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Abstract

Exponential, or sometimes called logarithmic, swept-sine signal is very often used to analyze nonlinear audio systems. In

this paper, the theory of exponential swept-sine measurements of nonlinear systems is reexamined. The synchronization

procedure necessary for a proper analysis of higher harmonics is detailed leading to an improvement of the formula for

the exponential swept-sine signal generation. Moreover, an analytical expression of spectra of the swept-sine signal

is derived and used in the deconvolution of the impulse response. A Matlab code for generation of the synchronized

swept-sine, deconvolution, and separation of the impulse responses is given with discussion of some application issues

and an illustrative example of harmonic analysis of current distortion of a woofer is provided.
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1. INTRODUCTION

A swept-sine, also called a chirp, is a widely used signal for characterizing a frequency response of a linear system

under test. A technique for analysis of nonlinear system (NLS) based on an exponential swept-sine signal has been

first presented by Farina in 2000. This technique enables a separation of impulse responses for each harmonic

distortion order [1]. Later, Farina called this technique the ”nonlinear convolution” [2]. It is worth noting that the

idea of separation of harmonic products when using the swept-sine signals was mentioned earlier in [3, 4].

Since 2000, the method has been used in many applications, namely in fields of audio and acoustics, e.g. for

Room Impulse Response (RIR) measurements [5, 6], for measurement of Head-Related Transfer Functions (HRTF)

and Head-Related Impulse Responses (HRIR) [7, 8], in nonlinear acoustics [9, 10], and in many other applications

in acoustics [11, 12, 13, 14].

The need to synchronize the exponential swept-sine signal for purpose of nonlinear system identification has

been first presented in [15] and the mathematical background for the identification of nonlinear systems using the

exponential swept-sine signal has been then given in [16]. The importance of the synchronization of the swept-sine

signal for identification of a cascade of Hammerstein systems has been also pointed out in [17]. It has also been

shown in [18] that the method based on the exponential swept-sine signal can be used to identify two nonlinear

systems in series.

In this paper, we reformulate the exponential swept-sine method. After a short review of the method presented in

Sec. 2 we derive the form of the exponential swept-sine signal suitable for the estimation of so-called Higher Harmonic

Frequency Responses (HHFRs) in Sec. 3. This form differs from the one usually used with the exponential swept-

sine methods and we focus on consequences of different definitions. Next, the analytical formula for the spectra of

the synchronized swept-sine signal is derived in Appendix and used for the deconvolution in Sec. 4. In Sec. 5, the

separation of higher harmonic impulse responses is described and the advantage of using the analytical formula in

deconvolution procedure is discussed. The most important equations for the synchronized swept-sine method are

then summarized in Sec. 6. Finally, we provide an illustrative example in Sec. 7 in which we analyze higher harmonics

of current distortion of a woofer using both the synchronized and the non-synchronized swept-sine signals and we

compare the results with a sine-based measurement. Moreover, in Sec. A.2 a Matlab code for all the important

steps of the method is provided and some implementation issues are discussed.

2. Brief Review Of the Swept-Sine Method

Regarding the basics of NLS theory, when a sine-wave is used as an input signal higher harmonics appear at the

output of the NLS as multiples of the input driving frequency. The amplitude and phase of all the higher harmonics

may be furthermore frequency dependent. In this section, we briefly recall the main steps of the exponential swept-

sine method to separate the frequency dependent higher harmonics by using a single swept-sine measurement.

The exponential swept-sine method can be summarized in the following steps:

• generation of the exponential swept-sine input signal

• acquisition of the response of the nonlinear system under test to the exponential swept-sine signal

• impulse response deconvolution

• separation of the higher harmonic impulse responses hn(t) and estimation of so-called Higher Harmonic

Frequency Responses (HHFRs) Hn(f) (Fourier transform of the higher harmonic impulse responses)

2.1 Exponential Swept-Sine Signal Generation

The exponential swept-sine signal can be generated either directly in the time domain or indirectly in the frequency

domain as discussed in [19]. The generation in time domain can be realized using a direct-implementation method,
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also discussed in [19], or using a mathematical formula given by Farina in [1] as

x(t) = sin

{
2πf1T

ln(f2/f1)

[
exp

(
t

T
ln(

f2
f1

)

)
− 1

]}
, (1)

where f1 is the initial frequency, f2 is the final frequency and T is the time duration of the swept-sine signal.

