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Modeling Viscoelastic Properties of Loudspeaker Suspensions Using Fractional Derivatives

A lot of materials used in loudspeaker suspensions exhibit significant frequency dependence of damping and compliance due to their various viscoelastic properties. Few empirical models have been proposed to take into account these variations, the most used one is the LOG model proposed by Knudsen and Jensen. On the other hand, the fractional calculus has been successfully applied to characterize the rheological properties of viscoelastic materials including their frequency dependence. This study shows that the loudspeaker suspension can be successfully modeled using fractional derivatives. The traditional low-frequency loudspeaker model is extended by a simple fractional element. It is shown on four loudspeakers with different types of suspension with different properties that the proposed model fits well with all the studied cases.

INTRODUCTION

A traditional electrodynamic loudspeaker is equipped with a suspension which is usually formed by both a surround attached to the outer edge of the diaphragm and a spider attached to the voice-coil. The purpose of the suspension is to center and adjust the voice-coil in the air gap and to allow a desired axial motion of the diaphragm while preventing lateral motion or rocking. The stiffness of the surround, along with the moving mass, determines the resonance frequency of the loudspeaker and the cone excursion.

Materials used for loudspeaker suspensions have been improved dramatically over the last ten years and will probably keep improving within next decades. While the spider is usually made of impregnated textiles (cotton, poly-cotton, nomex), the surround can be made of different types of materials such as rubber, foam, coated fabric or diaphragm material (rigid mounting). These materials exhibit various viscoelastic properties leading to different loudspeaker characteristics.

It has been shown is several studies [START_REF] Knudsen | Low-frequency loudspeaker models that include suspension creep[END_REF][START_REF] Thorborg | Frequency dependence of damping and compliance in loudspeaker suspensions[END_REF][START_REF] Ritter | Modeling viscoelasticity of loudspeaker suspensions using retardation spectra[END_REF]] that the traditional model of loudspeaker fails to describe the complicated viscoelastic behavior of these materials. Thus, several different models have been proposed based either on rheological or on empirical approaches [START_REF] Knudsen | Low-frequency loudspeaker models that include suspension creep[END_REF][START_REF] Thorborg | Frequency dependence of damping and compliance in loudspeaker suspensions[END_REF][START_REF] Ritter | Modeling viscoelasticity of loudspeaker suspensions using retardation spectra[END_REF]. These models are discussed in section 2.

On the other hand, many physical processes, including the viscoelastic materials, exhibit fractional order behavior [START_REF] Sabatier | Advances in fractional calculus[END_REF]. The fractional derivatives, discussed in section 3, provide an adequate description of real viscoelastic behavior with a limited number of material parameters [START_REF] Heymans | Fractal rheological models and fractional differential equations for viscoelastic behavior[END_REF]. Moreover, there exists a physical interpretation of the fractional derivatives [START_REF] Schiessel | Hierarchical analogues to fractional relaxation equations[END_REF][START_REF] Schiessel | Generalized viscoelastic models: their fractional equations with solutions[END_REF][START_REF] Hilfer | Applications of fractional calculus in physics[END_REF][START_REF] Papoulia | Rheological representation of fractional order viscoelastic material models[END_REF] giving them a full credit over the purely empirical models.

This paper shows how fractional derivatives can provide a suitable method of describing the properties of viscoelastic materials used for loudspeaker suspensions. The aim of the paper is not to evaluate a general theory of fractional derivatives, nor to provide an extensive comparison of viscoelastic models, but to show how to successfully use fractional derivatives for suspension modeling. Adding a single fractional viscoelastic element to the traditional model of loudspeaker, discussed in section 4, leads to a very good agreement between the measured data and the model. Four loudspeakers, each of them equipped with different types of surround, are used to test the proposed fractional model. The loudspeakers, the experimental setup and the results are discussed in section 5. Moreover, the frequency dependence of the compliance and the mechanical losses is studied in section 6 and a comparison between the measured data and the model based on fractional derivatives is provided. The proposed fractional model provides a very good fit with the measured data in all studied cases.

VISCOELASTIC MODELS OF SUSPENSION

The materials used for loudspeaker suspensions exhibit both viscous and elastic characteristics. The rheological models describing these characteristics consist of a combination of basic elements such as linear elastic springs (Fig. 1a) and viscous dampers (Fig. 1b) [START_REF] Ferry | Viscoelastic Properties of Polymers[END_REF]. Simple models, such as Kelvin-Voigt and Maxwell ones, use one spring and one damper connected in parallel and in series respectively. More complicated models consist of more springs and dampers, such as a Standard Linear Solid model (SLS), also known as the Zener model, combining 3 elements [START_REF] Mase | Schaum's outline of theory and problems of continuum mechanics[END_REF]. Obviously, the greater the number of springs and dampers, the better the fitting the material behavior of the suspension. The most general viscoelastic models used in rheology, such as Generalized Kelvin-Voigt or the Generalized Maxwell ones, consist of an arbitrary number of elements [START_REF] Mase | Schaum's outline of theory and problems of continuum mechanics[END_REF][START_REF] Petosic | Modeling of an electrodynamic loudspeaker including membrane viscoelasticy[END_REF][START_REF] Djurek | Analysis of viscoelasticity and residual strains in an electrodynamic loudspeaker[END_REF].

