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The thermal properties of a material with a spatio-temporal modulation in both the thermal
conductivity and the mass density are studied. The special configuration studied here consists of a
modulation in a wave-like fashion. It is found that these materials behaves, in an effective way, as
materials with an internal convection-like term that provides them of non-reciprocal properties, in
the sense that the flow of heat has different properties when it propagates in the same direction or in
the opposite one to the modulation of the parameters. An effective medium description is presented
which accurately describes the modulated material, and numerical simulations supports both the
non-reciprocal properties and the effective medium description. It is found that these materials are
promising candidates for the design of thermal diodes and other advanced devices for the control of
the heat flow at all scales.

The research on materials with non-reciprocal thermal
properties has received a great attention in recent years.
These materials have different propagation properties of
the thermal energy along two opposite directions. With
the so-called thermal diode being the most immediate
application of these structures[1], other devices and ap-
plications are easily envisioned, like thermal transistors
and even logic circuits[2].

Non-reciprocal materials have been properly stud-
ied theoretical and experimentally at different scales
[3–6], and it has been demonstrated that the realiza-
tion of a non-reciprocal material requires in general
the use of a combination of non-linear and asymmetric
structures[7]. However, the realization of non-reciprocal
materials based on non-linear elements limits their ap-
plicability, since non-linearity does not occurs at all tem-
peratures and scales, so that we can find that the recti-
fication properties of the materials be efficient in only a
short temperature range.

In this context, phononic metamaterials, artificially
structured materials with a priori-designed properties,
have overcome one of the major drawbacks of common
materials, since their properties depend on the internal
artificial structure and not on intrinsic properties of the
constituent materials, which in turns allow us to decide
at which scale and frequency or temperature range we
want to operate[8]. Therefore, a special type of metama-
terial is employed in this work presenting non-reciprocal
properties.

The proposed metamaterial consist in a periodically
modulated thermal material, however this modulation
will happen in both space and time. This special type
of modulation has been studied in elastic and acoustic
materials[9–12], whose non-reciprocal properties for the
propagation of waves have been widely demonstrated. In
this work we will apply these ideas to the diffusion equa-
tion describing thermal waves in solids, and it will be
found that the behavior of this equation is completely

different to the classical wave equations.

We present therefore an alternative mechanism for the
realization of non-reciprocal thermal materials which, in
principle, can be applied to any scale. The mechanism
consist in the realization of materials in which the ther-
mal properties (conductivity and mass density) are mod-
ulated in both space and time, so that it is demonstrated
that, when the spatio-temporal modulation of these prop-
erties are of the form of a traveling wave, the mate-
rial presents non-reciprocal thermal properties, and the
heat flow is allowed only in the direction of the travel-
ing modulation. Moreover, it is demonstrated that an
effective medium description is possible for such a ma-
terial, in which it is described as a homogeneous solid
with constant constitutive parameters (in both space
and time) but in which the temperature field satisfies
the convection-diffusion equation. In other words, it is
demonstrated that, although there is no transport of
matter in the solid material, in an effective way an in-
ternal convective term appear, which is the responsible
of providing non-reciprocal properties to the solid even in
the stationary regime. Analytical expressions are given
for the effective parameters and time-domain numerical
simulations performed by the commercial software COM-
SOL show a perfect agreement with the effective medium
description.

Figure 1 shows a possible realization (though not the
only one) of a material with a spatio-temporal modula-
tion in both the mass density and conductivity. In the left
panel, upper part, a linear chain of spheres of length L is
surrounded by a solid background. This system behaves
as an effective material with some effective mass density
and conductivity, as represented in the right panel. It is
obvious that the effective properties of this material will
depend, among other parameters, on the distance be-
tween spheres. Therefore, if at t = ∆t a periodic pertur-
bation is introduced in the material so that the distance
between spheres is changed a quantity ∆d every three
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spheres, the effective parameters of the chain of spheres
will be different in this region, and a periodic modulation
will have been induced, as it is shown in the right panel.
Finally, if this perturbation is traveling through the ma-
terial, the effective material will have also a traveling-like
behavior, as it is shown in the last two panels of figure 1,
where the perturbation travels at a speed v0 ≈ d/∆t.

FIG. 1. Schematic representation of a possible realization of
a material with a spatio-temporal modulation in the conduc-
tivity and the mass density.