It has been shown in [16] that the swept-sine signal must be generated in a slightly different way in order to

be able to estimate both amplitude and phase of HHRFs properly. The modified signal is called synchronized

swept-sine. It is generated according to [16] as

x(t) = sin

{
2πf1L

[
exp

(
t

L

)
− 1

]}
, (2)

L being the rate of frequency increase defined as

L =
1

f1
round

 T̂ f1

ln
(
f2
f1

)
 , (3)

where T̂ is an approximate time length of the signal x(t) and round represents rounding towards nearest integer.

According to [16], the rounding operation is necessary to avoid an incorrect phase estimation of HHRFs. The phase

synchronization of HHFRs has been successfully used in several works dealing with nonlinear system identification

in acoustics [8, 20].

2.2 Impulse Response Deconvolution

The exponential swept-sine signal x(t) is then used as the input to the nonlinear system under test and the output

y(t) signal is acquired. To obtain the impulse response h(t) of the nonlinear system under test, we deconvolve the

output signal y(t) with the original swept-sine signal x(t).

The deconvolution can be made either in time or in frequency domain. The classical approach consists in

deconvolution by division in frequency domain as

h(t) = F−1
[
F [y(t)]

F [x(t)]

]
, (4)

where x(t) is the swept-sine signal, y(t) is the (system) response to x(t) and F and F−1 are direct and inverse Fourier

transforms respectively. A regularization function should be added in order to avoid division by zero problems since

F [x(t)] approach zero below f1 and above f2 [19, 21].

The approach introduced by Farina [1] consists in using a so-called inverse filter x̃(t) defined in such a way that,

when convolved with the swept-sine signal x(t), we get the Dirac delta function δ(t)

x(t) ∗ x̃(t) = δ(t). (5)

According to [21], the inverse filter is a time-reversal of the swept-sine signal x(t) with +3 dB/octave slope. The

deconvolution can then be realized either in the time domain

h(t) = y(t) ∗ x̃(t), (6)

or in frequency domain

h(t) = F−1 [F [y(t)]F [x̃(t)]] . (7)
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2.3 Higher Harmonic Impulse Responses Separation

The deconvolution process results in the impulse response h(t) which is a summation of time-shifted higher harmonic

impulse responses hn(t) [1, 16]. They can be easily separated by windowing in the time domain as described in

[1, 19]. Finally, they can be Fourier transformed to calculate the HHFRs as

Hn(f) = F [hn(t)] . (8)

The magnitude plot of Hn(f) in dB is the most common representation since it shows the amount of distortion of

all the harmonics as a function of frequency [1].

3. Synchronized Swept-Sine Signal Generation

In this section we focus on the generation of the exponential swept-sine signal. We give the mathematical background

to the choice of the form of the signal and we explain why the synchronization of the swept-sine signal is necessary

for a correct estimation of the HHFRs Hn(f).

3.1 Conditioning the Swept-Sine Signal

The properties of the exponential swept-sine signal generated either using (1) or (2) have been studied in [1] and

[16] respectively. Instead of discussing the properties of a given exponential swept-sine signal, we can formulate

the problem in another way and rise the following question: What kind of swept-sine signal can be used for the

estimation of the HHFRs Hn(f)?

To answer this question, we start with a general definition of a swept-sine signal x(t) with an unknown phase

ϕ(t)

x(t) = sin [ϕ(t)] , (9)

and we consider the response y(t) of the NLS to such a signal as a sum of higher harmonics as

y(t) =

∞∑
n=1

sin [nϕ(t)] ∗ hn(t). (10)

Considering that the response y(t) of the NLS to the swept-sine signal x(t) is simply a convolution of the latter

with an impulse response h(t)

y(t) = x(t) ∗ h(t), (11)

we want the impulse response to be a sum of the time-delayed higher harmonic impulse responses hn(t) as

h(t) =

∞∑
n=1

hn(t+ ∆tn), (12)

so that they can be easily separated from each other. From (9), (11), and (12) we can write

y(t) = sin [ϕ(t)] ∗
∞∑
n=1

hn(t+ ∆tn). (13)

Comparing the output y(t) from (10) and (13) we get

∞∑
n=1

sin [nϕ(t)] ∗ hn(t) = sin [ϕ(t)] ∗
∞∑
n=1

hn(t+ ∆tn), (14)

and putting the input signal sin [ϕ(t)] inside the convolution sum, we can write

∞∑
n=1

sin [nϕ(t)] ∗ hn(t) =

∞∑
n=1

sin [ϕ(t)] ∗ hn(t+ ∆tn). (15)
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Both sums of Eq. (15) are equal if the convolution terms inside the sum are equal as well. Expressing the inside

convolution equality leads to ∫ ∞
−∞

sin [nϕ(u)]hn(t− u)du =∫ ∞
−∞

sin [ϕ(v)]hn(t+ ∆tn − v)dv. (16)

Substituting v = τ + ∆tn, we get∫ ∞
−∞

sin [nϕ(u)]hn(t− u)du =∫ ∞
−∞

sin [ϕ(τ + ∆tn)]hn(t− τ)dτ, (17)

which can be solved by imposing

sin [nϕ(t)] = sin [ϕ(t+ ∆tn)] . (18)

In other words, the signal we are looking for must have the following property: shifting the signal in time by

∆tn is equivalent to generating the same signal with n-times higher phase.

