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Abstract

In this paper, we propose a method for nonlinear system (NLS) identification using a swept-sine input signal and

based on nonlinear convolution. The method uses a nonlinear model, the non-parametric generalized polynomial

Hammerstein model made of power series associated with linear filters. Simulation results show that the method

identifies the nonlinear model of the system under test and estimates the linear filters of the unknown NLS. The

method has been also tested on a real-world system: an audio limiter. Once the nonlinear model of the limiter is

identified, a test signal can be regenerated to compare the outputs of both the real-world system and its nonlinear

model. The results show good agreement between both model-based and real-world system outputs.

The archived file is not the final published version of the article A. Novak, L. Simon, F. Kadlec & P. Lotton (2010),

”Nonlinear system identification using exponential swept-sine signal”, Instrumentation and Measurement, IEEE

Transactions on. Vol. 59(8), pp. 2220-2229.

The definitive publisher-authenticated version is available online at https://doi.org/10.1109/TIM.2009.2031836,

Readers must contact the publisher for reprint or permission to use the material in any form.

L
A

U
M

,
C

N
R

S
U

M
R

6
6

1
3

1

https://ant-novak.com
https://doi.org/10.1109/TIM.2009.2031836


Novak et al. Nonlinear Systems & Swept-Sine Signal — 2/18

�

�

�

�

�

�

x(t) y(t)+

G1(f)

G2(f)

G3(f)

GN (f)

(·)2

(·)3

(·)N

x1(t) y1(t)

x2(t) y2(t)

x3(t) y3(t)

xN (t) yN (t)

Figure 1. Generalized Polynomial Hammerstein model (power series nonlinear model).

1. Introduction

The theory of linear time-invariant (LTI) systems has been extensively studied over decades [1, 2] and the esti-

mation of any unknown LTI system, knowing both the input and output of the system, is a solved problem. The

fundamental idea of the theory states that any LTI system can be characterized entirely by its impulse response in

the time domain or by its frequency response function in the frequency domain. Nevertheless, almost all real-world

devices exhibit more or less nonlinear behavior. In the case of very weak nonlinearities, a linear approximation

can be used. If the nonlinearities are stronger, the linear approximation fails and the system has to be described

using a nonlinear model. Such nonlinear models are available in the literature: for example, Volterra model [3],

neural network model [4], MISO model [5], NARMAX model [6, 7], hybrid genetic algorithm [8], extended Kalman

filtering [9], particle filtering [10].

All these models involve parameters or kernels that have to be estimated. If a theoretical physical model of

the nonlinear system (NLS) under test is available, the global nonlinear behavior of the system is known and the

method to be carried out consists in the estimation of the unknown parameters of the NLS. If no prior knowledge

of the NLS is available, an identification procedure has to be involved. This procedure is based on the analysis

of the signal produced at the output of the system under test when exciting the system by a given and con-

trolled input signal. Different input signals can be used, depending on the method chosen for the estimation, such

as sine wave excitation, multitone excitation [11, 12, 13], random noise excitation [5], pseudorandom signals [14, 15].

Regarding the basics of NLS theory, when a pure sine-wave input signal x(t) = A1 cos(2πf1t+φ1) passes through

a NLS, higher-order harmonic components appear at the output of the system as multiples of input frequency, ac-

cording to y(t) =
∑
nBn cos(2πnf1t + φn). The characteristics (amplitude Bn and phase φn) of all higher-order

components may be furthermore frequency and input amplitude dependent, in the sense that ∀n Bn ≡ Bn(A1, f1),

φn ≡ φn(A1, f1). The complete identification procedure consequently needs to estimate the amplitude Bn and

phase φn as functions of input amplitude and frequency. Nonlinear models including frequency dependency are for

example Wiener model, Hammerstein model, or Wiener-Hammerstein model [15].

A non-parametric generalized polynomial Hammerstein model [15] of order N is considered here, as illustrated

in Fig. 1. The model is made up of N parallel branches, each branch consisting of a linear filter Gn(f) preceded

by a n-th power static nonlinear function. Giving both the input and output signals x(t) and y(t), the problem of

identifying the generalized polynomial Hammerstein model consists then in the estimation of the unknown linear

filters Gn(f), n ∈ [1, N ].
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Figure 2. Block diagram of the nonlinear convolution process in NLS identification.

