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Abstract

We consider estimation of the inverse scatter matrix Σ−1 for a scale mixture
of Wishart matrices under various Efron-Morris type losses, tr[{Σ̂−1 − Σ−1}2Sk]
for k = 0, 1, 2..., where S is the sample covariance matrix. We improve on the
standard estimators aS+, where S+ denotes the Moore-Penrose inverse of S and a is
a positive constant, through an unbiased estimator of the risk difference between the
new estimators and aS+. Thus we demontrate that improvements over the standard
estimators under a Wishart distribution can be extended under mixing. We give a
unified treatement of the two cases where S is invertible (S+ = S−1) and where S is
singular.
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1 Introduction

The estimation of precision matrices has recently received much attention. Most of the
literature is devoted to the case where the observation has a multivariate normal distri-
bution so that the sample covariance matrix S has a Wishart distribution. In that case,
Σ−1, the inverse of the covariance matrix Σ, is often called the precision matrix. This
classical multivariate setting has been studied by Efron and Morris [4], Haff [7], Dey [2],
Krishnamoorthy and Gupta [13], Dey et al. [3], Zhou et al. [19], and Tsukuma and Konno
[17]. Note that, in these papers, S is assumed to be invertible. However, in the setting
where the dimension of S is larger than the sample size, its inverse does not exist. Then
estimation of Σ−1 is based on the Moore-Penrose generalized inverse S+. This approach
was, for instance, developed in Kubokawa and Srivastava [14].

Estimation of Σ−1 has been extended to the distributional framework of elliptically
contoured distributions. Thus Fourdrinier, Mezoued and Wells [6] considered a large sub-
class of the elliptically contoured distributions and improvements over the usual estimators
(proportional to S−1 or S+ according to the invertibility or singularity of S) were provided
under quadratic loss. Note that the form of the underlying distributions was such that no
unbiased estimator of the risk was available.

In this article, we focus on the subclass of scale mixture of Wishart distributions for
S. Mixtures of Wishart are more and more popular in modeling. Thus Jian et al. [11]
use mixtures of Wishart distributions for modeling diffusion weighted magnetic resonance
imaging while Yang et al. [18] consider such distributions for the change of detection of
polarimetric synthetic aperture radar images. Also, Nielsen et al. [15], in a Bayesian
context, deal with a Wishart mixture model for modeling dynamic functional connectivity.
In a more theoretical paper, Haff et al. [10] consider the problem of estimating the mixing
density of a continuous mixture of Wishart distributions, the parameter being a covariance
matrix; they also provide an application to finance.

Here, we observe S from the mixture model{
S | V ∼ Wp(n, V Σ)
V ∼ H(·) (1.1)

where Wp(n, V Σ) denotes the Wishart distribution with n degrees of freedom and covari-
ance matrix V Σ and where H(·) is a distribution on R+. Note that we may view the
distribution of S as that of V S̃, where S̃ has the Wishart distribution Wp(n,Σ) and is
independent of V . Thus, for any function g such that its expectation with respect to (1.1)
exists, we have

EΣ [g(S)] = EH

[
EΣ

[
g(S̃ V ) | V

]]
,

where EΣ denotes the expectation with respect to the model in (1.1) and EH the expectation
with respect to the mixing distribution H. We will often use this form in the calculation
below. Note also that, under the mixture model in (1.1), the population covariance matrix
is proportional to Σ (the expectation of S is nE[V ] Σ). For convenience, we refer to Σ as
a scatter matrix and to Σ−1 as a precison matrix.
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Estimating Σ−1, we consider a wide class of losses which are data-based losses in the
sense that they are function of S. More precisely, we deal with the family of loss functions

Lk{Σ−1, Σ̂−1} = tr[{Σ̂−1 − Σ−1}2Sk], (1.2)

for k = 0, 1, 2... and the associated risks

Rk(Σ
−1, Σ̂−1) = EΣ[Lk{Σ−1, Σ̂−1}] . (1.3)

Note that these losses are reminiscent of the losses used by Efron and Morris [4]. In the
Wishart case, loss Lk has been mostly considered for k = 0, 1 and 2. For example, for the
non singular Wishart distribution, loss L1 was considered by Efron and Morris [4], while
both L0 and L1 were considered by Haff [8] (actually, as for L0, the identity matrix S0

was replaced by an arbitrary positive definite matrix Q). Kubokawa and Srivastava [14]
considered L0, L1 L2 for the singular case. The consideration of the case where k ≥ 3 is
natural and we will see that, in the cases where k = 1, 2 and 3, optimal estimators in (1.4)
below exist while, the case k ≥ 4 is similar to the case k = 0, where there are no such
estimators.

Note also that we provide a unified approach to the settings where S is invertible and
S is singular. To this end, the notation S+ for the Moore-Penrose inverse of S when S is
non invertible is also used when S is invertible (S+ = S−1). For Model (1.1), the usual, or
reference, estimators of Σ−1 are of the form

Σ̂−1
a = aS+ , (1.4)

where a is a positive constant. It is well known that such estimators may be inappropriate
(see the references above). The alternative estimators that we consider are of the form

Σ̂−1
a,c = aS+ + c S G(S), (1.5)

where c is a constant and the matrix function G(S) is homogeneous in the sense that

∃α ∈ R G(V S) = V αG(S) . (1.6)

The paper is organized as follows. In Section 2, we develop an unbiased estimator of the
risk difference between Σ−1

a,c in (1.5) and Σ−1
a in (1.4), relying on a Stein-Haff type identity

given in Fourdrinier, Haddouche and Mezoued [5] and valid for the two cases where S is
invertible and S is singular. Note that this unbiased estimator of risk difference holds for
all the losses in (1.2) and implies directly conditions under which Σ̂−1

a,c improves over Σ̂−1
a .

In Section 3, we consider the possibility of the existence of an optimal estimator in the class
(1.4) of reference estimators, for each loss in (1.2). When such an optimal estimator does
not exist, we propose an alternative estimator. In Section 4, when the order of homogeneity
in (1.6) is -2, we provide explicit conditions for improvement of estimators of the form (1.5)
over the reference estimators in (1.4). In addition, we give analogous results for estimators
of the form aS+ + c r

(
tr{S}

)
S G(S) when G is orthogonally invariant and r is a real

valued function. In Section 5, we illustrate the theory with examples reminiscent of those
studied by Haff [7] and Dey [2], for each loss in (1.2). Some concluding remarks are given
in Section 6. Finally, we provide an Appendix which gathers most of the proofs of the
results presented in this article.

3



2 A unified expression for the risk difference

Under model (1.1), assume finitness of the risk in (1.3) of the estimators Σ̂−1
a,c = aS+ +

c S G(S) and Σ̂−1
a = aS+. Then the risk difference between Σ̂−1

a,c and Σ̂−1
a is given by

∆(G) = Rk

(
Σ−1, a S+ + c S G(S)

)
−Rk

(
Σ−1, a S+

)
= EΣ

[
tr[{aS+ − Σ−1 + c S G(S)}2 Sk − (aS+ − Σ−1)2 Sk]

]
= EΣ

[
c2 tr{Sk [S G(S)]2}+ 2 c tr{S G(S)(aS+ − Σ−1)Sk}

]
= EΣ

[
c2 tr{Sk [S G(S)]2}+ 2 a c tr{S+ Sk+1G(S)} − 2 c tr{Σ−1 Sk+1G(S)}

]
. (2.1)

As the integrand term of ∆(G) in (2.1) depends on the unknown covariance matrix Σ, we
need the so-called Stein-Haff identity for the Wishart distribution Wp(n,Σ). This identity
was derived by Stein [16] and Haff [9] when S is invertible while Kubokawa and Srivastava
[14], Konno [12] and Chetelat and Wells [1] considered the case where S is singular. In the
following lemma, we present a unified approach to these two cases. Its statement (under
an equivalent form where S̃ G(S̃) is replaced by S̃+ S̃ G(S̃)) and its proof can be found in
Fourdrinier, Haddouche and Mezoued [5]. Although it is reduced to the Wishart case, it
will turn out to be sufficient to tackle the mixing model (1.1).