3.2 Synchronizing the Swept-Sine Signal

The condition given in (18) can be solved using

nϕ(t) = ϕ(t+ ∆tn) + 2πl, ∀l ∈ Z. (19)

This equation has a form similar to that of a Delayed Differential Equation [22], which may have an oscillatory

solution leading to a phase / frequency modulated signal, or to an exponential solution leading to a swept-sine

signal. Focusing on the exponential solution, we consider a trial solution in form of an exponential function as

ϕ(t) = A exp (αt) , (20)

and inserting the trial solution back to (19), we find that

∆tn =
ln(n− 2πl

A exp(αt) )

α
. (21)

Since we want ∆tn to be independent on time t, we must impose l = 0 and we then get

α =
ln(n)

∆tn
. (22)

To summarize this part, we prove that the signal x(t) has a form of

x(t) = sin [A exp (αt)] , (23)

where the coefficient A acts as a rate of sweeping change and where the coefficient α is still unknown. To find

the relation between these two coefficients and the parameters of the swept-sine, such as the initial and the final

frequencies f1 and f2 and the time duration T , the following steps must be completed.
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3.3 Initial and Final Frequencies

First, we define the instantaneous frequency of the signal x(t) from (20) as

fi(t) =
1

2π

dϕ(t)

dt
=
Aα

2π
exp (αt) . (24)

At initial time t = 0, the initial frequency is denoted fi(0) = f1, leading to

α =
2πf1
A

. (25)

At final time t = T , the final frequency is denoted fi(T ) = f2, leading to

f1 exp

(
2πf1
A

T

)
= f2, (26)

and thus

A =
2πf1T

ln
(
f2
f1

) . (27)

So, the formula for the synchronized swept-sine signal can be written as

x(t) = sin

[
2πf1T

ln(f2/f1)
exp

(
t

T
ln(

f2
f1

)

)]
. (28)

Note that this formula is almost equivalent to the one given in (1) except for the ”−1” term at the end of (1) that

is missing in (28).

3.4 Initial Phase

When examining the missing term ”−1” in (28) in comparison with (1), we first note, that the term ”−1” in (1)

ensures having the initial phase to be zero, which is not the case in (28), where the initial phase is given by the

term

ϕ(0) =
2πf1T

ln(f2/f1)
. (29)

However, fixing the phase to be zero by adding the term ”−1” leads to a different definition of the swept-sine

signal that does not obey the condition given in (18) and leads to a non-synchronized version of the exponential

swept-sine signal. This situation is depicted in Fig. 1a, where the exponential swept-sine signal generated using (1)

is not synchronized with its time-shifted second-harmonic copy.

The signal depicted in Fig. 1b, generated using (28), is obviously well synchronized, but the initial phase does

not start at origin. To overcome the initial phase problem while keeping the synchronization correct, we fix the

phase to zero at t = 0, i.e. ϕ(0) = 2πk, that is according to (29)

2πf1T

ln(f2/f1)
= 2πk (30)

and we get

k =
f1T

ln(f2/f1)
, (31)

where k ∈ Z6=0. Note that, since k is an integer, the time T and the frequencies f1 and f2 have to be dependent.

In practice, we can define the start frequency f1, the stop frequency f2 and an approximative duration T̃ of the

swept-sine signal. The integer k can then be calculated as

k = round

 f1

ln
(
f2
f1

) T̃
 , (32)
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(a) non-synchronized swept-sine signal

(b) synchronized swept-sine signal starting with a non-zero phase

(c) synchronized swept-sine signal starting with a zero phase

Figure 1. Exponential swept-sine signal generated using three different equations: a) equation (1); b) equation

(28); c) equation (33). The signal x(t) is plotted with gray solid line, the time-shifted second harmonic is plotted

with black dashed line.

the correct duration T being then derived from (31).

