXP (exponential) and the LOG (logarithmic) model. Both models use a complex frequency dependent compliance

defined as ce(jω)−β and cl[1 − λ log(jω)] respectively. According to studies in which the LOG model is compared

with the SLS model [17], the LOG model performs much better than the SLS model. A similar conclusion is also

found in [1], where the LOG is performing the best.

The LOG model becomes a widely accepted model of complex compliance [2, 3] for its simplicity (only 1 extra

parameter is needed) and for its sufficiently accurate prediction of the behavior of a viscoelastic material.

However, as the LOG model is purely empirical, and not derived from physical considerations [3], it involves two

important drawbacks. First, as the frequency approaches zero, the compliance of the LOG model approaches infinity.

Second, above a certain frequency the LOG model predicts negative compliance which is physically impossible [2, 3].

Moreover, according to [18], the LOG model performs well for suspensions with high degree of viscoelasticity, but

fails when the degree of viscoelasticity is low.

In the work of Thorgborg et al. [2], a modified LOG model is proposed including only frequency-dependent

damping (FDD). The FDD model is refined in [18] to also include the frequency dependence of compliance (modified

FDD). Contrary to the original LOG model, the frequency dependence of damping and the frequency dependence

of compliance are separated, involving one extra parameter. Nevertheless, even if the separation of frequency

dependencies of damping and compliance may get more physical sense, the model remains still empirical and has

the same drawbacks as the LOG model.

2.4 Models Based on Retardation Spectrum

Recently, Ritter and Agerkvist [3] found an interesting connection between the empirical LOG model and the Gen-

eralized Kelvin-Voigt model (a physical model with infinite number of elements) through the retardation spectrum

[10, 19]. Ritter and Agerkvist proposed two new models (3PC and 4PC). The 3PC model uses three parameters to
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describe the complex frequency dependent compliance and corrects the problem of negative compliance at higher

frequencies. The 4PC model corrects both drawbacks of the LOG model by defining a minimum compliance and

an equilibrium compliance. According to authors, the 4PC model, which uses 4 parameters to model the complex

compliance, provides slightly better accuracy than the LOG model.

3. FRACTIONAL VISCOELASTIC ELEMENT

The use of fractional derivatives, is nowadays accepted in many fields of physics and engineering [4], including

mechanics [20], acoustics [21, 22] and more recently audio-engineering [23]. In [23], the fractional derivatives are

successfully used to model the electrical impedance of a loudspeaker motor.

The purpose of this paper is not to give a review of fractional derivatives since many information can be found

in [8, 24, 25], but to show that the fractional derivatives can describe better the complex viscoelastic behavior of

the loudspeaker suspension and consequently can be successfully used in modeling the loudspeaker mechanical part.

The fractional derivatives are based on the generalization of the differential operator dn

dtn , in which n is a positive

integer number, to dβ

dtβ
where β is any real number. A typical application of fractional derivatives is a rheological

fractional element depicted in Fig. 1c. The force-displacement relation of such an element is given by

F(t) = η
dβx

dtβ
, (1)

where the constant η is called a viscoelastic coefficient, its physical dimension being [Nsβ/m] [26].

Comparing the fractional element with the traditional elements such as spring (Fig. 1a) and damper (Fig. 1b),

we conclude that relation (1) can represent the purely elastic element (spring) by putting β = 0 as well as the

purely viscous element (damper) by putting β = 1. The fractional element can be seen as an interpolation between

the spring and the damper; β ∈ (0, 1) indicating the degree between the viscosity and the elasticity. Some authors

[27] associate the coefficient β ∈ (0, 0.5) to the elasto-viscous materials, and the coefficient β ∈ (0.5, 1) to the

visco-elastic materials.

4. APPLICATION OF FRACTIONAL DERIVATIVES TO THE LOUDSPEAKER

SUSPENSION

In this section, the fractional derivatives are applied to the classical mechanical equation of loudspeaker that

describes the simple mass-spring-damper system of Fig. 2 by

F(t) = Mms
d2x

dt2
+Rms

dx

dt
+

1

Cms
x, (2)

F(t) being the force applied to the mechanical part of the loudspeaker and x(t) being its consecutive displacement.

