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Abstract The frequency estimator has long been regarded as the non-parametric
reference for count data distributions. Meanwhile, the non-parametric esti-
mator using discrete kernels has been developed as one competing alterna-
tive to the frequency estimator. Various discrete kernels are now available
in the literature, which raises the issue of finding one discrete optimal ker-
nel for non-parametric estimation of count data. To address this issue, we
investigated discrete symmetric kernels that minimise the global squared er-
ror of non-parametric estimator of count data distributions. Basic asymptotic
properties of both discrete optimal symmetric kernels and the correspond-
ing non-parametric estimator were studied, in comparison with other discrete
non-parametric kernel estimators. The performance of one discrete optimal
symmetric kernel was also illustrated through simulations and applications on
real data set.
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1 Introduction

Modelling the unknown probability density function (pdf) f of a random vari-
able X on the real line R is the subject of much research to find the best rep-
resentation of f . In this context, the continuous kernel method was presented
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as one simple and efficient non-parametric technique for density estimation
(Parzen, 1962; Rosenblatt, 1956). A continuous kernel estimator f̂K,h of f was
constructed as a kernel weighted average given by

f̂K,h(x) =
1

n

n∑
i=1

Kx,h(Xi), x ∈ R,

where (Xi)i=1,··· ,n are independent and identically distributed (i.i.d.) obser-
vations from a random sampling of f , Kx,h is a continuous (symmetric or
asymmetric) kernel and h = h(n) > 0 is an arbitrary sequence of smoothing
parameters (or bandwidths) such that limn→∞ h(n) = 0 (Wand and Jones,
1995). Studies are increasingly interested in how the kernel method can con-
tribute to non-parametric estimation of functions in many various applied
research fields. For instance, in hydrology, the kernel method was applied for
non-parametric modelling of flood frequencies (Adamowski, 1985). Likewise, in
economy, the non-parametric Nadaraya-Watson regression estimator was pro-
posed for modelling the relation between economic growth and environmental
degradation (Taskin and Zaim, 2000). The kernel method was also applied in
medicine for estimating a relative risk of disease cases (Davies and Hazelton,
2010). Recently, the non-parametric estimation of extreme tail of conditional
distribution functions involved a weighted kernel estimator of Pareto distribu-
tion parameter (Durrieu et al., 2015).

As an alternative to continuous kernels used for non-parametric estimation
of a pdf, discrete kernels have been developed for non-parametric estimation
of a probability mass function (pmf) f(·) = Pr(X = ·) of a random variable X
on a support S, such as sets Z and N of all integers and non-negative integers,
respectively (Kokonendji and Senga Kiessé, 2011). Various discrete kernels are
now available in the literature such as geometric and uniform weight kernels
(Wang and Ryzin, 1981), discrete symmetric and asymmetric triangular ker-
nels (Kokonendji and Senga Kiessé, 2011; Kokonendji and Zocchi, 2010) and
specific kernels to deal with features of categorical variables (Aitchison and
Aitken, 1976). These discrete kernels are competing with the Dirac type ker-
nel uses in the frequency estimator, which was considered until recently as the
non-parametric reference for estimating pmf.

The large variety of discrete kernels available in the literature raises the
issue of finding one discrete optimal kernel. For instance, the Epanechnikov
continuous kernel has been presented as being the optimal symmetric one to
estimate a pdf (Epanechnikov, 1969; Tsybakov, 2004), although the Gaus-
sian kernel is one of the most often used in the literature. Likewise, optimal
asymmetric kernels have been proposed also for continuous density estimation
(Abadir and Lawford, 2004). Meanwhile, to our knowledge, no discrete opti-
mal kernel has been proposed yet for non-parametric estimation of pmf. Thus,
the main contribution of this work consists of introducing discrete optimal
symmetric kernels for non-parametric estimation of pmf.
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2 Discrete associated kernels

We first recall fundamental notions of the discrete associated kernel method.
Let us consider a fixed point x on a discrete support S ⊆ Z and a bandwidth
parameter h = h(n) > 0, such that h(n) tends to 0 as n goes to∞. The discrete
kernel Kx,h associated with a random variable Kx,h defined on a support Sx
(which contains x) is a pmf such that∑

y∈Sx

Kx,h(y) = 1, with 0 ≤ Kx,h(y) = Pr(Kx,h = y) ≤ 1.

The underlying idea behind the notion of discrete kernels Kx,h is to propose a
pmf that converges to the Dirac type kernel Dx(y) = 1y=x on Sx = {x}, such
that its modal probability behaves asymptotically as follows:

Kx,h(x) = Pr(Kx,h = x)→ Dx(x) = 1 as h→ 0, (1)

where 1A takes the value 1 when the condition A is verified and 0 otherwise.
The discrete associated kernel Kx,h(·) was intended to attribute the more
important probability mass (i.e. closest to one) at the point x ∈ S, while
having a bandwidth parameter h > 0 to take into account the probability
mass at points y ∈ Sx \ {x} in the neighbourhood of x. The following general
expressions of Kx,h’s expectation and variance result from equation (1):

(E1) : E(Kx,h) = x+ a(x, h) and (E2) : Var(Kx,h) = b(x, h),

where both a(x, h) and b(x, h) tend to 0 as h goes to 0 (Senga Kiessé, 2017).

2.1 Examples

We now present examples of discrete associated kernels that have been pro-
posed in the literature.

Example 1 For any x ∈ S = Z and h ∈ (0, 1], Wang and van Ryzin (1981)
have proposed a geometric weight kernel given by

Kx,h(z) =

{
1− h x = z,
1/2(1− h)h|x−z| |x− z| ≥ 1,

z ∈ Sx = Z.

