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Discrete optimal symmetric kernels for estimating count data distributions

Introduction

Modelling the unknown probability density function (pdf) f of a random variable X on the real line R is the subject of much research to find the best representation of f . In this context, the continuous kernel method was presented as one simple and efficient non-parametric technique for density estimation [START_REF] Parzen | On estimation of a probability density function and mode[END_REF][START_REF] Rosenblatt | Remarks on some nonparametric estimates of a density function[END_REF]. A continuous kernel estimator f K,h of f was constructed as a kernel weighted average given by

f K,h (x) = 1 n n i=1 K x,h (X i ), x ∈ R,
where (X i ) i=1,••• ,n are independent and identically distributed (i.i.d.) observations from a random sampling of f , K x,h is a continuous (symmetric or asymmetric) kernel and h = h(n) > 0 is an arbitrary sequence of smoothing parameters (or bandwidths) such that lim n→∞ h(n) = 0 (Wand and Jones, 1995). Studies are increasingly interested in how the kernel method can contribute to non-parametric estimation of functions in many various applied research fields. For instance, in hydrology, the kernel method was applied for non-parametric modelling of flood frequencies [START_REF] Adamowski | Nonparametric Kernel Estimation of Flood Frequencies[END_REF]. Likewise, in economy, the non-parametric Nadaraya-Watson regression estimator was proposed for modelling the relation between economic growth and environmental degradation [START_REF] Taskin | Searching for a kuznets curve in environmental efficiency using kernel estimation[END_REF]. The kernel method was also applied in medicine for estimating a relative risk of disease cases [START_REF] Davies | Adaptive kernel estimation of spatial relative risk[END_REF]. Recently, the non-parametric estimation of extreme tail of conditional distribution functions involved a weighted kernel estimator of Pareto distribution parameter [START_REF] Durrieu | Nonparametric adaptive estimation of conditional probabilities of rare events and extreme quantiles[END_REF].

As an alternative to continuous kernels used for non-parametric estimation of a pdf, discrete kernels have been developed for non-parametric estimation of a probability mass function (pmf) f (•) = Pr(X = •) of a random variable X on a support S, such as sets Z and N of all integers and non-negative integers, respectively [START_REF] Kokonendji | Discrete associated kernel method and extensions[END_REF]. Various discrete kernels are now available in the literature such as geometric and uniform weight kernels [START_REF] Tsybakov | A class of smooth estimators for discrete distributions[END_REF], discrete symmetric and asymmetric triangular kernels [START_REF] Kokonendji | Discrete associated kernel method and extensions[END_REF][START_REF] Kokonendji | Extensions of discrete triangular distribution and boundary bias in kernel estimation for discrete functions[END_REF] and specific kernels to deal with features of categorical variables [START_REF] Aitchison | Multivariate binary discrimination by the kernel method[END_REF]. These discrete kernels are competing with the Dirac type kernel uses in the frequency estimator, which was considered until recently as the non-parametric reference for estimating pmf.

The large variety of discrete kernels available in the literature raises the issue of finding one discrete optimal kernel. For instance, the Epanechnikov continuous kernel has been presented as being the optimal symmetric one to estimate a pdf [START_REF] Epanechnikov | Non-parametric estimation of a multivariate probability density[END_REF][START_REF] Tsybakov | A class of smooth estimators for discrete distributions[END_REF], although the Gaussian kernel is one of the most often used in the literature. Likewise, optimal asymmetric kernels have been proposed also for continuous density estimation [START_REF] Abadir | Optimal asymmetric kernels[END_REF]. Meanwhile, to our knowledge, no discrete optimal kernel has been proposed yet for non-parametric estimation of pmf. Thus, the main contribution of this work consists of introducing discrete optimal symmetric kernels for non-parametric estimation of pmf.

Discrete associated kernels

We first recall fundamental notions of the discrete associated kernel method. Let us consider a fixed point x on a discrete support S ⊆ Z and a bandwidth parameter h = h(n) > 0, such that h(n) tends to 0 as n goes to ∞. The discrete kernel K x,h associated with a random variable K x,h defined on a support S x (which contains x) is a pmf such that

y∈Sx K x,h (y) = 1, with 0 ≤ K x,h (y) = Pr(K x,h = y) ≤ 1.
The underlying idea behind the notion of discrete kernels K x,h is to propose a pmf that converges to the Dirac type kernel D x (y) = 1 y=x on S x = {x}, such that its modal probability behaves asymptotically as follows:

K x,h (x) = Pr(K x,h = x) → D x (x) = 1 as h → 0, (1) 
where 1 A takes the value 1 when the condition A is verified and 0 otherwise. The discrete associated kernel K x,h (•) was intended to attribute the more important probability mass (i.e. closest to one) at the point x ∈ S, while having a bandwidth parameter h > 0 to take into account the probability mass at points y ∈ S x \ {x} in the neighbourhood of x. The following general expressions of K x,h 's expectation and variance result from equation ( 1):

(E 1 ) : E(K x,h ) = x + a(x, h) and (E 2 ) : Var(K x,h ) = b(x, h),
where both a(x, h) and b(x, h) tend to 0 as h goes to 0 (Senga Kiessé, 2017).

Examples

We now present examples of discrete associated kernels that have been proposed in the literature.