Adding the fractional element depicted in Fig. 1c in parallel to the traditional model of Fig. 2a, we obtain a

new proposed model depicted in Fig. 3. The relation between the force and the displacement can be defined in the

time-domain as

F(t) = Mms
d2x

dt2
+Rv

dx

dt
+ η

dβx

dtβ
+

1

C0
x, (3)

or in frequency domain, defining F (ω) and X(ω) as the Fourier transforms of F(t) and x(t), as

F (ω)

X(ω)
= −ω2Mms + jωRv + (jω)βη +

1

C0
. (4)

In this modified model Rv represents viscous losses and C0 represents the static compliance. The mechanical

impedance Zm(ω), defined as the force over the velocity, of such a system is then defined as

Zm(ω) = jωMms +Rv + (jω)(β−1)η +
1

jωC0
. (5)
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Figure 3. (a) A proposed mechanical model of the loudspeaker suspension in which a fractional element is added in

parallel to the traditional mass-spring-damper system. (b) Its electro-mechanical analogy.

Figure 4. Evaluated loudspeakers: (a) Peerless PLS-75F25AL02-08, (b) Peerless PLS-75F25AL04-08, (c) PHL

1520, (d) Pioneer W16FU90-51D-T.
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Figure 5. A block diagram of the measuring system. The measurements are performed for two different

configurations: under vacuum of -0.97 bar (the vacuum chamber is closed), and in standard atmosphere (the

vacuum chamber is opened).

5. EXPERIMENTS

In the following, 4 different loudspeakers are evaluated, each of them having a different type of suspension.

Peerless PLS-75F25AL02-08 is a 3” compact full range driver equipped with an anodized aluminium cone, a

large roll SBR low-damping rubber surround and a Nomex spider. (Fig. 4a).

Peerless PLS-75F25AL04-08 is almost identical copy of the first loudspeaker (3” full range driver) except that

this one is equipped with an inverted rubber surround (Fig. 4b).

PHL 1520 is a 6.5” midrange driver with high-strength cellulose fiber cone impregnated and coated on both sides

with damped resins. The suspension consists of a cup spider made of Nomex and a high-speed flat damped surround

made of a light-weight strip of polyethylene foam (Fig. 4c).

Pioneer W16FU90-51D-T is a 6.5” woofer with a woven aramid/carbon composite shell cone suspended by a

corrugated surround and a cup spider made of Nomex (Fig. 4d).

5.1 Measurement Set-up

A block diagram of the measuring system used to both excite the loudspeaker under test and acquire the data is

shown in Fig. 5. The loudspeaker is driven with a voltage source (a source having a very low output impedance)

as it is usually operated in actual conditions. A NI-4431 USB acquisition device is used to send and acquire the

measured signals, and a Devialet D-Premier amplifier to drive the loudspeaker. The current flowing through the

loudspeaker is measured using a Current Shunt (N4L HF003) with a resistance of 0.48 Ω. The displacement is

measured using a Polytec OFV-3000 vibrometer.

Prior to measurements, the loudspeakers are run-in for several hours using a low-frequency high-displacement

signal to ensure a mechanical stability during the measurement. Each loudspeaker is put into a small vacuum

chamber (Klippel Vacuum Kit) and two series of measurement are made: in standard atmosphere (vacuum chamber

opened) and under vacuum of -0.97 bar. In vacuum, no air should influence the motion of mechanical part of the

loudspeaker, possibly responsible for a fraction of mechanical losses caused by the viscosity of the air in the gap

[28, 29]. Also, the radiation impedance should be zero. Since the radiation impedance in standard atmosphere

and at low frequencies is dominated by a mass loading reactance, it is equivalent to adding a mass proportional to

the equivalent surface of the membrane. Thus, the reason to measure the loudspeaker in vacuum and in standard

atmosphere is twofold: first to test if the proposed model estimates a similar differences in mass for same size of

membranes and, second, to verify if the presence of air influences the mechanical losses.
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Table 1. Estimated mechanical parameters of the model with fractional derivatives for all four loudspeakers

measured in standard atmosphere (atm) and in vacuum, and their respective RMS errors (magnitude and phase)

of responses from force to displacement X(ω)/F (ω).
parameters RMS error of X(ω)/F (ω)