The mechanism described before and represented in
figure 1 is obviously not unique, and it is just an exam-
ple of how a spatio-temporal modulation in the thermal
properties of a solid can be induced by means of a per-
turbation (or an external field). The objective in this
work is not to study the possible realization of this spe-
cial modulation, but to study the properties of a material
in which we can assume that the thermal conductivity σ
and mass density ρ are of the form

σ = σ(x− v0t), (1a)

ρ = ρ(x− v0t), (1b)

with σ and ρ being periodic functions of n = x−v0t with
period d. In a material with these properties, the energy
balance is described by means of the diffusion equation

∂

∂x

(

σ(x − v0t)
∂T

∂x

)

= ρ(x− v0t)
∂T

∂t
, (2)

where we have stated that the heat capacity is equal to
1, in order to simplify the notation, however it is evident
that in the above equation ρ means the product ρcV .
We are interested in the regime in which the spatio-

temporal variation of the constitutive parameters is not
“visible” and we perceive the material as a homogeneous
material. This is the classical homogenization limit, in
which heterogeneous materials are perceived as effective
materials with some averaged properties, therefore we
want to know here which ones are the effective mass den-
sity and conductivity of a material with this special mod-
ulation in the materials’ parameters. It must be pointed
out that the effective material description is valid un-
der situations in which the variations of the fields (the

temperature here) are smoother than the micro-structure
variations. In the following lines it will be shown that the
homogeneous version of equation (14) contains additional
constitutive parameters that provides of this material of
non-reciprocity.
The homogenization of equation (14) can be done more

efficiently under the change of variables n = x− v0t and
τ = t, so that the diffusion equation takes the form

∂

∂n

(

σ(n)
∂T

∂n

)

= ρ(n)
∂T

∂τ
− ρ(n)v0

∂T

∂n
, (3)

which is an equation in which the coefficients depend
only on the variable n. The transformed equation in the
n − τ coordinate system (actually a traveling reference
frame at velocity v0) is the diffusion-convection equation
with periodic coefficients in the coordinate n, where the
coefficient ρ(n)v0 appears as a convection coefficient rep-
resenting a flow of matter in the opposite direction of the
traveling modulation. This is somehow obvious since the
traveling frame sees the material traveling in the opposite
direction, since the material is actually at rest.
Equation 3 is a partial differential equation in the vari-

ables n and τ in which the coefficients are periodic func-
tions of n with period d, so that Block theorem applies
and the solution for the temperature field is a linear com-
bination of eigenfunctions of the form

T (n, τ) = e−iKneiΩτφ(n), (4)

with φ(n) being a periodic function of the variable n with
the same periodicity of σ and ρ. When this form of the
temperature field is introduced in equation(3) the disper-
sion relation Ω = Ω(K) is finally obtained as the solution
of an eigenvalue problem.
The spatio-temporal behavior of the temperature field

is therefore composed of the “macroscopic” function
e−iKneiΩτ modulated by a “microscopic” function φ(n).
When the spatial variations of the field are larger than
the typical period d, we are in the so called homogeniza-
tion limit, and equation (3) can be replaced by a “homog-
enized” version with constant coefficients with the same
solution Ω = Ω(K). Once the equation in the traveling
frame is homogenized, we can return to the frame at rest
to study its properties, as described in the Supplemen-
tary Material. However, when we return to the system
at rest, we don’t recover equation (14) with constant co-
efficients, as should be expected from a homogenization
process, but we obtain a more complicated equation, in
which additional constitutive parameters appear,

σ∗ ∂
2〈T 〉

∂x2
= ρ∗

∂〈T 〉

∂t
+ C

∂〈T 〉

∂x
− i(S + S′)

∂2〈T 〉

∂x∂t
. (5)

Therefore, the homogenized equation is the convection-
diffusion equation with two additional coefficients, S
and S′, which are the thermal equivalent of the Willis
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FIG. 2. Effective thermal conductivity (upper panel) and
mass density (lower panel) as a function of the non-
dimensional modulation velocity Γ.

coefficients found in the homogenization of phononic
crystals[13]. These coefficients are coupling terms related
with the non-symmetry of the unit cell, and although
they are null for symmetric periodic materials[14], the
non-reciprocity induced by the special modulation of the
materials considered here makes them different than zero.
These terms are relevant specially in the dynamic or tran-
sient regime, however in this work we are more interested
in the non-reciprocal properties of the material in the
nearly stationary regime, for which a further discussion
about these terms is beyond the objective of the present
work.

