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Abstract

Silicon (Si) is the second most abundant element in the Earth’s crust after O. Its
concentration in soils is highly variable from less than 1 % to greater than 45 %. Parent
material is well known to be a major parameter for explaining this variability. In this
study, we proposed to analyze the impact of climate and land use on the total Si
concentration in soils and to explore the link between total Si and plant available Si
(PAS). To do so, we based our analysis on the French soil monitoring network
considering the upper soil horizon that was thought to be the most impacted by both
the effect of land use and climate and was also the most important horizon in terms of
plant availability. In order to extract the impact of climate and land use and for digital
mapping purposes, we stratified the database by parent material and soil-types. This
stratification was based on the classification used in the 1:100 000 French soil map
and 1:100 000 French soil parent material map. For non carbonated soils, we showed
that Si concentrations was decreasing with annual rainfall, evidencing a climatic effect
on the total Si concentration of French topsoils. No significant effect of the land used
could be identified. At last, we showed that PAS (by the CaCl, method) is negatively
weakly correlated to total Si concentration. This relationship is however variable among

soil classes.

Keywords

Silicon, silica, RMQS, Digital Soil Mapping, France.
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1 Introduction

Silicon is the second most abundant element in the Earth’s crust after O, and it has an
average mass concentration of 28 % (Wedepohl, 1995). The SiO, tetrahedron is the
elemental brick that constitutes the basic structure of Si in nature from solid (silicates)
to soluble (silicic acid) states. In soils, the variability of Si is large, from less than 1 wt%
in Histosols to greater than 45 wt% in some Podzols (Sommer et al., 2006). Si is
included in a large number of minerals issued either from the parent material as for
instance quartz, feldspar, and phyllosilicates (muscovite, biotite for instance), or from
the transformation of the parent material minerals, along weathering and pedogenesis,
in clay minerals and amorphous silica particles, notably phytoliths for the part of Si

recycled by vegetation (Sommer et al., 2006).

The soil concentration of total Si is intimately link to the concentration of Si from parent

rocks (Berner and Berner, 1996; Gray et al., 2016). Gray et al. (2016 showed that sand

dunes are shown to be the richest parent material (close to 100 %) while limestones
are the poorest (a few percent). Among the parent material rich in Si (> 60 %), quartz
and arkose sandstones, granite, rhyotite, greywacke, granolite, dacite, shale are
encountered, while diorite, andesite, basalt and peridotite have Si content ranging from
40 to 60 % and laterite and bauxite from 10 to 15 % (Gray et al., 2016 and references
included). In addition, weathering and pedogenesis modify the initial Si pool both in
concentration and status (Lucas et al., 1993; White et al., 2012). The upper soil horizon
is the most impacted by these processes being both depleted by weathering and clay
translocation, that may have contradictory effect on the total Si concentration of the
horizon. Weathering and pedogenesis are influenced by both climate and vegetation
as demonstrated by river dissolved Si (DSi) (Bluth and Kump, 1994; Durr et al., 2009)

at the territory scale. Using DSi in the streams as an indicator of total chemical
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weathering is however not straightforward because of the fraction of Si that is retained
in the soil for forming clay minerals or the one that is retained in biogenic silica in soils
and streams (Frings et al., 2015). Analysis of climosequences have proven to be
helpful for documenting some modification of the soil Si pools. On a volcanic
climosequence, secondary Si phases (produced by weathering) increase under a more
humid climate (Taboada et al., 2019). On intrusive rock climosequence, smectite
distribution is correlated to Si loss when rainfall (or precipitation) increases (Egli et al.,
2003), but the analysis of the variation of soil surface Si is not well addressed. As
shown by Dere et al. (2016), the presence of poorly reactive quartz in the parent rock
may be greater at the surface resulting from a relative enrichment during weathering.

Therefore, the impact of rainfall on the soil Si deserves to be more fully documented.