Mms [g] C0 [mm/N] Rv [Ns/m] η [Nsβ/m] β [-] mag. [ %] ∠ [deg]

Peerless PLS-75F25AL02-08
atm 2.69 1.12 0.167 140 0.140 0.22 0.13

vacuum 2.53 1.12 0.173 140 0.141 0.26 0.17

Peerless PLS-75F25AL04-08
atm 2.52 1.20 0.182 111 0.173 0.25 0.19

vacuum 2.37 1.18 0.190 96.6 0.194 0.31 0.21

PHL 1520
atm 11.9 0.182 1.95 1889 0.146 0.51 0.38

vacuum 10.0 0.203 2.26 2141 0.150 0.55 0.44

Pioneer W16FU90
atm 19.4 0.740 0.754 402 0.170 0.31 0.23

vacuum 17.2 0.722 0.236 424 0.189 0.27 0.16

5.2 Measurement Conditions

The mechanical properties of the loudspeaker may vary with time due to mechanical fatigue [30, 31], temperature

or humidity variation. Therefore, rather then using a sine measurement in which each frequency is applied at a

different time, it is preferable to use a multi-tone stimuli where all the frequencies are applied at the same time.

The loudspeaker is driven by a multi-tone signal with 80 frequencies logarithmically distributed between 0.1 Hz

and 1 kHz. The exact value of each frequency component is adjusted to be a divisor of the sampling frequency

(fs = 5 kHz) of the acquisition system. The phase of each frequency is chosen arbitrarily to avoid a huge crest

factor of the input signal.

The choice of the input level is affected by two contradictory facts: it must not be too low, otherwise the signal

would be drawn in the noise, but also not too high to overcome the problems associated with nonlinearities of the

loudspeaker. A signal with peak value not exceeding 0.2 V is chosen as a compromise.

The acquired voltage u(t), current i(t) and displacement x(t) are recorded, and the Fourier coefficients of each

frequency component ωi = 2πfi of each signal are calculated, resulting in U(ωi), I(ωi) and X(ωi). Approaching

the frequency 300 Hz, the assumption of the piston motion of the membrane is not valid due to cone breakup-rim

resonances. Since the measured displacement x(t) of the cone is not reliable above this frequency, the measured

data above 300 Hz are ignored.

5.3 Results

Force factor Bl is first estimated from measured data [32] and the force F (ω) applied on the mechanical part is

calculated as F (ω) = Bl · I(ω). The receptance frequency response functions [33] X(ω)/F (ω) are next derived as

well as the mechanical impedance Zm(ω) = F (ω)/V (ω).

To estimate the best set of parameters of the fractional model a curve fitting procedure is performed by mini-

mizing the sum of error (least-squares fit) between 0.1 Hz and 300 Hz. The fit is performed on both the real and

the imaginary part of the mechanical impedance (5), expressed as

<{Zm} = Rv + sin
(
β
π

2

)
ω(β−1)η, (6)

and

={Zm} = ωMms − cos
(
β
π

2

)
ω(β−1)η − 1

ωC0
. (7)

The estimated parameters are listed in Table 1, for the four measured loudspeakers, and for both configurations:

measured in standard atmosphere, noted as (atm), and measured in vacuum. The respective RMS errors (magnitude

and phase) of receptances X(ω)/F (ω) are listed in the same Table. The most important conclusions from the

estimated parameters are the following.

1) The RMS errors are kept very low for both magnitude and phase for all measured loudspeakers. The error of

magnitude is between 0.22 % and 0.55 % and the phase error between 0.14 and 0.44 degrees. A similar conclusion
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Figure 6. Measured receptance X(ω)/F (ω) of 4 different loudspeakers (dots) compared to a simulation calculated

using the model with fractional derivatives. Measurements were performed under vacuum of -0.97 bar.
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can be drawn from Fig. 6 in which the receptances X(ω)/F (ω) obtained from measurements in vacuum (dots) are

compared to simulated receptances calculated using the model with fractional derivatives. The simulated curves

almost perfectly coincide the measured data, even for very low frequencies in which a so-called creep phenomenon

appears.