Lemma 2.1 (Stein-Haff-type-identity). Let S̃ be a p × p matrix having a Wishart distri-
bution. For any p × p matrix function G(S̃) which is weakly differentiable with respect to

S̃ and such that EΣ

[
|tr{Σ−1 S̃ G(S̃)|}

]
<∞ , we have

EΣ

[
tr
{

Σ−1 S̃ G(S̃)
}]

= EΣ

[
tr
{

(n− (n ∧ p)− 1) S̃+ S̃ G(S̃) + 2 S̃+ S̃ DS̃ {G
>(S̃) S̃}

}]
,

with n ∧ p = min(n, p) and where the differential operator DS̃ for a matrix S̃ is defined by

DS̃ =

(
1

2
(1 + δij)

∂

∂S̃ij

)
1≤i,j≤p

,

with δij = 1 when i = j and δij = 0 when i 6= j.

In order to apply Lemma 2.1 to Model (1.1), note that, for any appropriate function
G(S) and for any v > 0,

EΣ [G(S) | V = v] = EΣ

[
G(V S̃) | V = v

]
= EΣ

[
G(v S̃)

]
.
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Theorem 2.1. Under Model (1.1) and loss (1.2), assume that the risk of Σ̂−1
a in (1.4) and

that of Σ̂−1
a,c in (1.5) are finite. Assume also that the function G(S) in (1.5) satisfies (1.6)

and is such that SkG(S) satisfies the conditions of Lemma 2.1. Then the risk difference
between Σ̂−1

a,c in (1.5) and Σ̂−1
a = aS+ is expressed through S̃ as

∆(G) =EΣ

[
c2 µk+2α+2 tr{S̃k [S̃ G(S̃)]2}

+2 c
[
a µk+α − µk+α+1(n− (n ∧ p)− 1)

]
tr{S̃+ S̃k+1G(S̃)}

−4 c µk+α+1tr{S̃+ S̃ DS̃ {G
>(S̃) S̃k+1}}

]
, (2.2)

where α is the order of homogeneity in (1.6) and where, for β ∈ R , µβ = EH[V β] is the
moment of order β of V .

Proof. Note that ∆(G) in (2.1) can be written as,

∆(G) = EΣ [η(S) + βΣ(S)] ,

where
η(S) = c2 tr{Sk [S G(S)]2}+ 2 a c tr{S+ Sk+1G(S)},

and
βΣ(S) = −2 c tr{Σ−1 Sk+1 G(S)}.

Conditioning on V , we have
∆(G) = EH [γ(V )] , (2.3)

where EH is the expectation with respect to H and

γ(V ) = EΣ [η(S) | V ] + EΣ [βΣ(S) | V ] .

According to the change of variable S = V S̃ , we have

γ(V ) = EΣ

[
η(V S̃) | V

]
+ EΣ

[
βΣ(V S̃) | V

]
.

where
η(V S̃) = c2 V k+2α+2 tr{S̃k[S̃ G(S̃)]2}+ 2 a c V k+α tr{S̃+ S̃k+1G(S̃)}, (2.4)

and
βΣ(V S̃) = −2 c V k+α+1 tr{Σ−1 S̃k+1G(S̃)}.

Now, by Lemma 2.1,

EΣ

[
βΣ(V S̃) | V

]
= EΣ

[
β(V S̃) | V

]
,

where

β(V S̃) = −2 c V k+α+1 (n− (n ∧ p)− 1) tr{S̃+ S̃k+1G(S̃)}
− 4 c V k+α+1 tr{S̃+ S̃ DS̃ {G

>(S̃) S̃k+1}}. (2.5)

5



Then, according to (2.4) and (2.5),

γ(V ) = EΣ

[
η(V S̃) + β(V S̃) | V

]
,

where the integrand term is independent of Σ, and hence,

γ(V ) = EΣ[c2 V k+2α+2 tr{S̃k[S̃ G(S̃)]2}
+ 2 c

[
a V k+α − V k+α+1(n− (n ∧ p)− 1)

]
tr{S̃+ S̃k+1G(S̃)}

− 4 c V k+α+1 tr{S̃+ S̃ DS̃ {G
>(S̃) S̃k+1}} | V ] . (2.6)

Since S̃ is independent of V , unconditioning gives the desired result in (2.2).

The following corollary is immediate.

Corollary 2.1. Under the conditions of Theorem 2.1,

δ(G) = c2 µk+2α+2 tr{S̃k[S̃ G(S̃)]2}
+ 2 c

[
a µk+α − µk+α+1(n− (n ∧ p)− 1)

]
tr{S̃+ S̃k+1G(S̃)}

− 4 c µk+α+1 tr{S̃+ S̃ DS̃ {G
>(S̃) S̃k+1}}, (2.7)

is an unbiased estimator of the risk difference between Σ−1
a,c and Σ−1

a , and hence, a sufficient
condition for improvement of Σ−1

a,c over Σ−1
a is that δ(G) in (2.7) is non positive.

The result of Corollary 2.1 is in contrast to the setting in Fourdrinier, Mezoued and
Wells [6] (when k = 0) where there is no unbiased estimator of the risk difference and
upper bounds of ∆(G) are needed. Note that, when the mixture distribution is the Dirac
distribution at a fixed point V , Model (1.1) reduces to the Wishart distributionWp(n, V Σ).
Thus the result in Theorem 2.1 expresses that the existence of an unbiased estimator of
∆(G) is preserved under mixing, under the assumption (1.6) of homogeneity of G.

In the next section, we consider the existence of optimal estimators in the class {aS+/a >
0} for the losses in (1.2). When there are no such estimators, we propose alternatives.

3 Reference estimators aS+

In this subsection, for the usual class of estimators of Σ−1 of the form aS+ with a > 0, we
consider the possibility of the existence of an optimal constant a∗, that is, such that, for
k = 0, 1, 2..., its risk in (1.3) satisfies

∀a > 0, Rk(Σ
−1, a∗ S+) ≤ Rk(Σ

−1, a S+), (3.1)

under Model (1.1). In the case where such an optimal constant a∗ does not exist, we
suggest constants a0 which possess satisfying properties.

6



For k = 0, 1, 2..., the risk of the estimator aS+ under the model (1.1) is given by

Rk(Σ
−1, a S+) =EΣ[tr[{Σ−1 − aS+}2Sk]]

=EΣ[a2 tr{Sk (S+)2} − 2 a tr{Σ−1 Sk S+}] + EΣ[tr{Σ−2 Sk}].

Note that minimizing Rk(aS
+,Σ−1) in a reduces to minimizing

a2 EΣ[tr{Sk (S+)2}]− 2 aEΣ[tr{Σ−1 Sk S+}] ,

that is, to minimizing

a2 µk−2 EΣ[tr{S̃k (S̃+)2}]− 2 a µk−1 EΣ[tr{Σ−1 S̃k S̃+}] , (3.2)

which gives as a minimizing value

a∗ =
µk−1 EΣ[tr{Σ−1 S̃k S̃+}]
µk−2 EΣ[tr{S̃k (S̃+)2}]

. (3.3)

Applying Lemma 2.1 to the numerator in (3.3) with G(S̃) = S̃k (S̃+)2, using the fact
that S̃+ = S̃+ S̃ S̃+ = S̃ (S̃+)2, gives

EΣ[tr{Σ−1 S̃k S̃+}] = (n− (n ∧ p)− 1) EΣ[tr{S̃k (S̃+)2}] + 2 EΣ[tr{S̃+ S̃ DS̃ {S̃
k S̃+}}] .