Traditional model

The traditional well-known loudspeaker model [START_REF] Thiele | Loudspeakers in vented boxes: Part 1[END_REF][START_REF] Small | Vented-box loudspeaker systems-part 2: Large-signal analysis[END_REF] is based on a simple mass-spring-damper system (Fig. 2a). In such a model the mechanical part consists of a mass m attached to a parallel combination of a Newtonian damper defined by its viscous damping coefficient r and a Hookean elastic spring defined by its stiffness k. The electro-mechanical analogy to such a system is depicted in (Fig. 2b) in which the mass, damping coefficient (also LAUM, CNRS UMR 6613 called mechanical resistance) and compliance (the inverse of stiffness) are represented by symbols M ms , R ms and C ms as it is a common practice in the field of audio engineering. Such a model is widely used not only by audio engineers, but also by many scientists most likely due to its low number of parameters and its simplicity.

It is, however, commonly experienced that the traditional 3 parameters model based on a simple mass-springdamper does not describe correctly the real-world behavior of a viscoelastic material. One of the drawbacks of the traditional model is that its mechanical losses are represented purely by viscous damper, omitting possible elastic or viscoelastic losses. Another important drawback is that it does not account for the viscoelastic creep at low frequencies observed in many previous works dealing with loudspeaker suspensions [START_REF] Knudsen | Low-frequency loudspeaker models that include suspension creep[END_REF][START_REF] Knudsen | The significance of viscoelastic effects in loudspeakers parameter measurements[END_REF][START_REF] Agerkvist | A study of the creep effect in loudspeaker suspension[END_REF]. A natural consequence of such drawbacks is an effort to improve the classical viscoelastic model in such a way that it fits the real-world behavior of a viscoelastic material correctly while still keeping the number of parameters low.

Linear Solid models

A straightforward solution to improve the model is to add spring and damper elements to the Kelvin-Voigt model in series, parallel or in combination of both.

The Standard Linear Solid (SLS) model is a commonly used rheological model for viscoelastic materials. It ameliorates the Kelvin-Voigt model by putting a spring element in series. The study of Knudsen and Jensen [START_REF] Knudsen | Low-frequency loudspeaker models that include suspension creep[END_REF], in which the spring of the traditional model is replaced by the SLS model, has shown that such a model improves the traditional model. Such a conclusion is not surprising as two extra parameters are added to the model.

More general linear solid models such as the Generalized Maxwell model [START_REF] Petosic | Modeling of an electrodynamic loudspeaker including membrane viscoelasticy[END_REF], or parallel connection of so-called three-parameter model [START_REF] Djurek | Analysis of viscoelasticity and residual strains in an electrodynamic loudspeaker[END_REF] may also better fit the material behavior of the suspension, yet at the cost of a greater number of parameters.

Models with Frequency Dependent Parameters

In the study of Knudsen and Jensen [START_REF] Knudsen | Low-frequency loudspeaker models that include suspension creep[END_REF], two models containing only one extra parameter have been tested: the EXP (exponential) and the LOG (logarithmic) model. Both models use a complex frequency dependent compliance defined as c e (jω) -β and c l [1 -λ log(jω)] respectively. According to studies in which the LOG model is compared with the SLS model [START_REF] Agerkvist | A study of the creep effect in loudspeaker suspension[END_REF], the LOG model performs much better than the SLS model. A similar conclusion is also found in [START_REF] Knudsen | Low-frequency loudspeaker models that include suspension creep[END_REF], where the LOG is performing the best.

The LOG model becomes a widely accepted model of complex compliance [START_REF] Thorborg | Frequency dependence of damping and compliance in loudspeaker suspensions[END_REF][START_REF] Ritter | Modeling viscoelasticity of loudspeaker suspensions using retardation spectra[END_REF] for its simplicity (only 1 extra parameter is needed) and for its sufficiently accurate prediction of the behavior of a viscoelastic material.