2) The estimated mass Mms is always lower for measurements in vacuum, which agrees with physical laws.

Moreover, the mass difference between the measurements in standard atmosphere and in vacuum, corresponding

to the air load mass, is 0.16 g and 0.15 g in the case of the 3” loudspeakers and 1.9 g and 2.2 g for 6.5” speakers.

The two same-size pairs give almost the same air load mass. Considering the size of equivalent surface of each

loudspeaker and their approximative theoretical values of air load [34], the indirectly estimated values of air load

mass are reliable.

3) The estimated mechanical parameters C0, Rv, η and β defining the viscoelastic properties of the loudspeaker

are almost independent on the atmospheric condition (standard atmosphere or vacuum) for both Peerless speakers

and for the PHL speaker. The static compliance C0 is almost the same for both Peerless speakers as well as for the

Pioneer speaker. A 10% difference between the measurement of the static compliance C0 in standard atmosphere

and vacuum is found in the case of the PHL speaker with the foam surround. The viscoelastic parameters η and

β does not vary a lot with the atmospheric condition (standard atmosphere or vacuum). The fractional order

β always drops a little when changing the atmospheric conditions from vacuum to standard atmosphere but the

variation remains very small (≈10%). The most sensitive parameter to the variation of atmospheric condition is

the viscous coefficient Rv. The viscous coefficient Rv of the Pioneer speaker drops by factor of 3 when being in

vacuum suggesting a possible losses due to viscosity of the air in the gap, but obviously more scientific proofs would

be required to confirm or decline such a conclusion. On the other hand the viscous coefficient Rv increases by 4%

for both Peerless speakers and by 15% for the PHL speaker when being in vacuum. The possible explanation for

this variation may be a simple mechanical fatigue [30, 31], or a temperature variation influencing the viscoelastic

properties of suspension materials. Being aware of a possible decrease of temperature in vacuum, it is measured

using a liquid crystal thermometer strip. The drop of temperature is approximately 4± 0.5◦C; from 20± 0.5◦C in

standard atmosphere to 16± 0.5◦C in vacuum.

4) Finally, viscoelastic coefficient β remains low for all four tested loudspeaker, corresponding to rather elasto-

viscous than visco-elastic behavior [27]. It is also interesting to note that the coefficient β is different for both

Peerless loudspeakers. These loudspeakers use the same spider and the surround is made of the same rubber

material; the only difference is the shape of the surround (a normal surround and an inverted one). The results

suggest that the shape of the surround may also influence the model parameters.

6. FREQUENCY DEPENDENT COMPLIANCE AND LOSSES

It has been shown in many papers dealing with viscoelastic behavior of loudspeaker suspensions [1, 3, 18] that

the compliance as well as the mechanical losses are frequency dependent. The frequency dependent complex

compliance [1] can be written as C∗(ω) = C ′(ω)− jC ′′(ω) [10], where the real-part component C ′(ω) is called the

storage compliance and determines the storage energy, whilst the imaginary-part component C ′′(ω) is responsible

for energy losses and is consequently called loss compliance.

6.1 Storage Compliance

The complex compliance [10, 35] of a mechanical system can be expressed as [3]

C∗(ω) =

[
F (ω)

X(ω)
+ ω2Mms

]−1
(8)

where all the viscous and viscoelastic losses are included in the imaginary part of the complex compliance C∗(ω).
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The complex compliance of the proposed fractional model can be thus derived from (4) and (8) as

C∗(ω) =

[
1

C0
+ (jω)βη + jωRv

]−1
. (9)

Studying closely the storage compliance C ′(ω), defined as a real part of (9), we can note, that the fractional order

model does not suffer from the drawbacks of the LOG model discussed in section 2.