Hence the optimal value in (3.3) is expressed as

a∗ =
µk−1

µk−2

[n− (n ∧ p)− 1] + 2
µk−1

µk−2

EΣ[tr{S̃+ S̃ DS̃ {S̃k S̃+}}]
EΣ[tr{S̃k (S̃+)2}]

. (3.4)

The optimal value a∗ in (3.4) may depend on Σ according to the values of k. When this is
not the case, it is a constant which corresponds to an optimal estimator among the reference
estimators. When it does depend on Σ, we provide alternative values of a which give rise
to estimators having reasonable propreties. This is specified in the following proposition
whose proof is postponed to the appendix.

Proposition 3.1. Assume that S has the mixture of Wishart distribution in (1.1) and
that, under (1.3), the risk of S+ is finite.

When k = 1, 2 and 3, the optimal value a∗ in (3.4) is constant (so that (3.1) is satisfied)
and equals

• 1

µ−1

[(n∨p)−(n∧p)−1] if k = 1, with n∧p = min(n, p) and n∨p = max(n, p);

• µ1 (n ∨ p) if k = 2;

• µ2

µ1

[n+ p+ 1] if k = 3.
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When k = 0 and k ≥ 4, the optimal value a∗ in (3.4) depends on Σ. However, a lower
bound a−0 and an upper bound a+

0 exist for a∗ so that, in each case, for a < a−0 , a−0 S
+

improves over aS+ and, for a > a+
0 , a+

0 S
+ improves over aS+. Specifically,

• a−0 =
µ−1

µ−2

[
(n ∨ p) − 2

(
(n ∧ p) + 1

)]
and a+

0 =
µ−1

µ−2

[
(n ∨ p) − (n ∧ p) − 3

]
if

k = 0;

• a−0 =
µk−1

µk−2

[
(n∨p)+(n∧p)+k−2

]
and a+

0 =
µk−1

µk−2

[
(n∨p)+(k−2) (n∧p)+k−2

]
if k ≥ 4.

Comment It is worth noting that, taking the mixture as degenerate, that is, in the
Wishart case, when p ≤ n, EΣ[S̃+] = EΣ[S̃−1] exists if and only if n − p − 1 > 0; when
k = 1, this condition coincides with the finiteness of the risk of S̃+ in (1.3), and hence the
optimal constant a∗ = n−p−1 is positive. Similarly, when k = 0, the finiteness of the risk
corresponds to the existence of EΣ[(S̃+)2] which is satisfied if and only if n − p − 3 > 0,
that is, a+

0 is positive (however, a−0 may be non positive). Also note that, when k ≥ 2, the
risk is always finite.

Finiteness of the risk of S+ in the mixture model (1.1) requires the additional assump-
tion of finiteness of µβ = EH[V β] for β = k − 2, k − 1 and k.

Finally, note that, in the Wishart case, when k = 0 and S̃ is invertible, an unbiased
estimator of Σ−1 is available; this is (n−p−1) S̃−1. As a+

0 = n−p−3, we have n−p−1 ≥ a+
0 ,

so that the “reasonable” estimator a0 S̃
−1 dominates the unbiased estimator (n−p−1) S̃−1.

4 Improved estimators

In this section, for a fixed a > 0, we consider improved estimators over aS+. We focus on
functions G(S) in (1.5) which are homogeneous of order α = −2. In this case, the following
result helps to establish a unified connection between improved estimators in the Wishart
case and the general mixture case (1.1). Although it is not used in the rest of the paper,
it is of independent interest.

Lemma 4.1. Let k = 0, 1, 2... be fixed. Suppose that the function G(S) in (1.6) is homo-
geneous of order −2 and weakly differentiable, and that all moments in Theorem 2.1 exist.
Then, for any fixed a ≥ 0, if aS+ + c S G(S) improves on aS+ for some c, in the case of
the Wishart model , then (µk−1/µk−2)

(
aS+ + c S G(S)

)
improves on (µk−1/µk−2) aS+ in

the mixture model (1.1).
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Proof. For α = −2, Theorem 2.1 gives an expression for the risk difference in the mixture
case as

∆(G) = EΣ

[
c2 µk−2 tr{S̃k [S̃ G(S̃)]2}

+2 c
[
a µk−2 − µk−1 (n− (n ∧ p)− 1)

]
tr{S̃+ S̃k+1 G(S̃)}

−4 c µk−1tr{S̃+ S̃ DS̃ {G
>(S̃) S̃k+1}}

]
= c µk−1 EΣ

[
c
µk−2

µk−1

M(S̃) + 2N

(
a
µk−2

µk−1

, S̃

)]
(4.1)

where
M(S̃) = tr{S̃k [S̃ G(S̃)]2}

and

N

(
a
µk−2

µk−1

, S̃

)
= a

µk−2

µk−1

− (n−(n∧p)−1) tr{S̃+ S̃k+1 G(S̃)}−2 tr{S̃+ S̃ DS̃ {G
>(S̃) S̃k+1}}.

If S ∼ Wp(n,Σ) then H(·) is degenerate at V = 1 and µk = 1 for all k. Hence, if the
final expression is negative for µk−2 = µk−1 = 1 and particular values of a and c (i.e. in
the Wishart case), then it is also negative in the mixture case (1.1) with a replaced by
a µk−1/µk−2 and c by c µk−1/µk−2.

It is worth noting, from Section 3, that the optimal constant a∗ for k = 1, 2 and 3 (or
the “reasonable” constant a0 for k = 0 and k ≥ 4) in the Wishart case corresponds to
the optimal constant a∗ µk−1/µk−2 (or a0 µk−1/µk−2) in the mixture case, so that improve-
ment over the optimal (or “reasonable”) estimator for the Wishart case corresponds to
an improvement over the optimal (or “reasonable”) estimator in the mixture case through
multiplication by µk−1/µk−2.

Now we consider a useful modification of the estimators in (1.5) where the function G
is orthogonally invariant and homogeneous of order α = −2. These estimators are of the
form

Σ̂−1
a,c,r = aS+ + c r

(
tr{S}

)
S G(S) , (4.2)

where c is a constant, the matrix function G(S) is homogeneous of order -2 and r is a real
valued function. We assume that G is orthogonally invariant, that is, of the form

G = H1 Ψ(L)H>1 , (4.3)

where L = (diag(li))1≤i≤n∧p with l1 > · · · > ln∧p > 0 and H1 is the diagonalizing matrix
satisfying H>1 H1 = In∧p in the singular value decomposition 1 of S, i.e. S = H1LH

>
1 ,

and Ψ(L) is a (n ∧ p) × (n ∧ p) diagonal matrix, diag
(
ψ1(L), . . . , ψn∧p(L)

)
. Note that

homogeneity of order -2 implies that Ψ(V L) = V −2 Ψ(L).

1When p ≤ n, H1 is a p× p orthogonal matrix (i.e. H1 H
>
1 = H>1 H1 = Ip) while, when p > n, H1 is a

p× n semi-orthogonal matrix (i.e. H>1 H1 = In).
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Lemma 4.2. Let k = 0, 1, 2... be fixed. Under model (1.1) and loss (1.2), suppose that
the function G(S) is orthogonally invariant as in (4.3), homogeneous of order −2 and
weakly differentiable, and that all moments in Theorem 2.1 exist. Suppose also that, for
any i = 1, . . . , n ∧ p, ψi(L) > 0.