However, as the LOG model is purely empirical, and not derived from physical considerations [START_REF] Ritter | Modeling viscoelasticity of loudspeaker suspensions using retardation spectra[END_REF], it involves two important drawbacks. First, as the frequency approaches zero, the compliance of the LOG model approaches infinity. Second, above a certain frequency the LOG model predicts negative compliance which is physically impossible [START_REF] Thorborg | Frequency dependence of damping and compliance in loudspeaker suspensions[END_REF][START_REF] Ritter | Modeling viscoelasticity of loudspeaker suspensions using retardation spectra[END_REF]. Moreover, according to [START_REF] Thorborg | Frequency dependence of the loudspeaker suspension (a follow up)[END_REF], the LOG model performs well for suspensions with high degree of viscoelasticity, but fails when the degree of viscoelasticity is low.

In the work of Thorgborg et al. [START_REF] Thorborg | Frequency dependence of damping and compliance in loudspeaker suspensions[END_REF], a modified LOG model is proposed including only frequency-dependent damping (FDD). The FDD model is refined in [START_REF] Thorborg | Frequency dependence of the loudspeaker suspension (a follow up)[END_REF] to also include the frequency dependence of compliance (modified FDD). Contrary to the original LOG model, the frequency dependence of damping and the frequency dependence of compliance are separated, involving one extra parameter. Nevertheless, even if the separation of frequency dependencies of damping and compliance may get more physical sense, the model remains still empirical and has the same drawbacks as the LOG model.

Models Based on Retardation Spectrum

Recently, Ritter and Agerkvist [START_REF] Ritter | Modeling viscoelasticity of loudspeaker suspensions using retardation spectra[END_REF] found an interesting connection between the empirical LOG model and the Generalized Kelvin-Voigt model (a physical model with infinite number of elements) through the retardation spectrum [START_REF] Ferry | Viscoelastic Properties of Polymers[END_REF][START_REF] Jirásek | Accurate approximations of concrete creep compliance functions based on continuous retardation spectra[END_REF]. Ritter and Agerkvist proposed two new models (3PC and 4PC). The 3PC model uses three parameters to LAUM, CNRS UMR 6613 describe the complex frequency dependent compliance and corrects the problem of negative compliance at higher frequencies. The 4PC model corrects both drawbacks of the LOG model by defining a minimum compliance and an equilibrium compliance. According to authors, the 4PC model, which uses 4 parameters to model the complex compliance, provides slightly better accuracy than the LOG model.

FRACTIONAL VISCOELASTIC ELEMENT

The use of fractional derivatives, is nowadays accepted in many fields of physics and engineering [START_REF] Sabatier | Advances in fractional calculus[END_REF], including mechanics [START_REF] Koeller | A theory relating creep and relaxation for linear materials with memory[END_REF], acoustics [START_REF] Holm | A unifying fractional wave equation for compressional and shear waves[END_REF][START_REF] Holm | A causal and fractional all-frequency wave equation for lossy media[END_REF] and more recently audio-engineering [START_REF] Brunet | Identification of loudspeakers using fractional derivatives[END_REF]. In [START_REF] Brunet | Identification of loudspeakers using fractional derivatives[END_REF], the fractional derivatives are successfully used to model the electrical impedance of a loudspeaker motor.

The purpose of this paper is not to give a review of fractional derivatives since many information can be found in [START_REF] Hilfer | Applications of fractional calculus in physics[END_REF][START_REF] Podlubny | Fractional differential equations: an introduction to fractional derivatives, fractional differential equations[END_REF][START_REF] Malinowska | Advanced Methods in the Fractional Calculus of Variations[END_REF], but to show that the fractional derivatives can describe better the complex viscoelastic behavior of the loudspeaker suspension and consequently can be successfully used in modeling the loudspeaker mechanical part.

The fractional derivatives are based on the generalization of the differential operator d n dt n , in which n is a positive integer number, to d β dt β where β is any real number. A typical application of fractional derivatives is a rheological fractional element depicted in Fig. 1c. The force-displacement relation of such an element is given by

F(t) = η d β x dt β , (1) 
where the constant η is called a viscoelastic coefficient, its physical dimension being [Ns β /m] [START_REF] Grzesikiewicz | Non-linear problems of fractional calculus in modeling of mechanical systems[END_REF].

Comparing the fractional element with the traditional elements such as spring (Fig. 1a) and damper (Fig. 1b), we conclude that relation (1) can represent the purely elastic element (spring) by putting β = 0 as well as the purely viscous element (damper) by putting β = 1. The fractional element can be seen as an interpolation between the spring and the damper; β ∈ (0, 1) indicating the degree between the viscosity and the elasticity. Some authors [START_REF] Di Paola | Exact mechanical models of fractional hereditary materials[END_REF] associate the coefficient β ∈ (0, 0.5) to the elasto-viscous materials, and the coefficient β ∈ (0.5, 1) to the visco-elastic materials.

