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Propagation acceleration in reaction diffusion equations with anomalous diffusions

In this paper, we are interested in the properties of solution of the nonlocal equation

where 0 ≤ u0 < 1 is a Heaviside type function, ∆ s stands for the fractional Laplacian with s ∈ (0, 1), and

In this context, it is known that the solution u(t, s) converges locally uniformly to 1 and our aim here is to understand how fast this invasion process occur. When f is a Fisher-KPP type nonlinearity and s ∈ (0, 1), it is known that the level set of the solution u(t, x) moves at an exponential speed whereas when f is of ignition type and s ∈ 1 2 , 1 then the level set of the solution moves at a constant speed. In this article, for general monostable nonlinearities f and any s ∈ (0, 1) we derive generic estimates on the position of the level sets of the solution u(t, x) which then enable us to describe more precisely the behaviour of this invasion process. In particular, we obtain a algebraic generic upper bound on the "speed" of level set highlighting the delicate interplay of s and f in the existence of an exponential acceleration process. When s ∈ 0, 1 2 and f is of ignition type, we also complete the known description of the behaviour of u and give a precise asymptotic of the speed of the level set in this context. Notably, we prove that the level sets accelerate when s ∈ 0, 1 2 and that in the critical case s = 1 2 although no travelling front can exist, the level sets still move asymptotically at a constant speed. These new results are in sharp contrast with the bistable situation where no such acceleration may occur, hightligting therefore the qualitative difference between the two type of nonlinearities.

Introduction

The study of propagation phenomena is a classical topic in analysis as its provide a robust way to understand some pattern formations that arises in a wide range of context ranging from population dynamics in ecology [START_REF] Fisher | The wave of advance of advantageous genes[END_REF][START_REF] Kolmogorov | étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF], to combustion [START_REF] Kanel | Certain problem of burning-theory equations[END_REF] and phase transition [START_REF] Aronson | Multidimensional nonlinear diffusion arising in population genetics[END_REF]. Concretely, this often leads to analyse the asymptotic properties of the solution u(t, x) of the parabolic problem used to model the phenomenon considered. When this model is a reaction diffusion equation, this lead then to the study of the properties of the solutions of    ∂ t u(t, x) = ∆u(t, x) + f (u(t, x)) for t > 0, x ∈ R N u(0, x) = u 0 (x) [START_REF] Achleitner | Traveling waves for a bistable equation with nonlocal diffusion[END_REF] with respect to the nonlinearity f and the initial data u 0 . In this particular situation, when f is a smooth bistable, ignition or monostable nonlinearity, say f Lipschitz such that f (0) = f (1) = 0 , f ′ (1) < 0, it is known that the solution of the equation ( 1) can exhibit some phase transition behaviour. More precisely, for a Heaviside type initial datum u 0 i.e. u 0 (x) = 1 He (x) where H e denotes a half-space {x ∈ R N | x • e < 0}, then the solution u(t, x) of(1) converges locally uniformly as t → +∞ to 1 and the "invasion process" resulting of this initial datum can be characterised by particular solutions of (1) called planar front ϕ(x • e -ct) [START_REF] Aronson | Multidimensional nonlinear diffusion arising in population genetics[END_REF][START_REF] Fife | The approach of solutions of nonlinear diffusion equations to travelling front solutions[END_REF][START_REF] Kolmogorov | étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF][START_REF] Weinberger | Long-time behavior of a class of biological models[END_REF], where (ϕ, c) solves here the following equations (

         ϕ ′′ (z) + cϕ ′ (z) + f (ϕ(z)) = 0 for z ∈ R,
) 2 
In particular, for any λ ∈ (0, 1) the superlevel set E λ (t) := {x ∈ R N |u(t, x) ≥ λ} grows at a constant speed. That is there exists x + (λ), x -(λ) in R N and a family of Half-space H + (t) defined by

H + (t) := {x ∈ R N | x • e -ct ≤ 0} such that E λ satisfies x -(λ) + H + (t) ⊂ E λ (t) ⊂ x + (λ) + H + (t).
Thanks to the comparison principle satisfied by such semi-linear equations [START_REF] Achleitner | Traveling waves for a bistable equation with nonlocal diffusion[END_REF], clearly this particular phase transition behaviour appears also for other type of initial data u 0 ≥ 1 He that have some decay as x • e → -∞. For those initial data, we may then wonder if the above description of the behaviour of superlevel set E λ still holds true and if not how can we characterise it. As shown in [START_REF] Alfaro | Slowing allee effect versus accelerating heavy tails in monostable reaction diffusion equations[END_REF][START_REF] Hamel | Fast propagation for kpp equations with slowly decaying initial conditions[END_REF][START_REF] Kay | Comparison theorems and variable speed waves for a scalar reactiondiffusion equation[END_REF][START_REF] Needham | Reaction-diffusion and phase waves occurring in a class of scalar reactiondiffusion equations[END_REF][START_REF] Sherratt | An analysis of vegetation stripe formation in semi-arid landscapes[END_REF], the above characterisation may not hold in general and in some situation an accelerated transition may occur. Indeed when N = 1 and for a monostable f of KPP type, that is f ∈ C([0, 1]) such that f (0) = f (1) = 0, f > 0, f ′ (0) > 0, f ′ (1) < 0, and such that f (s) ≤ f ′ (0)s, then for u 0 (x) > 0 F. Hamel and L. Roques have obtained in [START_REF] Hamel | Fast propagation for kpp equations with slowly decaying initial conditions[END_REF] a sharp description of the speed of the level line of the solution of the corresponding Cauchy problem. In particular, they show that when u 0 is such that u 0 (x) ∼ 1

x α , as x → +∞, then the level lines of the solution move exponentially fast. That is, for any λ ∈ (0, 1) there exists points x(t) ∈ E λ (t) such that x(t) ∼ e f ′ (0)t . More generally, they prove that Theorem 1.1. Let u 0 be for regular (C 2 ) nonincreasing initial data u 0 on some semi-infinite interval [ξ 0 , +∞) and such that ∂ xx u 0 (x) = o(u 0 (x)) as x → +∞.

Then, for any λ ∈ (0, 1), ε ∈ (0, f ′ (0)), µ > 0 and ν > 0, there exists T λ,ε,µ,ν ≥ t λ such that

Γ λ (t) ⊂ u -1 0 ([µe -(f ′ (0)+ε)t , νe -(f ′ (0)-ε)t ]),
where Γ λ denotes Γ λ (t) := {x ∈ R | u(t, x) = λ}

From this result, we can see the clear dependence of the speed of the level sets of the solution u(t, x) with respect to the decay behaviour of u 0 . Similar sharp descriptions of the speed of the level sets have been obtain for more general monostable type of nonlinearity, see for example [START_REF] Alfaro | Slowing allee effect versus accelerating heavy tails in monostable reaction diffusion equations[END_REF][START_REF] Kay | Comparison theorems and variable speed waves for a scalar reactiondiffusion equation[END_REF][START_REF] Needham | Reaction-diffusion and phase waves occurring in a class of scalar reactiondiffusion equations[END_REF][START_REF] Sherratt | An analysis of vegetation stripe formation in semi-arid landscapes[END_REF]. On the other hand, thanks to the work of Fife and Mc Leod [START_REF] Fife | The approach of solutions of nonlinear diffusion equations to travelling front solutions[END_REF], and Alfaro [START_REF] Alfaro | Slowing allee effect versus accelerating heavy tails in monostable reaction diffusion equations[END_REF] we can see that accelerated transitions will never occur when the non-linearity considered is bistable or of ignition type.

In this spirit, in this paper we are interested in propagation acceleration phenomena that are caused by anomalous diffusions such as super diffusions, which plays important roles in various physical, chemical, biological and geological processes. (See, e.g., [START_REF] Volpert | Fronts in anomalous diffusion-reaction systems[END_REF] for a brief summary and references therein.) A typical feature of such anomalous diffusions is related to Lévy stochastic processes which may possesses discontinuous "jumps" in their paths and have long range dispersal, while the standard diffusion is related to the Brownian motion. Analytically, certain Lévy processes (α stable) may be modeled by their infinitesimal generators which are fractional Laplace operators (-∆) s u with 0 < s < 1, whose Fourier transformation (-∆) s u is (2π|ξ|) 2s u. (See [START_REF] Metzler | The random walk's guide to anomalous diffusion: a fractional dynamics approach[END_REF].) More precisely, we consider the following one-dimensional reaction-diffusion equation involving the fractional Laplacian:

u t + (-∆) s u = f (u), t > 0, x ∈ R u(0, x) = u 0 (x), x ∈ R (3) 
where (a) (-∆) s (0 < s < 1) denotes the fractional Laplacian operator:

(-∆) s u(x) = C 1,s P.V. R u(x) -u(y) |x -y| 1+2s dy,
where C 1,s is a positive normalization constant in the sense that (-∆) s u(ξ) = |ξ| 2s u(ξ). For simplicity, in the whole article, let's assume that C 1,s = 1 after a suitable normalization.

(b) f is a nice function on [0, 1]. (c) u 0 (x) is the initial condition.
The precise assumptions on f and u 0 will be given later on.

Along with other types of nonlocal models (integrodifferential or integrodifference) such nonlocal fractional reaction diffusion model (3) has received a lot of attention lately. Contrary to the standard reaction diffusion equation (1), accelerated transitions can be observed for Heaviside type initial data [START_REF] Nec | Front-type solutions of fractional Allen-Cahn equation[END_REF][START_REF] Mancinelli | Front propagation in reactive systems with anomalous diffusion[END_REF][START_REF] Cabré | The influence of fractional diffusion in fisher-kpp equations[END_REF][START_REF] Engler | On the speed of spread for fractional reaction-diffusion equations[END_REF][START_REF] Gui | Traveling wave solutions to some reaction diffusion equations with fractional laplacians[END_REF] in the anomalous reaction diffusion systems. The mechanism that triggers the acceleration in this situation is then intrinsically different from that in the classical reaction diffusion and seems governed by subtle interplay between the long range jumps in the diffusion processes and the strength of the pushes and pullings in the reaction part, mathematically, i.e., the tails of the kernel and the properties of nonlinearity f considered. Namely, when f is of bistable type then planar wave exists for all s ∈ (0, 1) [START_REF] Gui | Traveling wave solutions of allen-cahn equation with a fractional laplacian[END_REF][START_REF] Palatucci | Local and global minimizers for a variational energy involving a fractional norm[END_REF] and the solution to (3) with a reasonable Heaviside initial data u 0 will converge to a planar front, see [START_REF] Achleitner | Traveling waves for a bistable equation with nonlocal diffusion[END_REF]. On the other hand, for the same initial data but for a KP P type nonlinearity, the solution will accelerate exponentially fast [START_REF] Cabré | The influence of fractional diffusion in fisher-kpp equations[END_REF][START_REF] Engler | On the speed of spread for fractional reaction-diffusion equations[END_REF], that is, for x(t) ∈ Γ(t) we have x(t) ∼ e f ′ (0)t .