Suppose that, for some c > 0, expression (2.7 ) is non positive so that the estimator
Σ̂−1
a,c = aS+ +c S G(S) in (1.5) improves over the estimator Σ̂−1

a = aS+ in (1.4). Then the

estimator Σ̂−1
a,c,r = aS+ + c r

(
tr{S}

)
S G(S) in (4.2) improves over Σ̂−1

a = aS+ provided
that the function r is differentiable and that, for any t ≥ 0, 0 ≤ r(t) ≤ 1 and r′(t) ≥ 0.

Proof. Following the proof of Theorem 2.1, expression of γ(V ) in (2.6) where G(S̃) is
replaced by r

(
V tr{S̃}

)
G(S̃) and where α = −2 becomes

γ(V ) = EΣ

[
c2 r2

(
V tr{S̃}

)
V k−2 tr{S̃k[S̃ G(S̃)]2}

+ 2 c r
(
V tr{S̃}

)[
a V k−2 − V k−1(n− (n ∧ p)− 1)

]
tr{S̃+ S̃k+1 G(S̃)}

− 4 c V k−1 tr
{
S̃+ S̃ DS̃

{
r
(
V tr{S̃}

)
G>(S̃) S̃k+1

}}
| V
]
. (4.4)

As 0 ≤ r(t) ≤ 1, using Lemma A.3 applied to r
(
V tr{S̃}

)
(so that ∂/∂li r(V tr{L}) =

V r′(V tr{L}) replaces r′(tr{L})), γ(V ) in (4.4) is bounded above by

γ1(V ) = EΣ

[
r(V tr{S̃})

(
A(S̃)V k−2 −B(S̃)V k−1

)
| V
]

(4.5)

where
A(S̃) =

(
c2 tr{S̃k[S̃ G(S̃)]2}+ 2 c a tr{S̃+ S̃k+1 G(S̃)}

)
≥ 0

and

B(S̃) = 2 c
(
(n− (n ∧ p)− 1) tr{S̃+ S̃k+1G(S̃)}+ 2 tr

{
S̃+ S̃ DS̃

{
G>(S̃) S̃k+1

}})
.

We have used the fact that the term involving r′(tr{S̃}) in Lemma A.3 is eliminated since,
by assumption, c > 0, r′(tr{S̃}) ≥ 0 and tr

{
G>(S̃) S̃k+1

}
= tr

{
ΨLk+1} ≥ 0. Since δ(G)

in (2.7) is non positive by assumption, and since for, α = −2,

δ(G) = A(S̃)µk−2 −B(S̃)µk−1 ≤ 0 , (4.6)

the term B(S̃) is non negative.
Now expressing the difference in risk in (2.3)

∆(G) = EH [γ(V )] ≤ EH [γ1(V )] = EH

[
EΣ

[
r(V tr{S̃})

(
A(S̃)V k−2 −B(S̃)V k−1

)
| V
]]

according to (4.5). Then, reversing the conditioning,

∆(G) ≤ EΣ

[
EH
[
r(V tr{S̃})

(
A(S̃)V k−2 −B(S̃)V k−1

)
| S̃
]]

≤ EΣ

[
r(V0(S̃) tr{S̃})

]
EΣ

[
EH
[(
A(S̃)V k−2 −B(S̃)V k−1

)
| S̃
]]
,
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as A(S̃)V k−2 − B(S̃)V k−1 changes sign once from + to - at V0(S̃) = A(S̃)/B(S̃) and
r(V tr{S̃}) is non decreasing in V . Hence, using (4.6),

∆(G) ≤ EΣ

[
r(V0(S̃) tr{S̃})

]
EΣ

[
A(S̃)µk−2 −B(S̃)µk−1

]
≤ 0 .

5 Examples

In this section, we illustrate the theory developed in Sections 3 and 4 with estimators
similar to those proposed by Haff and Dey.

5.1 Haff type estimators

We consider estimators
Σ̂−1
HF = aS+ + c S S+/tr{S}, (5.1)

that is, of the form aS+ + c S G(S) with G(S) = S+/tr{S}. Note that the homogeneity
order of G(S) is α = −2. This type of estimator was proposed by Haff [7] in the Gaussian
case where S is invertible under a loss proportional to L1 . Note that G(S) is orthogonally
invariant, and hence, thanks to Lemma 4.2, the development below applies to estimators
of the form aS+ + c r

(
tr{S}

)
S S+/tr{S} where r is a real valued function such that, for

any t ≥ 0, 0 ≤ r(t) ≤ 1 and r′(t) ≥ 0.
Applying Theorem 2.1 with G(S) = S+/tr{S} and α = −2, the term δ(G) in (2.7) can

be written for any k ≥ 0 as

δ(G) = c2 µk−2
tr{S̃k (S̃ S̃+)2}

(tr{S̃})2
+ 2 c [a µk−2 − µk−1 (n− (n ∧ p)− 1)]

tr{S̃k+1 (S̃+)2}
tr{S̃}

− 4 c µk−1 tr

{
S̃+ S̃ DS̃

{
S̃+ S̃k+1

tr{S̃}

}}

= c2 µk−2
tr{S̃k+1 S̃+}

(tr{S̃})2
+ 2 c [a µk−2 − µk−1 (n− (n ∧ p)− 1)]

tr{S̃k S̃+}
tr{S̃}

− 4 c µk−1 tr

{
S̃+ S̃ DS̃

{
S̃+ S̃k+1

tr{S̃}

}}
, (5.2)

since S̃+ = S̃+ S̃ S̃+ is symmetric and S̃+ S̃ = S̃ S̃+ . For the differential term DS̃

{
S̃+ S̃k+1/

tr{S̃}
}

in (5.2), thanks to Equality (A.1) based on the singular value decomposition of S̃,
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we have

DS̃

{
S̃+ S̃k+1

tr{S̃}

}
= DS̃

{
H1 L

kH>1
tr{L}

}
=

1

2

[
p− (n ∧ p)

] S̃k S̃+

tr{S̃}
+ k

S̃k S̃+

tr{S̃}
− S̃k+1 S̃+

(tr{S̃})2

+
1

2

1

tr{S̃}

n∧p∑
i 6=j

lki − lkj
li − lj

+
1

2

tr{S̃k S̃+}
tr{S̃}

(
Ip −H1H

>
1

)
, (5.3)

where here

φi =
lki

tr{L}
and

∂φi
∂li

= k
lk−1
i

tr{L}
− lki

(tr{L})2
.

Substituting (5.3) in (5.2) and noticing that S̃ S̃+
(
Ip −H1H

>
1

)
= 0, we have

δ(G) = c2 µk−2
tr{S̃k+1 S̃+}

(tr{S̃})2
+ 2 c [a µk−2 − µk−1 (n− (n ∧ p)− 1)]

tr{S̃k S̃+}
tr{S̃}

− 2 c µk−1 [2 k + p− (n ∧ p)]tr{S̃
k S̃+}

tr{S̃}
+ 4 c µk−1

tr{S̃k+1 S̃+}
(tr{S̃})2

− 2 c µk−1
1

tr{S̃}

n∧p∑
i=1

n∧p∑
j 6=i

lki − lkj
li − lj

= c2 µk−2
tr{S̃k+1 S̃+}

(tr{S̃})2
+ 2 c

[
aµk−2 − µk−1

(
n− p+ 2 (n ∧ p) + 1− 2 k

)] tr{S̃k S̃+}
tr{S̃}

+ 4 c µk−1
tr{S̃k+1 S̃+}

(tr{S̃})2
− 2 c µk−1

1

tr{S̃}

n∧p∑
i=1

n∧p∑
j 6=i

lki − lkj
li − lj

,

that is, expressing δ(G) in terms of L,

δ(G) =
c

tr{L}

{
c µk−2

tr{Lk}
tr{L}

− 2
[
µk−1

(
(n ∨ p)− (n ∧ p)− 1 + 2 k

)
− aµk−2

]
tr{Lk−1}

+4µk−1
tr{Lk}
tr{L}

− 2µk−1Bk+1

}
(5.4)

where

Bk+1 =

n∧p∑
i=1

n∧p∑
j 6=i

lki − lkj
li − lj
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(see Lemma A.2 in the Appendix). Then we have δ(G) ≤ 0 in (5.4) for c between 0 and

Ca = 2

[
µk−1

µk−2

(
(n ∨ p)− (n ∧ p)− 1 + 2 k

)
− a
]

tr{Lk−1} tr{L}
tr{Lk}

−4
µk−1

µk−2

+2
µk−1

µk−2

Bk+1
tr{L}
tr{Lk}

.