In this paper, we propose a new method for identifying the generalized polynomial Hammerstein model based

on an input exponential swept-sine signal, allowing a one-path estimation of the unknown linear filters. The paper

is organized as follows. In Sect. 2, we review the basics of the nonlinear convolution firstly proposed in [16, 17] and

we recall the properties of asymptotic signals. In Sect. 3, we define the swept-sine input signal and we detail how to

design this input signal for the purpose of NLS identification. In Sect. 4, we define the associated inverse filter and

we show how to estimate the linear filters of the model. In Sect. 5, we show the results of numerical experiments

and real NLS identification (audio limiter). In Sect. 6, the proposed method is compared with other methods based

on dedicated models [18], such as Hammerstein or Wiener models. Finally, the conclusions are noted in Sect. 7.

2. Basics of the method

The method presented in this paper is partly based on nonlinear convolution method presented in [17]. The method

uses a swept-sine signal (also called a chirp), exhibiting an exponential instantaneous frequency, as the excitation

signal and allows the characterization of a NLS in terms of harmonic distortion at several orders. This nonlinear

convolution method and the basic theory of instantaneous frequency and complex signal are reviewed in this section.

2.1 Nonlinear Convolution

The block diagram of the method is shown in Fig. 2. First, an exponential swept-sine signal s(t) is generated and

used as the input signal of the nonlinear system under test. The distorted output signal y(t) is recorded for being

used for the so-called nonlinear convolution [17]. Next, the signal noted s̃(t) is derived from the input signal s(t) as

its time-reversed replica with amplitude modulation such that the convolution between s(t) and s̃(t) gives a Dirac

delta function δ(t). The signal s̃(t) is called ”inverse filter” [16, 17]. Then, the convolution between the output

signal y(t) and the inverse filter s̃(t) is performed. The result of this convolution can be expressed as

y(t) ∗ s̃(t) =

∞∑
m=1

hm(t+ ∆tm), (1)

where hm(t) are higher-order impulse responses and ∆tm are the time lag between the first (linear) and the m-th

impulse response. Since the nonlinear impulse response consists of a set of higher-order impulse responses that

are time shifted, each partial impulse response can be separated from each other, as illustrated by Fig. 3. This

procedure is developed in [16].
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Figure 3. Result of the nonlinear convolution process y(t) ∗ s̃(t) in the form of set of higher-order nonlinear impulse

responses hm(t).

The set of higher-order nonlinear impulse responses hm(t) can be also expressed in the frequency domain. The

frequency response functions of higher-order nonlinear impulse responses hm(t) is then their Fourier transforms

Hm(f) = FT [hm(t)] . (2)

The frequency responses Hm(f) represent the frequency dependency of higher-order components. The frequency

response H1(f) is consequently the response corresponding to the linear part of the system. Similarly, the frequency

response Hm(f) (m > 1) may be regarded as the system frequency response, when considering only the effect of

the input frequency f on the m-th harmonic frequency mf of the output. The relation between partial frequency

responses Hm(f) and linear filters Gn(f) is detailed in section 4.

2.2 Instantaneous frequency and complex signal

A swept-sine signal, or chirp, is a signal in which the instantaneous frequency increases with time and can be

generally defined as

s(t) = a(t) sin(ϕ(t)). (3)

The analytic signal of the signal s(t) is

zs(t) = s(t) + jH[s(t)] = as(t)e
jϕs(t), (4)

where H[ ] is the Hilbert transform and where as(t) and ϕs(t) are unambiguously defined as amplitude and phase

of zs(t). The spectrum Zs(f) of the signal zs(t) can be written in terms of amplitude and phase as

Zs(f) = Bs(f)ejΨs(f). (5)

The instantaneous frequency fi(t) and the group delay tf (t) are then defined as

fi(t) =
1

2π

dϕs(t)

dt
, (6)

tf (f) = − 1

2π

dΨs(f)

df
. (7)

Eq. (6) and (7) define two curves in the time-frequency planes which, for strictly monotonic chirps or so-called

asymptotic signals [19, 20], may be regarded as inverse of each other. In such conditions of asymptotic signal, if one
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of these functions is known, the other one can then be easily calculated. Furthermore, we can write the following

equalities t ≡ tf ≡ tf (f) and f ≡ fi ≡ fi(t).