APPLICATION OF FRACTIONAL DERIVATIVES TO THE LOUDSPEAKER SUSPENSION

In this section, the fractional derivatives are applied to the classical mechanical equation of loudspeaker that describes the simple mass-spring-damper system of Fig. 2 by

F(t) = M ms d 2 x dt 2 + R ms dx dt + 1 C ms x, (2) 
F(t) being the force applied to the mechanical part of the loudspeaker and x(t) being its consecutive displacement.

Adding the fractional element depicted in Fig. 1c in parallel to the traditional model of Fig. 2a, we obtain a new proposed model depicted in Fig. 3. The relation between the force and the displacement can be defined in the time-domain as

F(t) = M ms d 2 x dt 2 + R v dx dt + η d β x dt β + 1 C 0 x, (3) 
or in frequency domain, defining F (ω) and X(ω) as the Fourier transforms of F(t) and x(t), as

F (ω) X(ω) = -ω 2 M ms + jωR v + (jω) β η + 1 C 0 . ( 4 
)
In this modified model R v represents viscous losses and C 0 represents the static compliance. The mechanical impedance Z m (ω), defined as the force over the velocity, of such a system is then defined as Viscoelastic Properties of Loudspeaker Suspensions -7/17

Z m (ω) = jωM ms + R v + (jω) (β-1) η + 1 jωC 0 . ( 5 
)
Figure 5. A block diagram of the measuring system. The measurements are performed for two different configurations: under vacuum of -0.97 bar (the vacuum chamber is closed), and in standard atmosphere (the vacuum chamber is opened).

EXPERIMENTS

In the following, 4 different loudspeakers are evaluated, each of them having a different type of suspension.

Peerless PLS-75F25AL02-08 is a 3" compact full range driver equipped with an anodized aluminium cone, a large roll SBR low-damping rubber surround and a Nomex spider. (Fig. 4a).

Peerless PLS-75F25AL04-08 is almost identical copy of the first loudspeaker (3" full range driver) except that this one is equipped with an inverted rubber surround (Fig. 4b). PHL 1520 is a 6.5" midrange driver with high-strength cellulose fiber cone impregnated and coated on both sides with damped resins. The suspension consists of a cup spider made of Nomex and a high-speed flat damped surround made of a light-weight strip of polyethylene foam (Fig. 4c). Pioneer W16FU90-51D-T is a 6.5" woofer with a woven aramid/carbon composite shell cone suspended by a corrugated surround and a cup spider made of Nomex (Fig. 4d).

Measurement Set-up

A block diagram of the measuring system used to both excite the loudspeaker under test and acquire the data is shown in Fig. 5. The loudspeaker is driven with a voltage source (a source having a very low output impedance) as it is usually operated in actual conditions. A NI-4431 USB acquisition device is used to send and acquire the measured signals, and a Devialet D-Premier amplifier to drive the loudspeaker. The current flowing through the loudspeaker is measured using a Current Shunt (N4L HF003) with a resistance of 0.48 Ω. The displacement is measured using a Polytec OFV-3000 vibrometer.

Prior to measurements, the loudspeakers are run-in for several hours using a low-frequency high-displacement signal to ensure a mechanical stability during the measurement. Each loudspeaker is put into a small vacuum chamber (Klippel Vacuum Kit) and two series of measurement are made: in standard atmosphere (vacuum chamber opened) and under vacuum of -0.97 bar. In vacuum, no air should influence the motion of mechanical part of the loudspeaker, possibly responsible for a fraction of mechanical losses caused by the viscosity of the air in the gap [START_REF] Kuttruff | Acoustics: An Introduction[END_REF][START_REF] Voishvillo | Identification compression driver parameters based on a concept of diaphragm's frequencydependent area[END_REF]. Also, the radiation impedance should be zero. Since the radiation impedance in standard atmosphere and at low frequencies is dominated by a mass loading reactance, it is equivalent to adding a mass proportional to the equivalent surface of the membrane. Thus, the reason to measure the loudspeaker in vacuum and in standard atmosphere is twofold: first to test if the proposed model estimates a similar differences in mass for same size of membranes and, second, to verify if the presence of air influences the mechanical losses. 
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Measurement Conditions

The mechanical properties of the loudspeaker may vary with time due to mechanical fatigue [START_REF] Agerkvist | Time variance of the suspension nonlinearity[END_REF][START_REF] Klippel | Mechanical fatigue and load-induced aging of loudspeaker suspension[END_REF], temperature or humidity variation. Therefore, rather then using a sine measurement in which each frequency is applied at a different time, it is preferable to use a multi-tone stimuli where all the frequencies are applied at the same time.

The loudspeaker is driven by a multi-tone signal with 80 frequencies logarithmically distributed between 0.1 Hz and 1 kHz. The exact value of each frequency component is adjusted to be a divisor of the sampling frequency (f s = 5 kHz) of the acquisition system. The phase of each frequency is chosen arbitrarily to avoid a huge crest factor of the input signal.