The expectation and variance of this kernel are, respectively,

E(Kx,h) = x and Var(Kx,h) = h(1 + h)/(1− h)2.

Example 2 Likewise, for any x ∈ S = Z, h ∈ (0, 1] and k ∈ N \ {0, 1}, Wang
and van Ryzing (1981) have proposed a uniform weight kernel expressed by

Kk;x,h(z) =

1− h x = z,
1/2(h/k) |x− z| = 1, . . . , k,
0 |x− z| ≥ k + 1,

z ∈ Sx = Z,

with its expectation and variance given by

E(Kk;x,h) = x and Var(Kk;x,h) = h(k + 1)(2k + 1)/6.
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Example 3 Let us consider a fixed point x ∈ {0, 1, . . . , c}, a bandwidth pa-
rameter h ∈ (0, 1] and an entire c ∈ N \ {0, 1}. Aitchison and Aitken (1976)
have also proposed one kernel to deal with features of a discrete r.v. X with c
unordered categories whose pmf is given by

Kc;x,h(z) =

{
1− h x = z,
h/(c− 1) |x− z| ≥ 1,

z ∈ Sx = {0, 1, . . . , c− 1},

with

E(Kx,h) = x+ h

(
1− x− x

c− 1
+
hc

2

)
and

Var(Kx,h) = −
(
c2(−2x+ c− 1)2

4(c− 1)2

)
h+

(
c(6x2 + 2c2 − 3c+ 1− 6xc+ 6x)

6(c− 1)

)
h2.

Example 4 For x ∈ S = Z, h > 0 and p ∈ N, the symmetric discrete triangular
kernel Kp;x,h had a pmf defined by

Kp;x,h(z) =

{
(p+ 1)h/C(p, h) x = z,

(p+ 1)h/C(p, h)
(

1− |z−x|
h

(p+1)h

)
|x− z| ≥ 1,

z ∈ Sx = {x, ..., x± p},

such that

E(Kp;x,h) = x and Var(Kp;x,h) =
1

C(p, h)

(
p(2p+ 1)(p+ 1)h+1

3
− 2

p∑
k=0

kh+2

)
,

where C(p, h) = (2p+1)(p+1)h−2
∑p

k=0 k
h is a normalising constant (Koko-

nendji and Senga Kiessé, 2011).

The four discrete associated kernels previously cited have their modal prob-
ability Kx,h(x) that tends to 1 as h goes to 0 (equation (1)). Their expectation
and variance also satisfy equations (E1)− (E2). Meanwhile, the Aitchison and
Aitken kernel for categorical variables (Example 3) has a mean that is not
equal to x ∈ S and a variance that depends on both x and h > 0.

Other discrete kernels associated to standard discrete probability distribu-
tions (e.g. binomial) have been proposed (Kokonendji and Senga Kiessé, 2011).
The modal probability of these discrete kernels do not satisfy the asymptotic
property in equation (1). However, the non-parametric estimator using the bi-
nomial kernel is competing with those using discrete symmetric triangular and
Dirac type kernels for modelling pmf of count data with medium and small
sizes (Senga Kiessé, 2017).
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2.2 Mean integrated squared error

For x ∈ S and h > 0, without loss of generality, we now consider discrete
associated kernels Kx,h(·) on the support Sx that are symmetric pmf, i.e.
Kx,h(y) = Kx,h(−y), such that

E(Kx,h) = x and E(K2
x,h) = q(x, h) <∞.

Like discrete associated kernels in Examples 1, 2 and 4, the variance of Kx,h

Var(Kx,h) = q(x, h) − x2 = b(h) < ∞ does not depend on x and b(h) tends

to 0 as h goes to 0 (equation (E2)). The non-parametric estimator f̃K,h of f
with a discrete symmetric kernel Kx,h on Sx is given by

f̃K,h(x) =
1

n

n∑
i=1

Kx,h(Xi) =
1

n

n∑
i=1

Kh(x−Xi), (2)

with (Xi)i=1,··· ,n being i.i.d. observations having a pmf f(·) = Pr(Xi = ·) to
estimate on S, with limx→∞ f(x) = 0 General expressions of bias and variance

of estimator f̃K,h are given by

Bias(f̃K,h(x)) = E(f̃K,h(x))− f(x) = E(f(Kx,h))− f(x) (3)

and

Var(f̃K,h(x)) =
1

n

∑
y∈Sx

K2
x,h(y)f(y)− 1

n
E2(f̃K,h(x)). (4)

Concerning the f̃K,h’s bias in equation (3), f(Kx,h) can be expanded around
x by using the following discrete version of Taylor’s formula for a pmf f : S →
[0, 1] around t0 ∈ S ⊆ Z:

f(t) = f(t0) +

k∑
j=1

f (j)(t0)

j!
(t− t0)j +

1

k!

t−k−1∑
i=t0

(t− i− 1)kf (k+1)(i), (5)

where f (j) are finite differences of order j = 1, 2, . . . , k, of f and the last term
is o{(t−t0)k}; refer to Argawal and Bonher (1999) and Schumaker (1996)[The-
orem 8.61, page 351]. More precisely, the finite differences of f are such that
f (0) = f and f (j) = {f (j−1)}(1), with

f (1) =
1

2
(f(x+ 1)− f(x− 1)) , x ∈ Z.