For more general monostable nonlinearities f , including those of ignition type, the picture is less clear and only results on the existence/ non-existence of planar front have been obtained. More precisely, when f is an ignition nonlinearity then a planar front can only exist in the range s ∈ 1 2 , 1 see [START_REF] Gui | Traveling wave solutions to some reaction diffusion equations with fractional laplacians[END_REF][START_REF] Mellet | Generalized fronts for one-dimensional reaction-diffusion equations[END_REF]. Whereas for a general monostable nonlinearity f (i.e. f (t) ∼ t p (1 -t))) the existence of a planar front only occurs when p > 2 and in the range s ∈ ( p 2(p-1) , 1) see [START_REF] Gui | Traveling wave solutions to some reaction diffusion equations with fractional laplacians[END_REF]. In the later case, this suggest that as in the KPP case, an accelerated transition will then occur for any s ∈ (0, 1) when 1 < p < 2. A natural question is then, as in the KPP case, does the level sets move with an exponential speed when 1 < p < 2? One objective of this paper is to answer to this question and give a more detailed characterisation of the speed of the level set for general monostable nonlinearities f .

Main Results

Let us now describe more precisely the assumptions we made and state our main results.

Assumption 1 (Degenerate monostable nonlinearity). The nonlinearity

f : [0, 1] -→ [0, f ∞ ] is of class C 1 ,
and is of the monostable type, in the sense that

f (0) = f (1) = 0, f (u) > 0, for all u ∈ (0, 1). (4) 
The steady state 0 is degenerate, in the sense that, there exist some constants r > 0 and β > 1 such that

f (u) ≤ ru β , for all u ∈ [0, 1]. ( 5 
)
The steady state 1 is stable, in the sense that

f ′ (1) < 0. ( 6 
)
Assumption 2 (Front like initial datum). The initial data u 0 : R -→ [0, 1] is of class C 1 and satisfies

(a) 0 ≤ u 0 (x) ≤ 1 for all x ∈ R. (b) lim inf x→-∞ u 0 (x) > 0.
(c) u 0 (x) ≡ 0 on [a, +∞) for some a.

Under this two assumptions, we first prove that Theorem 1.2. For any 0 < s < 1, assume that the nonlinearity f satisfies Assumption 1, and the initial data u 0 (x) satisfies Assumption 2. Let u(t, x) be the solution to the problem (3) with the initial data u 0 (x), consider the superlevel set E λ (t) = {x ∈ R|u(t, x) > λ} of the solution u(t, x), and define

x λ (t) = sup E λ (t).
If further assume that β 2s(β-1) > 1, then for any λ ∈ (0, 1), there exist some constants T λ > 0 and C(λ) > 0 such

E λ (t) ⊆ (-∞, x λ (t)), and x λ (t) ≤ C(λ)t β 2s(β-1) , ∀t > T λ .
When β > 2 and β 2s(β-1) ≤ 1, the existence of the traveling wave to the problem (3) provided β 2s(β-1) ≤ 1 was proved by Gui and Huan in [START_REF] Gui | Traveling wave solutions to some reaction diffusion equations with fractional laplacians[END_REF] meaning that for the solution u(t, x) to (3) with some front-like data, if we look at the level set of u(t, x), then the spatial variable x may linearly depend on the time variable t. In this sense, our condition β 2s(β-1) > 1 is sharp. In addition, we can observe from our results that when β > 1 then the level set of the solution u(t, x) to the equation (3) moves at most at a polynomial rate i.e x λ (t) ∼ t γ with γ := sup 1;

1 2s + 1 β -1
. These results are in sharp contrasts with the results of Cabre et al. [START_REF] Cabré | The influence of fractional diffusion in fisher-kpp equations[END_REF] for the KPP case. In particular, they highlight the fact that the exponential acceleration is strongly thigh to the non-degeneracy of the nonlinearity f and only occur when f is such that f ′ (0) > 0, a situation that allows an exponential growth at low density.

s β 0 1 2 1 1 2 x λ (t) ∼ e ρt x λ (t) ≤ t 1 β-1 + 1 2s x λ (t) ≤ t 1 β-1 + 1 2s x λ (t) ∼ e ρt x λ (t) ≤ t 1 β-1 + 1 2s x λ (t) ≤ t 1 β-1 + 1 2s x λ (t) ∼ t
Next, we prove a first lower bound of the speed of the level set. Namely, we show that Theorem 1.3 (A rough lower bound). For any 0 < s < 1, assume that the nonlinearity f satisfies f (u) ≥ 0 for all u ∈ [0, 1], and the initial data u 0 (x) satisfies Assumption 2. Let u(t, x) be the solution to the problem (3) with the initial data u 0 (x), consider the superlevel set E λ (t) = {x ∈ R|u(t, x) > λ} of the solution u(t, x), and define

x λ (t) = sup E λ (t).
Then for any λ ∈ (0, 1), there exists some constants

T ′ λ > 0 and C ′ (λ) > 0 such x λ (t) ≥ C ′ (λ)t 1 2s , ∀t > T ′ λ
Combining the later with the upper bound obtained in Theorem 1.3, as a immediate corollary we then get Corollary 1.1. For any 0 < s < 1, assume that the nonlinearity f satisfies Assumption 1 and f (u) ≥ 0 for all u ∈ [0, 1], and the initial data u 0 (x) satisfies Assumption 2. Let u(t, x) be the solution to the problem (3) with the initial data u 0 (x), consider the superlevel set E λ (t) = {x ∈ R|u(t, x) > λ} of the solution u(t, x), and define

x λ (t) = sup E λ (t).
If further assume that β 2s(β-1) > 1, then for any λ ∈ (0, 1), there exists some constants T λ > 0, C(λ) > 0 and C ′ (λ) > 0 such

C ′ (λ)t 1 2s ≤ x λ (t) ≤ C(λ)t β 2s(β-1) , ∀t > T λ .
Although these first estimates on the speed seem rather crude this are still quite interesting, in particular in the case 0 < s < 1 2 , as they give a very simple way of showing the non-existence of the traveling wave solution to the problem (3) with any general non negative function f and in particular for the Fisher-KPP nonlinearity. These results also highlight a fundamental difference between nonlocal model versus local model when considering an ignition type nonlinearity. Indeed, when the nonlinearity f is of ignition type, we can easily deduce from the work of Alfaro [START_REF] Alfaro | Slowing allee effect versus accelerating heavy tails in monostable reaction diffusion equations[END_REF] that accelerated transitions never occur in the classical reaction diffusion model (1) whereas they do in the nonlocal reaction diffusion (3) when s ∈ (0, 1/2). This is also a clear evidence that in the nonlocal setting, unlike in the local setting ((1)) the two types of nonlinearities: bistable and ignition type are not alike in the sense that the dynamic obtained are completely different. In this nonlocal setting, a condition on the decay of the tail of the kernel appears then of crucial importance in order to guarantee the existence of traveling front. Namely, from our results we can see that when f is non negative the kernel must satisfy some first moment integrability condition to expect to observe traveling front solutions. This finite first moment condition suggests that a similar condition should hold true as well for convolution type nonlocal models studied in [START_REF] Coville | Travelling fronts in asymmetric nonlocal reaction diffusion equations: The bistable and ignition cases[END_REF] as the these two models shares many similarities. That is, in such convolution type models, for a traveling front to exist the kernel need to satisfy a first moment condition.

s β 0 1 2 1 1 2 x λ (t) ∼ e ρt t 1 2s ≤ x λ (t) ≤ t 1 β-1 + 1 2s as β → ∞, x λ (t) ≈ t 1 2s x λ (t) ∼ e ρt t 1 2s ≤ x λ (t) ≤ t 1 β-1 + 1 2s t 1 2s ≤ x λ (t) ≤ t 1 β-1 + 1 2s x λ (t) ∼ t
Let us look now more deeply at the consequences of these first estimates on the speed for the combustion model and for supercritical fractional Laplacians (that is, 0 < s < 1 2 ). In this situation, from the above estimate we can in fact derive a sharp estimate on the speed of propagation. Namely, we show Corollary 1.2 (Combustion model for supercritical and critical fractional Laplacians). For any 0 < s ≤ 1 2 , assume that the initial data u 0 (x) satisfies Assumption 2, and the nonlinearity f is a combustion type nonlinearity, in the sense that there exists some θ ∈ (0, 1) such that

f (1) = 0 = f (u), for all u ∈ [0, θ],
and f (u) > 0 for all u ∈ (θ, 1)

Let u(t, x) be the solution to the problem (3) with the initial data u 0 (x), consider the superlevel set E λ (t) = {x ∈ R|u(t, x) > λ} of the solution u(t, x), and define

x λ (t) = sup E λ (t).
Then for any ε > 0, and for any λ ∈ (0, 1), there exists some constants T λ,ε > 0, C(λ, ε) > 0 and C ′ (λ) > 0 such

C ′ (λ)t 1 2s ≤ x λ (t) ≤ C(λ, ε)t 1 2s +ε , ∀t > T λ,ε .
The proof of this corollary is quite straightforward. Indeed, the combustion model can be thought as some limit case of the degenerated monostable situation (i.e., f (u) monostable with f (k) (0) = 0 for all k ∈ N). In particular, for any combustion nonlinearity f we may find a constant C 0 > 0 such that for all β > 1 we have

f (u) ≤ f β (u) := C 0 u β (1 -u).
Recall that since we assume that the fractional Laplacian is either super-critical or critical (i.e. s ∈ (0, 1 2 ]) then we can check that for all β > 1 the condition below is satisfied

β 2s(β -1) = 1 2s + 1 2s(β -1) > 1
and then using a standard comparison argument and Corollary 1.1 we may deduce that for any β > 1 there exists C(β) and T β such that for all t ≥ T β x λ (t) ≤ C(λ, β)t

1 2s + 1 2s(β-1)
The results of Corollary 1.2 follows then by picking β so large that we have

1 2s(β-1) ≤ ε.
Note that this estimate is sharp in the sense it gives the right asymptotic for the speed of the level set i.e. we get

x λ (t) ∼ t 1 2s as t → ∞.
It also provides a useful information for the critical case s = 1 2 , where we see that the level set moves asymptotically with a constant speed although there is no existence of a traveling front in this situation.