(5.5)
This gives rise to the following proposition.

Proposition 5.1. For a = a∗ given in Proposition 3.1, any Haff type estimator Σ̂−1
HF =

a∗ S+ + c S S+/tr{S} improves on the optimal estimator a∗ S+, and hence, improves on
any estimator aS+ with a > 0, when k = 1 and 2, as soon as

• 0 < c < 2
1

µ−1

(
(n ∧ p)[(n ∧ p) + 1]− 2

)
if k = 1 and n ∧ p ≥ 2;

• 0 < c < 2µ1 [(n ∧ p) + 1]− 4µ1 if k = 2 and n ∧ p ≥ 2.

When k = 3, although Ca∗ > 0, that quantity is not constant and cannot be bounded
from below by a positive constant. However, for a < a∗, as soon as

• 0 < c < 2
µ2

µ1

(a∗ − a) = 2
µ2

µ1

(n+ p+ 1− a),

the estimator Σ̂−1
HF improves on aS+.

For a = a−0 given in Proposition 3.1, any Haff type estimator Σ̂−1
HF = a−0 S

++c S S+/tr{S}
improves on a−0 S

+, and hence, improves on any estimator aS+ with a < a−0 , as soon as

• 0 < c < 2
µ−1

µ−2

[(n ∧ p)− 1] if k = 0 and n ∧ p ≥ 2;

• 0 < c < 2
µk−1

µk−2

(k − 3) if k ≥ 4.

Comment. In the cases k = 3 and a ≥ a∗, k = 0 and a > a+
0 , k ≥ 4 and a > a+

0 , our
method does not lead to any improved Haff type estimator. In each case, expression of Ca
in (5.5) is non negative but is not bounded below by a positive constant.

Proof. According to Proposition 3.1, when k = 1, we have a∗ =
1

µ−1

[
(n∨ p)− (n∧ p)− 1

]
so that the quantity Ca∗ in (5.5) equals

Ca∗ =
4

µ−1

(n ∧ p)− 4

µ−1

+
2

µ−1

(n ∧ p) [(n ∧ p)− 1] =
2

µ−1

(
(n ∧ p) [(n ∧ p) + 1]− 2

)
,

which gives the first result.
When k = 2, we have a∗ = µ1 (n ∨ p), and hence,

Ca∗ = 2µ1 [−(n ∧ p) + 3]
(tr{L})2

tr{L2}
− 4µ1 + 4µ1 [(n ∧ p)− 1]

(tr{L})2

tr{L2}

= 2µ1 [(n ∧ p) + 1]
(tr{L})2

tr{L2}
− 4µ1

≥ 2µ1 [(n ∧ p) + 1]− 4µ−1 ,
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since (tr{L})2 ≥ tr{L2}. This gives the second result.

Now, when k = 3, as a∗ =
µ2

µ1

[
(n∨ p) + (n∧ p) + 1

]
, although Ca∗ > 0, that quantity is

not constant and cannot be bounded from below by a positive constant. Indeed we have

Ca∗ = 2
µ2

µ1

[−2 (n ∧ p) + 4]
tr{L2} tr{L}

tr{L3}
− 4

µ2

µ1

+ 2
µ2

µ1

(
(tr{L})2 + [2 (n ∧ p)− 3] tr{L2}

) tr{L}
tr{L3}

= 2
µ2

µ1

tr{L2} tr{L}
tr{L3}

− 4
µ2

µ1

+ 2
µ2

µ1

(tr{L})3

tr{L3}
,

according to the expression of B4 given in Lemma A.2. As for the positivity of Ca∗ , note
that, according to Inequality (A.5) in Lemma (A.4) with k = 1 and m = 1 and 2, we have

(tr{L})3

tr{L3}
≥ tr{L2} tr{L}

tr{L3}
≥ 1,

Hence, it is clear that Ca∗ ≥ 0 with probability 1. However, it is clear from that expression,
that, for any a > 0, the corresponding Ca can be written as

Ca = Ca∗ + 2
µ2

µ1

(a∗ − a)
tr{L2} tr{L}

tr{L3}
,

so that
Ca ≥ 2

µ2

µ1

(a∗ − a),

as soon as a < a∗. Then the result for k = 3 follows.
When k = 0, we have a−0 =

µ−1

µ−2

[
(n ∨ p)− 2

(
(n ∧ p) + 1

)]
. It is easily seen from (5.5)

that

Ca−0 = 2
µ−1

µ−2

[(n ∧ p) + 1]
tr{L−1} tr{L}

n ∧ p
− 4

µ−1

µ−2

≥ 2
µ−1

µ−2

[(n ∧ p)− 1] ,

since tr{L−1} tr{L} ≥ n ∧ p. Hence, according to Proposition 3.1, the result for k = 0
follows.

When k ≥ 4, we have a−0 =
µk−1

µk−2

[
(n∨p)+(n∧p)+k−2

]
. According to the expression
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of Bk in Lemma A.2, it follows from (5.5) that

Ca−0 = 2
µk−1

µk−2

[−2 (n ∧ p) + 2k − 1]
tr{Lk−1} tr{L}

tr{Lk}
− 4

µk−1

µk−2

+ 2
µk−1

µk−2

{
k−2∑
m=1

tr{Lm} tr{Lk−1−m}+ [2
µk−1

µk−2

(n ∧ p)− k] tr{Lk−1}

}
tr{L}
tr{Lk}

= 2
µk−1

µk−2

tr{Lk−1} tr{L}
tr{Lk}

− 4
µk−1

µk−2

+ 2
µk−1

µk−2

tr{L}
tr{Lk}

k−2∑
m=1

tr{Lm} tr{Lk−1−m}

≥ 2
µk−1

µk−2

tr{Lk−1} tr{L}
tr{Lk}

− 4
µk−1

µk−2

+ 2
µk−1

µk−2

(k − 2)
tr{Lk−1} tr{L}

tr{Lk}

= 2
µk−1

µk−2

(k − 1)
tr{Lk−1} tr{L}

tr{Lk}
− 4

µk−1

µk−2

≥ 2
µk−1

µk−2

(k − 3),

since, according to (A.5),
∑k−2

m=1 tr{Lm} tr{Lk−1−m} ≥ (k−2) tr{Lk−1} and tr{Lk−1} tr{L} ≥
tr{Lk}. This gives the result for k ≥ 4.