By applying the formula in equation (5), we get the following expansion of
f(Kx,h) around E(Kx,h) = x:

f(Kx,h) = f(E(Kx,h)) + (Kx,h − E(Kx,h))f (1)(E(Kx,h)) +
1

2
(Kx,h − E(Kx,h))2f (2)(E(Kx,h))

+
∑
k≥3

1

k!
(Kx,h − E(Kx,h))kf (k)(E(Kx,h)),
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which finally yields the expression:

Bias(f̃K,h(x)) =
f (2)(x)

2
Var(Kx,h) + o(h). (6)

The f̃K,h’s bias tends to 0 as h goes to 0, under the condition (E2) on the
variance of Kx,h.

Concerning the f̃K,h’s variance in equation (4), by using again the discrete
version of Taylor’s formula, f(y) can be expanded around x as follows f(y) =
f(x)− (y − x)f (1)(x) + o((y − x), such that we get

Var(f̃K,h(x)) =
1

n
f(x)

∑
y∈Sx

K2
x,h(y) + o

(
1

n

)
.

The previous expressions of f̃K,h’s bias and variance enable us to calculate the

mean integrated squared error of f̃K,h given by:

MISE(f̃K,h) =
∑
x∈S

Var(f̃K,h(x))+
∑
x∈S

Bias2(f̃K,h(x)) = AMISE(f̃K,h)+o

(
1

n
+h2

)
,

(7)
with AMISE being the leading term in MISE. Next section presents a discrete
optimal symmetric kernel that minimises (A)MISE of f̃K,h.

3 Discrete optimal symmetric kernel

For x ∈ S and h > 0, to find a discrete optimal associated kernel Kopt
x,h(·)

remains to minimising
∑

y∈Sx K
2
x,h(y) from the expression of MISE (7), such

that Kx,h(y) ≥ 0 and

C1 :
∑
y∈Sx

Kx,h(y) = 1,C2 :
∑
y∈Sx

yKx,h(y) = x and C3 :
∑
y∈Sx

y2Kx,h(y) = q.

That consists in a minimisation problem under constraints that can be solved
using the method of Lagrange multiplier, such that a discrete expression of
the Lagrange function is given by

L(K) =
∑
y∈Sx

(
K2

x,h(y) + λ1Kx,h(y) + λ2yKx,h(y) + λ3y
2Kx,h(y)

)
f(y)+constant,

where the constant does not depend on Kx,h and λi, i = 1, 2, 3, are Lagrange
multipliers corresponding to constraints C1-C3. A similar problem of finding
an optimal kernel by a minimisation under constraints was investigated for
symmetric (Epanechnikov, 1969; Tsybakov, 2004) and asymmetric (Abadir
and Lawford, 2004) continuous kernels. Likewise, one can refer to Hodges et
al. (1956) for the problem of minimising pdf.
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The discrete optimal symmetric kernel has the general form

Kopt
x,h(y, λ1, λ2, λ3) = −1

2
(λ1 + λ2y + λ3y

2), (8)

for the minimum value topt = mint≥0(t2 + λ1t + λ2ty + λ3ty
2) is achieved at

topt = −(λ1+λ2y+λ3y
2)/2. Without loss of generality, we investigate discrete

optimal symmetric kernels Kopt
x,h on the support Sx = {x, x ± 1, . . . , x ± k},

with k ≥ 1 a fixed integer. We get the following result based on solving the
minimisation problem described above.

Theorem 1 For x ∈ S and a fixed integer k ≥ 1, the discrete optimal sym-
metric kernel on Sx = {x, x± 1, . . . , x± k} that minimises the mean integrate

squared error of the estimator f̃K,h in (2) is given by

Kopt
x,h(y) =

λ3
2

(
− y2 + 2xy − x2 +

3k2 + 3k − 1

5

)
+

h

2k + 1
, y ∈ Sx, (9)

where λ3 = 30(1− h)/
(
(2k+ 1)(4k2 + 4k− 3)

)
> 0 and 3/5(1− 1/k) < h < 1.

The proof of theorem is postponed to the appendices.

Remark 1 The bandwidth parameter h > 0 has a varying interval range with
a lower bound hlower = 3/5(1 − 1/k) that depends on k ≥ 1. That insures
discrete optimal symmetric kernels Kopt

x,h to be non-negative on the support Sx

when k varies.

For a fixed target x = 4 and various values of the parameters h ∈ {0.5, 0.9}
and k ∈ {1, 2, 3, 4}, the shape of discrete optimal symmetric kernels Kopt

x,h is
illustrated in Figure 1.

Case of discrete optimal symmetric kernel with k = 1.For (x, h) ∈ S × (0, 1),
we present the case of discrete optimal symmetric kernel with k = 1 on Sx =
{x− 1, x, x+ 1} whose the pmf is given by

Kopt
x,h(y) = (1− h)

(
− y2 + 2xy − x2 +

3− 2h

3(1− h)

)
, y ∈ Sx,

=

1− 2h/3 x = y,
h/3 |x− y| = 1,
0 |x− y| ≥ 2.

(10)

This kernel has its expectation and variance given by, respectively,

E(Kopt
x,h) = x and Var(Kopt

x,h) = 2h/3.

We are now able to formulate the following proposition.

Proposition 1 Let x ∈ S and h ∈ (0, 1). Consider the discrete optimal kernel
Kopt

x,h(·) on the support Sx = {x− 1, x, x+ 1},
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Fig. 1 Shape of discrete optimal symmetric kernels at the target x = 4 for h−values
∈ {0.5, 0.9} and k−values ∈ {1, 2, 3, 4}.