Lastly, in the spirit of [START_REF] Alfaro | Propagation phenomena in monostable integro-differential equations: Acceleration or not?[END_REF], let us obtain a finer lower bound on the speed for general degenerate monostable nonlinearities f , i.e. ∃ β ∈ (1, +∞), such that lim u→0 f (u)

u β = l > 0.
Theorem 1.4 (A finer lower bound). For any 0 < s < 1, assume that the nonlinearity f satisfies Assumption 1 and f (u) ≥ r 1 u β as u → 0 + for some small r 1 > 0, and the initial data u 0 (x) satisfies Assumption 2. Let u(t, x) be the solution to the problem (3) with the initial data u 0 (x), consider the superlevel set E λ (t) = {x ∈ R|u(t, x) > λ} of the solution u(t, x), and define

x λ (t) = sup E λ (t).

If further assume that 1 2s(β-1) > 1, then for any λ ∈ (0, 1), there exists some constants

T λ > 0, C(λ) > 0 and C ′ (λ) > 0 such C ′ (λ)t 1 2s(β-1) ≤ x λ (t) ≤ C(λ)t β 2s(β-1) , ∀t > T λ . Notice that 1 2s < 1 2s(β-1) if and only if 1 < β < 2.
Hence when 1 2 < s < 1 and 1 < β < 2, the lower bound in Theorem 1.4 is better than the one in Theorem 1.3. From these estimates we can then deduce the following generic estimate: Theorem 1.5 (generic bound). For any 0 < s < 1, assume that the nonlinearity f satisfies Assumption 1 and f (u) ≥ r 1 u β as u → 0 + for some small r 1 > 0, and the initial data u 0 (x) satisfies Assumption 2. Let u(t, x) be the solution to the problem (3) with the initial data u 0 (x), consider the superlevel set E λ (t) = {x ∈ R|u(t, x) > λ} of the solution u(t, x), and define

x λ (t) = sup E λ (t).

Then for any λ ∈ (0, 1), there exists some constants

T λ > 0, C(λ) > 0 and C ′ (λ) > 0 such C ′ (λ)t sup{ 1 2s(β-1) ; 1 2s } ≤ x λ (t) ≤ C(λ)t 1 2s(β-1) + 1 2s , ∀t > T λ .
This last results clearly indicate that the speed of the level sets is the result of a fine interplay between the diffusion process intimately linked to the quantity t 1 /2s and the reaction term f which, as we will see in the proof, is strongly linked to the quantity t

1 2s(β-1) . s β 0 1 2 1 1 2 x λ (t) ∼ e ρt t 1 2s(β-1) ≤ x λ (t) ≤ t 1 β-1 + 1 2s x λ (t) ∼ e ρt t 1 2s(β-1) ≤ x λ (t) ≤ t 1 β-1 + 1 2s t 1 2s ≤ x λ (t) ≤ t 1 β-1 + 1 2s x λ (t) ∼ t

Further comments

Before going to the proofs of our results, we would like to make some further comments. First, we would like to emphasize that similar results were previously obtained in [START_REF] Alfaro | Propagation phenomena in monostable integro-differential equations: Acceleration or not?[END_REF] in the context of integrodifferential equation

   ∂ t u(t, x) = J ⋆ u(t, x) -u(t, x) + f (u(t, x)) for t > 0, x ∈ R u(0, x) = u 0 (x) (8) 
where J ⋆ u stands for the standard convolution and J is a positive probability density with a finite first moment i.e J ∈ L 1 (R) such that J ≥ 0, R J(z) dz = 1, R J(z)|z| dz < +∞. The two equations ( 8) and (3) shares some similarities, and in particular the equation ( 3) may be viewed as a reformulation of the equation ( 8) but with a non integrable singular kernel. However, the treatment of the singularity is of crucial importance here and induces some tricky technical difficulties, which the ideas developed to analyse [START_REF] Bouin | Thin front limit of an integro-differential fisher-kpp equation with fat-tailed kernels[END_REF] seem not able to overcome. Indeed, the challenge of singularity here is intrinsic and related to the physical nature of the fractional Laplacian. The approach here is hence not just an adaptations of the proofs given in [START_REF] Alfaro | Propagation phenomena in monostable integro-differential equations: Acceleration or not?[END_REF], and we have to deal with the singularity carefully. In particular, we go a step further in our understanding of the mechanism triggering acceleration by describing the situation for s ∈ (0, 1 2 ), a situation which is not treated in [START_REF] Alfaro | Propagation phenomena in monostable integro-differential equations: Acceleration or not?[END_REF] at all. We believe that some of the techniques developed here will be also useful to apprehend propagation phenomena in the equation ( 8) for kernels that do not satisfy this first moment condition. In particular, the analysis presented here should provide the ground for a deeper understanding of nonlocal combustion problems modeled by the equation (8) studied in [START_REF] Coville | Travelling fronts in asymmetric nonlocal reaction diffusion equations: The bistable and ignition cases[END_REF], by ensuring that the existence of traveling front is conditioned to a first moment property satisfied by the kernel. Works in this direction are currently underway.

We also want to stress that although our results gives some good insights on the speed of the level sets, apart from situations involving combustion nonlinearities where a precise asymptotic is known, there is still a gap in our estimates and the right behaviour,that we believe is t β 2s(β-1) has not been capture yet. Using new approaches, recent progress have been made on the understanding of acceleration phenomena in various situations , namely for semilinear equation like (1) with a nonlinear diffusion instead of the classical diffusion [START_REF] Alfaro | Interplay of nonlinear diffusion, initial tails and allee effect on the speed of invasions[END_REF][START_REF] Alfaro | When fast diffusion and reactive growth both induce accelerating invasions[END_REF][START_REF] Garnier | Transition fronts and stretching phenomena for a general class of reactiondispersion equations[END_REF] as well as for the equation ( 8) with Fisher -KPP type nonlinearity [START_REF] Bouin | Thin front limit of an integro-differential fisher-kpp equation with fat-tailed kernels[END_REF][START_REF] Garnier | Accelerating solutions in integro-differential equations[END_REF]. The different approaches developed in these works may be of some help in this task. Works in this direction are also under consideration.

The paper is organised as follows. In Section 2, we prove Theorem 1.2 and obtain the upper bound on the speed of the level set.Then in Section 3, we obtain the generic lower bound on this speed, Theorem 1.3. Finally, in the last section, Section 4, we prove the a refine estimate of this speed when a degenerate monostable nonlinearity f is considered, Theorem 1.4.

Upper bound on the speed of the super level sets

Construction of a supersolution: For some constant p > 0 which will be determined later, let's define

v 0 (x) =    1, if x ≤ 1, 1 x p , if x > 1. x y 0 1 1 v 0 (x)
For any γ > 0, let w(t, x) be the solution to the following initial-value problem:

   dw(t, x) dt = γ[w(t, x)] β , w(0, x) = v 0 (x)
Since β > 1, it's easy to solve the above problem and obtain

w(t, x) = 1 [[v 0 (x)] 1-β -γ(β -1)t] 1 β-1
.

By the definition of v 0 (x), it's easy to see that w(t, x) is well defined for t ∈ 0, 1 γ(β-1) if x ≤ 1; and w(t, x) is well defined for t ∈ 0, x p(β-1) γ(β-1) if x > 1. When t is fixed, the function w(t, x) is decreasing with respect to x. 1) for all t > 0, it's easy to know that x 0 (t) > 1, w(t, x 0 (t)) = 1, w(t, x) > 1 for all x < x 0 (t), and w(t, x) < 1 for all x > x 0 (t). Let's consider the function

Let x 0 (t) = [1 + γ(β -1)t] 1 p(β-
m(t, x) = 1, if x ≤ x 0 (t), w(t, x), if x > x 0 (t).
It's easy to see that m(t, x) is well defined for all t ≥ 0 and all x ∈ R, and 0 < m(t, x) ≤ 1 for all t ≥ 0 and all x ∈ R. 

|∂ x m(t, x)| + |∂ 2 xx m(t, x)| ≤ C(p, β), ∀t > 0, ∀x ∈ R.
Proof. It's easy to see that ∂ x m(t, x) = ∂ 2 xx m(t, x) = 0 for all (t, x) such that x ≤ x 0 (t). Now for any x > x 0 (t), then

m(t, x) = w(t, x) = [[v 0 (x)] 1-β -γ(β -1)t] 1 1-β Since x 0 (t) > 1, then v 0 (x) = 1 x p . A direct computation shows that ∂ x m(t, x) = ∂ x w(t, x) = 1 1 -β • [[v 0 (x)] 1-β -γ(β -1)t] 1 1-β -1 • (1 -β)[v 0 (x)] -β • v ′ 0 (x) = -p[m(t, x)] β • x pβ-p-1 .
Since β > 1, p + 1 ≥ pβ, 0 < m(t, x) ≤ 1, and x > x 0 (t) > 1, then we have

|∂ x m(t, x)| ≤ p.
On the other hand, we have

∂ 2 xx m(t, x) = -p∂ x [m(t, x)] β • x pβ-p-1 = -p β[m(t, x)] β-1 • ∂ x w(t, x) • x pβ-p-1 + [m(t, x)] β • (pβ -p -1) • x pβ-p-2 = -p β[m(t, x)] β-1 • -p[m(t, x)] β • x pβ-p-1 • x pβ-p-1 + [m(t, x)] β • (pβ -p -1) • x pβ-p-2 = p 2 β[m(t, x)] 2β-1 x 2(pβ-p-1) + pβ(p + 1 -pβ)[m(t, x)] β x pβ-p-2 .
Since β > 1, p + 2 > p + 1 ≥ pβ, 0 < m(t, x) ≤ 1, and x > x 0 (t) > 1, then we have

|∂ 2 xx m(t, x)| ≤ p 2 β + pβ(p + 1 -pβ).
Claim 2.2. If p + 1 ≥ pβ, then there exists some constant C(s, p, β) > 1 such that

|(-∆) s m(t, x)| ≤ C(s, p, β), ∀t > 0, ∀x ∈ R.
Proof. By the definition of (-∆) s m(t, x), it's easy to see that