5.2 Dey type estimators

Consider estimators

Σ̂−1
DY = aS+ + c

S

tr{S2}
, (5.6)

that is, of the form aS+ + c S G(S) with

G(S) =
Ip

tr{S2}
. (5.7)

Note that the homogeneity order of G(S) is α = −2. Estimators of the form (5.6) were
proposed by Dey [2] in the Gaussian case where S is invertible, under loss L0. Note that
G(S) is orthogonally invariant, and hence, thanks to Lemma 4.2, the development below
applies to estimators of the form aS+ + c r

(
tr{S}

)
S /tr{S2} where r is a real valued

function such that, for any t ≥ 0, 0 ≤ r(t) ≤ 1 and r′(t) ≥ 0.
Substituting in (2.7), the term in (5.7) gives

δ(G) = c2 µk−2
tr{S̃k+2}
(tr{S̃2})2

+ 2 c
[
a µk−2 − µk−1 (n− (n ∧ p)− 1)

] tr{S̃+ S̃k+1}
tr{S̃2}

− 4 c µk−1 tr

{
S̃+ S̃ DS̃

{
S̃k+1

tr{S̃2}

}}
. (5.8)
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Through Equality (A.1), we have

DS̃

{
S̃k+1

tr{S̃2}

}
= DS̃

{
H1 L

k+1H>1
tr{L2}

}
= H1

{
1

2

(
p− (n ∧ p)

) Lk

tr{L2}
+ (k + 1)

Lk

tr{L2}
− 2

Lk+2

(tr{L2})2

}
H>1

+H1diag

 1

2 tr{L2}

(n∧p)∑
j 6=i

lk+1
i − lk+1

j

li − lj

 H>1

+
1

2
tr

{
Lk

tr{L2}

}
(Ip −H1H

>
1 ) (5.9)

where

φi =
lk+1
i

tr{L2}
and

∂φi
∂li

= (k + 1)
lki

tr{L2}
− 2

lk+2
i

(tr{L2})2
.

Substituting (5.9) in (5.8) we have

δ(G) = c2 µk−2
tr{S̃k+2}
(tr{S̃2})2

+ 2 c
[
a µk−2 − µk−1 (n− (n ∧ p)− 1)

] tr{S̃+ S̃k+1}
tr{S̃2}

− 4 c µk−1 tr

{
S̃+ S̃ H1

{
1

2

(
p− (n ∧ p)

) Lk

tr{L2}
+ (k + 1)

Lk

tr{L2}

−2
Lk+2

(tr{L2})2
H>1

}}
− 4 c µk−1 tr

{
S̃+ S̃ H1diag

{
1

2 tr{L2}

n∧p∑
j 6=i

lk+1
i − lk+1

j

li − lj

}
H>1

}

− 4 c µk−1 tr

{
1

2
S̃+ S̃ tr

{
Lk

tr{L2}

}
(Ip −H1H

>
1 )

}
. (5.10)

Expressing the terms in S̃ through L, δ(G) in (5.10) becomes

δ(G) =
c

tr{L2}

{
c µk−2

tr{Lk+2}
tr{L2}

+ 2
[
a µk−2 − µk−1

(
(n ∨ p)− (n ∧ p) + 2 k + 1

)]
tr{Lk}

+8µk−1
tr{Lk+2}
tr{L2}

− 2µk−1

n∧p∑
i=1

n∧p∑
j 6=i

lk+1
i − lk+1

j

li − lj

}
, (5.11)

since S̃ S̃+
(
Ip −H1H

>
1

)
= 0 and (n ∨ p) = n+ p− (n ∧ p) . Then we have δ(G) ≤ 0 for c

between 0 and

Ca = 2

[
µk−1

µk−2

[
(n ∨ p)− (n ∧ p) + 2 k + 1

]
− a
]

tr{Lk} tr{L2}
tr{Lk+2}

−8
µk−1

µk−2

+2Bk+2
µk−1

µk−2

tr{L2}
tr{Lk+2}

.

(5.12)

16



where

Bk+2 =

n∧p∑
i=1

n∧p∑
j 6=i

lk+1
i − lk+1

j

li − lj
.

This leads to the following proposition.

Proposition 5.2. For a = a∗ given in Proposition 3.1, any Dey type estimator Σ̂−1
DY =

a∗ S+ + c S/tr{S2} improves on the optimal estimator a∗ S+, and hence, improves on any
estimator aS+ with a > 0, when k = 1 and 2, as soon as

• 0 < c <
4

µ−1

[
(n ∧ p)− 1

]
if k = 1 and n ∧ p ≥ 2;

• 0 < c < 2µ1 [(n ∧ p)− 1] if k = 2 and n ∧ p ≥ 2.

When k = 3, although Ca∗ > 0, that quantity is not constant and cannot be bounded
from below by a positive constant. However, for a < a∗, as soon as

• 0 < c < 2
µ2

µ1

(a∗ − a) = 2
µ2

µ1

(n+ p+ 1− a),

the estimator Σ̂−1
DY improves on aS+.

When k = 0, for a = a−0 and a = a+
0 given in Proposition 3.1, any Dey type estimator

Σ̂−1
DY = a−0 S

+ + c /tr{S2} and Σ̂−1
DY = a+

0 S
+ + c /tr{S2} improves on a−0 S

+, a+
0 S

+ respec-
tively, and hence, improves on any estimator aS+ with a < a−0 and a > a+

0 respectively, as
soon as

• 0 < c < 4
µ−1

µ−2

[
{(n∧ p) + 1} (n∧ p)− 2

]
and 0 < c < 2

µ−1

µ−2

[
{(n∧ p) + 3} (n∧ p)− 4

]
if n ∧ p ≥ 2;

When k ≥ 4, for a = a−0 given in Proposition 3.1, any Dey type estimator Σ̂−1
DY =

a−0 S
+ + c /tr{S2} improves on a−0 S

+, and hence, improves on any estimator aS+ with
a < a−0 , as soon as

• 0 < c < 2
µk−1

µk−2

(k − 3).

Comment. In the cases k = 3 and a ≥ a∗, k ≥ 4 and a > a+
0 , our method does not lead to

any improved Dey type estimator. In each case, expression of Ca in (5.12) is non negative
but is not bounded below by a positive constant.

Proof. When k = 1, we have a∗ =
1

µ−1

[
(n ∨ p)− (n ∧ p)− 1

]
, then Ca in (5.12) becomes

Ca∗ =
8

µ−1

tr{L} tr{L2}
tr{L3}

− 8

µ−1

+
2

µ−1

B3
tr{L2}

tr{Lk+2}
.
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using the expression of B3 in Lemma A.2, it follows from the above equality that

Ca∗ =
8

µ−1

tr{L} tr{L2}
tr{L3}

− 8

µ−1

+
[
(n ∧ p)− 1

] 4

µ−1

tr{L} tr{L2}
tr{L3}

=
4

µ−1

[
(n ∧ p) + 1

] tr{L} tr{L2}
tr{L3}

− 8

µ−1

≥ 4

µ−1

[
(n ∧ p)− 1

]
,

where the above inequality is due to Lemma (A.4) with k = 1 and m = 2. This gives the
first result.

When k = 2, we have a∗ = µ1 (n ∨ p). By using the expression of Bk in Lemma A.2
with k = 4, Ca in (5.12) equals

Ca∗ = 2µ1 [−(n ∧ p) + 5]
(tr{L2})2

tr{L4}
− 8µ1 + 2µ1B4

tr{L2}
tr{L4}

= 2µ1 [−(n ∧ p) + 5]
(tr{L2})2

tr{L4}
− 8µ1 + 2µ1

[
(tr{L})2 + (2 (n ∧ p)− 3) tr{L2}

] tr{L2}
tr{L4}

= 2µ1 [(n ∧ p) + 2]
(tr{L2})2

tr{L4}
− 8µ1 + 2µ1

(tr{L})2 tr{L2}
tr{L4}

≥ 2µ1 [(n ∧ p) + 3]
(tr{L2})2

tr{L4}
− 8µ1 .

since (tr{L})2 ≥ tr{L2}. Now, according to (A.5) with k = 2 and m = 2, we have

Ca∗ ≥ 2µ1 [(n ∧ p)− 1] ,

which gives the second result.