The choice of the input level is affected by two contradictory facts: it must not be too low, otherwise the signal would be drawn in the noise, but also not too high to overcome the problems associated with nonlinearities of the loudspeaker. A signal with peak value not exceeding 0.2 V is chosen as a compromise.

The acquired voltage u(t), current i(t) and displacement x(t) are recorded, and the Fourier coefficients of each frequency component ω i = 2πf i of each signal are calculated, resulting in U (ω i ), I(ω i ) and X(ω i ). Approaching the frequency 300 Hz, the assumption of the piston motion of the membrane is not valid due to cone breakup-rim resonances. Since the measured displacement x(t) of the cone is not reliable above this frequency, the measured data above 300 Hz are ignored.

Results

Force factor Bl is first estimated from measured data [START_REF] Novak | Nonlinear force factor measurement of an electrodynamic loudspeaker[END_REF] and the force F (ω) applied on the mechanical part is calculated as F (ω) = Bl • I(ω). The receptance frequency response functions [START_REF] Mcconnell | Vibration testing: theory and practice[END_REF] X(ω)/F (ω) are next derived as well as the mechanical impedance Z m (ω) = F (ω)/V (ω).

To estimate the best set of parameters of the fractional model a curve fitting procedure is performed by minimizing the sum of error (least-squares fit) between 0.1 Hz and 300 Hz. The fit is performed on both the real and the imaginary part of the mechanical impedance (5), expressed as

{Z m } = R v + sin β π 2 ω (β-1) η, (6) 
and

{Z m } = ωM ms -cos β π 2 ω (β-1) η - 1 ωC 0 . ( 7 
)
The estimated parameters are listed in Table 1, for the four measured loudspeakers, and for both configurations: measured in standard atmosphere, noted as (atm), and measured in vacuum. The respective RMS errors (magnitude and phase) of receptances X(ω)/F (ω) are listed in the same Table . The most important conclusions from the estimated parameters are the following.

1) The RMS errors are kept very low for both magnitude and phase for all measured loudspeakers. The error of magnitude is between 0.22 % and 0.55 % and the phase error between 0.14 and 0.44 degrees. A similar conclusion LAUM, CNRS UMR 6613 can be drawn from Fig. 6 in which the receptances X(ω)/F (ω) obtained from measurements in vacuum (dots) are compared to simulated receptances calculated using the model with fractional derivatives. The simulated curves almost perfectly coincide the measured data, even for very low frequencies in which a so-called creep phenomenon appears.

2) The estimated mass M ms is always lower for measurements in vacuum, which agrees with physical laws. Moreover, the mass difference between the measurements in standard atmosphere and in vacuum, corresponding to the air load mass, is 0.16 g and 0.15 g in the case of the 3" loudspeakers and 1.9 g and 2.2 g for 6.5" speakers. The two same-size pairs give almost the same air load mass. Considering the size of equivalent surface of each loudspeaker and their approximative theoretical values of air load [START_REF] Vanderkooy | The inertial air load of a loudspeaker diaphragm[END_REF], the indirectly estimated values of air load mass are reliable.

3) The estimated mechanical parameters C 0 , R v , η and β defining the viscoelastic properties of the loudspeaker are almost independent on the atmospheric condition (standard atmosphere or vacuum) for both Peerless speakers and for the PHL speaker. The static compliance C 0 is almost the same for both Peerless speakers as well as for the Pioneer speaker. A 10% difference between the measurement of the static compliance C 0 in standard atmosphere and vacuum is found in the case of the PHL speaker with the foam surround. The viscoelastic parameters η and β does not vary a lot with the atmospheric condition (standard atmosphere or vacuum). The fractional order β always drops a little when changing the atmospheric conditions from vacuum to standard atmosphere but the variation remains very small (≈10%). The most sensitive parameter to the variation of atmospheric condition is the viscous coefficient R v . The viscous coefficient R v of the Pioneer speaker drops by factor of 3 when being in vacuum suggesting a possible losses due to viscosity of the air in the gap, but obviously more scientific proofs would be required to confirm or decline such a conclusion. On the other hand the viscous coefficient R v increases by 4% for both Peerless speakers and by 15% for the PHL speaker when being in vacuum. The possible explanation for this variation may be a simple mechanical fatigue [START_REF] Agerkvist | Time variance of the suspension nonlinearity[END_REF][START_REF] Klippel | Mechanical fatigue and load-induced aging of loudspeaker suspension[END_REF], or a temperature variation influencing the viscoelastic properties of suspension materials. Being aware of a possible decrease of temperature in vacuum, it is measured using a liquid crystal thermometer strip. The drop of temperature is approximately 4 ± 0.5 • C; from 20 ± 0.5 • C in standard atmosphere to 16 ± 0.5 • C in vacuum.