(-∆) s m(t, x) = 1 2 R m(t, x + h) + m(t, x -h) -2m(t, x) |h| 1+2s dh = 1 2 |h|≥1 m(t, x + h) + m(t, x -h) -2m(t, x) |h| 1+2s dh + 1 2 |h|<1 m(t, x + h) + m(t, x -h) -2m(t, x) |h| 1+2s dh
Since 0 < m(t ′ , x ′ ) ≤ 1 for all t ′ > 0 and all x ′ ∈ R, by Claim 2.1, then there exists some C 1 (s, p, β) > 0 such that

|(-∆) s m(t, x)| ≤ 1 2 |h|≥1 4 |h| 1+2s dh + 1 2 |h|<1 C 1 |h| 2 |h| 1+2s dh = C(s, p, β).
Claim 2.3. For any (t, x) such that x ≤ x 0 (t), we have

∂ t m(t, x) + (-∆) s m(t, x) -f (m(t, x)) > 0.
Proof. In fact, since x ≤ x 0 (t), then m(t, x) = 1. By Assumption 1, then f (m(t, x)) = f (1) = 0. By the definition of m(t ′ , x ′ ), it's easy to see that ∂ t m(t, x) = 0. Since m(t, x) = 1, 0 < m(t ′ , x ′ ) ≤ 1 for all t ′ > 0 and all x ′ ∈ R, by the definition of (-∆) s m(t, x), it's easy to obtain that (-∆) s m(t, x) > 0. In summary, we obtain that

∂ t m(t, x) + (-∆) s m(t, x) -f (m(t, x)) > 0. Claim 2.4. If p + 1 ≥ pβ, let C 1 be the positive constant defined in Claim 2.2, for any fixed γ > γ 0 := r + 2C 1 , let's define x γ (t) = γ -r C 1 β-1 β + γ(β -1)t 1 p(β-1)
. Then x 0 (t) < x γ (t) for all t > 0, and for any (t, x) such that x 0 (t) < x ≤ x γ (t), we have

∂ t m(t, x) + (-∆) s m(t, x) -f (m(t, x)) ≥ 0. Proof. Since γ -r ≥ 2C 1 > 2, since β > 1, then x γ (t) > [1 + γ(β -1)t] 1 p(β-1) = x 0 (t)
. Now for any (t, x) such that x 0 (t) < x ≤ x γ (t), by Assumption 1 and Claim 2.2, then we have

∂ t m(t, x) + (-∆) s m(t, x) -f (m(t, x)) = ∂ t w(t, x) + (-∆) s m(t, x) -f (w(t, x)) = γ[w(t, x)] β -f (w(t, x)) + (-∆) s m(t, x) ≥ γ[w(t, x)] β -r[w(t, x)] β -C 1 = (γ -r)[w(t, x)] β -C 1 .
Since w(t, x ′ ) is decreasing with respect to x ′ , since x 0 (t) < x ≤ x γ (t), then we obtain

∂ t m(t, x) + (-∆) s m(t, x) -f (m(t, x)) ≥ (γ -r)[w(t, x γ (t))] β -C 1 = 0.
In the following, let's verify the supersolution inequality for (t, x) with x > x γ (t). First, we introduce notations q := p(β -1) and σ := γ(β -1)t. For some constant K > 2 which will be determined later, let's write

-(-∆) s m(t, x) = x 0 (t)-x K -∞ m(t, x + z) -m(t, x) |z| 1+2s dz + P.V. +∞ x 0 (t)-x K m(t, x + z) -m(t, x) |z| 1+2s dz =: I 1 + I 2 .
Since β > 1, by the definitions of x γ (t) and x 0 (t), we can find some large γ 1 which may depend on K such that γ 1 > γ 0 (where γ 0 is defined in Claim 2.4), and x 0 (t)-x < -K for all γ ≥ γ 1 and all x > x γ (t). Since 0 < m(t ′ , x ′ ) ≤ 1 for all t ′ > 0 and x ′ ∈ R, then

I 1 ≤ x 0 (t)-x K -∞ 1 |z| 1+2s dz = 1 2s • K x -x 0 (t) 2s . By choosing q < 1 (that is, p(β -1) < 1), then x q ≤ [x 0 (t)] q + (x -x 0 (t)) q , that is, [x q -[x 0 (t)] q ] 1 q ≤ x -x 0 (t), which implies that 1 [x -x 0 (t)] 2s ≤ 1 [x q -[x 0 (t)] q ] 2s q .
Since x > x 0 (t) + K > 2, then (x q -1) 1 q > 1. So we get v 0 ((x q -1)

1 q ) 1-β = x q -1
, which implies that w(t, (x q -1)

1 q ) = 1 v 0 ((x q -1) 1 q ) 1-β -γ(β -1)t 1 β-1 = 1 [x q -1 -γ(β -1)t] 1 β-1 = 1 [x q -[x 0 (t)] q ] 1 β-1 .

Since 2s

q • (β -1) = 2s p and x -x 0 (t) > K, then we can obtain

I 1 ≤ 1 2s • K 2s • w(t, (x q -1) 1 q ) 2s p .
Since x > 1 and q = p(β -1), then we have w(t, (x q -1)

1 q ) w(t, x) = 1 w(t, x) • 1 [x q -1 -γ(β -1)t] 1 β-1 = 1 w(t, x) • 1 [x q -1 -[v 0 (x)] 1-β + [w(t, x)] 1-β )] 1 β-1 = 1 w(t, x) • 1 x q -1 -x -p(1-β) + [w(t, x)] 1-β ) 1 β-1 = 1 w(t, x) • 1 [-1 + [w(t, x)] 1-β )] 1 β-1 = 1 [1 -[w(t, x)] β-1 ] 1 β-1 .
Since x > x γ (t), and w(t ′ , x ′ ) is decreasing with respect to x ′ , then

w(t, x) < w(t, x γ (t)) = C 1 γ -r 1 β .
So we can find some large γ 2 > γ 1 such that for all γ > γ 2 , we have C1 γ-r 1 β ≤ 1, which implies that

I 1 ≤ C 2 K 2s • [w(t, x)] 2s p .
For I 2 , since x 0 (t) -x < -K, then we have

I 2 = -1 x 0 (t)-x K m(t, x + z) -m(t, x) |z| 1+2s dz + P.V. 1 -1 m(t, x + z) -m(t, x) |z| 1+2s dz + +∞ 1 m(t, x + z) -m(t, x) |z| 1+2s dz =: I 3 + I 4 + I 5 .
For I 3 , for all x0(t)-x K ≤ z ≤ -1, since x 0 (t) > 1 and K > 2, then we have x + z > x 2 > 1. By changing variables, z = xu, then we have

I 3 = -1 x 0 (t)-x K w(t, x + z) -w(t, x) |z| 1+2s dz = -1 x x 0 (t)-x Kx w(t, x + xu) -w(t, x) |xu| 1+2s • xdu = xw(t, x) -1 x x 0 (t)-x Kx 1 |xu| 1+2s • w(t, x + xu) w(t, x) -1 du = xw(t, x) -1 x x 0 (t)-x Kx 1 |xu| 1+2s • [(x + xu) p(β-1) -(β -1)γt] 1 1-β [x p(β-1) -(β -1)γt] 1 1-β -1 du = xw(t, x) -1 x x 0 (t)-x Kx 1 |xu| 1+2s •    1 (1+u) q -1 1-σ x q + 1 p q -1    du.
Claim 2.5. For q < 1, there exists some K(q) > 0 such that for all t > 0, all K ≥ K(q), all x > x 0 (t), and all u ∈ x0(t)-x Kx , 0 , we have

(1 + u) q -1 1 -σ x q -1 ≥ - 1 2 . 
Proof. The proof goes identically with the one in [START_REF] Alfaro | Propagation phenomena in monostable integro-differential equations: Acceleration or not?[END_REF].

By Claim 2.5 and Lagrange's Mean Value Theorem, then there exists some constant C 3 > 0 such that 1

(1+u) q -1 1-σ x q + 1 p q -1 ≤ - p q [1 + C 3 ] • (1 + u) q -1 1 -σ x q = p q [1 + C 3 ] • x q • 1 -(1 + u) q x q -σ .
Since [w(t, x)] 1-β = x q -σ and 0 < q < 1, then

1 (1+u) q -1 1-σ x q + 1 p q -1 ≤ p q [1 + C 3 ] • x q [w(t, x)] β-1 [1 -(1 + u) q ] ≤ p q [1 + C 3 ] • x q [w(t, x)] β-1 • |u| q = C 4 • x q [w(t, x)] β-1 • |u| q .
So we have

I 3 ≤ xw(t, x) -1 x x 0 (t)-x Kx 1 |xu| 1+2s • C 4 • x q [w(t, x)] β-1 • |u| q du = C 4 [w(t, x)] β -1 x x 0 (t)-x Kx 1 |xu| 1+2s • |xu| q • xdu = C 4 [w(t, x)] β -1 x 0 (t)-x K 1 |z| 1+2s-q dz.
Let's take q such that 2s -q > 0, that is, 2s > q = p(β -1), then we have

I 3 ≤ C 4 [w(t, x)] β -1 -∞ 1 |z| 1+2s-q dz = C 5 [w(t, x)] β .
For I 4 , it's easy to see that

I 4 = 1 2 1 -1 m(t, x + z) + m(t, x -z) -2m(t, x) |z| 1+2s dz.
By the proof of Claim 2.1, since p + 1 ≧ pβ and x > 1, then we know that

|∂ 2 xx m(t, x)| ≤ p 2 β[m(t, x)] 2β-1 + (p + 1 -pβ)[m(t, x)] β .
For any z ∈ [-1, 1], since x > 2, then x + z > 1, which implies that

|∂ 2 xx m(t, x)| ≤ p 2 β[w(t, x)] 2β-1 + (p + 1 -pβ)[w(t, x)] β .
Since β > 1 and 0 < w(t, x) ≤ 1, then there exists some C 6 > 0 such that

|∂ 2 xx m(t, x)| ≤ C 6 [w(t, x)] β .
So we know that

I 4 ≤ 1 2 1 -1 C 6 [w(t, x)] β |z| 2 |z| 1+2s dz = C 7 [w(t, x)] β .
For I 5 , for all z ≥ 0, since m(t ′ , x ′ ) is decreasing with respect to x ′ , then

I 5 ≤ 0.
So we have

∂ t m(t, x) + (-∆) s m(t, x) -f (m(t, x)) = ∂ t w(t, x) + (-∆) s m(t, x) -f (w(t, x)) = γ[w(t, x)] β -f (w(t, x)) + (-∆) s m(t, x) ≥ γ[w(t, x)] β -r[w(t, x)] β -I 1 -I 2 = (γ -r)[w(t, x)] β -I 1 -I 3 -I 4 -I 5 ≥ [w(t, x)] β [γ -rC 2 K 2s • [w(t, x)] 2s p -β -C 5 -C 7 ].
Let's take p = 2s β (in this case, we have p + 1 ≥ pβ and 2s > p(β -1)), when γ is large enough, we have

∂ t m(t, x) + (-∆) s m(t, x) -f (m(t, x)) ≥ 0.
In summary, we can conclude that m(t, x) is a supersolution to the problem [START_REF] Alfaro | Propagation phenomena in monostable integro-differential equations: Acceleration or not?[END_REF]. By the comparision principle, then u(t, x) ≤ m(t, x), ∀t > 0, ∀x ∈ R.