When k = 3, as a∗ =
µ2

µ1

[
(n∨ p) + (n∧ p) + 1

]
, although Ca∗ > 0, that quantity is not

constant and cannot be bounded from below by a positive constant. Indeed we have

Ca∗ = 2
µ2

µ1

[−2 (n ∧ p) + 6]
tr{L3} tr{L2}

tr{L5}
− 8

µ2

µ1

+ 2
µ2

µ1

B5
tr{L2}
tr{L5}

= 2
µ2

µ1

[−2 (n ∧ p) + 6]
tr{L3} tr{L2}

tr{L5}
− 8

µ2

µ1

+ 2
µ2

µ1

[
2 tr{L} tr{L2}+ (2 (n ∧ p)− 4) tr{L3}

] tr{L2}
tr{L5}

= 4
µ2

µ1

tr{L3} tr{L2}
tr{L5}

+ 4
µ2

µ1

tr{L} (tr{L2})2

tr{L5}
− 8

µ2

µ1

, (5.13)

by substituting the expression of B5 given in Lemma A.2. As for the positivity of Ca∗ , note
that, according to Inequality (A.5) in Lemma (A.4) with m = 2 and k = 1 and 3, we have

tr{L} (tr{L2})2

tr{L5}
≥ tr{L3} tr{L2}

tr{L5}
≥ 1 .
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Hence, it is clear that Ca∗ ≥ 0 with probability 1. However, from (5.13), for any a > 0,
the corresponding Ca in (5.12) can be written as

Ca = Ca∗ + 2
µ2

µ1

(a∗ − a)
tr{L3} tr{L2}

tr{L5}
,

Then, from (A.5) with k = 3 and m = 3, it is clear that

Ca ≥ 2
µ2

µ1

(a∗ − a)

as soon as a < a∗. Then the result for k = 3 follows.
When k = 0, Ca in (5.12) equals

Ca = 2

[
µ−1

µ−2

[
(n ∨ p)− (n ∧ p) + 1

]
− a
]

(n ∧ p)− 8
µ−1

µ−2

+ 2
µ−1

µ−2

B2

= 2

[
µ−1

µ−2

[
(n ∨ p)− (n ∧ p) + 1

]
− a
]

(n ∧ p)− 8
µ−1

µ−2

+ 2
µ−1

µ−2

(n ∧ p) [(n ∧ p)− 1]

= 2

[
µ−1

µ−2

(n ∨ p)− a
]

(n ∧ p)− 4
µ−1

µ−2

, (5.14)

where B2 is given in Lemma A.2. For a equal to the value a−0 in Proposition 3.1, that is,

for a−0 =
µ−1

µ−2

[
(n ∨ p)− 2 (n ∧ p)− 2

]
, it follows from (5.14) that

Ca−0 = 2
µ−1

µ−2

[
{2 (n ∧ p) + 2} (n ∧ p)− 4

]
= 4

µ−1

µ−2

[
{(n ∧ p) + 1} (n ∧ p)− 2

]
.

For a equal to the value a+
0 in Proposition 3.1, that is, for a+

0 =
µ−1

µ−2

[
(n∨ p)− (n∧ p)− 3

]
it follows from (5.14) that

Ca+0 = 2
µ−1

µ−2

[
{(n ∧ p) + 3} (n ∧ p)− 4

]
.

Hence, according to Proposition 3.1, the result for k = 0 follows.

When k ≥ 4, we have a−0 =
µk−1

µk−2

[ (n ∨ p) + (n ∧ p) + k − 2 ]. Then, according to the
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expression of Bk in Lemma A.2, it follows from Ca in (5.12) that

Ca−0 = 2
µk−1

µk−2

[−2 (n ∧ p) + k + 3]
tr{Lk} tr{L2}

tr{Lk+2}
− 8

µk−1

µk−2

+ 2
µk−1

µk−2

{
k−1∑
m=1

tr{Lm} tr{Lk−m}+ [2 (n ∧ p)− (k + 1)] tr{Lk}

}
tr{L2}

tr{Lk+2}

= 4
µk−1

µk−2

tr{Lk} tr{L2}
tr{Lk+2}

− 8
µk−1

µk−2

+ 2
µk−1

µk−2

tr{L2}
tr{Lk+2}

k−1∑
m=1

tr{Lm} tr{Lk−m}

≥ 4
µk−1

µk−2

tr{Lk} tr{L2}
tr{Lk+2}

− 8
µk−1

µk−2

+ 2
µk−1

µk−2

(k − 1)
tr{Lk} tr{L2}

tr{Lk+2}

= 2
µk−1

µk−2

(k + 1)
tr{Lk} tr{L2}

tr{Lk+2}
− 8

µk−1

µk−2

≥ 2
µk−1

µk−2

(k − 3),

applying twice Inequality (A.5) in Lemma A.4. This gives the result for k ≥ 4.

6 Concluding remarks

In this paper, we have considered estimation of the inverse scatter matrix Σ−1 of a scale
mixture of Wishart distribution under Efron-Morris type losses. We have shown that the
standard estimators of the form aS+ can be improved by alternative estimators through
an unbiased estimator of risk difference. Our approach unifies the two cases where the
sample covariance matrix S is singular and invertible thanks to a new Stein-Haff type
identity developed by Fourdrinier, Haddouche and Mezoued [5]. Our results extend several
classical domination results for the Wishart case to the scale mixture of Wishart case, and
also extend results for specific Efron and Morris type losses to the entire class.
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Appendix

In this section, we focus on the technical aspects of the article. Thus we give the proofs of
results presented in Sections 3 and 4 and some supplementary lemmas used in these proofs.

A.1 Proof of Proposition 3.1

Recall the singular value decomposition of S, i.e. S = H1LH
>
1 (see Section 4). The proof

relies on the following lemma from Fourdrinier, Haddouche and Mezoued [5].

Lemma A.1. Let G = H1ΨHT
1 where Ψ = Ψ(L) is a (n ∧ p) × (n ∧ p) diagonal matrix,

diag
(
ψ1(L), . . . , ψn∧p(L)

)
. Then SS+G = G and

Ds{SS+G} = Ds{H1ΨHT
1 } = H1Ψ(1)HT

1 +
1

2
tr
(
L−1Ψ

)
(Ip −H1H

T
1 ) (A.1)

where Ψ(1) is a (n ∧ p)× (n ∧ p) diagonal matrix with

ψ
(1)
i =

1

2
(p− (p ∧ n))

ψi
li

+
∂ψi
∂li

+
1

2

p∧n∑
j 6=i

ψi − ψj
li − lj

.

Recall that S̃ = S/V . Without loss of generality, we prove Proposition 3.1 in the case
where V = 1, that is, S̃ = S. First, we have tr{S̃k (S̃+)2} = tr{Lk−2}. Then, applying
Lemma A.1 with Ψ(L) = Lk−1, we have

DS̃ {S̃
k S̃+} = DS̃ {H1 L

k−1H>1 }

=
1

2
[p− (n ∧ p) + 2 (k − 1)]H1 L

k−2H>1 +
1

2
H1 diag

(
n∧p∑
i 6=j

lk−1
i − lk−1

j

li − lj

)
1≤i≤n∧p

H>1

+
1

2
tr{Lk−2}(Ip −H1H

>
1 ). (A.2)

Substituting (A.2) in the numerator of the fraction in (3.4) and tr{Lk−2} in the denominator
and using the fact that S̃ S̃+ (Ip −H1H

>
1 ) = 0, the optimal value of a∗ in (3.4) is

a∗ =
µk−1

µk−2

[
n− (n ∧ p)− 1 + [p− (n ∧ p) + 2 (k − 1)]

]
+
µk−1

µk−2

EΣ

[∑n∧p
i=1

∑n∧p
j 6=i

lk−1
i − lk−1

j

li − lj

]
EΣ [tr{Lk−2}]

=
µk−1

µk−2

[
(n ∨ p)− (n ∧ p) + 2 k − 3

]
+
µk−1

µk−2

EΣ

[∑n∧p
i=1

∑n∧p
j 6=i

lk−1
i − lk−1

j

li − lj

]
EΣ [tr{Lk−2}]

. (A.3)

Finally, Proposition 3.1 follows immediately from the following lemma applied to (A.3).
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Lemma A.2. For k ∈ N, let

Bk =

n∧p∑
i=1

n∧p∑
j 6=i

lk−1
i − lk−1

j

li − lj
.