(i) when h → 1, the limit optimal kernel Kopt
x,1 follows the discrete uniform

distribution on the support Sx.
(ii) when h → 0, the limit optimal kernel Kopt

x,0 follows the Dirac distribution
on the support Sx.

Proof. The proof of Proposition 1 comes directly from the expression of the
discrete optimal symmetric kernel Kopt

x,h in equation (10). �
In the following sections, we consider the simple case of discrete optimal

kernel Kopt
x,h(y) with k = 1 on Sx = {x−1, x, x+1} both for comparison to other

discrete associate kernels and for illustrating properties of the non-parametric
estimator f̃K,h in equation (2).

4 Non-parametric discrete optimal kernel estimator

Consider i.i.d. observations (Xi)i=1,··· ,n having a pmf f on S = Z, i.e.
∑

x∈Z f(x) =
1 and 0 ≤ f(x) ≤ 1. Now we focus on asymptotic properties of non-parametric
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estimator f̃K,h of f in equation (2) that uses the discrete optimal symmetric
kernel with k = 1 on Sx = {x− 1, x, x+ 1} such that

f̃optK,h(x) =
1

n

n∑
i=1

Kopt
x,h(Xi) =

1

n

n∑
i=1

((
1− 2

3
h
)
1Xi=x +

1

3
h1|Xi−x|=1

)
.

The estimator f̃optK,h is a genuine pmf that does not need to be normalised,

i.e.
∑

x∈S f̃
opt
K,h(x) = 1. Basic properties of the estimator may be presented

without using the discrete Taylor’s formula, unlike the expression of bias of
f̃K,h in equation (6). Then, other developments of bias and variance of f̃optK,h

in (3) and (4), respectively, may be given by

Bias
(
f̃optK,h(x)

)
= E

(
f̃optK,h(x)

)
− f(x) =

h

3

−2f(x) +
∑

y∈Sx\{x}

f(y)


and

Var
(
f̃optK,h(x)

)
=

1

n
E
((

Kopt
x,h(X1)

)2)
− 1

n
E2
(
Kopt

x,h(X1)
)

=
1

n

∑
y∈Sx

(
Kopt

x,h(y)
)2
f(y)− 1

n

∑
y∈Sx

Kopt
x,h(y)f(y)

2

=
1

n

(1− 2

3
h
)2
f(x) +

h2

9

∑
y∈Sx\{x}

f(y)


− 1

n

(1− 2

3
h
)
f(x) +

h

3

∑
y∈Sx\{x}

f(y)

2

=
1

n

(
1− 2

3
h
)2
f(x) (1− f(x)) +R,

with

R =
1

n

h2
9

∑
y∈Sx\{x}

f(y) +
(
1− 2

3
h
)2
f2(x)−

(1− 2

3
h
)
f(x) +

h

3

∑
y∈Sx\{x}

f(y)

2


such that R = o(h2/n). That also results in another expression of the f̃optK,h’s
MISE in equation (7) given by

MISE
(
f̃optK,h

)
=

1

n

(
1− 2

3
h
)2∑

x∈Z
f(x)(1− f(x)) +

4

9
h2f2(x) + o

(
h2

n

)
=

1

n

(
1− 4

6
h
)∑
x∈Z

f(x)(1− f(x)) +
4

9
h2 + o

(
h2

n

)
. (11)
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Thus, we get MISE
(
f̃optK,h

)
→ 0 when n → ∞ and h = h(n) → 0, which

indicates that the estimator f̃optK,h is consistent in the sense of MISE. The

expression of MISE
(
f̃optK,h

)
can be asymptotically compared to that of the

frequency estimator f̃D using the Dirac type kernel, which is given by

MISE
(
f̃D

)
=

1

n

∑
x∈Z

f(x)(1− f(x))→ 0 as n→∞.

Remark 2 An approximate h̃opt of optimal bandwidth parameter

hopt = arg min
h>0

MISE(f̃optK,h)

can be expressed by minimising the leading term of MISE
(
f̃optK,h

)
in equation

(11). That results in an approximate optimal bandwidth

h̃opt =
3

4n

∑
x∈Z

f(x)(1− f(x)),

which depends on n and tends to 0 at the speed n−1. One could also investi-
gate an other approximate of hopt by using another expansion of MISE as in
equation (7), which involves finite differences of the pmf f . However, these var-
ious approximates of hopt would deserve to be investigated in order to improve
the accuracy of non-parametric kernel estimator. In this work, the classical
cross-validation procedure is used in applications for selecting the bandwidth
parameter.

4.1 Comparison with discrete triangular symmetric kernel estimator

4.1.1 Comparison of discrete kernels

We compare two discrete symmetric kernels: optimal (with k = 1) and triangu-
lar (Example 4 with p = 1) ones (Figure 2). We recall that discrete associated
kernels must attribute the probability mass closest to one at the target point x
as h goes to 0 (equation 1), while having a smoothing parameter h > 0 to take
into account the probability mass at points y ∈ Z \ {x} in the neighbourhood
of x. Thus, the following proposition compares modal probability and variance
of discrete symmetric optimal and triangular kernels.

Proposition 2 Consider any fixed x ∈ Z and h ∈ (0, 1). As h → 0, the
modal probability and variance of discrete symmetric optimal (with k = 1) and
triangular (with p = 1) kernels satisfy:

Pr(Kp;x,h = x) ≤ Pr(Kopt
x,h = x) and Var(Kp;x,h) ≥ Var(Kopt

x,h).
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Fig. 2 Comparison of discrete optimal symmetric kernel with k = 1 and discrete symmetric
triangular kernel with p = 1 at the target x = 4 for h-values ∈ {0.1, 0.5, 0.95} on the support
{0, 1, . . . , 10}.