So for any λ ∈ (0, 1) and any x ∈ Γ λ (t), then

λ ≤ u(t, x) ≤ m(t, x) = 1 x 2s(β-1) β -γ(β -1)t 1 β-1 . Since β > 1, hence we get x ≤ 1 λ β-1 + γ(β -1)t β 2s(β-1)
. So when T λ ≫ 1, we have

x λ (t) ≤ C(λ) • t β 2s(β-1) .
3 Lower bound on the speed of the super level sets Proof of Theorem 1.3. By Assumption 2 on the initial data u 0 (x), we can construct a non-increasing function u 0 (x) such that u 0 (x) ≤ u 0 (x) for all x ∈ R and

u 0 (x) = c 0 , if x ≤ -R 0 -1, 0, if x ≥ -R 0 ,
for some small 0 < c 0 ≪ 1 and some large R 0 ≫ 1.

Let v(t, x) be the solution of the following problem:

v t + (-∆) s v = 0, t > 0, x ∈ R, v(0, x) = u 0 (x), x ∈ R.
Since f (u) ≥ 0 for all u ∈ [0, 1], it's easy to see that v(t, x) is a subsolution to the problem [START_REF] Alfaro | Propagation phenomena in monostable integro-differential equations: Acceleration or not?[END_REF]. By the comparison principle, we have v(t, x) ≤ u(t, x), ∀t > 0, x ∈ R.

Let p s (t, x) be the heat kernel for (-∆) s , then we have

v(t, x) = R u 0 (x -y)p s (t, y)dy, ∀t > 0, x ∈ R.
For the heat kernel for (-∆) s , it's well known that there exists some constant 1 > C 1 > 0 such that

C 1 t 1 2s [1 + |t -1 2s x| 1+2s ] ≤ p s (t, x) ≤ C -1 1 t 1 2s [1 + |t -1 2s x| 1+2s ] , ∀t > 0, x ∈ R. So we get v(t, x) ≥ R u 0 (x -y) • C 1 t 1 2s [1 + |t -1 2s y| 1+2s ] dy ≥ +∞ x+R0+1 c 0 • C 1 t 1 2s [1 + |t -1 2s y| 1+2s ] dy = +∞ t -1 2s (x+R0+1) c 0 • C 1 1 + |z| 1+2s dz (9) 
In particular, we have

u(1, x) ≥ +∞ x+R0+1 c 0 • C 1 1 + |z| 1+2s dz.
Thus for x > 1, we may find a constant C 2 > 0 such that

u(1, x) ≥ C 2 x 2s .
As a result, we can find a small enough d > 0 such that

u(1, x) ≥ v(1, x) ≥ ũ0 (x) :=    d for x ≤ 1 d x 2s for x ≥ 1. ( 10 
)
Hence, from the comparison principle and up to a shift in time, we only need to get the lower estimate for the case that u(t, x) is the solution to the problem (3) with the initial data ũ0 . Since ũ0 (x) is decreasing, it's easy to see that u(t, x) is decreasing with respect to x. Let λ 0 :=

+∞ 1 2 c 0 • C 1 1 + |z| 1+2s dz, x B (t) := t 1 2s

4

, and x λ0 (t) be such that u(t, x λ0 (t)) = λ 0 . From ( 9), then there exist T λ0 ≫ 1 such that for all t ≥ T λ0 we have,

v(t, x B (t)) ≥ +∞ 1 4 +t -1 2s (R0+1) c 0 • C 1 1 + |z| 1+2s dz ≥ +∞ 1 2 c 0 • C 1 1 + |z| 1+2s dz = λ 0 .
Since u 0 (x) is decreasing, it's easy to see that v(t, x) is decreasing with respect to x. Since u(t, x) ≥ v(t, x) for all t ≥ 0 and all x ≥ 0, and u(t, x) and v(t, x) are decreasing with respect to x, then we can get t

1 2s 4 = x B (t) ≤ x λ0 (t).
The above argument holds as well for any 0 < λ ≤ λ 0 which provides the lower estimate.

It remains to obtain a similar bound for a given λ 0 < λ < 1. To obtain the bound we can argue as in [START_REF] Alfaro | Propagation phenomena in monostable integro-differential equations: Acceleration or not?[END_REF]. So first let us prove an invasion lemma on the solution of the Cauchy problem (3). Namely, Proposition 3.1. For any 0 < s < 1, assume that the nonlinearity f satisfies Assumption 1, and the initial data u 0 (x) satisfies Assumption 2. Assume β > 1 and β 2s(β-1) > 1, and let u(t, x) be the solution to the problem (3) with the initial data u 0 (x). Then, for any A ∈ R,

lim t→∞ u(t, x) = 1 uniformly in (-∞, A], (11) 
and, for any λ ∈ (0, 1),

lim t→∞ x λ (t) t = +∞. ( 12 
)
Let us postpone for a moment the proof of Proposition 3.1 and finish the proof of Theorem 1.3. Let us denote by w(t, x) the solution of (3) starting from a nonincreasing w 0 such that

w 0 (x) =    λ 0 if x ≤ -1 0 if x ≥ 0. ( 13 
)
It follows from Proposition 3.1 that there is a time τ λ > 0 such that

w(τ λ , x) > λ, ∀x ≤ 0. ( 14 
)
On the other hand, since u 0 (x) is decreasing, it's easy to see that v(t, x) is also decreasing with respect to x. Since u(t, x B (t)) ≥ λ 0 , then

u(t, x) ≥ v(t, x) ≥ λ 0 , ∀x ≤ x B (t).
So it follows from (13) that u(T, x) ≥ w 0 (x -x λ0 (T )), ∀T ≥ 0, ∀x ∈ R.

So the comparison principle yields

u(T + τ, x) ≥ w(τ, x -x λ0 (T )), ∀T ≥ 0, ∀τ ≥ 0, ∀x ∈ R.
In view of ( 14), this implies that

u(T + τ λ , x) > λ, ∀T ≥ 0, ∀x ≤ x λ0 (T ).
Hence, for t ≥ τ λ , the above implies

x λ (t) ≥ x λ0 (t -τ λ ) = (t -τ λ ) 1 2s 4 ≥ Ct 1 2s , provided t ≥ T ′ λ , with T ′ λ > τ λ large enough.
This concludes the proof of the lower estimate. In summary, we can conclude that for any λ ∈ (0, 1), then there exist some constants T ′ λ > 0 and C ′ (λ) > 0 such

x λ (t) ≥ C ′ (λ)t 1 2s , ∀t > T ′ λ .
In order to prove Proposition 3.1, let us first establish the following result.

Proposition 3.2 (Speeds of a sequence of bistable traveling waves). For any 0 < s < 1, assume that the nonlinearity f satisfies Assumption 1, and the initial data u 0 (x) satisfies Assumption 2. Assume β > 1 and β 2s(β-1) > 1. Let (g n ) = (g θn ) be a sequence of bistable nonlinearities such that g n ≤ g n+1 ≤ f and g n → f . Let (c n , U n ) be the associated sequence of traveling waves. Then lim n→∞ c n = +∞.

Proof. Since g n+1 ≥ g n it follows from standard sliding techniques [START_REF] Berestycki | On the method of moving planes and the sliding method[END_REF][START_REF] Chen | Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations[END_REF][START_REF] Coville | Propagation speed of travelling fronts in non local reaction-diffusion equations[END_REF][START_REF] Coville | On uniqueness and monotonicity of solutions of non-local reaction diffusion equation[END_REF][START_REF] Coville | Maximum principles, sliding techniques and applications to nonlocal equations[END_REF]] that c n+1 ≥ c n . Assume now by contradiction that c n ր c for some c ∈ R. Observe that since g n → f and 1 0 f (s) ds > 0, we have c n ≥ c 0 > 0 for n large enough, says, n ≥ n 0 . As a consequence, for all n ≥ n 0 , U n is smooth and since any translation of U n is a still a solution, without loss of generality, we can assume the normalization U n (0) = 1/2. Now, thanks to Helly's Theorem [START_REF] Brunk | Some helly theorems for monotone functions[END_REF] and up to extraction, U n converges to a monotone function Ū such that Ū (0) = 1 2 . Also, since c n < c, from the equation we get an uniform bound on U ′ n , U ′′ n and up to extraction, U n also converges in C 2 loc (R), and the limit has to be Ū ′ . As a result, Ū is monotone and solves

   (-∆ s ) Ū + c Ū ′ + f ( Ū ) = 0 on R, Ū (-∞) = 1, Ū (0) = 1 2 , Ū (∞) = 0.
In other words, we have constructed a monostable traveling wave under assumption that β > 1 and β 2s(β-1) > 1 , which is a contradiction with the result in [START_REF] Gui | Traveling wave solutions to some reaction diffusion equations with fractional laplacians[END_REF].

Equipped with this technical result we can establish Proposition 3.1.