While vegetation on the weathering scale is strongly correlated to climate, human
activity has strongly modified the land use and thus the biological cycle of most of the
elements. Some of the main cultivated crop are Si accumulators and long-term
exportation may act on Si budget. It seems well documented that conversion of forest
to cropland lead to a decrease of the phytolith pools (Struyf et al., 2010; Guntzer et al.,
2012; Vandevenne et al. (2015). Struyf et al. (2010) suggest that the transformation of
the european temperate forests into cultivated land has also lead to a decrease of
weathering of silicate minerals. However, Yang and Zhang (2018) came to the opposite
conclusion (agricultural activities increase silicate weathering) based on a geochemical
analysis of rain and streams in subtropical China. In the subtropical southern Brazil,
Ameijeiras-Marino et al. (2018) share Yang and Zhang (2018)’s conclusion using the
Ge/Si tracer. Accordingly, the question of the intensity of the impact of land use on soil

Si loss remains open.



87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

The study of the status of Si in soils and its biogeochemical cycle is a subject of
increasing interest because of the growing body of evidence showing that Si can
improve crop development (Coskun et al., 2019; Guntzer et al., 2012; Liang et al.,
2015; Rodrigues and Datnoff, 2015). Plant available Si (PAS) depends on the reserve
of weatherable Si-bearing minerals (Cornelis and Delvaux, 2016) and can be estimated
using various protocols (Narayanaswany and Prakash, 2010; Meunier et al; 2017). The
relationship between soil total Si and PAS is complex depending on soil type, parent
material and degree of weathering. On various agricultural soils of Asia, a negative
significant correlation between PAS and soil Si content was found (Yanai et al., 2016;
Meunier et al. (2017). This correlation was due to the presence of low solubility Si
minerals such as quartz for explaining low PAS values. On volcanic soils containing
no quartz, Henriet et al. (2008) founded a highly significant positive correlation (n= 6)
between soil Si content and Si extracted by the 0.01M CaCl, method due to a decrease

of the reserve of weathered Si minerals along weathering.

The objective of this study was to (i) determine the impact of climate and land-use on
the total topsoil Si concentrations (Siit) in French soils and (ii) explore the relationship
between Sii,: and PAS. Topsoil horizon was chosen as it was considered as the most
weathered and pedogenized horizon where the roots are mainly concentrated. The
French territory was chosen as (i) France is one of the countries with the largest soil
diversity in the world (Minasny et al., 2010), that offers notably a good
representativeness of European soils notably; (ii) France processes a soil monitoring
network (RMQS) for which Si is available along with all the typical soil characteristics
(Landré et al., 2018). Indeed, soil Si is rarely analyzed at the territory scale, with the
notable exception of the soil Si map at the European scale with only one site every

2500 km? (De Vos et al., 2006; Reimann et al., 2014) and the French soil monitoring
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network (RMQS) with one point at each node of 16 to 16 km grid (Jolivet et al., 2006;

Landré et al., 2018).

Since geology and soil type (pedologenesis) are the main Si drivers, we first stratified
the database in geological-pedological classes. Then we considered the impact of
climate and land-use in both the obtained classes and at the national scale with a
modern digital soil mapping (DSM) approach using the geological-pedological classes
defined as a covariate. The strong input of this type of covariate in the DSM model was

clearly demonstrated by Gray et al., (2016).

2 Materials and Methods
2.1 The data

Most of the data used in this study were obtained from 2111 sites from the first
campaign of the RMQS sampled between 2001 and 2009 (Jolivet et al., 2006), which
covered all the mainland of France (around 550 000 km?) based on a 16 km x 16 km
grid. Among these sites, two had no soil type description, 98 had no parent material
description, six were anthroposols and three histosols. All these sites were not further

considered for our analysis, ending with database of 2004 sites.

Composite samples of the top horizon (0-30 cm) were sampled, air dried, and sieved
to 2 mm before laboratory analysis at the Soil Analysis Laboratory of INRA in Arras,
France. The following parameters were measured: (i) the total organic C (OC) content
measured by dry combustion (NF ISO 10694), (ii) particle size distribution by wet
sieving and the pipette method (NF X 31-107), (iii) cation exchange capacity and
exchangeable cations (hexamminecobalt method NF ISO 23470), (iv) pH in water (1

to 5 soil to water ratio; NF ISO 10390), (v) calcium carbonate using the volumetric



135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151
152

153

154

155

156

157

method (NF ISO 10693) (CaCOs3), (vi) and total P, K, Ca, Mg, Fe, and Al determined

by ICP-AES after dissolution with hydrofluoric and perchloric acids (NF X 31-147).