The synchronized swept signal with fixed initial phase is thus defined as

x(t) = sin

[
2πf1L exp

(
t

L

)]
, (33)

where L = 1/α = k/f1 is used in accordance with (3). Note that choosing f1 > f2 would lead to a negative k and

to a swept-sine signal with decreasing frequency. For the sake of clarity we consider here f2 > f1.

The signal depicted in Fig. 1c, generated using (33), has a zero initial phase and obeys the condition given in

(18). Note also that the signal generated using (2) is equivalent to the one generated by (33) since the presence of

the term ”−1” in (2) is useless as f1L is an integer and can be omitted from the equation.
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(a) a non-zero final phase at time T ; x(t = T ) 6= 0

(b) a non-zero final phase at time T ; x(t = T ) 6= 0

(c) a zero final phase at time T ; x(t = T ) = 0

Figure 2. The beginning and the end of the exponential swept-sine signal generated using three different equations:

a) equation (1); b) equation (28); c) equation (33). Ending points are highlighted with a black circle.

3.5 Final Phase

The synchronized swept-sine with fixed initial phase defined in (33) has another interesting property concerning

the final phase of the signal. If the final frequency f2 is chosen as an integer multiple of the initial frequency f1,

the phase of the exponential signal x(t) from (33) is zero at the time instant corresponding to the instantaneous

frequency f2. Expressed in other words, the final phase at time T is also zero.

The behavior of the exponential swept-sine signals x(t) near time T is depicted in Fig. 2. The swept-sine

signal generated using (1), depicted in Fig. 2a, exhibits a non-zero final phase at time T . As discussed in [21], the

signal generated by this way should be cut manually at the latest zero-crossing before its abrupt termination. The

synchronized swept-sine with a non-fixed initial phase generated using (28) exhibits a non-zero final phase at time

T . The final phase is, this time, an integer multiple of the initial phase. Finally, the synchronized swept-sine with

fixed initial phase generated using (33) has a zero final phase. Using this approach, we can avoid the manual cut of

the tail of the swept-sine signal.
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Figure 3. Delaying the Synchronized swept-sine signal x(t) = sin[ϕ(t)] by ∆t2 and by ∆t3 is equivalent to

generating the second and third harmonic sin[2ϕ(t)] and sin[3ϕ(t)] of the Synchronized swept-sine signal x(t).

3.6 Time Delays vs. Instantaneous Frequency

The synchronized swept-sine signal generated using (33) has the following property, due to the condition given in

(18). The time-shifted synchronized swept-sine signal by time delay ∆tn is equivalent to the n-th higher harmonic

copy of the signal x(t) itself. The n-th harmonic copy has a phase value, and thus also an instantaneous frequency,

n-times higher than the one of the original synchronized swept-sine signal x(t). This property is depicted in Fig. 3.

The time delays ∆tn can be derived from (22) as

∆tn = L ln(n). (34)

Similarly, the instantaneous frequency fi(t) can be derived from (24) as

fi(t) = f1 exp

(
t

L

)
. (35)

According to the condition given in (18) we can find a simple relation between the instantaneous frequency

fi(t) and the time delays ∆tn. The time delays ∆tn indicate the time instants corresponding to the instantaneous

frequency (and phase) n-times higher than the initial frequency (and phase), which can be written mathematically

as

fi(∆tn) = nf1. (36)

Moreover, thanks to the synchronization of the swept-sine and fixed initial phase, we can write

x(∆tn) = 0. (37)

Both properties are depicted together in Fig. 4.

4. IMPULSE RESPONSE DECONVOLUTION

The previous section discussed the generation of the synchronized swept-sine signal x(t) that is used as the input

to the nonlinear system under test. After the measurement, the output signal y(t) is acquired and the impulse
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Figure 4. Synchronized swept-sine x(t) (below) and the associated instantaneous frequency fi(t).

response consisting of time-delayed higher harmonic impulse responses can be deconvolved from the output signal

y(t). The impulse response deconvolution is usually performed using (4) or (7).

4.1 Analytical Deconvolution

Another way to deconvolve the impulse response h(t) is to use an analytical expression of the inverse filter in the

frequency domain X̃(f) and then compute the deconvolution directly in the frequency domain as

h(t) = F−1
[
F [y(t)]X̃(f)]

]
. (38)

In order to derive the Fourier transform of the synchronized swept-sine signal X(f), we use the analytical swept-sine

signal z(t) defined as

z(t) = exp [jϕ(t)] (39)

that, in relation with the swept-sine signal x(t) from Eq. (33), is expressed as

z(t) = xc(t) + jx(t) (40)

where xc(t) = −H[x(t)] is the cosine version of the synchronized swept-sine defined as the negative Hilbert transform

of x(t).