Proof. First, we prove [START_REF] Chen | Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations[END_REF] for the particular case where the initial datum u 0 is a smooth decreasing function such that

u 0 (x) =    d 0 for x ≤ -1 0 for x ≥ 0, (15) 
for an arbitrary 0 < d 0 < 1. Since u 0 is nonincreasing, we deduce from the comparison principle that, for all t > 0, the function u(t, x) is still decreasing in x.

Let us now extend f by 0 outside the interval [0, 1]. From [START_REF] Achleitner | Traveling waves for a bistable equation with nonlocal diffusion[END_REF] and Proposition 3.2, there exists 0 < θ < d 0 and a Lipschitz bistable function g ≤ f -i.e. g(0) = g(θ) = g(1) = 0, g(s) < 0 in (0, θ), g(s) > 0 in (θ, 1), and g ′ (0) < 0, g ′ (1) < 0, g ′ (θ) > 0-such that there exists a smooth decreasing function U θ and c θ > 0 verifying

(-∆) s U θ + c θ U ′ θ + g(U θ ) = 0 on R, U θ (-∞) = 1, U θ (∞) = 0.
Let us now consider v(t, x) the solution of the Cauchy problem

∂ t v(t, x) = -(-∆) s v(t, x) + g(v(t, x)) for t > 0, x ∈ R, v(0, x) = u 0 (x).
Since g ≤ f , v is a subsolution of the Cauchy problem (3) and by the comparison principle, v(t, x) ≤ u(t, x) for all t > 0 and x ∈ R. Now, thanks to the global asymptotic stability result [1, Theorem 3.1], since d 0 > θ, then we know that there exists ξ ∈ R, C 0 > 0 and κ > 0 such that for all t ≥ 0

v(t, •) -U θ (• -c θ t + ξ) L ∞ ≤ C 0 e -κt .
Therefore, for all t > 0 and x ∈ R, we have

u(t, x) ≥ v(t, x) ≥ U θ (x -c θ t + ξ) -C 0 e -κt .
Since c θ > 0, by sending t → ∞, we get 1 ≥ lim inf t→∞ u(t, x) ≥ lim t→∞ [U θ (x -c θ t + ξ) -C 0 e -κt ] = 1. As a result, for all x ∈ R, we have 1 ≥ lim sup t→∞ u(t, x) ≥ lim inf t→∞ u(t, x) = 1, which implies that u(t, x) → 1 as t → ∞. Since u(t, x) is decreasing in x, then the convergence is uniform on any set (-∞, A]. This concludes the proof of (11) for our particular initial datum.

For a generic initial data satisfying Assumption 2, we can always, up to a shift in space, construct a smooth decreasing ũ0 satisfying [START_REF] Coville | Propagation speed of travelling fronts in non local reaction-diffusion equations[END_REF] and ũ0 ≤ u 0 . Since the solution ũ(t, x) of the Cauchy problem starting from ũ0 satisfies [START_REF] Chen | Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations[END_REF], so does u(t, x) thanks to the comparison principle.

Another better lower bound on the speed of the super level sets

Here we prove another lower bound on the speed of x λ (t) when 1 < β < 2 and 1 2s(β-1) > 1 (notice that 1 2s(β-1) > 1 2s if and only if 1 < β < 2). In the whole of this section, let's assume the conditions in Theorem 1.4 hold. As above to measure the acceleration, we use a subsolution that fills the space with a superlinear speed. The construction of this subsolution is an adaptation of the one proposed by Alfaro and Coville [START_REF] Alfaro | Propagation phenomena in monostable integro-differential equations: Acceleration or not?[END_REF] for a nonlocal diffusion with an integrable kernel. It essentially contains three steps.

Step one. It consists in using the diffusion to gain an algebraic tail at time t = 1.

From the proof of Theorem 1.3, we have known that we can find a small enough d > 0 such that

u(1, x) ≥ v(1, x) ≥ v 0 (x) :=    d for x ≤ 1 d x 2s for x ≥ 1. (16) 
Hence, from the comparison principle and up to a shift in time, it is enough to prove the lower estimate for u(t, x) which is the solution starting from the initial data v 0 , which we do below.

Step two. Here we construct explicitly the subsolution that we are considering.

Following Alfaro-Coville [START_REF] Alfaro | Propagation phenomena in monostable integro-differential equations: Acceleration or not?[END_REF] let us consider the function g(y) := y(1 -By), with B > 1 2d , it's easy to see that g(y) ≤ 0 if and only if 0 ≤ y ≤ 1 B , and g(y) ≤ g( 1 2B ) = 1 4B < d for all y ∈ R. As in the previous subsection, for any γ > 0, let w(•, x) denote the solution to the Cauchy problem

   dw dt (t, x) = γ[w(t, x)] β , w(0, x) = v 0 (x).
That is

w(t, x) = 1 [[v 0 (x)] 1-β -γ(β -1)t] 1 β-1
, where v 0 is defined in [START_REF] Engler | On the speed of spread for fractional reaction-diffusion equations[END_REF].

Notice that w(t, x) is not defined for all times. When x ≤ 1, w(t, x) is defined for t ∈ [0,

1 d β-1 γ(β-1) ), whereas for x > 1, w(t, x) is defined for t ∈ 0, T (x) := x 2s(β-1) d β-1 γ(β-1) . Let us define x B (t) := d 1 2s (2B) β-1 + γ(β -1)t 1 2s(β-1) . (17) 
Since B > 1 2d and β > 1, then x B (t) > 1 and w(t, x B (t)) = 1 2B . For x < 1 and 0 < t <

1 d β-1 γ(β-1) , since v 0 (x ′ ) = d for all x ′ ≤ 1, then we have ∂ x w(t, x) = ∂ xx w(t, x) = 0. For x > 1 and 0 < t < T (x), we compute ∂ x w(t, x) = 1 1 -β • [[v 0 (x)] 1-β -γ(β -1)t] 1 1-β -1 • (1 -β)[v 0 (x)] -β • v ′ 0 (x) = -2d 1-β s[w(t, x)] β • x 2sβ-2s-1 < 0 ∂ xx w(t, x) = -2d 1-β s • [β[w(t, x)] β-1 • ∂ x w(t, x) • x 2sβ-2s-1 + [w(t, x)] β • (2sβ -2s -1)x 2sβ-2s-2 ] = -2d 1-β s • β[w(t, x)] β-1 • -2d 1-β s[w(t, x)] β • x 2sβ-2s-1 • x 2sβ-2s-1 +[w(t, x)] β • (2sβ -2s -1)x 2sβ-2s-2 = 2d 1-β s[w(t, x)] β • x 2sβ-2s-2 • [2d 1-β sβ • [w(t, x)] β-1 x 2sβ-2s + 2s + 1 -2sβ] = 2d 1-β s[w(t, x)] β • x 2sβ-2s-2 • [2d 1-β sβ • [[v 0 (x)] 1-β -γ(β -1)t] -1 x 2sβ-2s + 2s + 1 -2sβ] > 2d 1-β s[w(t, x)] β • x 2sβ-2s-2 • [2d 1-β sβ • [v 0 (x)] β-1 x 2sβ-2s + 2s + 1 -2sβ] = 2d 1-β s[w(t, x)] β • x 2sβ-2s-2 • 2d 1-β sβ • d x 2s β-1 x 2sβ-2s + 2s + 1 -2sβ = 2d 1-β s[w(t, x)] β • x 2sβ-2s-2 • (2s + 1) > 0.
In the first inequality of the computation of ∂ xx w(t, x), we used the condition β > 1 and γ > 0. Hence, for any t > 0, the function w(t, •) is decreasing and convex with respect to the variable x.

Let us now define the continuous function

m(t, x) :=    1 4B for x ≤ x B (t) g(w(t, x)) for x B (t) < x.
Note that by the construction of m(t, x) for all t > 0, it's easy to see that the function m(t, x) is C 1,1 (R) in x, and

∂ x m(t, x) = ∂ x w(t, x)(1 -2Bw(t, x)) + ,
which is a Lipschitz function.

Observe that: when x > x B (0) = (2dB)

1 2s > 1, we have m(0, x) = g(w(0, x)) = g(v 0 (x)) ≤ v 0 (x); when x < 1, we have m(0, x) = 1 4B < d = v 0 (x); when 1 ≤ x ≤ x B (0) = (2dB) 1 2s , we have v 0 (x) = d x 2s ≥ d 2dB = 1 2B > 1 4B = m(0, x). Hence m(0, x) ≤ v 0 (x) for all x ∈ R.
Let us now show that m(t, x) is a subsolution for some appropriate choices of γ and B.

By the definition of m(t, x), we have

∂ t m(t, x) = γw β (t, x)(1 -2Bw(t, x)) + , therefore we get ∂ t m(t, x) ≤    0 for x ≤ x B (t) -1 γw β (t, x) for x B (t) -1 < x (18) 
Since f satisfies f (u) ≥ r 1 u β as u → 0 + , then there exists a small

r 2 > 0 such that f (u) ≥ r 2 u β (1 -u) for all 0 ≤ u ≤ 1. When x ≤ x B (t), then m(t, x) = 1 4B . Since w(t, x B (t)) = 1 2B , then f (m(t, x)) ≥ r 2 [m(t, x)] β [1 -m(t, x)] = r 2 1 2 w(t, x B (t)) β 1 -1 4B = r2 2 β 1 -1 4B [w(t, x B (t))] β . When x > x B (t), since 0 ≤ g(y) ≤ 1 4B and w(t, x) ≤ 1 2B , then f (m(t, x)) ≥ r 2 [w(t, x)(1 -Bw(t, x))] β [1 -g(w(t, x))] ≥ r[w(t, x)(1 -B • 1 2B )] β [1 -1 4B ] = r 2 β 1 -1 4B [w(t, x)] β . In summary, we have f (m(t, x)) ≥    C 0 [w(t, x B (t))] β for x ≤ x B (t) C 0 [w(t, x)] β for x > x B (t), (19) 
where C 0 := r 2 β 1 -1 4B . Let us now derive some estimate on the fractional diffusion term (-∆) s m(t, x) on the three regions x ≤ x B (t) -1, x B (t) -1 < x < x B (t) + 1 and x > x B (t) + 1. For simplicity of the presentation, we dedicated a subsection to each region and let us start with the region x ≤ x B (t) -1.