The proof of proposition is postponed to the appendices.

Figure 2 illustrates that the ranking proposes in Proposition 2 is not always
available for all h-values. For h = 0.95, the probability mass at target x =
4 of discrete symmetric triangular kernels is smaller than that of discrete
optimal symmetric kernel. Without loss of generality, one can assume that
a threshold bandwidth h0 > 0 exists such that, for h > h0, the discrete
symmetric triangular kernels attributes the largest probability mass at target
x ∈ Z. Conversely, the previous remark implies that a threshold sample size
n0 exists such that for n < n0 the discrete symmetric triangular kernels can
attribute more probability mass at x ∈ Z than the discrete optimal symmetric
kernel (and reciprocally), since the smoothing parameter h = h(n) is linked
to the sample size n such that h → 0 when n → ∞. The main question thus
remains to find the threshold h0-value (or reciprocally the threshold n0-sample
size).

Remark 3 A similar result as in Proposition 2 can be easily proved when
comparing the modal probability and variance of discrete optimal symmetric
kernel with k = 1 to those of discrete kernels in Examples 1 and 2. However, the
comparison of discrete optimal symmetric kernel to the (variance of) discrete
kernel in Example 3 depends on x.
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4.1.2 Comparison of MISE of non-parametric kernel estimators

We now propose to compare f̃K,h’s MISE using the two previous kernels. To

this end, f̃K,h’s variance in equation (4) can be majored as follows:

Var
(
f̃K,h(x)

)
≤ 1

n
Var (Kx,h(X1)) ≤ 1

n
E
(
K2

x,h(X1)
)
.

The previous inequality traduces that as n increases, the variance term tends
to 0 since it is penalised by the factor 1/n. As n→∞ and h→ 0, the decrease

in f̃K,h’s variance term leads to considering mainly the influence of f̃K,h’s bias

term (given in equation (6)) on MISE(f̃K,h), such that we obtain

MISE
(
f̃K,h

)
=

1

4

∑
x∈Z

(
Var(Kx,h)f (2)(x)

)2
+O

(
1

n

)
+ o(h2)

= AMISE
(
f̃K,h

)
+O

(
1

n

)
+ o(h2), (12)

where AMISE denotes the approximate MISE. We are now able to formulate
the following proposition.

Proposition 3 Consider any fixed x ∈ Z and h ∈ (0, 1). As n → ∞ and

h→ 0, AMISE of the non-parametric estimators f̃K,h using discrete symmetric
optimal (Kopt) and triangular (T) kernels satisfy:

AMISE(f̃Kopt,h) ≤ AMISE(f̃T,h).

Proof. Let us consider the expression of AMISE in equation (12). Propo-
sition 3 is a consequence of the ranking of variances of discrete symmetric
optimal and triangular kernels in Proposition 2. �

5 Simulations

This section illustrates the performance of the discrete optimal kernel esti-
mator f̃optK,h on simulated sample sizes on the support N. A comparison was
conducted with non-parametric estimators using discrete triangular symmet-
ric kernels with p = 1 and the binomial kernel Bx;h on Sx = {0, 1, . . . , x+ 1}
such that

Bx;h(y) =
(x+ 1)!

y!(x+ 1− y)!

(
x+ h

x+ 1

)y (
1− h
x+ 1

)x+1−y

, x ∈ N, h ∈ (0, 1].

These two kernels are among the most efficient for modelling count data distri-
butions with medium and large sample sizes. We conducted Monte Carlo sim-
ulations to compare the discrete kernel estimators using mean values of their
bias, variance and global error, but also to investigate effects of sample sizes.
To measure the performance of estimator f̃K,h in (2), we used the mean MISE
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Table 1 Mean and standard deviation (sd) of hcv-values for discrete kernel estimators of
count data of sample sizes n ∈ {15, 25, 50, 100, 250, 500} simulated from Poisson pmf P(µ)
with µ = 2.

Sample Binomial kernel Triangular kernel Optimal kernel
size n estimator estimator (p = 1) estimator (k = 1)

mean sd mean sd mean sd
15 0.36 0.341 1.73 0.985 0.73 0.389
25 0.27 0.292 1.77 1.030 0.71 0.394
50 0.17 0.160 1.88 1.206 0.68 0.407
75 0.11 0.055 1.86 1.239 0.65 0.409
100 0.09 0.032 1.64 1.248 0.59 0.409
250 0.07 0.011 0.67 0.730 0.47 0.393
500 0.06 0.009 0.21 0.092 0.38 0.364

of f̃K,h over 500 replicates of sample size n = {15, 25, 50, 75, 100, 250, 500} such
that

MISE
(
f̃K,h

)
=

1

500

500∑
i=1

MISEi

(
f̃K,h

)
,

with MISEi being the global squared error of the f̃K,h calculated after each
replicate i of count data. The cross-validation procedure was satisfying for
these aspects, and choosing a different bandwidth-choice procedure did not
modify trends in the results. For each simulation, the smoothing bandwidth
was found as hcv = argminh>0 CV (h) with

CV (h) =
∑
x∈N

(
1

n

n∑
i=1

Kx,h (Xi)