The mathematical derivation of the Fourier transform of the analytical signal z(t) is provided in Appendix A.1

and results in

Z(f) =

√
L

f
exp

{
j2πfL

[
1− ln

(
f

f1

)]
+ j

π

4

}
, (41)

from which the Fourier transform of the synchronized swept-sine signalX(f) can be expressed for positive frequencies
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Figure 5. Result of the deconvolution process resulting in a sum of time-shifted higher harmonic impulse responses

hn(t)

f as

X(f) =
1

2

√
L

f
exp

{
j2πfL

[
1− ln

(
f

f1

)]
− j π

4

}
, (42)

and the Fourier transform of inverse filter X̃(f) as

X̃(f) = 2

√
f

L
exp

{
−j2πfL

[
1− ln

(
f

f1

)]
+ j

π

4

}
. (43)

4.2 Group Delay

Lastly, the spectra X(f) from Eq. (42) has a phase such that

φ(f) = 2πfL

[
1− ln

(
f

f1

)]
− π

4
, (44)

from which the group delay can be derived according to its definition as

τg(f) = − 1

2π

dφ(f)

df
= L ln

(
f

f1

)
. (45)

Note, that the group delay from Eq. (45) is an inverse function to the instantaneous frequency fi(t) defined in

Eq. (35). Because of this property, the signal x(t) is an asymptotic signal [23, 24].

5. HIGHER HARMONICS SEPARATION

The deconvolution process defined in Eq. (38) results in impulse response h(t) which is according to Eq. (12 ) a

sum of time-shifted higher harmonic impulse responses hn(t). A schematic example of the impulse response h(t) is

depicted in Fig. 5.

The higher harmonic impulse responses hn(t) are easy to separate by windowing in the time domain as described

in [19]. Finally, they can be Fourier transformed into frequency domain as

Hn(f) = F [hn(t)] . (46)

The magnitude plot of Hn(f) in decibel units is the most common representation, since it shows the amount of

distortion of all the harmonics as a function of frequency [1].
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Figure 6. Schematic representation of magnitude spectra of HHFRs Hn(f). (a) The deconvolution using

Eqs. (4) or (7) set the upper bandwidth limit to f2. (b) The deconvolution using the analytic expression in

Eq. (38) does not limit the frequency bandwidth of HHFRs.

It is worth noting that using the usual way of deconvolving the impulse response using Eq. (4) or Eq. (7), the

frequency bandwidth of HHFRs is [nf1, f2], where n is the number of studied HHFRs. Consequently, all the HHFRs

stops at frequency f2 as depicted in Fig. 6a.

On the other hand, if we use the deconvolution defined in Eq. (38) which is based on the analytical expression of

the swept-sine signal in frequency domain, the frequency bandwidth of HHFRs is [nf1, nf2] as depicted in Fig. 6b.

In other words, the deconvolution using the analytical expression leads to much larger frequency band of HHFRs.
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6. SUMMARY OF SYNCHRONIZED SWEPT-SINE METHOD

Since we have discussed several ways of generating the exponential swept-sine signal as well as several ways of

deconvolving the impulse response, we shortly summarize, in this section, the main equations for the generation

and the deconvolution that will be used as a theoretical basis for the implementation provided in Sec. A.2.

The synchronized swept-sine is generated using

x(t) = sin

[
2πf1L exp

(
t

L

)]
. (47)

where

L =
T

ln
(
f2
f1

) , (48)

and where f1 and f2 are initial and final frequency respectively and T is duration of the swept-sine. Contrary to

previous works [16, 17] no added constraint is imposed on the rate of frequency increase L. However, if the initial

phase is restricted te be zero at time t = 0 the rate of frequency increase L is defined as

L =
1

f1
round

 f1

ln
(
f2
f1

) T̃
 , (49)

T̃ being an approximative duration of the swept-sine. In such a case if the final frequency f2 is chosen as an integer

multiple of the initial frequency f1, the synchronized swept-sine ends up with zero phase.

The deconvolution process is next performed in the frequency domain as

h(t) = F−1
[
F [y(t)]X̃(f)]

]
, (50)

where y(t) is the acquired response of the nonlinear system under test to the synchronized swept-sine, and where

the Fourier transform of inverse filter X̃(f) is

X̃(f) = 2

√
f

L
exp

{
−j2πfL

[
1− ln

(
f

f1

)]
+ j

π

4

}
. (51)

The impulse response h(t) then consist of time-delayed higher harmonic impulse responses separated by time delays

∆tn = L ln(n). (52)

A full Matlab code, including all the necessary steps to implement the method is provided in appendix A.2.