Then, for k = 0,

B0 = tr{L−2} −
(
tr{L−1}

)2

and satisfies
[1− (n ∧ p)] tr{L−2} ≤ B0 ≤ 0 ;

for k = 1,
B1 = 0 ;

for k = 2,
B2 = (n ∧ p) [(n ∧ p)− 1] ;

for k = 3,
B3 = 2 [(n ∧ p)− 1] tr{L} ;

for k ≥ 4,

Bk =
k−3∑
m=1

tr{Lm} tr{Lk−2−m}+ [2 (n ∧ p)− (k − 1)] tr{Lk−2}

and satisfies

[2 (n ∧ p)− (k − 1)] tr{Lk−2} ≤ Bk ≤ (k − 1) [(n ∧ p)− 1] tr{Lk−2} .

Proof. Note that the inequalities in Lemma A.2 use the inequality

tr{La} tr{Lb} ≤ (n ∧ p) tr{La+b}

for a ∈ R and b ∈ R with a b ≥ 0, which can be established thanks to the covariance
inequality. Thus, for a = b = −1, we have(

tr{L−1}
)2 ≤ (n ∧ p) tr{L−2} ,

which gives the first inequality satisfied by B0. As for the second inequality, it follows from
Lemma A.4 with k = m = −1. Also, setting a = m and b = k − 2−m, we have

tr{Lm} tr{Lk−2−m} ≤ (n ∧ p) tr{Lk−2} ,

which gives rise to the second inequality satisfied by Bk for k ≥ 4 (the first inequality being
obvious).
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As for the equalities, through straightforward calculations, we have

B0 =

n∧p∑
i=1

n∧p∑
j 6=i

l−1
i − l−1

j

li − lj
= −

n∧p∑
i=1

n∧p∑
j 6=i

1

li lj
= −

n∧p∑
i=1

(
n∧p∑
j=1

1

li lj
− 1

l2i

)

= −
n∧p∑
i=1

(
1

li

) n∧p∑
j=1

(
1

lj

)
+

n∧p∑
i=1

(
1

l2i

)
= −

(
tr{L−1}

)2
+ tr{L−2} .

Also

B1 =

n∧p∑
i=1

n∧p∑
j 6=i

1− 1

li − lj
= 0 ,

B2 =

n∧p∑
i=1

n∧p∑
j 6=i

li − lj
li − lj

=

n∧p∑
i=1

n∧p∑
j 6=i

1 = (n ∧ p) [(n ∧ p)− 1]

and

B3 =

n∧p∑
i=1

n∧p∑
j 6=i

l2i − l2j
li − lj

=

n∧p∑
i=1

n∧p∑
j 6=i

(li + lj) = [(n ∧ p)− 1]

n∧p∑
i=1

li +

n∧p∑
i=1

(
n∧p∑
j=1

lj − li

)
= [(n ∧ p)− 1] tr{L}+ (n ∧ p) tr{L} − tr{L} = 2 [(n ∧ p)− 1] tr{L} .

Finally, for k ≥ 4,

Bk =

n∧p∑
i=1

n∧p∑
j 6=i

lk−1
i − lk−1

j

li − lj
=

n∧p∑
i=1

n∧p∑
j 6=i

k−2∑
m=0

lmi l
k−2−m
j

=
k−3∑
m=1

n∧p∑
i=1

n∧p∑
j 6=i

lmi l
k−2−m
j +

n∧p∑
i=1

n∧p∑
j 6=i

(
lk−2
j + lk−2

i

)
=

k−3∑
m=1

n∧p∑
i=1

lmi

(
n∧p∑
j=1

lk−2−m
j − lk−2−m

i

)
+

n∧p∑
i=1

(
n∧p∑
j=1

lk−2
j − lk−2

i

)
+ [(n ∧ p)− 1]

n∧p∑
i=1

lk−2
i

=
k−3∑
m=1

(
tr{Lm} tr{Lk−2−m} − tr{Lk−2}

)
+ 2 [(n ∧ p)− 1] tr{Lk−2}

=
k−3∑
m=1

tr{Lm} tr{Lk−2−m}+ [2 (n ∧ p)− (k − 1)] tr{Lk−2} .
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A.2 An expression for tr
{
S̃+ S̃ DS̃

{
r(tr{S̃})G>(S̃) S̃k+1

}}
The following lemma was used in the proof of Lemma 4.2.

Lemma A.3. For G(S̃) of the form G(S̃) = H1 Ψ(L)H>1 , we have

tr
{
S̃+ S̃ DS̃

{
r(tr{S̃})G>(S̃) S̃k+1

}}
= r(tr{S̃}) tr

{
S̃+ S̃ DS̃

{
G>(S̃) S̃k+1

}}
+ r′(tr{S̃}) tr

{
G>(S̃) S̃k+1

}
(A.4)

Proof. Since S̃ S̃+G>(S̃) = G>(S̃), we have

DS̃

{
r(tr{S̃})G>(S̃) S̃k+1

}
= DS̃

{
S̃+ S̃ r(tr{S̃})G>(S̃) S̃k+1

}
= DS̃

{
H1 r(tr{S̃}) ΨLk+1 HT

1

}
= H1Ψ(1)HT

1 +
1

2
tr
(
L−1r(tr{S̃}) ΨLk+1

)
(Ip −H1H

T
1 ) ,

according to Lemma A.1, where

ψ
(1)
i =

1

2

(
p− (p ∧ n)

)
r(tr{L}) (ψ Lk+1)i

li
+
∂
(
r(tr{L})(ψ Lk+1)i

)
∂li

+
1

2
r(tr{L})

p∧n∑
j 6=i

(ψ Lk+1)i − (ψ Lk+1)j
li − lj

= r(tr{L})

(
1

2

(
p− (p ∧ n)

) (ψ Lk+1)i
li

+
∂(ψ Lk+1)i

∂li
+

1

2

p∧n∑
j 6=i

(ψ Lk+1)i − (ψ Lk+1)j
li − lj

)
+ r′(tr{L}) (ψ Lk+1)i .

Noticing that S̃ S̃+ (Ip −H1H
>
1 ) = 0, it follows that

S̃ S̃+DS̃

{
r(tr{S̃})G>(S̃) S̃k+1

}
= r(tr{S̃}) S̃ S̃+DS̃

{
G>(S̃) S̃k+1

}
+r′(tr{S̃}) S̃ S̃+ ΨLk+1 .

Finally, taking the trace gives the desired result.

A.3 A trace inequality

Lemma A.4. For k ∈ R and m ∈ R, we have

tr{Lk+m} ≤ tr{Lk} tr{Lm}. (A.5)

Proof. The result follows immediately from the inequality

p∧n∑
i=1

lk+m
i ≤

p∧n∑
i=1

lki

p∧n∑
j=1

lmj .
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