)2

− 2

n(n− 1)

n∑
i=1

∑
j 6=i

KXi,h (Xj)

being the cross-validation criterion ((Kokonendji and Senga Kiessé, 2011)).
Samples were simulated by randomly generating count data from a Pois-

son pmf f = P(µ) with µ = 2. Table 1 presents the descriptive statistics of
hcv-values such that hcv = hcv(n) tends 0 as n goes to ∞. Due to having a
smoothing parameter defined on the interval (0,1), the binomial and optimal
kernels estimators had mean hcv-values smaller than those of the discrete sym-
metric triangular kernel estimator considered. Nevertheless, hcv-values from
the estimators using discrete binomial and symmetric triangular kernels went
more quickly to 0 than those from the estimator using discrete optimal sym-
metric kernel, as the sample size n increased (see also Figure 3). Then, Table 2
presents the means integrated variance (IVar), integrated squared bias (IBias)

and MISE (MISE) of estimator f̃K,h using the various discrete kernels studied.
For the n-values considered, the discrete optimal symmetric kernel estimator
was generally ranked first while the Dirac kernel estimator was ranked last,
in the sense of MISE. However, for larger sample size (n = 500), the Dirac
kernel estimator was ranked third, better than the binomial kernel estimator.
Moreover, one can see that MISE of discrete symmetric optimal and triangular
kernel estimators became closer as n increased.
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Fig. 3 Distribution of hcv-values for discrete kernel estimators of count data of sample sizes
n ∈ {50, 100, 250, 500} simulated from Poisson pmf P(µ) with µ = 2.

Table 2 Results (×103) of average mean integrated squared error (MISE), integrated
squared bias (IBias) and integrated variance (IVar) for discrete kernel estimators of count
data of sample sizes n ∈ {15, 25, 50, 100, 250, 500} simulated from Poisson pmf P(µ) with
µ = 2.

Sample Dirac kernel Binomial kernel Triangular kernel Optimal kernel
size n estimator estimator estimator (p = 1) estimator (k = 1)

MISE IBias IVar MISE IBias IVar MISE IBias IVar MISE
15 52.86 2.80 23.77 26.57 1.21 16.53 17.74 1.12 15.85 16.97
25 31.72 1.54 13.30 14.84 1.05 11.65 12.70 1.32 10.20 11.52
50 15.86 1.40 5.21 6.61 0.96 5.90 6.86 0.99 5.65 6.64
75 10.57 1.58 3.27 4.85 1.07 4.22 5.30 1.05 3.88 4.93
100 7.93 1.54 2.51 4.05 0.89 3.40 4.29 0.79 3.04 3.83
250 3.17 1.49 0.97 2.46 0.52 1.82 2.34 0.64 1.52 2.15
500 1.59 1.54 0.48 2.02 0.15 1.10 1.25 0.34 0.92 1.26
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Table 3 Estimation of pre-adult development time (days) of spiraling whitefly observed on
safou fruit-tree

Development time (days) Frequency Bin. kern. Triang. kern. Optimal kern.
estimator estimator estimator (p = 1) estimator (k = 1)

Safou tree
30 28 24.21 27.15 26.51
31 21 22.82 21.53 21.94
32 11 12.96 11.30 11.54
hcv 0.004 0.08 0.25
ISE 0.0059 0.0003 0.0009

6 Applications

We present applications on two real data sets. In these real cases there were
few alternatives to assess the performance of non-parametric discrete kernel
estimators f̃K,h of empirical frequency, since the true count data distribution
was unknown. We propose to using integrated squared error criterion based
on the frequency estimator (f̃D), which is an unsatisfactory estimator on its
own. The ISE criterion, given as

ISE(h) =
∑
x∈N

(
f̃K,h(x)− f̃D(x)

)2
,

represents a descriptive degree-of-fit. For the applications cases, discrete non-
parametric estimators using binomial, symmetric triangular kernel with p = 1
and optimal kernels are applied. The bandwidth parameter was selected using
the cross-validation procedure.

6.1 Development of an insect pest

The real data sets were explanatory count variables describing development
of an insect pest (spiralling white-fly, Aleurodicus dispersus Russel), which
damages plants by sucking sap, decreasing photosynthesis activity and drying
up leaves. This insect, originally from Central America and the Caribbean, is
present in Congo-Brazzaville, and Congolese biologists were seeking to model
its development. Thus, experimental plantations were established for several
host plants, such as the fruit trees known as safou (Dacryodes edulis). Among
other data collected, pre-adult development time was quantified as the number
of days required for an insect to develop from egg to adult stages (Table 3).
The sample size was n = 60.

Results in Table 3 showed that discrete symmetric triangular estimations
were closest to empirical frequencies (in term of ISE), while the Binomial
kernel estimations were further away from empirical frequencies. However,
performances of the discrete symmetric triangular kernels and the optimal
kernel were close. The main difference came from the underestimation of the
number of days for the development time equal to 30.
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Estimation of count data distribution of safou tree
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Fig. 4 Non-parametric kernel estimates of empirical frequency of count data from Table 3

6.2 Daily alcohol consumption

A sociological experiment was carried out concerning the number of days per
week in which alcohol was consumed (Alanko and Lemmens, 1996). A ran-
domly selected sample of n = 399 Dutch respondents were asked to keep a
diary for two consecutive weeks in which they recorded their daily alcohol
consumption. Table 4 presents the numerical results of fits obtained by means
of the three discrete non-parametric kernel estimators previously considered.