The responsible of the non-reciprocal properties of the
material in the stationary regime is the convective term
C∂xT appearing in equation (5). It is interesting the
relationship between the convective term C and the ef-
fective mass density ρ∗. It could be thought that, since v0
is constant through the material, the effective convective
term in the homogenized version of equation (3) would be
simply v0ρ

∗. The consequence of this property would be
that, when returning to the rest reference frame, the con-
vective term would disappear and then we would recover
the diffusion equation with constant coefficients (plus the
Willis terms). However, as it is demonstrated in the Sup-
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FIG. 3. Effective Wills term (upper panel) and convection
coefficient (lower panel) as a function of the non-dimensional
modulation velocity Γ.

plementary Material, the effective convective term does
not satisfy this condition, since although the variation of
v0ρ is the same as of ρ, they appear multiplying a dif-
ferent operator in the equation, the temporal derivative
and the spatial derivate, so that their role is completely
different in the equation and, therefore, in the frame at
rest we find that the diffusion equation (14) has become
the diffusion-convection equation (5), which is known to
be non-reciprocal due to the convective term C.

Therefore, the spatio-temporally modulated material
behaves, in the homogenization limit, as a homogeneous
material in which a convective term appear, so that the
propagation of heat will have non-reciprocal properties.
It must be pointed out that the convective term is not
induced by any transport of matter, as in fluid dynamics
and similar processes, but it is induced by means of some
external stimulus which is modulating the properties of
the material in a wave-like fashion, so that we can have
not only a solid material with an internal effective convec-
tion, but we can have a finite structure with convection
without the need of letting the flow of matter leave the
structure.

The Supplementary Material shows the mathematical
expressions to obtain these effective parameters for an
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arbitrary form of the periodic functions σ(x − v0t) and
ρ(x − v0t). The simpler case of modulation is a simple
cosinus perturbation of the form

σ(x− v0t) = σ0

[

1 + ∆σ cos
2π

d
(x − v0t)

]

, (6a)

ρ(x− v0t) = ρ0

[

1 + ∆ρ cos
2π

d
(x− v0t)

]

, (6b)

where the mass density and conductivity changes period-
ically from ρb = ρ0(1−∆ρ) to ρa = ρ0(1+∆ρ) and from
σb = σ0(1−∆σ) to σa = σ0(1+∆σ), respectively. The ef-
fective parameters in this situation can be approximated
by (see equations 32 in the Supplementary Material)

σ∗ ≈ σ0

[

1−
1

2

∆2
σ

1 + Γ2

]

, (7a)

ρ∗ ≈ ρ0

[

1−
Γ2

2

∆2
ρ

1 + Γ2

]

, (7b)

S = S′ ≈ −
ρ0d

2π

∆ρ∆σ

2

iΓ

1 + Γ2
, (7c)

C ≈
2πσ0

d

∆ρ∆σ

2

Γ

1 + Γ2
, (7d)

where we have defined the normalized modulation veloc-
ity Γ as

Γ =
v0dρ0
2πσ0

. (8)

Equations (7) show that the effective conductivity and
mass density are both even functions of Γ, meaning that
reversing the direction of the modulation has no effect
on their values. Contrarily, both S and C are odd func-
tions, which is obvious since these parameters are the
responsible of the non-reciprocal properties of the ma-
terial. When there is no traveling modulation (Γ = 0),
both S and C are zero, the mass density is just the av-
erage mass density ρ∗ = ρ0 and effective conductivity
σ∗ = σ0(1−∆2

σ/2), so that we recover reciprocity as ex-
pected. Interestingly, when v0 → ±∞ the non-reciprocal
properties of the material also disappear, since S and C
both tend to zero, and now the effective mass density
is ρ∗ = ρ0(1 − ∆2

ρ/2) and the effective conductivity is
σ∗ = σ0. In this case the oscillations of the material’s
properties are so fast that the spatial variation almost
disappear, therefore we can see an averaged material in
time, which in turns means that the non-reciprocal prop-
erties disappears. It is interesting to note how the expres-
sions for the effective parameters exchange their roles in
the limiting situation Γ = ±∞ or Γ = 0, due to the ex-
change of them in front of the space and time derivatives
in the diffusion equation. This simple analysis, which will
be verified later, shows that the larger “non-reciprocity”
is not obtained increasing the modulation velocity, but
that there is an optimum velocity for the design of non-
reciprocal materials.