Landré et al. (2018) analyzed a subset of 673 samples for Si. For the sites not

analyzed, we estimated Sii; according to the following conceptual equation:
Si =f(Al, Fe, K, Na, Ca,., Mg, P,Mn, OC, CaCOg,residual water) (D)

where Ca,. and Mg, are the fractions of Ca and Mg that are not included in carbonate

minerals nor adsorbed on the exchangeable surfaces, and OC is the organic matter
percentage. The total Si concentration in French topsoil was modelled using a Cubist

modelling algorithm (see Supplementary File 1 for more details).

The database was completed by PAS measurement (Si caci2) using the 0.01 M CaCl,
method (Haysom and Chapman 1975) on 1986 sites. This widely used method
(Meunier et al., 2017) allows estimating the pool of Si that is readily soluble. Briefly, 2g
of dry soil was mixed with 20 ml of the solution and shaken during 16h in polyethylene
tubes. The solutions were then filtered at 0.45 um, and Si concentration was measured
using Inductively Coupled Plasma Atomic Emission Spectroscopy (axial ICP-AES; 720

ES, Varian).

2.2 Stratification of the database in homogeneous geo-
pedological classes

Since Siyy in soil is known to be linked to parent material and being anti-correlated to
carbonate concentration in soils (Landré et al., 2018), we first stratified the database
by the type of parent material and by the content in carbonates. In French soils,
carbonates were encountered in soils developed on sedimentary rocks with a limit for

carbonated soils classically considered at a CaCOj3; concentration of 5 % (Baize, 2000).
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Since a large part of the sedimentary rocks were defined on the basis of
geomorphological processes (e.g. alluvions, colluvions, terraces...), we were not able
for DSM purposes to relate directly parent material to carbonate content. In addition,
since we were working on the topsoil horizon, depending on the stage of pedogenesis,
soils developed on carbonated rocks may have been completely decarbonized (e.g.
Calcisols notably). Other geological domains were sorted in igneous extrusive or
intrusive and metamorphic. The classification used did not allow further classifying the
parent materials in more geochemical meaning classes as made by Gray et al. (2016),
since (i) a large part of the sites had no more information than igneous extrusive or
intrusive or metamorphic rocks; (ii) acidic extrusive igneous rocks or basic intrusive
igneous rocks were too poorly represented in the database (no more than two to three
individuals). Podzols were also separated, these soils being mainly composed of
quartz were supposed to have high Si. We then sorted the soils in the different
geological groups a step further with the exception of the soils on igneous intrusive
rocks that were poorly represented. Soils on metamorphic parent materials and on
igneous extrusive rocks were sorted by soil types, ranging from poorly differentiated
soils (regosols, lithosols and rankers) to strongly differentiated soils (planosols, luvisols
and podzoluvisols) for soils on metamorphic rocks. Podzols were sorted between those
developed on sedimentary rock and those developed on other parent materials. For
non-carbonated soils on sediment, sorting was performed both by soil types and a

more detailed description of the considered sediment.

2.3 Data treatment

2.2.1. Mapping total topsoil Si concentrations in French soils
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The DSM approach was based on the work of McBratney et al. (2003), who proposed
a quantitative relationship between soil properties and the soil forming factors plus a

spatially correlated residual element (e), as follows:

Soil = f(s,c,or,p,an) +e (2)

where Soil is a soil property. The s refers to other or previously measured properties
of the soil at a point either from prior soil maps or from remote or proximal sensing
data; c¢ refers to the climatic properties of the environment at a point; o refers to
organisms, including vegetation or fauna, or human activity; r refers to relief; p refers
to the parent material or lithology; a refers to the soil age; and n refers to the space or

spatial position. Finally, e is the locally varying, spatially dependent residuals from f.

We selected a set of available environmental covariates describing the scorpan factors
for the whole French territory. We harmonized them at 90 m resolution (Table 1). The
parental material and soil covariates were generated by the results of the PCA step.
We also used a very popular spectral index, namely the normalized difference
vegetation index (NDVI) (Huete et al., 2002). We focused on the yearly changes in the
NDVI computed from a time series of remote sensing data to describe the
photosynthetic capacity of the vegetation cover. This variable was interpreted as a
vegetation growth dynamics proxy. The underlying assumption was that this
information on changes in vegetation may reflect various behaviors linked to climate,

land management or soil properties (see Loiseau et al., 2019).