These properties allow to know the spectra of the signal zs(t) with no need to calculate its Fourier transform.

The amplitude as(t) and the phase ϕs(t) in time domain are related to the amplitude Bs(f) and the phase Ψs(f)

in frequency domain, for f > 0, as [21]

Bs(f) =
as(tf )√
1

2π
|ϕ′′s (tf )|

, (8)

Ψs(f) = ϕs(tf )− 2πftf +
π

4
sign

(
dfi(tf )

dtf

)
. (9)

3. Input Signal and Inverse Filter: Design and properties

In this section, we detail how to design the input signal used for the identification of the NLS under test. First,

the input signal is defined as an exponential swept-sine signal as used in [16, 17]. Then, a redesign of this input

signal is proposed for the specific purpose of estimation of the linear filters of the non-parametric generalized

polynomial Hammerstein model. Both time-domain and frequency-domain properties of this redesigned signal are

also examined.

3.1 Input Signal Design

The input signal used for the identification is an exponential swept-sine signal, i.e. a signal exhibiting an instanta-

neous frequency which increases exponentially with time. Such a signal is also called an exponential chirp and is

defined as

s(t) = sin

[
2πf1

∫ t

0

exp

(
t′

L

)
dt′
]

= sin

{
2πf1L

[
exp

(
t

L

)
− 1

]}
, (10)

where f1 is the start frequency at t = 0, and L is the rate of exponential increase in frequency. The parameter L

depends on the time length T and the stop frequency f2 of the swept-sine signal. The signal s(t) defined in Eq.

(10) can be also expressed as in Eq. (3) with constant amplitude envelope, a(t) = 1, and the instantaneous phase

ϕ(t) = 2πf1L

[
exp

(
t

L

)
− 1

]
. (11)

The instantaneous frequency, defined in (6), is

fi(t) = f1 exp

(
t

L

)
. (12)

The group delay tf is then the inverse function of instantaneous frequency fi and is given by

tf (f) = L log

(
fi
f1

)
. (13)

The time length T of the signal s(t) can then be consequently expressed as the time between two particular

instantaneous frequencies f1 (start frequency) and f2 (stop frequency),

T = L log

(
f2

f1

)
, (14)
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Figure 4. Swept-sine signal s(t) in time domain (below), with the time length chosen according to instantaneous

frequency fi(t) (above).

and thus the coefficient L is defined as

L =
T

log
(
f2
f1

) . (15)

This definition of the swept-sine signal parameters is similar to the one used in [16, 17, 22] for analysis of audio

equipment nonlinearities. Nevertheless, for the nonlinear model estimation, this definition may lead to problems

due to non-synchronization of the phases of the higher-order harmonic components. For that reason, the following

procedure is proposed to redesign the exponential swept-sine signal.

Firstly, let ∆tm be the time lag, for which the instantaneous frequency fi(∆tm) is given by

fi(∆tm) = mf1, (16)

for m ∈ N− {0}. Using Eq. (13), it is then possible to write

∆tm = L log (m) , (17)

and the instantaneous phase at the time lag ∆tm is given by

ϕ(∆tm) = 2πf1L (m− 1) . (18)

Secondly, as depicted in Fig. 4, the swept-sine signal s(t) at particular time lag ∆tm is designed to be equal to zero,

s(∆tm) = 0, with the additional constraint of positive first derivative s′(∆tm) > 0. These conditions consequently

yields to

ϕ(∆tm) = 2kπ, (19)

where k ∈ Z. Thus, from Eq. (19) and (18), we get

f1L(m− 1) = k. (20)
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Sufficient condition to solve (20) is then

f1L ∈ Z. (21)

Using this condition and Eq. (15), we write

L =
1

f1
Round

 T̂ f1

log
(
f2
f1

)
 , (22)

where T̂ is an approximate time length of the signal s(t) and where Round represents rounding towards nearest

integer.

The redesigned exponential swept-sine signal can then be generated using the equations (10) and (22). The

parameters which define the input signal s(t) are start and stop frequencies f1 and f2, and the approximative time

length T̃ .