7. Illustrative Example

In order to illustrate the advantage of using the synchronized swept-sine signal instead of the non-synchronized

swept-sine signal for the estimation of the HHFRs, we present in this section the results of an experiment performed

on a woofer (Pioneer W16FU90-51H). The woofer is excited using both the exponential (non-synchronized) swept-

sine signal (1), called ESS, and the synchronized swept-sine signal (33), called SSS. The HHFRs of distorted current

running through the woofer are estimated and compared with a measurement performed with a harmonic signal.

The measurement is performed using the sampling frequency fs = 50 kHz. The parameters of the synchronized

swept-sine signal are: the initial frequency f1 = 5 Hz; the final frequency f2 = 500 Hz; and the approximative time

duration T̃ = 10 s. The amplitude of both excitation signals is 5 V rms, high enough to produce distortion artifacts

on the current.
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Figure 7. First three HHFRs of the distorted current passing through the woofer estimated using the

non-synchronized swept-sine signal ESS (dashed line) and the synchronized swept-sine signal SSS (gray line),

compared with a step-by-step measurement using a sine-wave excitation (dots).

The amplitudes and phases of the first three HHFRs estimated using both versions of exponential swept-sine

signal are depicted in Fig. 7 and are compared with a measurement performed with a harmonic signal, the frequency

of which is changed step-by-step from 10 to 100 Hz with a 10 Hz step. Whilst the amplitudes of all the HHFRs are

correctly estimated for all the harmonics, the phases of the HHFRs Hn(f) (n > 1) are wrongly estimated in the

case of the non-synchronized swept-sine signal (ESS). The reason for this error is the non-synchronization of the

swept-sine signal as described in previous sections.

The harmonic phases presented in Fig. 7 are the phases of hn(t) related to the system under test and should be

independent on the input signal x(t). However, if the swept-sine signal is not correctly synchronized, the phases

of hn(t) become dependent on the input signal x(t) which is undesirable. On the other hand, if the swept-sine

signal is correctly synchronized the phases of hn(t) remain independent on the input signal x(t). This is confirmed

in the illustrative example in Fig. 7, where the phases of all the HHFRs are correctly estimated in the case of the

synchronized swept-sine (SSS).

8. CONCLUSION

In this paper, the theory of Synchronized Swept-Sine method has been revised. It has been shown that for a correct

generation of the synchronized swept-sine a specific formula has to be used. Otherwise, the exponential swept-sine

signal is not synchronized leading to an incorrect estimation of phases of Higher Harmonic Frequency Responses.

If the synchronized swept-sine is generated using the equation derived in this paper the phases of Higher Harmonic

L
A

U
M

,
C

N
R

S
U

M
R

6
6

1
3



Novak et al. Synchronized Swept-Sine — 15/21

Frequency Responses are correctly estimated.

Moreover, the analytical formula for the spectra of the synchronized swept-sine has been derived. Thus, the

deconvolution of the impulse response can be made directly in the frequency domain using the analytical expression.

Advantage of using the deconvolution with the analytical formula is that the estimated Higher Harmonic Frequency

Responses have larger frequency bandwidth than when deconvolved the usual way. The use of analytical formula

for the deconvolution is also less time consuming.

We have illustrated the advantages of using a synchronized swept-sine method over the usual non-synchronized

one on analysis of current distortion of a woofer. Moreover, some application issues of the implementation are

discussed in Appendix including a full Matlab code of the method.
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APPENDIX

A.1 Fourier Transform of the Synchronized Swept-Sine Signal

The Fourier transform of the analytical signal z(t) from Eq. (39) is defined as

Z(f) =

∞∫
−∞

z(t) exp (−j2πft) dt (A.1)

=

∞∫
−∞

exp

{
j2π

[
Lf1 exp

(
t

L

)
− ft

]}
dt, (A.2)

which can be expressed as

Z(f) =

∞∫
−∞

exp (j2πΘ(t)) dt, (A.3)

where

Θ(t) = Lf1 exp

(
t

L

)
− ft (A.4)

is the phase of the exponential term. The function Θ(t) is a convex function with a global minimum at

tk = L ln

(
f

f1

)
. (A.5)

Note, that this equation is the same as the one defining the group delay (45).