Similar to results of simulations in the previous section, results in Table
4 showed that empirical frequencies, on the one hand, and estimations using
discrete symmetric triangular and optimal kernels, on the other hand, were
close for a large sample size. The main difference came from the frequency
of the number of days equal to 7 which was more underestimated by using
the discrete optimal kernel than the discrete symmetric triangular kernel with
p = 1. The binomial kernel estimates stayed further away from empirical
frequencies.
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Table 4 Estimation of number of alcohol drinking days for week 1 from Alanko and Lem-
mens (1996)

Number of days Frequency Bin. kern. Triang. kern. Optimal kern.
per week estimator estimator estimator (p = 1) estimator (k = 1)
0 47 50.86 46.46 46.36
1 54 53.43 54.02 54.03
2 43 48.19 43.53 43.63
3 40 44.58 40.39 40.46
4 40 43.81 40.35 40.41
5 41 43.30 41.26 41.31
6 39 63.51 40.65 40.95
7 95 51.29 92.29 91.80
hcv 0.014 0.035 0.081

ISE 0.016 6.897× 10−5 9.640× 10−5
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Fig. 5 Non-parametric kernel estimates of empirical frequency of count data from Table 4

7 Concluding comments

We have derived a general form of discrete optimal symmetric kernels for non-
parametric estimation of pmf. One simple case of our new optimal kernel has
been particularly illustrated. This optimal kernel asymptotically converges to
the Dirac type kernel and is competing with the other discrete kernels proposed
in the literature. Properties of the general form of discrete optimal kernels
should be deeply explored as well as its efficiency in various applications, such
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as non-parametric multiple regressions (Somé and Kokonendji, 2016). Discrete
optimal asymmetric kernels should also be explored.

A Appendices:Proofs

A.1 Proof of Theorem 1

The first constraint C1 of the minimisation problem can be expressed as∑
y∈Sx

λ1 + λ2
∑
y∈Sx

y + λ3
∑
y∈Sx

z2 = −2

⇐⇒ (2k + 1)λ1 + (2k + 1)λ2x+ λ3

(
x2 +

k∑
j=1

(x+ j)2 +

k∑
j=1

(x− j)2
)

= −2

⇐⇒ (2k + 1)λ1 + (2k + 1)λ2x+ λ3

(
(2k + 1)x2 + 2

k∑
j=1

j2
)

= −2. (13)

The second constraint C2 results successively in

λ1
∑
y∈Sx

y + λ2
∑
y∈Sx

y2 + λ3
∑
y∈Sx

y3 = −2x

⇐⇒ (2k + 1)λ1x+ λ2

(
(2k + 1)x2 + 2

k∑
j=1

j2
)

+ λ3

(
x3 +

k∑
j=1

(x+ j)3 +

k∑
j=1

(x− j)3
)

= −2x

⇐⇒ (2k + 1)λ1x+ λ2

(
(2k + 1)x2 + 2

k∑
j=1

j2
)

+ λ3

(
(2k + 1)x3 + 6x

k∑
j=1

j2
)

= −2x. (14)

The third constraint C3 can be expressed as

λ1
∑
y∈Sx

y2 + λ2
∑
y∈Sx

y3 + λ3
∑
y∈Sx

y4 = −2q

⇐⇒ λ1

(
(2k + 1)x2 + 2

k∑
j=1

j2
)

+ λ2

(
(2k + 1)x3 + 6x

k∑
j=1

j2
)

+ λ3

(
x4 +

k∑
j=1

(x+ j)4

+

k∑
j=1

(x− j)4
)

= −2q

⇐⇒ λ1

(
(2k + 1)x2 + 2

k∑
j=1

j2
)

+ λ2

(
(2k + 1)x3 + 6x

k∑
j=1

j2
)

+ λ3

(
(2k + 1)x4

+12x2
k∑
j=1

j2 + 2

k∑
j=1

j4
)

= −2q. (15)

By multiplying Equation (13) by x then comparing with Equation (14), we get

λ3x

(
(2k + 1)x2 + 2

k∑
j=1

j2
)

= 2λ2

k∑
j=1

j2 + λ3

(
(2k + 1)x3 + 6x

k∑
j=1

j2
)

⇐⇒ 2λ2

k∑
j=1

j2 = λ3

(
(2k + 1)x3 + 2x

k∑
j=1

j2
)
− λ3

(
(2k + 1)x3 + 6x

k∑
j=1

j2
)

⇐⇒ λ2 = −2xλ3. (16)
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Then, by multiplying Equation (14) by x then comparing with Equation (15), we get

−λ1
k∑
j=1

j2 − 2xλ2

k∑
j=1

j2 − 3x2λ3

k∑
j=1

j2 − λ3
k∑
j=1

j4 = −2x2 + 2q

⇐⇒ −λ1
k∑
j=1

j2 + λ3

(
x2

k∑
j=1

j2 −
k∑
j=1

j4
)

= 2b

⇐⇒ λ1 =

λ3

(
x2
∑k
j=1 j

2 −
∑k
j=1 j

4

)
− 2b∑k

j=1 j
2

, (17)

where λ2 was replaced by the expression in (16).
Finally, from the previous expression, we substitute λ1 (Equation 17) and λ2 (Equation

16) in Equation (13) such that:

(2k + 1)λ3x
2

k∑
j=1

j2 − (2k + 1)λ3

k∑
j=1

j4 − 2(2k + 1)b− 2(2k + 1)λ3x
2

k∑
j=1

j2

+λ3(2k + 1)x2
k∑
j=1

j2 + 2λ3

( k∑
j=1

j2
)2

= −2

k∑
j=1

j2

⇐⇒ λ3 =
2(2k + 1)b− 2

∑k
j=1 j

2

2

(∑k
j=1 j

2

)2

− (2k + 1)
∑k
j=1 j

4

⇐⇒ λ3 = 60
6(2k + 1)b− k(k + 1)(2k + 1)

10k2(k + 1)2(2k + 1)2 − 6k(k + 1)(2k + 1)2(3k2 + 3k − 1)

⇐⇒ λ3 =
30

k(k + 1)(2k + 1)

6b− k(k + 1)

−4k2 − 4k + 3
,

with the positive integer k ≥ 1 and 6b < k(k + 1) to insure the optimal kernel in equation
(8) to be concave, i.e. λ3 > 0, since −4k2 − 4k + 3 < 0 for k ≥ 1. One simple option is to
choose b = b(h) = hk(k + 1)/6, with 0 < h < 1, such that λ3 = 30(1− h)/

(
(2k + 1)(4k2 + 4k − 3)

)
λ2 = −60x(1− h)/

(
(2k + 1)(4k2 + 4k − 3)

)
λ1 = λ3

(
x2 − (3k2 + 3k − 1)/5

)
− 2h/(2k + 1).