3.2 Time Domain Properties of the Input Signal

The signal s(t) defined above and satisfying the conditions depicted in Fig. 4 has furthermore the following property.

Consider a signal s2(t) with instantaneous frequency equals twice the instantaneous frequency of the signal s(t).

The relation between both signals is then

s2(t) = s(t+ ∆t2). (23)

This condition may be extended for any m ∈ N− {0}, as

sm(t) = s(t+ ∆tm). (24)

In other words all the higher-order harmonic components of the signal s(t) can be expressed as time shifted replica

of s(t).

3.3 Frequency Domain Properties of the Input Signal

To derive the amplitude spectrum Bs(f) of the analytic swept-sine signal zs(t), we use Eq. (8). The second-order

derivative of the phase ϕs(t), is expressed, using Eq. (11) and (13), as

ϕ′′s (t) = ϕ′′(t) =
2πf1

L
exp

(
t

L

)
=

2πfi(t)

L
. (25)

Using the Eq. (8) and (25) and the equivalence f ≡ fi, the amplitude spectrum, for f > 0, can be written as

Bs(f) =

√
L

f
, (26)

as depicted in Fig.5.

3.4 Inverse Filter

We consider here the analytic signal of the inverse filter s̃(t) as

zs̃(t) = s̃(t) + jH[s̃(t)], (27)

and the Fourier transform Zs̃(f) of the analytic signal zs̃(t). The inverse filter s̃(t) convolved with the swept-sine s(t)

gives theoretically the Dirac function δ(t) as well as their analytic signals and thus we can write,

Zs̃(f) =
1

Zs(f)
. (28)
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Figure 5. Amplitude of the Fourier Transform of the exponential swept-sine signal.

To express the analytic signal of the inverse filter zs̃(t), we first derive the relation between magnitudes and phases

of both Fourier transforms, as

Zs̃(f) =
1

Bs(f)ejΨs(f)
=

1

Bs(f)
e−jΨs(f). (29)

and thus

Bs̃(f) = |Zs̃(f)| = 1

Bs(f)
, (30)

Ψs̃(f) = −Ψs(f). (31)

For asymptotic signal zs(t), the analytic inverse filter zs̃(t) is consequently also an asymptotic signal

zs̃(t) = as̃(t)e
jϕ̃s(t). (32)

Then, we derive the phase ϕ̃s(t) from the expression of t̃f (f). Using Eq. (7) and (31), we get

t̃f (f) = − 1

2π

dΨs̃(f)

df
=

1

2π

dΨs(f)

df
. (33)

As a consequence, we get

t̃f (f) = −tf (f), (34)

ϕ̃s(t) = ϕs(−t). (35)

To derive the amplitude as̃(t) of the inverse filter, we use the Eq. (8)

Bs̃(f) =
as̃(t̃f )√
1

2π |ϕ̃′′s (t̃f )|
. (36)

As ϕ̃′′s (t̃f ) = ϕ′′s (tf ) (from Eq. (34) and (35)), we can substitute from Eq. (25)

Bs̃(f) =
as̃(t̃f )√

f

L

. (37)

Now, from Eq. (26),(30) and (37) we can write

as̃(t̃f ) =
fi
L
. (38)
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Using Eq. (12), the envelope as̃(t) is given by

as̃(t) =
f1

L
exp

(
− t
L

)
(39)

and the analytic inverse filter is finally expressed as

zs̃(t) =
f1

L
exp

(
− t
L

)
ej(ϕs(−t)), (40)

that is in shorten form

zs̃(t) =
f1

L
exp

(
− t
L

)
zs(−t). (41)

The inverse filter s(t) is then

s̃(t) =
f1

L
exp

(
− t
L

)
s(−t). (42)

4. Principles of the Method of Identification

In previous section, the input signal s(t) and the inverse filter s̃(t) have been defined to be used for identification

of the NLS under test. This section focuses on the relation between partial frequency responses Hm(f) and linear

filters Gn(f) in frequency domain.

As the impulse responses hm(t) and gn(t), defined as the inverse Fourier transform of Hm(f) and Gn(f) respec-

tively, are supposed to be real functions, it follows from the hermitian properties of Hm(f) and Gn(f) that only

the half frequency area f > 0 is considered in the following.