Example 1 For any x ∈ S = Z and h ∈ (0, 1], Wang and van [START_REF] Tsybakov | A class of smooth estimators for discrete distributions[END_REF] have proposed a geometric weight kernel given by

K x,h (z) = 1 -h x = z, 1/2(1 -h)h |x-z| |x -z| ≥ 1, z ∈ S x = Z.
The expectation and variance of this kernel are, respectively,

E(K x,h ) = x and Var(K x,h ) = h(1 + h)/(1 -h) 2 .
Example 2 Likewise, for any x ∈ S = Z, h ∈ (0, 1] and k ∈ N \ {0, 1}, Wang and van Ryzing (1981) have proposed a uniform weight kernel expressed by

K k;x,h (z) =    1 -h x = z, 1/2(h/k) |x -z| = 1, . . . , k, 0 |x -z| ≥ k + 1, z ∈ S x = Z,
with its expectation and variance given by

E(K k;x,h ) = x and Var(K k;x,h ) = h(k + 1)(2k + 1)/6.
Example 3 Let us consider a fixed point x ∈ {0, 1, . . . , c}, a bandwidth parameter h ∈ (0, 1] and an entire c ∈ N \ {0, 1}. [START_REF] Aitchison | Multivariate binary discrimination by the kernel method[END_REF] have also proposed one kernel to deal with features of a discrete r.v. X with c unordered categories whose pmf is given by

K c;x,h (z) = 1 -h x = z, h/(c -1) |x -z| ≥ 1, z ∈ S x = {0, 1, . . . , c -1}, with E(K x,h ) = x + h 1 -x - x c -1 + hc 2 and Var(K x,h ) = - c 2 (-2x + c -1) 2 4(c -1) 2 h+ c(6x 2 + 2c 2 -3c + 1 -6xc + 6x) 6(c -1) h 2 .
Example 4 For x ∈ S = Z, h > 0 and p ∈ N, the symmetric discrete triangular kernel K p;x,h had a pmf defined by

K p;x,h (z) = (p + 1) h /C(p, h) x = z, (p + 1) h /C(p, h) 1 -|z-x| h (p+1) h |x -z| ≥ 1, z ∈ S x = {x, ..., x ± p}, such that E(K p;x,h ) = x and Var(K p;x,h ) = 1 C(p, h) p(2p + 1)(p + 1) h+1 3 -2 p k=0 k h+2 ,
where C(p, h) = (2p + 1)(p + 1) h -2 p k=0 k h is a normalising constant (Kokonendji and Senga [START_REF] Kokonendji | Discrete associated kernel method and extensions[END_REF].

The four discrete associated kernels previously cited have their modal probability K x,h (x) that tends to 1 as h goes to 0 (equation ( 1)). Their expectation and variance also satisfy equations (E 1 ) -(E 2 ). Meanwhile, the Aitchison and Aitken kernel for categorical variables (Example 3) has a mean that is not equal to x ∈ S and a variance that depends on both x and h > 0.

Other discrete kernels associated to standard discrete probability distributions (e.g. binomial) have been proposed [START_REF] Kokonendji | Discrete associated kernel method and extensions[END_REF]. The modal probability of these discrete kernels do not satisfy the asymptotic property in equation (1). However, the non-parametric estimator using the binomial kernel is competing with those using discrete symmetric triangular and Dirac type kernels for modelling pmf of count data with medium and small sizes (Senga Kiessé, 2017).

Mean integrated squared error

For x ∈ S and h > 0, without loss of generality, we now consider discrete associated kernels K x,h (•) on the support S x that are symmetric pmf, i.e. K x,h (y) = K x,h (-y), such that

E(K x,h ) = x and E(K 2 x,h ) = q(x, h) < ∞.
Like discrete associated kernels in Examples 1, 2 and 4, the variance of K x,h Var(K x,h ) = q(x, h) -x 2 = b(h) < ∞ does not depend on x and b(h) tends to 0 as h goes to 0 (equation (E 2 )). The non-parametric estimator f K,h of f with a discrete symmetric kernel K x,h on S x is given by

f K,h (x) = 1 n n i=1 K x,h (X i ) = 1 n n i=1 K h (x -X i ), (2) 
with (X i ) i=1,••• ,n being i.i.d. observations having a pmf f (•) = Pr(X i = •) to estimate on S, with lim x→∞ f (x) = 0 General expressions of bias and variance of estimator f K,h are given by

Bias( f K,h (x)) = E( f K,h (x)) -f (x) = E(f (K x,h )) -f (x) (3) and Var( f K,h (x)) = 1 n y∈Sx K 2 x,h (y)f (y) - 1 n E 2 ( f K,h (x)). (4) 
Concerning the f K,h 's bias in equation (3), f (K x,h ) can be expanded around x by using the following discrete version of Taylor's formula for a pmf f : S → [0, 1] around t 0 ∈ S ⊆ Z:

f (t) = f (t 0 ) + k j=1 f (j) (t 0 ) j! (t -t 0 ) j + 1 k! t-k-1 i=t0 (t -i -1) k f (k+1) (i), (5) 
where f (j) are finite differences of order j = 1, 2, . . . , k, of f and the last term is o{(t-t 0 ) k }; refer to Argawal and Bonher (1999) and [START_REF] Schumaker | Spline Functions:Basic Theory[END_REF][Theorem 8.61, page 351]. More precisely, the finite differences of f are such that f (0) = f and f (j) = {f (j-1) } (1) , with

f (1) = 1 2 (f (x + 1) -f (x -1)) , x ∈ Z.
By applying the formula in equation ( 5), we get the following expansion of

f (K x,h ) around E(K x,h ) = x: f (K x,h ) = f (E(K x,h )) + (K x,h -E(K x,h ))f (1) (E(K x,h )) + 1 2 (K x,h -E(K x,h )) 2 f (2) (E(K x,h )) + k≥3 1 k! (K x,h -E(K x,h )) k f (k) (E(K x,h )),
which finally yields the expression:

Bias( f K,h (x)) = f (2) (x) 2 Var(K x,h ) + o(h). (6) 
The f K,h 's bias tends to 0 as h goes to 0, under the condition (E 2 ) on the variance of K x,h . Concerning the f K,h 's variance in equation ( 4), by using again the discrete version of Taylor's formula, f (y) can be expanded around x as follows

f (y) = f (x) -(y -x)f (1) (x) + o((y -x), such that we get Var( f K,h (x)) = 1 n f (x) y∈Sx K 2 x,h (y) + o 1 n .
The previous expressions of f K,h 's bias and variance enable us to calculate the mean integrated squared error of f K,h given by:

MISE( f K,h ) = x∈S Var( f K,h (x))+ x∈S Bias 2 ( f K,h (x)) = AMISE( f K,h )+o 1 n +h 2 ,
(7) with AMISE being the leading term in MISE. Next section presents a discrete optimal symmetric kernel that minimises (A)MISE of f K,h .

3 Discrete optimal symmetric kernel For x ∈ S and h > 0, to find a discrete optimal associated kernel K opt

x,h (•) remains to minimising y∈Sx K 2

x,h (y) from the expression of MISE (7), such that K x,h (y) ≥ 0 and

C 1 : y∈Sx K x,h (y) = 1, C 2 : y∈Sx yK x,h (y) = x and C 3 : y∈Sx y 2 K x,h (y) = q.
That consists in a minimisation problem under constraints that can be solved using the method of Lagrange multiplier, such that a discrete expression of the Lagrange function is given by

L(K) = y∈Sx K 2 x,h (y) + λ 1 K x,h (y) + λ 2 yK x,h (y) + λ 3 y 2 K x,h (y) f (y)+constant,
where the constant does not depend on K x,h and λ i , i = 1, 2, 3, are Lagrange multipliers corresponding to constraints C 1 -C 3 . A similar problem of finding an optimal kernel by a minimisation under constraints was investigated for symmetric [START_REF] Epanechnikov | Non-parametric estimation of a multivariate probability density[END_REF][START_REF] Tsybakov | A class of smooth estimators for discrete distributions[END_REF] and asymmetric [START_REF] Abadir | Optimal asymmetric kernels[END_REF]) continuous kernels. Likewise, one can refer to [START_REF] Hodges | The efficiency of some nonparametric competitors of the t-test[END_REF] for the problem of minimising pdf.

The discrete optimal symmetric kernel has the general form

K opt x,h (y, λ 1 , λ 2 , λ 3 ) = - 1 2 (λ 1 + λ 2 y + λ 3 y 2 ), (8) 
for the minimum value t opt = min t≥0 (t 2 + λ 1 t + λ 2 ty + λ 3 ty 2 ) is achieved at t opt = -(λ 1 +λ 2 y +λ 3 y 2 )/2. Without loss of generality, we investigate discrete optimal symmetric kernels K opt x,h on the support S x = {x, x ± 1, . . . , x ± k}, with k ≥ 1 a fixed integer. We get the following result based on solving the minimisation problem described above.

Theorem 1 For x ∈ S and a fixed integer k ≥ 1, the discrete optimal symmetric kernel on S x = {x, x ± 1, . . . , x ± k} that minimises the mean integrate squared error of the estimator f K,h in ( 2) is given by

K opt x,h (y) = λ 3 2 -y 2 + 2xy -x 2 + 3k 2 + 3k -1 5 + h 2k + 1 , y ∈ S x , (9) 
where

λ 3 = 30(1 -h)/ (2k + 1)(4k 2 + 4k -3) > 0 and 3/5(1 -1/k) < h < 1.
The proof of theorem is postponed to the appendices.

Remark 1 The bandwidth parameter h > 0 has a varying interval range with a lower bound h lower = 3/5(1 -1/k) that depends on k ≥ 1. That insures discrete optimal symmetric kernels K opt x,h to be non-negative on the support S x when k varies.

For a fixed target x = 4 and various values of the parameters h ∈ {0.5, 0.9} and k ∈ {1, 2, 3, 4}, the shape of discrete optimal symmetric kernels K opt x,h is illustrated in Figure 1.

Case of discrete optimal symmetric kernel with k = 1.For (x, h) ∈ S × (0, 1), we present the case of discrete optimal symmetric kernel with k = 1 on S x = {x -1, x, x + 1} whose the pmf is given by

K opt x,h (y) = (1 -h) -y 2 + 2xy -x 2 + 3 -2h 3(1 -h) , y ∈ S x , =    1 -2h/3 x = y, h/3 |x -y| = 1, 0 |x -y| ≥ 2. ( 10 
)
This kernel has its expectation and variance given by, respectively,

E(K opt x,h ) = x and Var(K opt x,h ) = 2h/3.
We are now able to formulate the following proposition.