First, as the frequency approaches zero, the storage compliance approaches the static compliance C0. Second,

contrary to the LOG model, the storage compliance never reaches negative values. In Fig. 7 the storage compliance

derived from measured data in vacuum using (8) is compared with the simulated storage compliance calculated using

the fractional model (9). The comparison in Fig. 7 is provided for all the tested loudspeakers except the Peerless

with inverted surround since its estimated mechanical parameters, and consequently the storage compliance, are

very similar to the Peerless loudspeaker with normal surround and the very close curves would worsen the readability

of the graph. We can conclude from Fig. 7 that a good estimation of all the parameters of the proposed fractional

model is sufficient to describe correctly the frequency dependent storage compliance within the frequency range of

interest.

When comparing the behavior of the storage compliance (Fig. 7) at very low frequencies, we can see that the

measured data as well as the fractional model approaches the static compliance C0 (see Table 1) as frequency tends

to zero. However, all tested loudspeaker still exhibit an increase of storage compliance with decreasing frequency

even for frequencies approaching 0.1 Hz. Therefore, it still remains unclear at which (very low) frequency the

compliance stabilizes to the value of static compliance C0.

6.2 Mechanical Losses

When studying the mechanical properties of a loudspeaker, the mechanical losses are usually defined as the real

part of the mechanical impedance. In a traditional model of loudspeaker (2), the only mechanical losses taken into

account are the viscous ones, represented by the viscous coefficient Rms. The mechanical losses of the proposed

fractional model have two components (6): a constant Rv responsible for the viscous losses and a component with

frequency dependence ω(β−1) representing the losses caused by the viscoelastic fractional element.

In Fig. 8, the mechanical losses derived from measured data in vacuum as a real part of the measured mechanical

impedance Zm(ω) are compared with the mechanical losses calculated using the fractional model (6). Once again,

we can conclude from Fig. 8 that the fractional model gives a very good fit between the measured data and the

data calculated using the fractional model.

The two dashed asymptotic lines in Fig. 8 show the relative contribution of the viscous losses (parameter Rv)

and viscoelastic losses (parameters β and η) for the Pioneer speaker. Note, that the viscous contribution (Rv),

usually used as a single parameter to represent losses in the traditional model, is not frequency dependent and can

hardly fit the measured decreasing curve. The viscoelastic contribution is represented by a straight line in a log-log

graph; the slope being given by (β − 1).

6.3 Loss factor

It is sometimes convenient to define a loss factor tan δ [35] relating the storage and the loss energy by the following

relation

C∗(ω) = C ′(ω)[1− j tan δ(ω)], (10)

where

tan δ =
C ′′(ω)

C ′(ω)
. (11)
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The loss factor of the fractional model can be thus derived from (9) and (11) as

tan δ =
ωRv + η sin(β π2 )ωβ

1
C0

+ η cos(β π2 )ωβ
. (12)

In Fig. 9, the loss factors derived from measured data in vacuum (11) are compared with the loss factors calculated

using the fractional model (12). The asymptotic behavior due to viscous and viscoelastic contributions are depicted

using dashed lines. Note that the slope of the dashed line of the viscous contribution in the log-log plot is equal to

one no matter the coefficients of the model (tan δ = RvC0ω for η = 0). Thus, considering only viscous contribution

as a single element responsible for the losses would not be sufficient especially at low frequencies where the slope of

the log-log curve of tan δ is much lower than one.

7. DISCUSSION

7.1 Frequency range

The results of four studied loudspeakers with different types of suspension show that the proposed model with a

single fractional element provides very low rms error within the frequency range in which the measured data are

reliable. Since the assumption of the piston motion of the membrane is not valid at higher frequencies due to cone

breakup-rim resonances, usually occurring two or three octaves above the resonance frequency, the model accuracy

cannot be estimated above these frequencies. However, as shown in Figs. 8 and 9 the viscoelastic contribution of

the model is much more important under the resonance frequency. Consequently, the frequency limit of the model

due to the cone breakup-rim resonances is the same as for the traditional lumped model of an electrodynamic

loudspeaker.