Given the partial frequency responses Hm(f) defined by Eq. (2), the frequency response of the linear filters

Gn(f) of the power series nonlinear model can be derived analytically using the trigonometric power formulas,

defined as [23], ∀l ∈ N

(sinx)2l+1 =
(−1)l

4l

l∑
k=0

(−1)k
(
2l + 1

k

)
sin [(2l + 1− 2k)x] , (43)

and ∀l ∈ N− {0},

(sinx)2l =
(−1)l

22l−1

l−1∑
k=0

(−1)k
(
2l

k

)
cos [2(l − k)x]

+
1

22l

(
2l

l

)
. (44)

Regarding the Fourier transform of Eq. (43) and (44) and noting FTp the result of the Fourier transform only for

positive frequencies, we can write

FTp

{
(sinx)2l+1

}
=

(−1)l

4l

l∑
k=0

(−1)k
(
2l + 1

k

)
FTp {sin [(2l + 1− 2k)x]} , (45)

and ∀l ∈ N− {0},

FTp

{
(sinx)2l

}
= j

(−1)l

22l−1

l−1∑
k=0

(−1)k
(
2l

k

)
FTp {sin [2(l − k)x]}

+
1

22l

(
2l

l

)
. (46)

These formulas give in the Fourier domain the relation between the higher-order harmonic sin(lx) and the l-th

power of the harmonic signal sinl(x), for l ∈ N. Considering a harmonic input signal of frequency f0 > 0, the values
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of the frequency responses Hm(lf0) and the values of the frequency responses of the linear filters Gn(lf0) are related

in the same way as in (43-44).

The trigonometric formulas in frequency domain can then be rewritten into the matrix form (47), where the matrices

A and B represent the coefficients in Eq. (45) and (46)
FTp{sinx}
FTp{sin2 x}
FTp{sin3 x}

...

 = A


FTp{sinx}
FTp{sin 2x}
FTp{sin 3x}

...

+ B. (47)

The matrix A is defined, according to Eqs. (45), (46), as

An,m =


(−1)2n+1−m

2

2n−1

(
n

n−m
2

)
, forn ≥ mand(n+m)is even,

0, else.

(48)

The matrix B is a one-column matrix and represents the constant values of the even power series. These values are

only linked to the mean value of the output signal. The relation between the partial frequency response Hm(f0),

for f0 > 0 and the linear filters Gn(f0) from the power series nonlinear model is given using the coefficients of the

matrix A. Each partial frequency response Hm(f0), or m-th harmonic, can be expressed as a sum of m-th harmonics

of all the n-th powers weighted by the linear filters Gn(f0). The coefficients of the m-th harmonics of the n-th

power are A(n,m) and thus

Hm(f0) =

N∑
n=1

An,mGn(f0). (49)

Lastly, the linear transformation between Hm(f0) and Gn(f0), for f0 > 0 can be generally expressed in matrix form

G1(f0)

G2(f0)

G3(f0)

...


=
(
AT
)−1



H1(f0)

H2(f0)

H3(f0)

...


, (50)

where AT denotes the transpose of A.

5. Results

5.1 Simulation of a NLS with memory

In order to illustrate the method, a simulated NLS with memory is identified. This NLS consists of two nonlinear

branches with linear and cubic parts, each of them followed by a linear filter (Fig. 6). To simulate real-world

x(t) y(t)+

G1(f)

G3(f)(·)3

x1(t)

x3(t)

n(t)

Figure 6. Simulated NLS with memory.
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Figure 7. The theoretical frequency response (modulus - above; phase - below) of the filter G1(f) from the linear

part of the tested system.
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Figure 8. The estimated frequency response (modulus - above; phase - below) of the filter Ĝ1(f) from the linear

part of the tested system.

conditions, a white gaussian noise (WGN) n(t) is added to the output signal. Both filters are digital Butterworth

filters. The filter G1(f) used in linear branch is a 10-th order high-pass filter, with cutoff frequency 500 Hz and the

filter G3(f), used in the cubic branch, is a 10-th order low-pass filter, with cutoff frequency 1 kHz. The simulation

is performed using a sampling frequency fs=12 kHz. The excitation signal used for the identification is a swept-

sine signal as defined in Sect.3, with the following parameters: f1=20 Hz, f2=2000 Hz, T̃=5 s. The maximum

frequency f2 has been chosen in order to avoid any aliasing [24, 25]. The order of the model is set to N = 3. Once

the response of the NLS under test to this excitation signal is known, the nonlinear convolution described in Sect.