Proposition 1 Let x ∈ S and h ∈ (0, 1). Consider the discrete optimal kernel (i) when h → 1, the limit optimal kernel K opt x,1 follows the discrete uniform distribution on the support S x . (ii) when h → 0, the limit optimal kernel K opt x,0 follows the Dirac distribution on the support S x .

K opt x,h (•) on the support S x = {x -1, x, x + 1},
Proof. The proof of Proposition 1 comes directly from the expression of the discrete optimal symmetric kernel K opt x,h in equation ( 10). In the following sections, we consider the simple case of discrete optimal kernel K opt x,h (y) with k = 1 on S x = {x-1, x, x+1} both for comparison to other discrete associate kernels and for illustrating properties of the non-parametric estimator f K,h in equation ( 2).

4 Non-parametric discrete optimal kernel estimator Consider i.i.d. observations (X i ) i=1,••• ,n having a pmf f on S = Z, i.e. x∈Z f (x) = 1 and 0 ≤ f (x) ≤ 1. Now we focus on asymptotic properties of non-parametric estimator f K,h of f in equation ( 2) that uses the discrete optimal symmetric kernel with k = 1 on S x = {x -1, x, x + 1} such that

f opt K,h (x) = 1 n n i=1 K opt x,h (X i ) = 1 n n i=1 1 - 2 3 h 1 Xi=x + 1 3 h1 |Xi-x|=1 .
The estimator f opt K,h is a genuine pmf that does not need to be normalised, i.e. x∈S f opt K,h (x) = 1. Basic properties of the estimator may be presented without using the discrete Taylor's formula, unlike the expression of bias of f K,h in equation ( 6). Then, other developments of bias and variance of f opt K,h in ( 3) and ( 4), respectively, may be given by Bias

f opt K,h (x) = E f opt K,h (x) -f (x) = h 3   -2f (x) + y∈Sx\{x} f (y)   and Var f opt K,h (x) = 1 n E K opt x,h (X 1 ) 2 - 1 n E 2 K opt x,h (X 1 ) = 1 n y∈Sx K opt x,h (y) 2 f (y) - 1 n   y∈Sx K opt x,h (y)f (y)   2 = 1 n   1 - 2 3 h 2 f (x) + h 2 9 y∈Sx\{x} f (y)   - 1 n   1 - 2 3 h f (x) + h 3 y∈Sx\{x} f (y)   2 = 1 n 1 - 2 3 h 2 f (x) (1 -f (x)) + R, with R = 1 n    h 2 9 y∈Sx\{x} f (y) + 1 - 2 3 h 2 f 2 (x) -   1 - 2 3 h f (x) + h 3 y∈Sx\{x} f (y)   2    such that R = o(h 2 /n).
That also results in another expression of the f opt K,h 's MISE in equation ( 7) given by

MISE f opt K,h = 1 n 1 - 2 3 h 2 x∈Z f (x)(1 -f (x)) + 4 9 h 2 f 2 (x) + o h 2 n = 1 n 1 - 4 6 h x∈Z f (x)(1 -f (x)) + 4 9 h 2 + o h 2 n . (11) 
Thus, we get MISE f opt K,h → 0 when n → ∞ and h = h(n) → 0, which indicates that the estimator f opt K,h is consistent in the sense of MISE. The expression of MISE f opt K,h can be asymptotically compared to that of the frequency estimator f D using the Dirac type kernel, which is given by

MISE f D = 1 n x∈Z f (x)(1 -f (x)) → 0 as n → ∞.
Remark 2 An approximate h opt of optimal bandwidth parameter

h opt = arg min h>0 MISE( f opt K,h )
can be expressed by minimising the leading term of MISE f opt K,h in equation ( 11). That results in an approximate optimal bandwidth

h opt = 3 4n x∈Z f (x)(1 -f (x)),
which depends on n and tends to 0 at the speed n -1 . One could also investigate an other approximate of h opt by using another expansion of MISE as in equation ( 7), which involves finite differences of the pmf f . However, these various approximates of h opt would deserve to be investigated in order to improve the accuracy of non-parametric kernel estimator. In this work, the classical cross-validation procedure is used in applications for selecting the bandwidth parameter.

4.1 Comparison with discrete triangular symmetric kernel estimator

Comparison of discrete kernels

We compare two discrete symmetric kernels: optimal (with k = 1) and triangular (Example 4 with p = 1) ones (Figure 2). We recall that discrete associated kernels must attribute the probability mass closest to one at the target point x as h goes to 0 (equation 1), while having a smoothing parameter h > 0 to take into account the probability mass at points y ∈ Z \ {x} in the neighbourhood of x. Thus, the following proposition compares modal probability and variance of discrete symmetric optimal and triangular kernels.