The spatial predictive model between Sii, and scorpan covariates was first constructed
using the ensemble learning method Random Forests (RF) (Breiman, 2001). We used

the RF implementation provided by the package randomForest in R (Liaw and Wiener,
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2002; R. Core Team, 2016). Three parameters should be defined in the RF model,
namely the number of trees to grow (nyee), the number of variables randomly sampled
as candidates at each split (my,), and the minimum size of the terminal nodes
(nodesize; Liaw et al., 2002). The default values were used for ny.. and nodesize,
which were 500 and 5, respectively. The optimal value of my, was set at 2 by the lowest

out-of-bag error estimate.

To extract useful information from this large set (22) of potentially correlated
covariates, we ran a preliminary step of variable selection using the Boruta algorithm
(Kursa and Rudnicki, 2010). This algorithm was a wrapper built around the RF
classification algorithm implemented in the R package randomForest, and it used a Z
score computed by dividing the average loss by its standard deviation. The algorithm
was used in feature selection (Kursa and Rudnicki, 2010), but was also applied to

support the model establishment of the RF regression (Kursa, 2014).

The residuals of the model in equation 2) were computed as the difference between
the RF predictions and the measured values at the observed location and then
interpolated by ordinary kriging (Matheron, 1971). The R package gstat (Pebesma and
Graeler, 2019) was used to select variogram models and perform the kriging
procedure. The final predictions summed the RF predictions and the Kriging outputs
(Keskin and Grunwald, 2018). The model performance was evaluated by 30-folds

cross-validation.

To rank the influences of the final list of scorpan factors on Siy;, we calculated covariate
importance from the RF algorithm as the mean increase in accuracy (%IncMSE). This
indicator was constructed by permuting the values of each variable of the validation

set, recording the prediction error, and comparing the set with the un-permuted

10
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validation set prediction of the variable (normalized by the standard error). It calculated
the average increase in the squared residuals of the validation set when the variable

was permuted. A higher %IncMSE value represented higher variable importance.

2.2.2. Other statistical analysis

Since Gray et al. (2016) showed that pedological parameters and Sii,; were highly
dependent from parent material composition, the database was stratified in
homogeneous subgroup defined on a combination of geological and pedological
classes, in order to use the obtained classes for DSM approach. The parent material
and soil type classifications used for the stratification were those used at the French
territory scale that is the EUSIS classification (King et al, 1994) for the parent material

and the FAO (1985) classification for the soil types.

We then performed multiple comparison tests: multiple Mann-Whitney tests, Kruskal-
Wallis tests, and a post-hoc test from Siegel and Castellan (1988). These tests were
performed using the medians of Siy within the geo-pedological groups identified in
order to discuss the discriminating power of the obtained classification in terms of total

Si topsoil concentrations.

In order to understand the meaning of the relations between total Sii; and Sicaci2
obtained for the different parent material domains, we ran a principal component
analysis (PCA) on all the soil characteristics available in the RMQS database, with total

Si was considered a passive variable.
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3 Results and Discussion

3.1 Stratification of the database in homogeneous geo-
pedological classes

For soils developed on sedimentary rocks, we observed as expected a strong negative
correlation between Si,: and carbonate contents for soils with carbonates
concentration higher than 5 % (Figure 1a). This negative correlation was interpreted
as a diluting effect of silicate minerals by carbonates. We then sorted geo-pedological
classes for soils developed on sediment in carbonated soils developed on sediments
and non-carbonated soils developed on sediment (Figure 1b) in order to use this
classification in the DSM approach. Based on this separation and on other parent
material classes (igneous intrusive and extrusive rocks, metamorphic rock), a boxplot
analysis confirmed that this first separation was meaningful (Figure 2) with the highest
concentrations in Siy for Podzol topsoils and the lowest for topsoils on igneous
extrusive rocks. This low concentration obtained for igneous extrusive rocks may seem
surprising as Gray et al. (2016) showed that both Si rich (rhyotite) and Si poor (basalt,
andesite) rocks could be found in that group. However, in the case of France, igneous
extrusive rocks that are poorly abundant (only 28 sites over 2000) consist mainly in
basalt, slag, tuff and other basic volcanic rocks while rhyolite and other acid volcanic
rocks are rare (only two sites over the 28 classified as igneous extrusive volcanic

rocks).