Another interesting feature of equations (7) is that we
need a modulation of both the mass density and the ther-
mal conductivity to have non-reciprocity. This is indeed
a general result, as shown in the Supplementary Material,
where the effective convective term is shown to be

C = v0
∑

G′,G 6=0

ρ−G′G′χG′GσGG (9)

where the summation has to be performed for all the
reciprocal lattice points G = 2πm/d, with m being an
integer. χG′G is an interaction matrix, and ρG and σG

are the Fourier components of the functions ρ(n) and
σ(n), respectively. Given that in the above equation the
summation excludes the term G = 0, it will be zero unless
we have at least one pair (ρG, σG) forG 6= 0 different than
zero, that is, we need a simultaneous variation of both σ
and ρ.
This result shows that the origin of the convective term

in the effective material is due to a coupling between the
variation of the mass density and the conductivity, and
enforces its analogy with the Willis term and chirality in
electromagnetism.
Figure 2 shows the dependence on Γ of the effec-

tive conductivity (upper panel) and mass density (lower
panel) relative to those of the background (σb and ρb, re-
spectively) computed by means of the expressions 27 of
the Supplementary Material. In these examples ρa/ρb =
0.5 and σa/σb = 0, 0.01, 0.1, 0.5 and 1, as indicated in the
legends of the plots. The saturation effect as Γ → ∞ is
evident.
Figure 3 shows the dependence on Γ of the parame-

ters responsible of the non-reciprocal properties of the
effective material, S and C. As discussed before, these
parameters change of sign when Γ does the same. Also,
besides the effect of saturation discussed before, which
cancels non-reciprocity for Γ → ±∞, we see that there
is a value of Γ = ΓM for which both S and C have a lo-
cal maximum, which defines the optimum v0 to achieve
non-reciprocity.
In the stationary regime the macroscopic temperature

〈T 〉 is independent of time, and equation (5) reduces to

σ∗ ∂
2〈T 〉

∂x2
= C

∂〈T 〉

∂x
(10)

whose solutions are given by

〈T 〉 = A+Beαx, (11)

with α = C/σ∗. The above equation shows clearly the
non-reciprocal nature of the distribution of temperature,
as well as of the heat flux Φ(x) = σ∗∂xT (x). The larger
the parameter α, the higher the non-reciprocity of the
material. For the harmonic perturbation studied in the
present example, we can approximate α by

α ≈
2π

d
∆σ∆ρ

Γ

1 + 2Γ2
. (12)
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Figure 4 shows the dependence of this parameter as
a function 2πΓ, we see that there is an optimum value
of Γ for which we obtain the maximum value of α and,
as before for C, when Γ → ∞, α tends to zero and the
material becomes reciprocal.
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FIG. 4. Effective convection-diffusion coefficient as a function
of the non-dimensional modulation velocity Γ.

In order to check the accuracy of this description, we
have performed numerical simulations in time-domain
with the commercial software COMSOL multiphysics. In
these simulations, we have assumed a one dimensional
domain (a solid bar, for instance) of length L = 10d,
in which the initial temperature is set to 0. In the “for-
wards” (F) configuration, the temperature at the extreme
x = L is fixed to 0 and, for t > 0, the temperature at
x = 0 is set to T0. In the “backwards” configuration
we have reversed the temperatures, so that at x = 0 the
temperature is fixed to 0 and for t > 0 the temperature is
fixed to T0 at x = L. We have selected the same param-
eters for ρa and ρb as in the previous calculations, and
the value of σa = 0.01σb. The simulations have been per-
formed for 2πΓ = 0, 0.3, 1 and 10, whose corresponding
values for α are shown as red points in figure 4. Accord-
ing to equation (11) and the previously defined boundary
conditions, the temperature distribution in the bar in the
stationary regime for the forwards and backwards config-
uration is, respectively,

〈TF 〉 = T0
eαL − eαx

eαL − 1
(13a)

〈TB〉 = T0
eαx − 1

eαL − 1
(13b)