Proposition 2 Consider any fixed x ∈ Z and h ∈ (0, 1). As h → 0, the modal probability and variance of discrete symmetric optimal (with k = 1) and triangular (with p = 1) kernels satisfy: Fig. 2 Comparison of discrete optimal symmetric kernel with k = 1 and discrete symmetric triangular kernel with p = 1 at the target x = 4 for h-values ∈ {0.1, 0.5, 0.95} on the support {0, 1, . . . , 10}.

Pr(K p;x,h = x) ≤ Pr(K opt x,h = x) and Var(K p;x,h ) ≥ Var(K opt x,h ).
The proof of proposition is postponed to the appendices.

Figure 2 illustrates that the ranking proposes in Proposition 2 is not always available for all h-values. For h = 0.95, the probability mass at target x = 4 of discrete symmetric triangular kernels is smaller than that of discrete optimal symmetric kernel. Without loss of generality, one can assume that a threshold bandwidth h 0 > 0 exists such that, for h > h 0 , the discrete symmetric triangular kernels attributes the largest probability mass at target x ∈ Z. Conversely, the previous remark implies that a threshold sample size n 0 exists such that for n < n 0 the discrete symmetric triangular kernels can attribute more probability mass at x ∈ Z than the discrete optimal symmetric kernel (and reciprocally), since the smoothing parameter h = h(n) is linked to the sample size n such that h → 0 when n → ∞. The main question thus remains to find the threshold h 0 -value (or reciprocally the threshold n 0 -sample size).

Remark 3 A similar result as in Proposition 2 can be easily proved when comparing the modal probability and variance of discrete optimal symmetric kernel with k = 1 to those of discrete kernels in Examples 1 and 2. However, the comparison of discrete optimal symmetric kernel to the (variance of) discrete kernel in Example 3 depends on x.

Comparison of MISE of non-parametric kernel estimators

We now propose to compare f K,h 's MISE using the two previous kernels. To this end, f K,h 's variance in equation ( 4) can be majored as follows:

Var f K,h (x) ≤ 1 n Var (K x,h (X 1 )) ≤ 1 n E K 2 x,h (X 1 ) .
The previous inequality traduces that as n increases, the variance term tends to 0 since it is penalised by the factor 1/n. As n → ∞ and h → 0, the decrease in f K,h 's variance term leads to considering mainly the influence of f K,h 's bias term (given in equation ( 6)) on MISE( f K,h ), such that we obtain

MISE f K,h = 1 4 x∈Z Var(K x,h )f (2) (x) 2 + O 1 n + o(h 2 ) = AMISE f K,h + O 1 n + o(h 2 ), ( 12 
)
where AMISE denotes the approximate MISE. We are now able to formulate the following proposition.

Proposition 3 Consider any fixed x ∈ Z and h ∈ (0, 1). As n → ∞ and h → 0, AMISE of the non-parametric estimators f K,h using discrete symmetric optimal (K opt ) and triangular (T) kernels satisfy:

AMISE( f K opt ,h ) ≤ AMISE( f T,h ).
Proof. Let us consider the expression of AMISE in equation ( 12). Proposition 3 is a consequence of the ranking of variances of discrete symmetric optimal and triangular kernels in Proposition 2.

Simulations

This section illustrates the performance of the discrete optimal kernel estimator f opt K,h on simulated sample sizes on the support N. A comparison was conducted with non-parametric estimators using discrete triangular symmetric kernels with p = 1 and the binomial kernel B x;h on S x = {0, 1, . . . , x + 1} such that

B x;h (y) = (x + 1)! y!(x + 1 -y)! x + h x + 1 y 1 -h x + 1 x+1-y , x ∈ N, h ∈ (0, 1].
These two kernels are among the most efficient for modelling count data distributions with medium and large sample sizes. We conducted Monte Carlo simulations to compare the discrete kernel estimators using mean values of their bias, variance and global error, but also to investigate effects of sample sizes. To measure the performance of estimator f K,h in (2), we used the mean MISE 

MISE i f K,h ,
with MISE i being the global squared error of the f K,h calculated after each replicate i of count data. The cross-validation procedure was satisfying for these aspects, and choosing a different bandwidth-choice procedure did not modify trends in the results. For each simulation, the smoothing bandwidth was found as h cv = arg min h>0 CV (h) with

CV (h) = x∈N 1 n n i=1 K x,h (X i ) 2 - 2 n(n -1) n i=1 j =i K Xi,h (X j )
being the cross-validation criterion ( [START_REF] Kokonendji | Discrete associated kernel method and extensions[END_REF]).

Samples were simulated by randomly generating count data from a Poisson pmf f = P(µ) with µ = 2. Table 1 presents the descriptive statistics of h cv -values such that h cv = h cv (n) tends 0 as n goes to ∞. Due to having a smoothing parameter defined on the interval (0,1), the binomial and optimal kernels estimators had mean h cv -values smaller than those of the discrete symmetric triangular kernel estimator considered. Nevertheless, h cv -values from the estimators using discrete binomial and symmetric triangular kernels went more quickly to 0 than those from the estimator using discrete optimal symmetric kernel, as the sample size n increased (see also Figure 3). Then, Table 2 presents the means integrated variance (IVar), integrated squared bias (IBias) and MISE (MISE) of estimator f K,h using the various discrete kernels studied. For the n-values considered, the discrete optimal symmetric kernel estimator was generally ranked first while the Dirac kernel estimator was ranked last, in the sense of MISE. However, for larger sample size (n = 500), the Dirac kernel estimator was ranked third, better than the binomial kernel estimator. Moreover, one can see that MISE of discrete symmetric optimal and triangular kernel estimators became closer as n increased. 