4) Finally, viscoelastic coefficient β remains low for all four tested loudspeaker, corresponding to rather elastoviscous than visco-elastic behavior [START_REF] Di Paola | Exact mechanical models of fractional hereditary materials[END_REF]. It is also interesting to note that the coefficient β is different for both Peerless loudspeakers. These loudspeakers use the same spider and the surround is made of the same rubber material; the only difference is the shape of the surround (a normal surround and an inverted one). The results suggest that the shape of the surround may also influence the model parameters.

FREQUENCY DEPENDENT COMPLIANCE AND LOSSES

It has been shown in many papers dealing with viscoelastic behavior of loudspeaker suspensions [START_REF] Knudsen | Low-frequency loudspeaker models that include suspension creep[END_REF][START_REF] Ritter | Modeling viscoelasticity of loudspeaker suspensions using retardation spectra[END_REF][START_REF] Thorborg | Frequency dependence of the loudspeaker suspension (a follow up)[END_REF] that the compliance as well as the mechanical losses are frequency dependent. The frequency dependent complex compliance [START_REF] Knudsen | Low-frequency loudspeaker models that include suspension creep[END_REF] can be written as C * (ω) = C (ω) -jC (ω) [START_REF] Ferry | Viscoelastic Properties of Polymers[END_REF], where the real-part component C (ω) is called the storage compliance and determines the storage energy, whilst the imaginary-part component C (ω) is responsible for energy losses and is consequently called loss compliance.

Storage Compliance

The complex compliance [START_REF] Ferry | Viscoelastic Properties of Polymers[END_REF][START_REF] Rousseau | Visco-elastic aspects of loudspeaker drivers[END_REF] of a mechanical system can be expressed as [3]

C * (ω) = F (ω) X(ω) + ω 2 M ms -1 (8) 
where all the viscous and viscoelastic losses are included in the imaginary part of the complex compliance C * (ω).
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The complex compliance of the proposed fractional model can be thus derived from ( 4) and ( 8) as

C * (ω) = 1 C 0 + (jω) β η + jωR v -1 . (9) 
Studying closely the storage compliance C (ω), defined as a real part of (9), we can note, that the fractional order model does not suffer from the drawbacks of the LOG model discussed in section 2. First, as the frequency approaches zero, the storage compliance approaches the static compliance C 0 . Second, contrary to the LOG model, the storage compliance never reaches negative values. In Fig. 7 the storage compliance derived from measured data in vacuum using ( 8) is compared with the simulated storage compliance calculated using the fractional model [START_REF] Papoulia | Rheological representation of fractional order viscoelastic material models[END_REF]. The comparison in Fig. 7 is provided for all the tested loudspeakers except the Peerless with inverted surround since its estimated mechanical parameters, and consequently the storage compliance, are very similar to the Peerless loudspeaker with normal surround and the very close curves would worsen the readability of the graph. We can conclude from Fig. 7 that a good estimation of all the parameters of the proposed fractional model is sufficient to describe correctly the frequency dependent storage compliance within the frequency range of interest.

When comparing the behavior of the storage compliance (Fig. 7) at very low frequencies, we can see that the measured data as well as the fractional model approaches the static compliance C 0 (see Table 1) as frequency tends to zero. However, all tested loudspeaker still exhibit an increase of storage compliance with decreasing frequency even for frequencies approaching 0.1 Hz. Therefore, it still remains unclear at which (very low) frequency the compliance stabilizes to the value of static compliance C 0 .

Mechanical Losses

When studying the mechanical properties of a loudspeaker, the mechanical losses are usually defined as the real part of the mechanical impedance. In a traditional model of loudspeaker (2), the only mechanical losses taken into account are the viscous ones, represented by the viscous coefficient R ms . The mechanical losses of the proposed fractional model have two components (6): a constant R v responsible for the viscous losses and a component with frequency dependence ω (β-1) representing the losses caused by the viscoelastic fractional element.

In Fig. 8, the mechanical losses derived from measured data in vacuum as a real part of the measured mechanical impedance Z m (ω) are compared with the mechanical losses calculated using the fractional model [START_REF] Schiessel | Hierarchical analogues to fractional relaxation equations[END_REF]. Once again, we can conclude from Fig. 8 that the fractional model gives a very good fit between the measured data and the data calculated using the fractional model.

The two dashed asymptotic lines in Fig. 8 show the relative contribution of the viscous losses (parameter R v ) and viscoelastic losses (parameters β and η) for the Pioneer speaker. Note, that the viscous contribution (R v ), usually used as a single parameter to represent losses in the traditional model, is not frequency dependent and can hardly fit the measured decreasing curve. The viscoelastic contribution is represented by a straight line in a log-log graph; the slope being given by (β -1).

