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Résumé. L’intérêt pratique de l’utilisation de méthodes d’ensemble a été souligné
dans plusieurs ouvrages. La prévision séquentielle de suites individuelles fournit un cadre
naturel pour adapter les méthodes d’ensemble aux séries chronologiques. Les principaux
développements dans ce domaine concernent les algorithmes d’agrégation et la mise à
jours des poids en ligne. Nous nous concentrons ici sur la question de la génération des
experts à inclure dans une agrégation en ligne. Nous exploitons pour cela le concept de
diversité pour proposer des stratégies d’enrichissement d’un ensemble d’experts initiaux.
Nous montrons comment cette approche s’incrit dans les travaux théoriques récents sur
le boosting. Nous proposons des résultats de simulations montrant la pertinance de cette
approche en régression. Des applications sur des données réelles (consommation électrique
et pollution) confirment l’intérêt de cette méthodes pour la prévision de séries temporelles.

Mots-clés. agrégation d’experts, boosting, prévision.

Abstract. The practical interest of using ensemble methods has been highlighted in
several works. Sequential prediction provides a natural framework for adapting ensemble
methods to time series data. Main developments focus on the rules of aggregation of a
set of experts and examine how to weight and combine the experts. However, very few
work exist regarding how to choose/generate the experts to include in a given aggregation
procedure. We use the concept of diversity to propose some strategies to enrich the set of
original individual predictors. We show how this method is connected to recent theoretical
work on boosting. We propose a simulation study to illustrate the interest of our approach
in the regression setting. An application on real datasets (electricity consumption and
pollution data) shows the potentiality of this method for practical forecasting tasks.

Keywords. expert aggregation, boosting, forecasting.

1 Introduction

The practical interest of using ensemble methods has been highlighted in several works.
These studies focus on the rules of aggregation of a set of experts and examine how
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to weight and combine the experts. Ensemble methods are now used in very different
domains. [1] provided with global comparison of different approaches on ecology. Boosting
techniques are iterative methods that consist in improving the performance of several
hypothesis or base predictors of the same nature, combining them and re-weighting at
each step the original data sample. Freund and Schapire in [5] described the first boosting
algorithm, Adaboost, designed for binary classification problems and with classification
trees as hypothesis. Various types of extensions for boosting exist, in particular for multi-
class classification and for regression and they use different approaches ([12]). We use
the concept of diversity [3, 11] to propose new algorithms to enrich the set of original
individual predictors. This formula is inspired from the Negative Correlation Learning
for neural networks ([9]). The significance of the Ambiguity decomposition it that the
error of the ensemble will be less than or equal to the average error of the individuals,
and then the ensemble has lower error than the average individual error: larger will be
the diversity term, larger will be the ensemble error reduction. We modify the usual
L2 cost function with the aim to find a good predictor that will be at the same time
“diverse” than the mean of the predictors founded at the precedent steps, according to
the diversity formula. We show by means of numerical experiments the appropriateness
of our procedure using simulated data and electricity demand datasets.

2 Diversity decomposition of a set of experts

We consider here a prediction ŷi which is the convex aggregation of a set of M individual
experts ŷi,m:

ŷi =
1

M

M∑
m=1

ŷi,m.

This special kind of mixture gives particularly nice expressions when one decomposes
the instantaneous square error (yi − ŷi)2, as proposed in [3], with the diversity formula:

(yi − ŷi)2 =
1

M

M∑
m=1

(ŷi,m − yi)2︸ ︷︷ ︸
weighted average error of the individuals

− 1

M

M∑
m=1

(ŷi,m − ŷi)2︸ ︷︷ ︸
diversity term

(1)

This decomposition is true for any convex aggregation rules but for simplicity we will
consider here uniform weights.

3 Diversity-based cost function

In the context of machine learning methods, boosting are sequential algorithms that
estimate a function F : R → R by minimising the expectation of a functional C(F ) =
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E [Ψ(Y, F (X)] where Ψ : R × R → [0,+∞) measures the cost committed for predicting
F (X) instead of Y , using a training sample {(yi, xi)}ni=1 and functional gradient descent
techniques. More precisely, considering a family F = {f : Rd → R}, the method consists
to estimate F by minimisation of the the empirical expectation loss

Cn(F ) =
1

n

n∑
i=1

Ψ(yi, F (xi)),

by looking for an additive function of the form FM =
M∑
m=1

αmfm where αm ∈ R and fm ∈ F

for all m ([6], [10],[4]).
In the spirit of L2-Boost algorithm, we propose a new algorithm which encourage

diversity of intermediate predictors. Following equation (1), we propose as new cost
function

Ψ(yi, F ) =
1

2
(yi − F )2 − κ

2
(F − c)2

where κ is the term which modulate the importance given to the diversity of the predictor
to the average of the previous ones and therefore c can be think as a constant. Let
L = {(y1, x1), . . . , (yn, xn)} be a sample with unknown distribution F and consider a fix
step δ > 0. Then the Boosting Diversity algorithm (Bodi) is detailed in Figure 1.