Applications

We present applications on two real data sets. In these real cases there were few alternatives to assess the performance of non-parametric discrete kernel estimators f K,h of empirical frequency, since the true count data distribution was unknown. We propose to using integrated squared error criterion based on the frequency estimator ( f D ), which is an unsatisfactory estimator on its own. The ISE criterion, given as

ISE(h) = x∈N f K,h (x) -f D (x) 2 ,
represents a descriptive degree-of-fit. For the applications cases, discrete nonparametric estimators using binomial, symmetric triangular kernel with p = 1 and optimal kernels are applied. The bandwidth parameter was selected using the cross-validation procedure.

Development of an insect pest

The real data sets were explanatory count variables describing development of an insect pest (spiralling white-fly, Aleurodicus dispersus Russel), which damages plants by sucking sap, decreasing photosynthesis activity and drying up leaves. This insect, originally from Central America and the Caribbean, is present in Congo-Brazzaville, and Congolese biologists were seeking to model its development. Thus, experimental plantations were established for several host plants, such as the fruit trees known as safou (Dacryodes edulis). Among other data collected, pre-adult development time was quantified as the number of days required for an insect to develop from egg to adult stages (Table 3). The sample size was n = 60. Results in Table 3 showed that discrete symmetric triangular estimations were closest to empirical frequencies (in term of ISE), while the Binomial kernel estimations were further away from empirical frequencies. However, performances of the discrete symmetric triangular kernels and the optimal kernel were close. The main difference came from the underestimation of the number of days for the development time equal to 30. Fig. 4 Non-parametric kernel estimates of empirical frequency of count data from Table 3 6.2 Daily alcohol consumption A sociological experiment was carried out concerning the number of days per week in which alcohol was consumed [START_REF] Alanko | Response effects in consumption surveys: an application of the beta-binomial model to self-reported drinking frequencies[END_REF]. A randomly selected sample of n = 399 Dutch respondents were asked to keep a diary for two consecutive weeks in which they recorded their daily alcohol consumption. Table 4 presents the numerical results of fits obtained by means of the three discrete non-parametric kernel estimators previously considered.

Similar to results of simulations in the previous section, results in Table 4 showed that empirical frequencies, on the one hand, and estimations using discrete symmetric triangular and optimal kernels, on the other hand, were close for a large sample size. The main difference came from the frequency of the number of days equal to 7 which was more underestimated by using the discrete optimal kernel than the discrete symmetric triangular kernel with p = 1. The binomial kernel estimates stayed further away from empirical frequencies. 4 7 Concluding comments

We have derived a general form of discrete optimal symmetric kernels for nonparametric estimation of pmf. One simple case of our new optimal kernel has been particularly illustrated. This optimal kernel asymptotically converges to the Dirac type kernel and is competing with the other discrete kernels proposed in the literature. Properties of the general form of discrete optimal kernels should be deeply explored as well as its efficiency in various applications, such as non-parametric multiple regressions [START_REF] Somé | Effects of associated kernels in nonparametric multiple regressions[END_REF]. Discrete optimal asymmetric kernels should also be explored.

A Appendices:Proofs

A.1 Proof of Theorem 1

The first constraint C 1 of the minimisation problem can be expressed as

y∈Sx λ 1 + λ 2 y∈Sx y + λ 3 y∈Sx z 2 = -2 ⇐⇒ (2k + 1)λ 1 + (2k + 1)λ 2 x + λ 3 x 2 + k j=1 (x + j) 2 + k j=1 (x -j) 2 = -2 ⇐⇒ (2k + 1)λ 1 + (2k + 1)λ 2 x + λ 3 (2k + 1)x 2 + 2 k j=1 j 2 = -2. ( 13 
)
The second constraint C 2 results successively in

λ 1 y∈Sx y + λ 2 y∈Sx y 2 + λ 3 y∈Sx y 3 = -2x ⇐⇒ (2k + 1)λ 1 x + λ 2 (2k + 1)x 2 + 2 k j=1 j 2 + λ 3 x 3 + k j=1 (x + j) 3 + k j=1 (x -j) 3 = -2x ⇐⇒ (2k + 1)λ 1 x + λ 2 (2k + 1)x 2 + 2 k j=1 j 2 + λ 3 (2k + 1)x 3 + 6x k j=1 j 2 = -2x. (14) 
The third constraint C 3 can be expressed as

λ 1 y∈Sx y 2 + λ 2 y∈Sx y 3 + λ 3 y∈Sx y 4 = -2q ⇐⇒ λ 1 (2k + 1)x 2 + 2 k j=1 j 2 + λ 2 (2k + 1)x 3 + 6x k j=1 j 2 + λ 3 x 4 + k j=1 (x + j) 4 + k j=1 (x -j) 4 = -2q ⇐⇒ λ 1 (2k + 1)x 2 + 2 k j=1 j 2 + λ 2 (2k + 1)x 3 + 6x k j=1 j 2 + λ 3 (2k + 1)x 4 +12x 2 k j=1 j 2 + 2 k j=1 j 4 = -2q. (15) 
By multiplying Equation ( 13) by x then comparing with Equation ( 14), we get