At last, some parent material classes while significantly different from others, still
exhibit a very large Si concentration variability, justifying the further classification
performed on parent material and soil type criteria (Fig. 3). In this figure, we observe
that Podzol topsoils on sedimentary parent materials exhibited significantly higher Si

(p-value = 8.573e-06; Fig. 3). These Podzols are located in two main areas in France,
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namely the Landes of Gascony (in southwest France) and an area in central France
north of the Massif Central mountains (Figure 4). The Landes of Gascony was entirely
covered by aeolian sands (their texture is usually more than 95 % sand; Augusto et
al., 2010) that were nearly pure quartz grains (300-550 um in size) and therefore could
be considered as a reference for nearly pure Si topsoils. The other area in central
France corresponded to an ancient delta of the Loire River, with very sandy material
also quartz rich originating from the erosion of the ancient Massif Central and its
northern foothills. Our results are in a good agreement with those of Gray et al. (2016)

showing that dune sands were among the richest parent material in Si.

On igneous extrusive rock, andosol topsoils exhibited significantly lower Sii than
those of other soil types (p-value < 0.001; Figure 3). For topsoils on metamorphic rock,
poorly differentiated soils (Lithosols, Regosols, and Rankers) differed from well
differentiated soils (Planosols, Luvisols, and Podzoluvisols), with Cambisols and
Fluvisols being intermediate (Figure 3). These three groups of topsoils significantly
differed in their Si (p-value < 0.001 and post-hoc test with a p-value < 0.05). Soils on
sedimentary rocks were the more abundant, and their situation was more complex.
Nineteen and seventeen groups were identified either on the basis of both the parent
material and the soil type for the carbonated and non-carbonated soils, respectively.
These groups differed in their topsoil Sii (p-value < 0.001 for the carbonated soils and
p-value < 0.001 for the non-carbonated soils; Figure 3). As an example, very low
concentrations of topsoil Sii,; were found for poorly differentiated soils on chalk (Fig 3)
i.e. nearly pure CaCOj; with Sii close to zero. These soils are encountered mainly in
two areas in France: in the Champagne area and in the Charentes (in western France)

where soils are locally called Champagne’s soils (Figure 4).
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Interestingly, this analysis showed that some carbonated soils could exhibit very high
Siiet in their topsoils, despite the relative absence of Si in carbonates (e.g. calcic
cambisols on other sediments and solonchack; Figure 3). This classification was used
in the DSM approach as a covariate along with climate, vegetation using land use, and

relief variables.

3.2 Impact of environmental factors (climate and land
use) on the total Si concentrations of the French top
soils

The covariate importance from the RF algorithm are presented in Figure 5. Two groups
of covariates stood out with a threshold of around 20 %. The first group contained six
environmental covariables. The first covariate, called PG, corresponded as expected
to the pedogeological classes previously defined. This covariable made a significant
contribution in the model construction, as it exhibited a mean increase in accuracy of
55 %. Next was the elevation (“srtm”) with an importance of 33 %, followed by the NDVI
covariate (“PC1_NDVI") and the type of climate (“typo”) with an importance of 27 %
and 24 %, respectively. Finally, the annual mean evapotranspiration (“etp_mean”) and
the net primary production (“NPP_max”) presented an importance of 22 % and 21 %,
respectively. NDVI covariate is not an independent variable. Indeed, as demonstrated
by Loiseau et al. (2019), beside land use, NDVI is partially linked to pedology and
climate. Elevation is also not an independent variable in the case of France. For
instance, in the case of the Massif Central, igneous extrusive rocks only located at the
highest altitude Elevation can be a proxy for both climate and geology in France. Thus,
after parent material and soil type, climate seemed to be an important factor in

determining the total topsoil Si concentration.
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Figure 6 presents Sii: as a function of the annual rainfall for the different parent
material domains. For carbonated soils on sediments, Si,: was independent from
annual rainfall as well as non-carbonated soils developed on sedimentary parent
materials. A significant negative correlation was obtained for soils on other parent
materials, with higher Siy for lower annual rainfall. This correlation was highly
significant with the exception of the soils developed on igneous extrusive rocks. The
latter being represented by fewer individuals (n=28) than the other groups, a
correlation significant only at a 5 % confidence level was acceptable. Such a negative
correlation between the concentration in Si,; and the average annual rainfall was
interpreted as resulting from the increasing losses of Si with an increase in weathering
intensity owing to the larger water flow through the soil (higher rainfall). Therefore, the
analysis of surface soils may be used as an alternative to the river chemistry (Bluth

and Kump (1994) to document the effect of climate on Si weathering.