4 is performed and the linear filters of the nonlinear model are estimated.

The estimated frequency responses (modulus and phases) of filters Ĝ1(f) and Ĝ2(f) are respectively given in Fig.

8 and 10 and compared to the theoretical ones (Fig. 7 and 9) with a SNR equal to 30 dB. In the frequency ranges

of the swept-sine input signal (f1=20 Hz, f2=2 kHz) both estimated filters, the High-Pass filter (500 - 2000 Hz)
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Figure 9. The theoretical frequency response (modulus - above; phase - below) of the filter G3(f) from the

nonlinear part of the tested system.
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Figure 10. The estimated frequency response (modulus - above; phase - below) of the filter Ĝ3(f) from the

nonlinear part of the tested system.

and the Low-Pass filter (50 - 1000 Hz), match in amplitude and phase with the theoretical characteristics.

In order to test the robustness of the identification method, the simulation has also been performed for several

levels of additive noise n(t). The mean squared error (MSE) of the estimated filters depends indeed on the SNR.

The MSE is calculated as the mean square of the modulus of the complex difference between the estimated and

real filters in the frequency range [f1=20 Hz, f2=2 kHz]. No synchronous averaging is performed.

The robustness of the method is illustrated in Figure 11. As expected, the MSE is made of two contributions:

the error caused by the additive noise n(t) and the model error [18]. The proposed method estimates the linear

filters of the model with an error less than ' 10−2, even for the lowest simulated SNR. For SNR higher than 50

dB, the MSE remains constant, due to the model error, at a value closed to ' 10−6.
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5.2 Identification of a real NLS

In this section, a real-world NLS is selected for testing the proposed method. The system under test is the limiter

part of dbx 266XL Compressor, Limiter, Gate [26]. The limiter is a NLS producing highly distorted output wave-

forms. The clipping level of the limiter is set to 0.25 V.

The measurements are performed using the swept-sine excitation signal with amplitude A = 1 V, frequencies

f1 = 10 Hz, f2 = 5 kHz and approximative time duration T̃ = 6 s. The sampling frequency is fs = 96 kHz and the

order of the model is N = 8.

To verify the accuracy of the estimated model, a signal x(t) is generated and used as input signal of both model

and real-world limiter. The responses yr(t) of the model and y(t) of the limiter are then compared in both time

and frequency domains. Three comparisons, corresponding to three different input signals are performed. As an

objective criterion a mean squared residual error between regenerated and measured output waveforms is measured

for all the three cases.

Firstly, a sine-wave input signal is generated with frequency f0 = 500 Hz and amplitude A0 = 1 V. Both re-

generated and real-world system outputs are then compared in Fig. 12. For the sake of clarity, the output of the

real limiter in frequency domain is shifted to the right. On one hand, the output of the real-world system consists

of numerous higher-order harmonic components. On the other hand, the model is truncated to the 8th order. As

a consequence, the regenerated output signal cannot contain more than 8 higher-order harmonic components and

then exhibits well-known oscillations, known as Gibbs phenomenon. Nevertheless, the regenerated output signal

fits in with mean squared error MSE=2.3 · 10−4.

Secondly, the input signal is a sine-wave with the same frequency (f0 = 500 Hz), but with a lower amplitude

(A0 = 0.3 V). Both regenerated and real-world system are compared in Fig. 13. It shows that the nonlinear model

fits in also well for a lower input signal, even if the 4th odd component is badly estimated, suggesting a possible

input-output law depending on the amplitude of the input signal. As for the previous case the mean squared error

is MSE=2.3 · 10−4.