Figure 5 shows the numerical simulations performed
by COMSOL (blue dots) at t = tf = 300dρb/σb, to-
gether with the corresponding analytical solution given
by (13). It is clear that there is a perfect agreement
with the numerical and analytical solution, although an
additional modulation appears in the numerical simula-
tion. This modulation is due to the fact that in the

homogenized model we ignore the modulation function
φ(n) = φ(x − v0t), which is obviously included in the
numerical solution. Since the time is fixed to t = tf in
figure 5, only the spatial variation of φ is detected, how-
ever the transient period and the time evolution of the
system can be seen in the Supplementary Movies tem-
peratureF.gif and temperatureB.gif, where the effect of
φ(n) is more evident. However, the relevant informa-
tion is given by the analytical model shown in equation
(13) with the α parameter computed by means of equa-
tions 27 in the supplementary material. It is obvious the
diode-like behavior of the material, whose non-reciprocal
nature is manifested not only in the static but also in
the dynamic regime. The accuracy of the analytical so-
lution provides also a very powerful tool to design more
advanced devices based on these materials.
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FIG. 5. Temperature distribution of the spatio-temporally
modulated bar in the forward (upper panel) and backward
(lower panel) configurations.

In summary, we have presented a structured solid ma-
terial with non-reciprocal effective thermal properties,
where the mechanism of non-reciprocity is due to an ar-
tificial convective term that appears in its effective be-
havior. The structured material consists of a modulated
solid in which the thermal properties depend not only on
the position, but also on time, in such a way that these
parameters have a wave-like behavior. It is shown that, in
the nearly-stationary regime and when the spatial varia-
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tions of the sources are larger than the typical periodicity
of the modulation, the material presents non-reciprocity
in the propagation of heat, and it is shown how such a
material can work as a thermal diode. Several properties
of the effective parameters are deduced and an effective
medium theory is developed. The expression derived for
the convective term shows that it is required a modula-
tion in both the mass density and thermal conductivity,
since this term appears as a coupling between the relative
variations of both parameters. Coupling terms equivalent
to the so-called Willis terms in elasticity or chiral coef-
ficients in electromagnetism also appear, although their
contribution is relevant only in the transitory or time-
dependent regime. It is remarkable the fact that the
non-reciprocal thermal effect presented here is the result
of the artificial internal structure of the materials, what
makes that this effect be scalabe and therefore useful in a
wide variety of thermal problems, going from the macro
to nano scale.
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SUPPLEMENTARY MATERIAL

The diffusion equation for a material with parameters depending on both space and time in a wave-like fashion is
given by

∂

∂x

(

σ(x− v0t)
∂T

∂x

)

= ρ(x− v0t)
∂T

∂t
. (14)

The change of variable n = x− v0t and τ = t transform this equation in

∂

∂n

(

σ(n)
∂T

∂n

)

= ρ(n)
∂T

∂τ
− ρ(n)v0

∂T

∂n
(15)

where both σ(n) and ρ(n) are periodic functions of n. These functions can be expanded as Fourier series in the
traditional way

σ(n) =
∑

G

σGe
−iGn (16a)

ρ(n) =
∑

G

ρGe
−iGn (16b)

and the solution for the temperature field can also be expressed in the form of a Bloch function

T (n, τ) = e−ikneiΩτφ(n) = e−ikneiΩτ
∑

G

φGe
−iGn (17)

mailto:torrent@crpp-bordeaux.cnrs.fr
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where we have used the property of periodicity of φ(n). Inserting the above equations into equation (15) we arrive to
the typical matrix equation defining the solutions Ω = Ω(k),

−
∑

G′

(k +G)σG−G′(k +G′)TG′ = iΩ
∑

G′

ρG−G′TG′ + iv0
∑

G′

ρG−G′(k +G′)TG′ , (18)

we can now reorganize the second term of the right hand side of the above equation to group the term Ω + v0k,

−
∑

G′

(k +G)σG−G′(k +G′)TG′ = i(Ω + v0k)
∑

G′

ρG−G′TG′ + iv0
∑

G′

ρG−G′G′TG′ . (19)

Notice that the term Ω + v0k is actually the frequency in the x − t frame, since the solutions of the equation in this
frame are

T (n, τ) = e−ikneiΩτφ(n) = e−ikxei(Ω+v0k)tφ(x − v0t) = e−ikxeiωtφ(x − v0t) (20)

therefore the replacement k = k and ω = Ω + v0k returns the system of equations to the x− t frame, giving