In order to find the Fourier transform defined in Eq. (A.1), we express the phase Θ(t) in a Taylor series around

the time tk for each frequency f as

Θ(t) =

∞∑
n=0

Θ(n)(tk)

n!
(t− tk)n. (A.6)

We first solve all the derivatives Θ(n)(t)

Θ(t) = Lf1 exp

(
t

L

)
− ft, (A.7)

Θ′(t) = f1 exp

(
t

L

)
− f, (A.8)

Θ(n)(t) =
f1

Ln−1
exp

(
t

L

)
, (n ≥ 2) (A.9)

and then we solve them for tk from Eq. (A.5)

Θ(tk) = Lf − fL ln(
f

f1
), (A.10)

Θ′(tk) = f − f = 0, (A.11)

Θ(n)(tk) =
f

Ln−1
, (n ≥ 2). (A.12)

The Taylor series from (A.6) can be then expressed as

Θ(t) = Lf − fL ln

(
f

f1

)
+

∞∑
n=2

f

L(n−1)n!
(t− tk)n. (A.13)
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Putting the phase (A.13) to the Fourier transform (A.3) and using the principle of stationary phase [25, 26] allowing

us to neglect the terms n > 2 in (A.13) we can write

Z(f) = exp

{
j2πfL

[
1− ln

(
f

f1

)]}

×
∞∫
−∞

exp

[
jπf

(t− tk)2

L

]
dt. (A.14)

Substituting u = t− tk we get the function inside the integral even, leading to

Z(f) = exp

{
j2πfL

[
1− ln

(
f

f1

)]}

×2

∞∫
0

exp

[
jπf

u2

L

]
du. (A.15)

The integral in Eq. (A.15) is one form of the Fresnel integral. Finally, solving the Fresnel integral we can write

Z(f) = exp

{
j2πfL

[
1− ln

(
f

f1

)]}
×

√
L

f
exp(j

π

4
). (A.16)

A.2 IMPLEMENTATION AND APPLICATION

The application and implementation issues of the proposed method are discussed in this section. A Matlab code is

provided for each important step.

A.2.1 Synchronized Swept-Sine Signal Generation

The first step is the generation of the synchronized swept-sine signal. We first define the initial, final and sampling

frequency and the time duration of the swept-sine signal.

1 f1 = 5; % initial frequency

2 f2 = 500; % final frequency

3 fs = 50000; % sampling frequency

4 T = 10; % time duration

The choice of these parameters should be suited to the nonlinear system under test. In the example given in Sec. 7

we analyzed the current distortion of a woofer using an acquisition system with sampling frequency fs = 50 kHz.

Since the current distortion of a woofer is most important at very low frequencies we set the frequency range between

f1 = 5 Hz and f2 = 500 Hz.

Next, we generate the signal using Eqs. (47) and (49)

1 L = T/log(f2/f1);

2 t = (0:ceil(fs*T)−1)./fs;
3 x = sin(2*pi*f1*L*(exp(t/L))).';

A.2.2 Windowing, fade-in and fade-out

For some applications it might be useful to apply a fade-in and/or fade-out window on the input signal [21, 27]. In

[27], an optimal length and shape of these two windows is discussed. In the following code we propose a so-called

raised cosine window [28], but any kind of window can be used [27].

L
A

U
M

,
C

N
R

S
U

M
R

6
6

1
3



Novak et al. Synchronized Swept-Sine — 19/21

1 % fade−in the input signal

2 fd1 = 4800; % number of samlpes

3 fade in = (1−cos((0:fd1−1)/fd1*pi))/2;
4 index = 1:fd1;

5 x(index) = x(index).*fade in.';

6

7 % fade−out the input signal

8 fd2 = 4800; % number of samlpes

9 fade out = (1−cos((0:fd2−1)/fd2*pi))/2;
10 index = (1:fd2)−1;
11 x(end−index) = x(end−index).*fade out.';

Note, that if we perform the deconvolution using (4) or (7) that applies the generated input signal data x(t) to

calculate the inverse filter, the fade-in fade-out windows are applied twice: once to the input signal x(t) and once

to the inverse filter. On the other hand, when the analytical formula for deconvolution (38) is used, the fading

windows are applied only to the input signal x(t).

A.2.3 Output signal and its DC Component Filtration

Once the synchronized swept sine signal is generated it can be used as the excitation to the nonlinear system under

test. As discussed in [1], it is common to add a segment of silence after the excitation signal in order to avoid the

cut of the tail of the systems response. In the following, we suppose the output signal y(t) of the nonlinear system

was correctly recorder and saved in Matlab under a variable y (a column).