Lastly, a sawtooth input signal is used as the input signal and the measured and regenerated output signals are

compared. The sawtooth signal is is chosen to exhibit a period of 480 samples, equivalent to frequency 200 Hz, for

a data rate fs = 96 kHz. The results are depicted in Fig. 14. The regenerated and measured output waveforms are

very similar, even if the regenerated one exhibits Gibbs oscillations. The mean squared error between regenerated

10 20 30 40 50 60 70
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

SNR [dB]

M
S
E

 

 

mean{|Ĝ1(f )−G1(f )|2}
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Figure 11. Dependency of MSE of the estimated filters Ĝ1(f) and Ĝ3(f) on SNR.
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Figure 12. Comparison of the real-world (thin) and regenerated (bold) responses (waveforms - left; spectra - right)

to the sine-wave f = 500Hz, A = 1V .
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Figure 13. Comparison of the real-world (thin) and regenerated (bold) responses (waveforms - left; spectra - right)

to the sine-wave f = 500Hz, A = 0.3V .

and measured output waveforms is MSE=6.6 · 10−4. That confirms that the method is accurate enough for regen-

erating complex output waveforms.
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Figure 14. Comparison of the real-world (thin) and regenerated (bold) responses (waveforms - left; spectra - right)

to the sawtooth input signal (dashed).

6. Comparison with Existing Methods

There is a wide variety of methods in the literature of NL system identification. On one hand, methods based

on Wiener, Hammerstein, Multiple Input Single Output (MISO), or block-oriented models may be considered as

methods based on dedicated models [18]. On the other hand, methods based on neural network, extended Kalman

filtering, particle filtering are not based on specific models and are usually regarded as universal approximators [18].

It is difficult to make a detailed comparison with all existing methods because the models and the methodolo-

gies associated to each method are too different. As the identification method proposed in this paper is based on

a polynomial structure model, the comparative study of this section concerns methods based on similar models:

Hammerstein model and Wiener model. The global advantages of the proposed method is summarized at the end

of this section.

The criterion used to perform the comparison is the mean squared error (MSE) between the regenerated output

yr(t) and the output y(t) of the system under test. Two systems are identified in order to perform the comparison:

the real audio limiter previously identified in section 5.2 and also an equivalent simulated limiter (zero-memory

system). The comparison is carried out for the three signals used in section 5.2. All the methods are based on 8th

degree polynomial model. The Wiener and Hammerstein methods are implemented using the Matlab - System

Identification Toolbox. Table 1 summarizes the MSE obtained for each method, for both simulated and

real-world system identifications.

As seen in Table 1, for simulated data, the Swept-Sine method leads to MSE of the same order of magnitude

of the ones linked to other methods. This can be explained by the fact that all tested methods use the same

polynomial structure. Moreover, the results for real-word system identification clearly shows that the Swept-Sine

method performs better for all the tested cases.
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Table 1. Mean squared errors.

simulation real-world

sine wave with A = 1 V

NL convolution 0.00011 0.00023

Hammerstein 0.00014 0.0014

Wiener 0.00014 0.0015

sine wave with A = 0.3 V

NL convolution 0.00026 0.00023

Hammerstein 0.00018 0.0032

Wiener 0.00018 0.0041

sawtooth signal with A = 0.5 V

NL convolution 0.00054 0.00066

Hammerstein 0.00016 0.0025

Wiener 0.00017 0.0031

7. Conclusion

In this paper, a method for identification of nonlinear systems is presented. The result of the identification is a

nonlinear model consisting of nonlinear branches, each branch being in the form of n-th power in series with a linear

filter, equivalent to generalized polynomial Hammerstein model. The method allows in particular to regenerate an

output signal corresponding to any given input signal and to compare this regenerated output signal to the real-

world output, in order to validate the accuracy of the model.

The method has been applied to a real-world nonlinear system (NLS) (audio limiter). The nonlinear model has

been tested for different input signals, two sine-wave signals with different level and a sawtooth signal and compared

with other methods.

On one hand, one of the characteristics of the method is the necessity of properly designed excitation signal. For

that reason the system under test cannot be excited from a simple signal generator, but from a personal computer

with an audio card, or from signal generator with memory, in which the properly designed signal is recorder.

On the other hand, the robustness of the method has been proved regarding noise characteristics (Fig. 11) and

through a real measurement test (Table 1), as also presented in [16, 17]. It has also to be noted that the method has

a low calculation time cost. Compared to the methods that are not based on a specific model (Extended Kalman

Filtering, Particle Filtering, Neural Networks), the proposed method is straightforward with no special algorithms

and thus easy to be implemented. In addition, the method has no need of any knowledge of the system under test.
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