Finally, the kernel Kopt
x,h(y) = −(1/2)(λ1 + λ2y + λ3y2) is non-negative (Kopt

x,h(y) ≥ 0) if y

belongs to the interval Ik = [x−
√
δ

2λ3
, x+

√
δ

2λ3
], which can be expressed by

Ik =

[
x−

√
3k2 + 3k − 1

5
+
h(4k2 + 4k − 3)

15(1− h)
, x+

√
3k2 + 3k − 1

5
+
h(4k2 + 4k − 3)

15(1− h)

]
,

such thatKopt
x,h(x−

√
δ

2λ3
) = Kopt

x,h(x+
√
δ

2λ3
) = 0 and δ = λ22−4λ1λ3 > 0, for k ≥ 1. The support

Sx = {x− k, . . . , x, . . . , x+ k} of Kopt
x,h is included in Ik (Sx ⊆ Ik), if 3/5(1− 1/k) < h < 1,

for k ≥ 1.
Hence, the discrete optimal symmetric kernels with k ≥ 1 are defined by

Kopt
x,h(y) = −

1

2

(
λ3
(
x2−

3k2 + 3k − 1

5

)
−

2h

2k + 1

)
+λ3xy−

1

2
λ3y

2, y ∈ Sx, h ∈
(3

5
(1−

1

k
), 1
)
.

�
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A.2 Proof of Proposition 2

Firstly, to compare the modal probability of two kernels considered, we express the difference

Pr(Kp;x,h = x)− Pr(Koptx,h = x) =
2h

3
(1− 3A(p)) +O(h2).

That requires to develop the probability mass term Pr(Kp;x,h = x) by using a Taylor
expansion as h→ 0 such that

Pr(Kp;x,h = x) =
(p+ 1)h

C(p, h)

=
1 + h log(p+ 1) + o(h2)

1 + h((2p+ 1) log(p+ 1)− 2
∑p
k=1 log(k)) + o(h2)

= 1− h
(

2p log(p+ 1)− 2

p∑
k=1

log(k)

)
+O(h2)

= 1− 2hA(p) +O(h2),

with C(p, h) = (2p+ 1)(p+ 1)h − 2
∑p
k=1 k

h. We show that the function A(p) is increasing
with respect to p ∈ N \ {0} and 3A(p) is more than 1. One has

A(p+ 1)−A(p) = (p+ 1) log(p+ 2)− p log(p+ 1)− log(p+ 1)

= (p+ 1) log
(p+ 2

p+ 1

)
> 0.

Thus, we get A(p + 1) ≥ A(p) with A(1) = log(2) > 1/3 such that 3A(p) > 1, and

Pr(Kp;x,h = x) < Pr(Koptx,h = x).

Secondly, to compare the variance of the two kernels studied, one has

Var(Kp;x,h)−Var(Koptx,h) =
2h

3

(
p(2p2 + 3p+ 1)

2
log(p+ 1)− 3

p∑
k=1

k2 log(k)− 1

)
+O(h2)

=
2h

3
(V (p)− 1) +O(h2),

since the variance term of discrete symmetric triangular kernels is such that

Var(Kp;x,h) =
1

C(p, h)

(
p(2p+ 1)(p+ 1)h+1

3
− 2

p∑
k=1

kh+2

)

=

[
p(p+ 1)(2p+ 1)

3
(1 + h log(p+ 1))− 2

p∑
k=1

k2(1 + h log(k))

]

×
[
1 + h

(
(2p+ 1) log(p+ 1)− 2

p∑
k=1

log(k)

)]−1

+ o(h2)

=

(
p(2p2 + 3p+ 1)

3
log(p+ 1)− 2

p∑
k=1

k2 log(k)

)
h+O(h2).
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As for the modal probability previously, we show that the function V (p) is increasing with
respect to p ∈ N \ {0} and more than 1. To this end, we successively express

V (p+ 1)− V (p) =
(p+ 1)(2(p+ 1)2 + 3(p+ 1) + 1)

2
log(p+ 2)

−
p(2p2 + 3p+ 1)

2
log(p+ 1)− 3(p+ 1)2 log(p+ 1)

=
(p+ 1)(2p2 + 7p+ 6)

2
log(p+ 2)

−
(p+ 1)(p(2p+ 1) + 6(p+ 1))

2
log(p+ 1)

=
(p+ 1)(2p2 + 7p+ 6)

2
log(p+ 2)−

(p+ 1)(2p2 + 7p+ 6)

2
log(p+ 1)

=
(p+ 1)(2p2 + 7p+ 6)

2
log

(
p+ 2

p+ 1

)
> 0.

Hence, we obtain V (p + 1) ≥ V (p) with V (1) = 3 log(2) > 1 resulting in V (p) > 1, and

Var(Kp;x,h) > Var(Koptx,h). �
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