Loss factor

It is sometimes convenient to define a loss factor tan δ [START_REF] Rousseau | Visco-elastic aspects of loudspeaker drivers[END_REF] relating the storage and the loss energy by the following relation

C * (ω) = C (ω)[1 -j tan δ(ω)], (10) 
where

tan δ = C (ω) C (ω) . (11) 
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The loss factor of the fractional model can be thus derived from ( 9) and [START_REF] Mase | Schaum's outline of theory and problems of continuum mechanics[END_REF] as

tan δ = ωR v + η sin(β π 2 )ω β 1 C0 + η cos(β π 2 )ω β . (12) 
In Fig. 9, the loss factors derived from measured data in vacuum [START_REF] Mase | Schaum's outline of theory and problems of continuum mechanics[END_REF] are compared with the loss factors calculated using the fractional model [START_REF] Petosic | Modeling of an electrodynamic loudspeaker including membrane viscoelasticy[END_REF]. The asymptotic behavior due to viscous and viscoelastic contributions are depicted using dashed lines. Note that the slope of the dashed line of the viscous contribution in the log-log plot is equal to one no matter the coefficients of the model (tan δ = R v C 0 ω for η = 0). Thus, considering only viscous contribution as a single element responsible for the losses would not be sufficient especially at low frequencies where the slope of the log-log curve of tan δ is much lower than one.

DISCUSSION

Frequency range

The results of four studied loudspeakers with different types of suspension show that the proposed model with a single fractional element provides very low rms error within the frequency range in which the measured data are reliable. Since the assumption of the piston motion of the membrane is not valid at higher frequencies due to cone breakup-rim resonances, usually occurring two or three octaves above the resonance frequency, the model accuracy cannot be estimated above these frequencies. However, as shown in Figs. 8 and9 the viscoelastic contribution of the model is much more important under the resonance frequency. Consequently, the frequency limit of the model due to the cone breakup-rim resonances is the same as for the traditional lumped model of an electrodynamic loudspeaker.

Number of parameters

The proposed model uses four parameters to describe the viscoelastic behavior of the mechanical part: the static compliance C 0 defining the purely elastic properties of the suspension, the viscous coefficient R v defining purely viscous properties, the viscoelastic coefficient η and the fractional order β. More complicated models such as Kelvin-Voigt chain model [START_REF] Koeller | Applications of fractional calculus to the theory of viscoelasticity[END_REF], or Maxwell chain model [START_REF] Koeller | Applications of fractional calculus to the theory of viscoelasticity[END_REF][START_REF] Hernandez-Jimenez | Relaxation modulus in pmma and ptfe fitting by fractional maxwell model[END_REF][START_REF] Yin | Oscillating flow of a viscoelastic fluid in a pipe with the fractional maxwell model[END_REF] use more fractional elements to fit better the viscoelastic behavior of the material, but at the cost of greater number of parameters. Lower number of parameters would also be possible, but at the cost of the model precision. Keeping only the fractional element with the spring (putting R v = 0) would result in a straight line of the log-log plot of mechanical losses (6) in Fig 8 . Such a choice would lead to an incorrect fit of mechanical losses and consequently to higher error of the model. Keeping only the fractional element with the damper (putting C 0 = ∞) would bring the same drawback as the one with the LOG model. Moreover, such a solution has already been proposed by Knudsen and Jensen [START_REF] Knudsen | Low-frequency loudspeaker models that include suspension creep[END_REF], since the EXP model is indeed a particular case of the proposed fractional model with C 0 = ∞.

Nonlinear fractional model

The proposed fractional model can be applied in the nonlinear domain in several manners. A simple engineering approach would be to make vary at least one of the model parameters R v , η, β and C 0 with displacement. More general approach would consist in using a nonlinear model such as Volterra model [START_REF] Schetzen | The Volterra and Wiener Theories of Nonlinear Systems[END_REF] or Generalized Hammerstein model [START_REF] Novak | Nonlinear system identification using exponential swept-sine signal[END_REF] in which the fractional derivatives would appear inside the nonlinear kernels. The linear relation between the force and the displacement (3) can be expressed as

F(t) -M ms d 2 x dt 2 = Ŝ[x(t)], (13) 
where Ŝ represents a linear operator defined as

Ŝ[x(t)] = R v d dt + η d β dt β + 1 C 0 x. (14) 
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where the kernel h(t) is defined using inverse Fourier transform F -1 as

h(t) = F -1 jωR v + η(jω) β + 1 C 0 . (16) 
In a case of a nonlinear system, the linear operator Ŝ must be replaced by a nonlinear operator ŜNL . Using the Generalized Hammerstein model, the ŜNL expands to (