With BoDi algorithm, as in the classical boosting, we obtain a final ensemble forecast
F ∗
M,κ as well as a set of experts Fk,κ. We make the dependency to κ explicit whereas other

parameters (like the gradient step, the size of the bootstrap sample) play a role. This is
because we want to study more in depth the interest of the diversity term for forecasting
purposes.

4 Results

Convergence of the algorithm. A recent and very elegant result from [4, Theo.
1] proves the convergence of several gradient boosting-based methods in a very general
framework. The results holds for C(F ), the expectation of our convex cost function
Ψ(y, F ) = 1

2
(y−F )2− κ

2
(F−c)2 because C and Ψ satisfies the three assumptions needed to

ensure convergence established. This convergence result warranties that the optimisation
strategy converges to a global optimum.

Remark : usual boosting methods consider as base-learner F a weak (but computation-
ally efficient) method (e.g. stumps or single variable regression), denoted by h indexed
by θ ∈ Θ. In our experiments, we show that, to be able to generate some diversity, F has
to be a more complex learner. We obtained good result choosing a random forest as base
learner.
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Given a base learner h, randomly split the data in two parts I = I1 ∪ I2.

1. Fit an initial learner over I1: F̂0(x) = h(x, θ̂Y,X) where θ̂Y,X = arg min
θ

n∑
i=1

(yi −

h(xi, θ))
2. Set F̂ ∗

0 (x) = F̂0(x).

2. For m ∈ {1, . . . ,M}:

(a) ∀ i ∈ I2, compute the negative diversity gradient of the cost function and

evaluate it at F̂m−1(xi):

ui = (yi − F̂m−1(xi)) + κ(F̂m−1(xi)− F̂ ∗
m−1(xi))

and compute ĝm(x) = h(x, θ̂U,X) where θ̂U,X = arg min
θ

n∑
i=1

(ui − h(xi, θ))
2.

(b) Update boosting predictor as F̂m(x) = F̂m−1(x) + δĝm(x), compute

F̂ ∗
m(x) = 1

m

m∑
i=1

F̂i(x) and update I2 = I \ I1 with a new bootstrap sample

I1 of I.

Figure 1: Boosting Diversity algorithm. The split of the original sample is not mandatory,
but it allows to compute the OOB error. To avoid surnotation we do not include the
dependence of κ.

Some numerical experiments We use here a simulated data set presented in [7] and
used in [2] to demonstrate the good performances of bagging. We use the R package [8] to
reproduce these datasets. The inputs are 10 independent variables uniformly distributed
on the interval [0,1], only 5 out of these 10 are actually used. Outputs y are generated
according to the formula:

yi = 10 sin(πx1,ix2,i) + 20(x3 − 0.5)2 + 10x4 + 5x5 + εi

where εi is N(0, σ2). As in [2] we simulated a learning set of size n0 = 200 and a test
set of size n1 = 1000 observations, σ = 1. We replicate the simulation 100 times. The
performances reported by Breiman’s bagging predictor in terms of mean square error
(MSE) on the test set is 6.2. The first test was conducted with the following inputs:
base learner is a random forest including all the 10 covariates with parameters mtry = 3,
ntree = 100, data splitting rate α = 0.5, gradient step δ = 0.08 and diversity weight
κ ∈ {0, 0.5, 1, 1.5}. The results are presented in Figure 2.

We clearly see the influence of the calibration of κ. For κ not too large there is a clear
improvement of the diversity boosting strategy over the original random forest forecaster,
reducing the error by 3 after a sufficient number of iterations (at least 100). For large
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Figure 2: MSE in function of boosting steps for different diversity (κ) values with random
forest (mtry=3, ntree=100) as base learner.

κ, here corresponding to 1.5 or more, the algorithm diverges after 100 iterations. In
the range of reasonable values of κ (ensuring convergence of the algorithm), choosing κ
too small entails a larger forecasting error meaning that encouraging diversity can lead
to an improvement of the forecasts. κ = 0 corresponds to classical boosting. We can
observe that classical boosting works well here and improves significantly the forecast of
the original forest. This is also surprising as the random forest could be seen as a ”strong”
learner in the sense that it is not a weak learner as stumps or other classical weak learners
in boosting. Curiously, even if the diversity boosting has been derived so that to improve
the ensemble forecast F ∗

M,κ we observe that for all κ and N < 100 the error of FM,κ is
lower than the error of F ∗

M,κ .

5 Conclusion

In this work, we propose a new boosting algorithm for regression problems based on
the diversity formula. This method constructs at each step a base learner improving the
diversity term of the diversity formula and then, try to reduce the mean square error. First
experiments on simulated data and random forests as base learner confirm the potentiality
of the method. We will now going to apply and adapt it on practical forecasting tasks,
examining in particular on how adapting the weights of the combination of the experts.
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