• When x ≤ x B (t) -1:
In this region of space, we claim that: Claim 4.1. (a) If 1 2 < s < 1, then there exists C 3 > 0 such that for all x ≤ x B (t) -1, we have

(-∆) s m(t, x) ≤ -C 3 v ′ 0 (x B (t))[v 0 (x B (t))] -β [w(t, x B (t))] β . (b) If 0 < s ≤ 1 2
, for large enough B ≫ 1, then there exists C 3 > 0 such that for all x ≤ x B (t) -1, we have

(-∆) s m(t, x) ≤ C 3 B 2 .
Note that the singularity here play a major role and the estimate strongly depends on the value of s.

Proof. For x ≤ x B (t) -1, since m(t, y) = 1 4B = m(t, x B (t)) for all y ≤ x B (t), then we have

(-∆) s m(t, x) = +∞ xB (t)
m(t, x B (t)) -m(t, y) |x -y| 1+2s dy.

We now treat separately the following two situations: 1 2 < s < 1, 0 < s ≤ 1 2 . Case I: 1 2 < s < 1. By using the Fundamental Theorem of Calculus, then we have

-(-∆) s m(t, x) = +∞ xB (t) 1 0 (y -x B (t)) |x -y| 1+2s ∂ x m(t, x B (t) + τ (y -x B (t))) dτ dy, = ∞ 0 1 0 z |x -x B (t) -z| 1+2s ∂ x m(t, x B (t) + τ z) dτ dz.
Now, since w(t, •) is a positive, decreasing and convex function, for any z, τ > 0, then we have

∂ x m(t, x B (t) + τ z) = ∂ x w(t, x B (t) + τ z) (1 -2Bw(t, x B (t) + τ z)) ≥ ∂ x w(t, x B (t)). So we can obtain that (-∆) s m(t, x) ≥ ∂ x w(t, x B (t)) ∞ 0 z |x -x B (t) -z| 1+2s dz. For any z > 0, since x < x B (t) -1, then x -x B (t) -z < -1 -z < 0, which implies that -x B (t) -z| ≥ |1 + z| > 0. Since 1 2 < s < 1, then we have ∞ 0 z |x -x B (t) -z| 1+2s dz < C 3 := ∞ 0 z |1 + z| 1+2s dz < +∞. As a result -(-∆) s m(t, x) ≥ C 3 ∂ x w(t, x B (t)) = -C 3 v ′ 0 (x B (t))[v 0 (x B (t))] -β [w(t, x B (t))] β , ∀x ≤ x B (t) -1,
Case II: 0 < s ≤ 1 2 . In this situation, the previous argumentation fails and we argue as follows. Since w(t, y) ≥ 0 for all t and all y, for any constant R > 1 which will be determined later, we have Let us now estimate I 1 and I 2 . Since w(t, y) ≥ 0 for all t and all y, for I 2 we have

(-∆) s m(t, x) = +∞ xB(t) m(t, x B (t)) -m(t,
I 2 ≤ +∞ R w(t, x B (t)) |1 + z| 1+2s dz ≤ 1 2B • +∞ R 1 z 1+s dz = 1 2B • 1 s • 1 R s . ( 20 
)
On the other hand, by using the Fundamental Theorem of Calculus and the convexity of w(t, y) is convex with respect to y, we get for I 1

I 1 = R 0 1 0 -∂ x w(t, x B (t) + τ z) • z |1 + z| 1+2s dτ dz, ≤ R 0 1 0 -∂ x w(t, x B (t)) • z |1 + z| 1+2s dτ dz ≤ -∂ x w(t, x B (t)) R 0 z |1 + z| 1+2s dz.
Thus, by using the definition of ∂ x w(t, x B (t)), R > 1 and since |y| 2s > |y| s in (1, R) we get

I 1 ≤ -∂ x w(t, x B (t)) R 0 z |1 + z| 1+2s dz. ≤ -∂ x w(t, x B (t)) 2R 1 1 y 2s dy ≤ -∂ x w(t, x B (t)) 2R 1 1 y s dy I 1 ≤ 2d 1-β s 1 2B β • [x B (t)] 2sβ-2s-1 • 1 1 -s • (2R) 1-s , which using that x B (t) ≥ d 1 2s (2B) 1 
2s and 2sβ -2s -1 < 0 enforces that

I 1 ≤ 2d 1-β s 1 2B β • [d 1 2s (2B) 1 2s ] 2sβ-2s-1 • 1 1 -s • (2R) 1-s = C 3,1 B -(1+ 1 2s ) R 1-s .
Combining the latter estimate with (20), then we have

(-∆) s m(t, x) ≤ I 1 + I 2 ≤ C 3,1 B -(1+ 1 2s ) R 1-s + 1 2B • 1 s • 1 R s . By taking R such that C 3,1 B -(1+ 1 2s ) R 1-s = 1 2B • 1 s • 1 R s , that is, R = 1 2sC3,1 B 1 2s
, we then achieve

(-∆) s m(t, x) ≤ C 3 B 2 .
Let us now obtain some estimate in the region x ≥ x B (t) + 1.

• When x ≥ x B (t) + 1:

In this region, we claim that Claim 4.2. (a) If 1 2 < s < 1, then there exists positive constant C 4 such that for all x ≥ x B (t) + 1, we have 

(-∆) s m(t, x) ≤ -C 4 v ′ 0 (x)[v 0 (x)] -β [w(t, x)] β . (b) If 0 < s ≤ 1 2 ,
I 1 + I 2 For I 1 , since ∂ x m(t, x) = ∂ x w(t, x)(1 -2Bw(t, x)) + , then m(t, •) is decreasing. Since x ≥ x B (t) + 1, then I 1 ≤ 0. ( 21 
)
For I 2 , we have

I 2 = P.V. ∞ xB (t)-x m(t, x) -m(t, x + z) |z| 1+2s dz = -1 2 xB (t)-x m(t, x) -m(t, x + z) |z| 1+2s dz + P.V. 1 2 -1 2 m(t, x) -m(t, x + z) |z| 1+2s dz + +∞ 1 2 m(t, x) -m(t, x + z) |z| 1+2s dz =: I 3 + I 4 + I 5 .
Since m(t, •) is decreasing and x ≥ x B (t) + 1, it's easy to see that

I 3 ≤ 0. ( 22 
)
For I 4 , since the function m(t, •) is smooth (at least C 2 ) on (x -1 2 , x + 1 2 ), then we have

I 4 = 1 2 1 2 -1 2 m(t, x + z) + m(t, x -z) -2m(t, x) |z| 1+2s dz ≤ C 4,1 |∂ xx m(t, x)| A direct computation of ∂ xx m(t, x) shows that |∂ xx m(t, x)| ≤ -C 4,2 |∂ x w(t, x)|, which implies that I 4 ≤ -C 4,3 ∂ x w(t, x). (23) 
To complete our proof we need to estimate I 5 and to do so we treat separately the following two situations:

1 2 < s < 1, 0 < s ≤ 1 2 .
Case I: 1 2 < s < 1. In this situation, by using the Fundamental Theorem of Calculus, we obtain

I 5 = - +∞ 1 2 1 0 z∂ x w(t, x + τ z) (1 -2Bw(t, x + τ z)) |z| 1+2s dzdτ,
which by the convexity and the monotonicity of w(t, •) and since 1 2 < s < 1, then yields

I 5 ≤ - ∞ 1 2 1 0 z |z| 1+2s ∂ x w(t, x + τ z) (1 -2Bw(t, x + τ z)) dzdτ, ≤ -∂ x w(t, x) ∞ 1 2 z |z| 1+2s dz, = -∂ x w(t, x) 1 2 1-2s (2s -1)
.

By combining the latter with ( 21), [START_REF] Gui | Traveling wave solutions of allen-cahn equation with a fractional laplacian[END_REF], and ( 23), we can therefore find a constant C 4 > 0 such that

(-∆) s m(t, x) ≤ -C 4 ∂ x w(t, x) = -C 4 v ′ 0 (x)v -β 0 (x)w β (t, x).
Case II : 0 < s ≤ 1 2 . In this situation, again the previous argumentation fails and we argue as follows. For any R > 1, let us rewrite I 5 as follows

I 5 = R 1 2 m(t, x) -m(t, x + z) |z| 1+2s dz + +∞ R m(t, x) -m(t, x + z) |z| 1+2s dz =: I 6 + I 7 .
An easy computation show that since m(t, x) ≤ w(t, x), and R > 1 we get

I 7 ≤ +∞ R m(t, x) |z| 1+2s dz ≤ w(t, x) • +∞ R 1 z 1+2s dz ≤ w(t, x) • +∞ R 1 z 1+s dz = 1 s w(t, x) • 1 R s . (24) 
On the other hand by using the Fundamental Theorem of Calculus, we obtain the following for I 6

I 6 = - R 1 2 1 0 z∂ x w(t, x + τ z) (1 -2Bw(t, x + τ z)) |z| 1+2s dzdτ,
and by using the convexity and the monotonicity of w(t, •), we then achieve

I 6 ≤ - R 1 2 1 0 z |z| 1+2s ∂ x w(t, x + τ z) (1 -2Bw(t, x + τ z)) dzdτ, ≤ -∂ x w(t, x) R 1 2 z |z| 1+2s dz, ≤ -∂ x w(t, x) 1 1 2 1 z 2s dz + R 1 1 z 2s dz , ≤ -∂ x w(t, x) 1 1 2 1 z 2s dz + R 1 1 z s dz ≤ -∂ x w(t, x) C(s) + 1 s R 1-s . (25) 
Combining ( 25) with ( 24) and using the definition of ∂ x w(t, x) enforce that

I 5 ≤ 1 s w(t, x) • 1 R s + C 6,2 [w(t, x)] β • x 2sβ-2s-1 R 1-s + C(s)∂ x w(t, x). By taking R such that C 6,2 [w(t, x)] β • x 2sβ-2s-1 R 1-s = 1 s w(t, x) • 1 R s , that is, R = 1 sC6,2 • [w(t, x)] 1-β • x -2sβ+2s+1 , we then get I 5 ≤ C 7,2 [w(t, x)] 1-2s+2sβ x 2s(2sβ-2s-1) + C(s)∂ x w(t, x),
which combined with ( 21), ( 22) and ( 23) then yields

(-∆) s m(t, x) ≤ -C 4 ∂ x w(t, x) + C 4 [w(t, x)] 1-2s+2sβ x 2s(2sβ-2s-1) .
Lastly, let us estimate -(-∆) s m(t, x) in the region x B (t) -1 < x < x B (t) + 1.