λ 3 x (2k + 1)x 2 + 2 k j=1 j 2 = 2λ 2 k j=1 j 2 + λ 3 (2k + 1)x 3 + 6x k j=1 j 2 ⇐⇒ 2λ 2 k j=1 j 2 = λ 3 (2k + 1)x 3 + 2x k j=1 j 2 -λ 3 (2k + 1)x 3 + 6x k j=1 j 2 ⇐⇒ λ 2 = -2xλ 3 . (16) 
Then, by multiplying Equation ( 14) by x then comparing with Equation ( 15), we get

-λ 1 k j=1 j 2 -2xλ 2 k j=1 j 2 -3x 2 λ 3 k j=1 j 2 -λ 3 k j=1 j 4 = -2x 2 + 2q ⇐⇒ -λ 1 k j=1 j 2 + λ 3 x 2 k j=1 j 2 - k j=1 j 4 = 2b ⇐⇒ λ 1 = λ 3 x 2 k j=1 j 2 -k j=1 j 4 -2b k j=1 j 2 , ( 17 
)
where λ 2 was replaced by the expression in ( 16). Finally, from the previous expression, we substitute λ 1 (Equation 17) and λ 2 (Equation 16) in Equation ( 13) such that:

(2k + 1)λ 3 x 2 k j=1 j 2 -(2k + 1)λ 3 k j=1 j 4 -2(2k + 1)b -2(2k + 1)λ 3 x 2 k j=1 j 2 +λ 3 (2k + 1)x 2 k j=1 j 2 + 2λ 3 k j=1 j 2 2 = -2 k j=1 j 2 ⇐⇒ λ 3 = 2(2k + 1)b -2 k j=1 j 2 2 k j=1 j 2 2 -(2k + 1) k j=1 j 4 ⇐⇒ λ 3 = 60 6(2k + 1)b -k(k + 1)(2k + 1) 10k 2 (k + 1) 2 (2k + 1) 2 -6k(k + 1)(2k + 1) 2 (3k 2 + 3k -1) ⇐⇒ λ 3 = 30 k(k + 1)(2k + 1) 6b -k(k + 1) -4k 2 -4k + 3 ,
with the positive integer k ≥ 1 and 6b < k(k + 1) to insure the optimal kernel in equation ( 8) to be concave, i.e. λ 3 > 0, since -4k 2 -4k + 3 < 0 for k ≥ 1. One simple option is to choose b = b(h) = hk(k + 1)/6, with 0 < h < 1, such that    λ 3 = 30(1 -h)/ (2k + 1)(4k 2 + 4k -3) λ 2 = -60x(1 -h)/ (2k + 1)(4k 2 + 4k -3) λ 1 = λ 3 x 2 -(3k 2 + 3k -1)/5 -2h/(2k + 1).

Finally, the kernel K opt x,h (y) = -(1/2)(λ 1 + λ 2 y + λ 3 y 2 ) is non-negative (K opt x,h (y) ≥ 0) if y belongs to the interval

I k = [x - √ δ 2λ 3 , x + √ δ 2λ 3
], which can be expressed by

I k = x - 3k 2 + 3k -1 5 + h(4k 2 + 4k -3) 15(1 -h) , x + 3k 2 + 3k -1 5 + h(4k 2 + 4k -3) 15(1 -h) ,
such that K opt x,h (x-

√ δ 2λ 3 ) = K opt x,h (x+ √ δ 2λ 3
) = 0 and δ = λ 2 2 -4λ 1 λ 3 > 0, for k ≥ 1. The support Sx = {x -k, . . . , x, . . . , x + k} of K opt x,h is included in I k (Sx ⊆ I k ), if 3/5(1 -1/k) < h < 1, for k ≥ 1. Hence, the discrete optimal symmetric kernels with k ≥ 1 are defined by

K opt x,h (y) = - 1 2 λ 3 x 2 - 3k 2 + 3k -1 5 - 2h 2k + 1 +λ 3 xy- 1 2 λ 3 y 2 , y ∈ Sx, h ∈ 3 5 (1- 1 k ), 1 .

A.2 Proof of Proposition 2

Firstly, to compare the modal probability of two kernels considered, we express the difference Pr(K p;x,h = x) -Pr(K opt x,h = x) = As for the modal probability previously, we show that the function V (p) is increasing with respect to p ∈ N \ {0} and more than 1. To this end, we successively express Hence, we obtain V (p + 1) ≥ V (p) with V (1) = 3 log(2) > 1 resulting in V (p) > 1, and Var(K p;x,h ) > Var(K opt x,h ).

V (p +

Fig. 1

 1 Fig. 1 Shape of discrete optimal symmetric kernels at the target x = 4 for h-values ∈ {0.5, 0.9} and k-values ∈ {1, 2, 3, 4}.

Fig. 3

 3 Fig. 3 Distribution of hcv-values for discrete kernel estimators of count data of sample sizes n ∈ {50, 100, 250, 500} simulated from Poisson pmf P(µ) with µ = 2.