It may happen that after recording the system response y(t) the latter contains a DC component or even

some very low-frequency content. This is either due to the nonlinear system under test itself [29], or due to the

measurement setup, for example a vibrometer measuring a displacement signal may already be in a DC off-set. In

both cases, the DC component should be filtered-out from the signal, otherwise it can contaminate the deconvolved

impulse response with the scaled inverse filter x̃(t) as shown below.

Let call the output signal with no DC component y(t) and the DC component of the signal as yDC so the

recorder signal may be in form of y(t) + yDC . When convolving this signal with the inverse filter x̃(t), it will result

in
(y(t) + yDC) ∗ x̃(t) = y(t) ∗ x̃(t) + yDC · x̃(t)

= h(t) + yDC · x̃(t).
(A.17)

Note, that the output of the deconvolution is the desired impulse response h(t) plus an undesired inverse filter x̃(t)

scaled by the yDC factor.

Thus, the DC component must be filtered out either electrically (many of Digital-to-Analog Converters have a

protective high-pass filter implemented on chip), or by doing it manually. Once the DC component filtered-out, the

deconvolution of the impulse response can be carried out.

A.2.4 Deconvolution

The deconvolution in frequency domain is implemented using Eq. (50) and the analytical expression of the inverse

filter in frequency domain from Eq. (51).

1 % Output signal spectra

2 len = 2ˆceil(log2(length(y)));

3 Y = fft(y,len)./fs; % FFT of y

4

5 % frequency axis

6 f ax = linspace(0,fs,len+1).';
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Figure 8. Schematic representation of time delay ∆t4 being between two samples of sampled impulse response h(t).

7 f ax = f ax(1:end−1);
8

9 % inverse filter in frequency domain

10 X = 2*sqrt(f ax/L).*exp(−j*2*pi* ...

11 f ax*L.*(1−log(f ax/f1)) + j*pi/4);

12

13 % Deconvolution

14 H = Y.*X ;

15 H(1) = 0; % avoid Inf at DC

16

17 % higher harmonic impulse responses

18 h = ifft(H,'symmetric');

A.2.5 Separation of Higher Harmonic Impulse Responses

The deconvolution process results in the impulse response, that consists of time-delayed sum of higher harmonic

impulse responses as depicted in Fig. 5. In order to separate them from each other, we must first calculate the

time-moments ∆tn in which these higher harmonic impulse responses appear using Eq. (52). In order to obtain

directly the number of samples by which the higher harmonic impulse responses are shifted, we multiply the time

delays ∆tn by the sampling frequency fs.

1 N = 3; % number of higher harmonics

2 % positions of higher harmonic IRs

3 dt = L.*log(1:N).*fs;

However, the number of samples dt defined as ∆tnfs is not necessarily an integer number leading to a non-integer

sample shift to be realized. A schematic example of such a situation is depicted in Fig. 8. Thus, we first separate

the higher harmonic impulse responses at the integer shift calculated as the rounded version of the exact non-integer

number of samples and, after the separation, we implement the non-integer delay in frequency domain using the

time shift property of the Fourier transform

F [f(t− t0)] = exp(−jωt0)F [f(t)] . (A.18)
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Finally, the HHFRs Hn(f) are calculated as the Fourier transform of the higher harmonic impulse responses hn(t).

1 % Length of each IR (in samples)

2 len IR = 2ˆ12;

3 half IR = round(len IR/2);

4

5 % rounded positions [samples]

6 dt = round(dt);

7 % non−integer difference

8 dt rem = dt − dt ;

9

10 % circular periodisation of IR

11 h pos = [h; h(1:half IR + len IR)];

12

13 % frequency axis definition

14 axe w = linspace(0,2*pi,len IR+1).';

15 axe w = axe w(1:end−1);
16

17 % space localisation for IRs

18 hs = zeros(len IR,N);

19

20 for n = 1:N

21 % start position of n−th IR

22 st = len−dt (n)−half IR;

23

24 % separation of IRs

25 hs(:,n) = h pos(st:st+len IR−1);
26

27 % apply windowing if needed

28

29 % Non−integer sample delay

30 Hx = fft(hs(:,n)).* ...

31 exp(−j*dt rem(n)*axe w);

32 hs(:,n) = ifft(Hx,'symmetric');

33 end

34

35 % Higher Harmonic Frequency Responses

36 Hs = fft(hs);

To smooth out the transitions between the impulse responses hn(t) and to control spectral ripples and time

non-casual spreads, the impulse responses can be tapered prior to truncation using window functions such as the

Hamming, the Bartlett, or the Kaizer windows [28].
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