ŜNL [x] =

) 17 
The fractional derivatives may thus apply not only to the linear kernel h 1 (t) [START_REF] Knudsen | The significance of viscoelastic effects in loudspeakers parameter measurements[END_REF], but to all nonlinear kernels h n (t). Moreover, taking into account a possible hysteresis-like dependence on the peak value of displacement x max [START_REF] Novak | Dynamic measurement of loudspeaker suspension parameters using an active harmonic control technique[END_REF], the nonlinear operator ŜNL should be implemented as a function o instantaneous and peak displacement leading to much more complicated models [START_REF] Maillou | Identification et caractérisation des non-linéarités de systèmes acoustiques[END_REF] that require advanced identification techniques of nonlinear systems [START_REF] Novak | Nonparametric identification of nonlinear systems in series[END_REF].

CONCLUSION

This paper shows that the mechanical models based on fractional derivatives may prove useful for loudspeaker suspensions. In view of their ability to model viscoelastic phenomena, they provide a suitable method of describing dynamical properties of viscoelastic materials used in loudspeaker manufacture.

The results of four studied loudspeakers with different types of suspension show that the proposed model with a single fractional element provides very low rms error when compared to the measured data for all loudspeakers measured in standard atmosphere as well as in vacuum. 
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Figure 1 .

 1 Figure 1. Basic rheological elements: (a) a purely elastic element = spring, (b) a purely viscous element = damper, (c) a fractional element = interpolation between the spring and the damper.
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Figure 2 .

 2 Figure 2. (a) A traditional mass-spring-damper system based on Kelvin-Voigt viscoelastic model consisting of a Newtonian damper and a Hookean elastic spring connected in parallel. (b) Its electro-mechanical analogy.

Figure 3 .

 3 Figure 3. (a) A proposed mechanical model of the loudspeaker suspension in which a fractional element is added in parallel to the traditional mass-spring-damper system. (b) Its electro-mechanical analogy.

Figure 4 .

 4 Figure 4. Evaluated loudspeakers: (a) Peerless PLS-75F25AL02-08, (b) Peerless PLS-75F25AL04-08, (c) PHL 1520, (d) Pioneer W16FU90-51D-T.

Figure 6 .

 6 Figure 6. Measured receptance X(ω)/F (ω) of 4 different loudspeakers (dots) compared to a simulation calculated using the model with fractional derivatives. Measurements were performed under vacuum of -0.97 bar.

Figure 7 .

 7 Figure 7. Storage compliance of 3 different loudspeakers derived from the measurement (dots) compared to a simulation calculated using the model with fractional derivatives. Measurements were performed under vacuum of -0.97 bar.
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  n (t) * x n (t).

Figure 8 .

 8 Figure 8. Mechanical losses of 3 different loudspeakers derived from the measurement (dots) compared to a simulation calculated using the model with fractional derivatives. Measurements were performed under vacuum of -0.97 bar. The relative contribution of the viscoelastic losses (β, η) and viscous losses (R v ) of the Peerless loudspeaker are depicted as dashed asymptotes.

Figure 9 .

 9 Figure 9. Loss factor tanδ of 3 different loudspeakers derived from the measurement (dots) compared to a simulation calculated using the model with fractional derivatives. Measurements were performed under vacuum of -0.97 bar. The relative contribution of the viscoelastic losses (β, η) and viscous losses (R v ) of the Peerless loudspeaker are depicted as dashed asymptotes.

Table 1 .

 1 Estimated mechanical parameters of the model with fractional derivatives for all four loudspeakers measured in standard atmosphere (atm) and in vacuum, and their respective RMS errors (magnitude and phase) of responses from force to displacement X(ω)/F (ω).

					parameters			RMS error of X(ω)/F (ω)
			Mms [g]	C0 [mm/N]	Rv [Ns/m]	η [Ns β /m]	β [-]	mag. [ %]	∠ [deg]
	Peerless PLS-75F25AL02-08	atm vacuum	2.69 2.53	1.12 1.12	0.167 0.173	140 140	0.140 0.141	0.22 0.26	0.13 0.17
	Peerless PLS-75F25AL04-08	atm vacuum	2.52 2.37	1.20 1.18	0.182 0.190	111 96.6	0.173 0.194	0.25 0.31	0.19 0.21
	PHL 1520	atm vacuum	11.9 10.0	0.182 0.203	1.95 2.26	1889 2141	0.146 0.150	0.51 0.55	0.38 0.44
	Pioneer W16FU90	atm vacuum	19.4 17.2	0.740 0.722	0.754 0.236	402 424	0.170 0.189	0.31 0.27	0.23 0.16