Fig. 5

 5 Fig. 5 Non-parametric kernel estimates of empirical frequency of count data from Table 4

  3A(p)) + O(h 2 ).That requires to develop the probability mass term Pr(K p;x,h = x) by using a Taylor expansion as h → 0 such thatPr(K p;x,h = x) = (p + 1) h C(p, h) = 1 + h log(p + 1) + o(h 2 ) 1 + h((2p + 1) log(p + 1) -2 p k=1 log(k)) + o(h 2 ) = 1 -h 2p log(p + 1) -2 p k=1 log(k) + O(h 2 ) = 1 -2hA(p) + O(h 2 ), with C(p, h) = (2p + 1)(p + 1) h -2 p k=1 k h .We show that the function A(p) is increasing with respect to p ∈ N \ {0} and 3A(p) is more than 1. One hasA(p + 1) -A(p) = (p + 1) log(p + 2) -p log(p + 1) -log(p + 1get A(p + 1) ≥ A(p) with A(1) = log(2) > 1/3 such that 3A(p) > 1, and Pr(K p;x,h = x) < Pr(K optx,h = x). Secondly, to compare the variance of the two kernels studied, one has Var(K p;x,h ) -Var(K opt xp) -1) + O(h 2 ), since the variance term of discrete symmetric triangular kernels is such that Var(K p;x,h ) (k) h + O(h 2 ).

Table 1

 1 Mean and standard deviation (sd) of hcv-values for discrete kernel estimators of count data of sample sizes n ∈ {15, 25, 50, 100, 250, 500} simulated from Poisson pmf P(µ) with µ = 2.

	Sample	Binomial kernel	Triangular kernel	Optimal kernel
	size n	estimator	estimator (p = 1)	estimator (k = 1)
		mean	sd	mean	sd	mean	sd
	15	0.36	0.341	1.73	0.985	0.73	0.389
	25	0.27	0.292	1.77	1.030	0.71	0.394
	50	0.17	0.160	1.88	1.206	0.68	0.407
	75	0.11	0.055	1.86	1.239	0.65	0.409
	100	0.09	0.032	1.64	1.248	0.59	0.409
	250	0.07	0.011	0.67	0.730	0.47	0.393
	500	0.06	0.009	0.21		0.38	0.364
	of f K,h over 500 replicates of sample size n = {15, 25, 50, 75, 100, 250, 500} such
	that						
		MISE f K,h =	1 500	500 i=1		

Table 2

 2 Results (×10 3 ) of average mean integrated squared error (MISE), integrated squared bias (IBias) and integrated variance (IVar) for discrete kernel estimators of count data of sample sizes n ∈ {15, 25, 50, 100, 250, 500} simulated from Poisson pmf P(µ) with µ = 2.

	Sample	Dirac kernel	Binomial kernel	Triangular kernel	Optimal kernel
	size n	estimator		estimator		estimator (p = 1)	estimator	(k = 1)
		MISE	IBias	IVar	MISE	IBias	IVar	MISE	IBias	IVar	MISE
	15	52.86	2.80	23.77	26.57	1.21	16.53	17.74	1.12	15.85	16.97
	25	31.72	1.54	13.30	14.84	1.05	11.65	12.70	1.32	10.20	11.52
	50	15.86	1.40	5.21	6.61	0.96	5.90	6.86	0.99	5.65	6.64
	75	10.57	1.58	3.27	4.85	1.07	4.22	5.30	1.05	3.88	4.93
	100	7.93	1.54	2.51	4.05	0.89	3.40	4.29	0.79	3.04	3.83
	250	3.17	1.49	0.97	2.46	0.52	1.82	2.34	0.64	1.52	2.15
	500	1.59	1.54	0.48	2.02	0.15	1.10	1.25	0.34	0.92	1.26

Table 3

 3 Estimation of pre-adult development time (days) of spiraling whitefly observed on safou fruit-tree

	Development time (days)	Frequency	Bin. kern.	Triang. kern.	Optimal kern.
		estimator	estimator	estimator (p = 1)	estimator (k = 1)
			Safou tree		
	30	28	24.21	27.15	26.51
	31	21	22.82	21.53	21.94
	32	11	12.96	11.30	11.54
	hcv		0.004	0.08	0.25
	ISE		0.0059	0.0003	0.0009

Estimation of count data distribution of safou tree

  

				Frequency estim.
				Optimal kern. estim.
		0.4		Binom. kern. estim. Triang. kern. estim.
		0.3	
	Probability	0.2	
		0.1	
		0.0	
		30	31	32
			x

Table 4

 4 Estimation of number of alcohol drinking days for week 1 from[START_REF] Alanko | Response effects in consumption surveys: an application of the beta-binomial model to self-reported drinking frequencies[END_REF] 

	Number of days	Frequency	Bin. kern.	Triang. kern.	Optimal kern.
	per week	estimator	estimator	estimator (p = 1)	estimator (k = 1)
	0	47	50.86	46.46	46.36
	1	54	53.43	54.02	54.03
	2	43	48.19	43.53	43.63
	3	40	44.58	40.39	40.46
	4	40	43.81	40.35	40.41
	5	41	43.30	41.26	41.31
	6	39	63.51	40.65	40.95
	7	95	51.29	92.29	91.80
	hcv		0.014	0.035	0.081
	ISE		0.016	6.897 × 10 -5	9.640 × 10 -5