7.2 Number of parameters

The proposed model uses four parameters to describe the viscoelastic behavior of the mechanical part: the static

compliance C0 defining the purely elastic properties of the suspension, the viscous coefficient Rv defining purely

viscous properties, the viscoelastic coefficient η and the fractional order β. More complicated models such as

Kelvin-Voigt chain model [36], or Maxwell chain model [36, 37, 38] use more fractional elements to fit better the

viscoelastic behavior of the material, but at the cost of greater number of parameters. Lower number of parameters

would also be possible, but at the cost of the model precision. Keeping only the fractional element with the spring

(putting Rv = 0) would result in a straight line of the log-log plot of mechanical losses (6) in Fig 8. Such a choice

would lead to an incorrect fit of mechanical losses and consequently to higher error of the model. Keeping only the

fractional element with the damper (putting C0 = ∞) would bring the same drawback as the one with the LOG

model. Moreover, such a solution has already been proposed by Knudsen and Jensen [1], since the EXP model is

indeed a particular case of the proposed fractional model with C0 =∞.

7.3 Nonlinear fractional model

The proposed fractional model can be applied in the nonlinear domain in several manners. A simple engineering

approach would be to make vary at least one of the model parameters Rv, η, β and C0 with displacement. More

general approach would consist in using a nonlinear model such as Volterra model [39] or Generalized Hammerstein

model [40] in which the fractional derivatives would appear inside the nonlinear kernels.

The linear relation between the force and the displacement (3) can be expressed as

F(t)−Mms
d2x

dt2
= Ŝ[x(t)], (13)

where Ŝ represents a linear operator defined as

Ŝ[x(t)] =

[
Rv

d

dt
+ η

dβ

dtβ
+

1

C0

]
x. (14)
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Figure 7. Storage compliance of 3 different loudspeakers derived from the measurement (dots) compared to a

simulation calculated using the model with fractional derivatives. Measurements were performed under vacuum of

-0.97 bar.

Since the operator S is linear and translation invariant, it can be represented as a convolution

Ŝ[x(t)] = h(t) ∗ x(t), (15)

where the kernel h(t) is defined using inverse Fourier transform F−1 as

h(t) = F−1
[
jωRv + η(jω)β +

1

C0

]
. (16)

In a case of a nonlinear system, the linear operator Ŝ must be replaced by a nonlinear operator ŜNL. Using the

Generalized Hammerstein model, the ŜNL expands to

ŜNL[x] =

N∑
n=1

hn(t) ∗ xn(t). (17)

The fractional derivatives may thus apply not only to the linear kernel h1(t) (16), but to all nonlinear kernels hn(t).

Moreover, taking into account a possible hysteresis-like dependence on the peak value of displacement xmax [41],

the nonlinear operator ŜNL should be implemented as a function o instantaneous and peak displacement leading

to much more complicated models [42] that require advanced identification techniques of nonlinear systems [43].

8. CONCLUSION

This paper shows that the mechanical models based on fractional derivatives may prove useful for loudspeaker

suspensions. In view of their ability to model viscoelastic phenomena, they provide a suitable method of describing

dynamical properties of viscoelastic materials used in loudspeaker manufacture.

The results of four studied loudspeakers with different types of suspension show that the proposed model with

a single fractional element provides very low rms error when compared to the measured data for all loudspeakers

measured in standard atmosphere as well as in vacuum.
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Figure 8. Mechanical losses of 3 different loudspeakers derived from the measurement (dots) compared to a

simulation calculated using the model with fractional derivatives. Measurements were performed under vacuum of

-0.97 bar. The relative contribution of the viscoelastic losses (β, η) and viscous losses (Rv) of the Peerless

loudspeaker are depicted as dashed asymptotes.

Figure 9. Loss factor tanδ of 3 different loudspeakers derived from the measurement (dots) compared to a

simulation calculated using the model with fractional derivatives. Measurements were performed under vacuum of

-0.97 bar. The relative contribution of the viscoelastic losses (β, η) and viscous losses (Rv) of the Peerless

loudspeaker are depicted as dashed asymptotes.
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