−
∑

G′

(k +G)σG−G′(k +G′)TG′ = iω
∑

G′

ρG−G′TG′ + iv0
∑

G′

ρG−G′G′TG′. (21)

The above equation will allow us to define the effective parameters of the material with the spatio-temporal modulation.
We are interested now in the average temperature field, T0, since it can be interpreted as the macroscopic temperature,
therefore we split the above equation in two terms, those for G = 0 and those for G 6= 0,

−k2σ0T0 − k
∑

G′

σ−G′(k +G′)TG′ = iωρ0T0 + i
∑

G′

ρ−G′ (ω + v0G
′) TG′ (22a)

−(k +G)σGkT0 −
∑

G′

(k +G)σG−G′(k +G′)TG′ = iωρGT0 + i
∑

G′

ρG−G′ (ω + iv0G
′) TG′ (22b)

and we solve for TG from the second one,

TG′ = −
∑

G

χG′G [(k +G)σGk + iωρG]T0 (23)

with

χGG′ = [(k +G)σG−G′(k +G′) + i (ω + v0G
′) ρG−G′ ]

−1
(24)

and we introduce it in the first one, to obtain


k2σ0 + iωρ0 −
∑

G′,G

[kσ−G′(k +G′) + i (ω + v0G
′) ρ−G′ ]χG′G [(k +G)σGk + iωρG]



T0 = 0 (25)

which can be expressed as
(

k2σ∗ + iωρ∗ − ikC − iωk(S + S′)
)

T0 = 0 (26)

with the effective parameters defined as

σ∗(ω, k) = σ0 −
∑

G′,G

σ−G′(k +G′)χG′G(k +G)σG (27a)

ρ∗(ω, k) = ρ0 − iω
∑

G′,G

ρ−G′χG′GρG − iv0
∑

G′,G

G′ρ−G′χG′GρG (27b)

S(ω, k) =
∑

G′,G

σ−G′(k +G′)χG′GρG (27c)

S′(ω, k) =
∑

G′,G

ρ−G′χG′GσG(k +G) (27d)

C(ω, k) = v0
∑

G′,G

ρ−G′G′χG′GσG(k +G) (27e)
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since T0 is the average temperature 〈T 〉, and replacing k → i∂x and ω → −i∂t, we can propose that the wave
equation for the macroscopic temperature is

σ∗ ∂
2〈T 〉

∂x2
= ρ∗

∂〈T 〉

∂t
+ C

∂〈T 〉

∂x
− i(S + S′)

∂2〈T 〉

∂x∂t
(28)

The simpler case of modulation is a simple cosinus perturbation of the form

σ(x− v0t) = σ0

[

1 + ∆σ cos
2π

d
(x− v0t)

]

(29a)

ρ(x− v0t) = ρ0

[

1 + ∆ρ cos
2π

d
(x− v0t)

]

(29b)

where the mass density and conductivity changes periodically from ρb = ρ0(1 − ∆ρ) to ρa = ρ0(1 + ∆ρ) and from
σb = σ0(1−∆σ) to σa = σ0(1+∆σ), respectively. In this case we have therefore only one Fourier component different
than 0, so that the χGG′ matrix is diagonal with elements χ± given by

χ± =
d

2π

d

2πσ0 ± iv0dρ0
(30)

Then it is easy to see that

σ∗ = σ0

[

1−
8π2σ2

1

4π2σ2
0 + v20d

2ρ20

]

(31a)

ρ∗ = ρ0

[

1 +
2v20d

2ρ21
4π2σ2

0 + v20d
2ρ20

]

(31b)

S = S′ =
2iv0d

2ρ0ρ1σ1

4π2σ2
0 + v20d

2ρ20
(31c)

C = v0
8π2σ0σ1ρ1

4π2σ2
0 + v20d

2ρ20
(31d)

or

σ∗ = σ0

[

1−
1

2

∆2
σ

1 + Γ2

]

(32a)

ρ∗ = ρ0

[

1 +
Γ2

2

∆2
ρ

1 + Γ2

]

(32b)

S = S′ =
ρ0d

2π

∆ρ∆σ

2

iΓ

1 + Γ2
(32c)

C =
2πσ0

d

∆ρ∆σ

2

Γ

1 + Γ2
(32d)