• When x B (t) -1 ≤ x ≤ x B (t) + 1:
In this last region, we claim that:

Claim 4.3. (a) If 1 2 < s < 1, then there exists positive constant C 5 such that for all x B (t) -1 ≤ x ≤ x B (t) + 1, we have (-∆) s m(t, x) ≤ -C 5 v ′ 0 (x)[v 0 (x)] -β [w(t, x)] β . (b) If 0 < s ≤ 1 2 , for large enough B ≫ 1, then there exists positive constant C 5 such that for all x B (t) -1 ≤ x ≤ x B (t) + 1, , we have (-∆) s m(t, x) ≤ -C 5 ∂ x w(t, x) + C 5 [w(t, x)] 1-2s+2sβ x 2s(2sβ-2s-1) .
Proof. Again let us rewrite the fractional Laplacian in the following way :

(-∆) s m(t, x) = P.V. R m(t, x) -m(t, y) |x -y| 1+2s dy = x-1 -∞ m(t, x) -m(t, y)
|x -y| 1+2s dy + P.V.

+∞

x-1 m(t, x) -m(t, y) |x -y| 1+2s dy =: I 1 + I 2 By using the monotone character of m(t, •), we have

I 1 ≤ 0. ( 26 
)
For I 2 , we have

I 2 = P.V. ∞ -1 m(t, x) -m(t, x + z) |z| 1+2s dz = - 1 2 1 -1 m(t, x + z) + m(t, x -z) -2m(t, x) |z| 1+2s dz + ∞ 1 m(t, x) -m(t, x + z) |z| 1+2s dz = I 3 + I 4 .
Observe that again to estimate I 2 we break the integral into two part and we can easily see that the contribution of I 4 can be estimated as in the proof of the previous claim so we won't repeat it. If fact, here the only change with respect to the situation x > x B (t) + 1, is the contribution of I 3 since unlike the previous case, the function m is not any more a C 2 smooth function on the domain of integration and we need then more precise estimate. So let us now look more closely at I 3 .

For I 3 , thanks to the definition of m, we can get For I 6 , by using the convexity of w(t, •) and the uniform Lipschitz continuity of the function (1 -2Bw(t, x)) + for x ∈ (x B (t) -1, x B (t) + 1), then we have A direct computation can give us some C 5,1 > 0 such that ∂ x w(t, x -1) ≥ C 5,1 ∂ x w(t, x), which implies that I 6 ≤ -C 5,3 ∂ x w(t, x). Hence I 3 ≤ -C 5,3 ∂ x w(t, x).

I 3 = - 1 2 1 -1 1 0 z ∂ x m(t, x + τ z) -∂ x m(t, x -τ z) |z| 1+2s dτ dz = - 1 2 1 -1 1 0 z |z| 1+2s [∂ x w(t, x + τ z)(1 -2Bw(t, x + τ z)) + -∂ x w(t, x -τ z)
I 6 ≤ - 1 2 ∂ x w(t, x -1) 
(

) 27 
By collecting [START_REF] Fisher | The wave of advance of advantageous genes[END_REF] We now choose γ ≤ C0 2 . In the view of the above inequalities, to complete the construction of the subsolution m(t, x), it suffices to find a condition on B so that h(t, x) ≥ - C0 2 for all t > 0 and all x ∈ R. From the definitions of h(t, x) and v 0 (x), it suffices to achieve x (β-1)2s-1 ≤ C 0 d β-1 4sdC 6 , for all t > 0, x ≥ x B (t) -1.

Since (β -1)2s < 1, this reduces to the following condition on x B (0):

x B (0) ≥ C 0 d β-1 4sdC 6 1 1-2s(β-1) + 1.
From [START_REF] Fife | The approach of solutions of nonlinear diffusion equations to travelling front solutions[END_REF] we have x B (0) = (2Bd) . Since 2sβ -2s -1 < 0, so when B is large enough, we have

C 7 x 2sβ-2s-1 ≤ C 0 3 .
Note that since β > 1 and 0 < s ≤ 1 2 , we have 1-2s+2sβ-β ≤ 0 and therefore since w(t, x) ≥ w(0, x) = v 0 (x) = d x 2s , we have C 6 [w(t, x)] 1-2s+2sβ-β x 2s(2sβ-2s-1) ≤ C 8 x -2s(1-2s+2sβ-β) • x 2s(2sβ-2s-1) = C 8 x 2s(β-2) Using that β < 2 and since x ≥ x B (t) -1 ≥ d 1 2s (2B) 1 2s -1, so when B is large enough, we have C 8 x 2s(β-2) ≤ C0 3 , which implies that C 6 [w(t, x)] 1-2s+2sβ-β x 2s(2sβ-2s-1) ≤ C 0 3 .

So

(∂ t m + (-∆) s m -f (m))(t, x) ≤ 0.

In summary, for any 0 < s < 1, after some good choices of γ, B and ǫ, then the function m(t, x) indeed is a subsolution.

Step three. It consists in using the subsolution to prove the lower estimate in Theorem 1.4.

Fix γ > 0 and B 0 > 0 as in the previous step so that m(t, x) is a subsolution. From the comparison principle we get m(t, x) ≤ u(t, x), for all t > 0 and x ∈ R. Recall that m(t, x B0 (t)) = 1 4B0 and that u(t, •) is nonincreasing (since initial datum v 0 is nonincreasing) so that u(t, x) ≥ 1 4B 0 , ∀x ≤ x B0 (t).

In particular, for any 0 < λ ≤ 1 4B0 , the "largest" element x λ (t) of the super level set Γ λ (t) has to satisfy 1) , which provides the lower estimate.

x λ (t) ≥ x B0 (t) ≥ d 1 α-1 [γ(β -1)t] 1 2s(β-
It now remains to obtain a similar bound for a given 1 4B0 < λ < 1. Such estimate can be obtained by redoing the argument in Section 3.

Claim 2 . 1 .

 21 If p + 1 ≥ pβ, then there exists some constant C(p, β) > 0 such that
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 15652 2Bw(t, x -τ z)) + ] dτ dz Let us rewrite the bracket inside the integral as follows:∂ x w(t, x + τ z)(1 -2Bw(t, x + τ z)) + -∂ x w(t, x -τ z)(1 -2Bw(t, x -τ z)) + = [∂ x w(t, x + τ z) -∂ x w(t, x -τ z)] • (1 -2Bw(t, x + τ z)) + + ∂ x w(t, x -τ z)[(1 -2Bw(t, x + τ z)) + -(1 -2Bw(t, x -τ z)) + ]Then we can decompose I 3 into two integrals I 3 = I 5 + I 6 withI |z| 1+2s [∂ x w(t, x + τ z) -∂ x w(t, x -τ z)](1 -2Bw(t, x + τ z)) + dτ dz I |z| 1+2s ∂ x w(t, x -τ z)[(1 -2Bw(t, x + τ z)) + -(1 -2Bw(t, x -τ z)) + ] dτ dz.Now since w(t, x) is smooth, using the Fundamental Theorem of Calculus, we get I |z| 1+2s ∂ xx w(t, x + στ z)(1 -2Bw(t, x + τ z)) + dσdτ dz.Since w(t, •) is convex, then I 5 ≤ 0.
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 112 1+2s |(1 -2Bw(t, x + τ z)) + -(1 -2Bw(t, x -τ z)) + | dτ dz ≤ -C∂ x w(t, x -1) |z| 1+2s dz = -C 5,2 ∂ x w(t, x -1).
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 1321 Hence, in view of the definition of C 0 , the above inequality holds by selectingB ≥ B 0 , with B 0 > 0 large enough. If 0 < s ≤ 1 2 , when x ≤ x B (t) -1, by(18), Claim 4.1, and (19), we have(∂ t m + (-∆) s m -f (m))(t, x) ≤ C C 0 [w(t, x B (t))] β B -2 [C 3 -2 -β C 0 B 2-β ]Since β < 2, then there exists someB 1 ≫ 1 such that C 3 -2 -β C 0 B 2-β < 0 for all B ≥ B 1 . Hence in this case, we have (∂ t m + (-∆) s m -f (m))(t, x) < 0. When x > x B (t) -1,by (18), Claim 4.2, Claim 4.3 and (19), we have(∂ t m + (-∆) s m -f (m))(t, x) ≤ γ[w(t, x)] β -C 6 ∂ x w(t, x) + C 6 [w(t, x)] 1-2s+2sβ x 2s(2sβ-2s-1) -C 0 w β (t, x) = γ[w(t, x)] β + C 7 [w(t, x)] β • x 2sβ-2s-1 + C 6 [w(t, x)] 1-2s+2sβ x 2s(2sβ-2s-1) -C 0 [w(t, x)] β = [w(t, x)] β [γ + C 7 x 2sβ-2s-1 + C 6 [w(t, x)] 1-2s+2sβ-β x 2s(2sβ-2s-1) -C 0 ]Take γ = C0 3 . It's easy to see that x B (t) ≥ d

  for large enough B ≫ 1, then there exists positive constant C 4 such that for all x ≥ x B (t) + 1 , we have(-∆) s m(t, x) ≤ -C 4 ∂ x w(t, x) + C 4 [w(t, x)] 1-2s+2sβx 2s(2sβ-2s-1) .

	Proof. First, we have				
	(-∆) s m(t, x) = P.V.	R	m(t, x) -m(t, y) |x -y| 1+2s dy
	=	xB (t) -∞	m(t, x) -m(t, y) |x -y| 1+2s dy + P.V.	+∞ xB(t)	m(t, x) -m(t, y) |x -y| 1+2s dy
	=:				

  , Claim 4.1, Claim 4.2, Claim 4.3 and (19), now we can show that m(t, x) is a subsolution for some appropriate choices of B, γ and ǫ. If 1 2 < s < 1, by (18), Claim 4.1, Claim 4.2, Claim 4.3 and (19), we have(∂ t m + (-∆) s m -f (m))(t, x) ≤ B (t))] β [C 0 + h(t, x B (t))] for x ≤ x B (t) -1 -[w(t, x)] β [C 0 + h(t, x) -γ] for x > x B (t) -1,where h(t, x) = C 6 v ′ 0 (x)[v 0 (x)] -β with C 6 ≥ max{C 3 , C 4 , C 5 }.

	 	-[w(t, x
		
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