The impact of land use on Sii in French topsoils was tested on the geo-pedological
classes defined on Figure 3. To do so, for each class sites were sorted in two land use
groups, namely permanent vegetation (forests and pasture) and arable land. We then
performed a two-way ANOVA with an interaction term between land use and geology
followed by a tukey HSD test. The results showed that the interaction effect was slightly
significant (p = 0.012). We investigated also the model coefficients and we found that
for most of them, the 95 % confidence intervals overlapped except for a few cases.

(see p-values reported in supplementary material).

Lastly, neither the relief nor the landuse could be clearly identify as a factor impacting
total Si concentration in soils at least at this scale. Concerning relief, all the proxies of

the landforms had a very low weight in this analysis (Figure 4d). For landuse, our data
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could not document the positive or negative effect of agriculture, at this scale, on the
intensity of silicate weathering that has been suggested in the literature (Struyf et al.,

2010; Yang and Zhang, 2018).

3.3 Relationship between Siyt and Si cac2 in French
topsoils.

When considering the total dataset (Table 2), a significantly different from 0, negative
correlation between Sic,ci2 and Siyt Was given but the coefficient is weak (r = -0.32).
While considering the different classes, Sicaciz and Siy: were also weakly negatively
correlated and significantly different from 0 for soils on metamorphic rocks. The
negative correlation was moderate (r = -0.41) for non-carbonated soils on sediments,
very weak (r = -0.16) and poorly significant for soils on igneous intrusive rocks and non
significant for soils on igneous extrusive rocks. Such a negative trend was already
observed in other continents by Yanai et al. (2016) and Meunier et al. (2017).
Nevertheless this negative correlation between Sicaci2 by Sitt Was not robust enough
to be used as a proxy for PAS. However, the correlation for podzol was stronger than
the previous ones (r = -0.75) and for carbonated soils on sediments, a positive non-
significant correlation was obtained. PCA (Figure 7) allowed disentangling the
observed correlation between Sii,; and various soil characteristics for the different
soil/parent material classes. Sii, was correlated positively with sand and negatively
with clay for Podzols showing that the content of sand was mainly composed of quartz,
a poorly soluble mineral. Therefore, the best negative correlation given for podzols
between Sic,ci2 and Siit was interpreted as the presence of quartz as the dominant
mineral, which control the poorly soluble pool of Siy. For soils on igneous and
metamorphic rocks and non-carbonated soils on sediments, sands were associated

with elements such as K or Na, which may be interpreted as the presence of feldspars,
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more soluble than quartz and explain the weak correlation between Sic,c, and Siiet.
Besides, the elements opposed to Siy in the PCA may indicate pools of minerals,
which are more favorable to PAS, such as the finer fractions and Al and Fe oxides
(Yanai et al., 2016). For metamorphic rocks for instance, Si,,t was negatively correlated
to Fe and Al concentration as seen by the second axis of the PCA (21 % of the
variance), but independent from sand content. This axis expressed a quartz content
opposed to a secondary mineral content (represented by Al and Fe) and was
independent from the sand content since loess deposits are frequent on metamorphic
rocks in the Britany region, one of the largest area of metamorphic rocks in France
(Lemercier et al., 2011). For carbonated soils on sediments, the PCA showed that Siiy
were negatively correlated to Ca (carbonates) and positively correlated to the sand
content along the second axis that represented 20 % of the variability. This axis
showed that Si is probably mainly contained in feldspar rather than quartz for
explaining the positive trend between topsoil Sicacz and Siit. Thus, Sit may be a good
proxy for Sicac2 in the cases of podzols, but for the other soil classes a more detailed

analysis of the parameters that control Sic,co should be done.

4 Conclusions

In a territory as diverse as France, we showed that the total topsoil Si concentrations
were highly variable with values ranging from: 22.8 to 456 g.kg-! and thus covering

almost the entire range of soil Si concentration recorded in the literature so far.

The spatial variability in total topsoil Si concentrations was as expected due to the
diversity of parent material and soil types. However, climate, notably through the
impact of rainfall on weathering intensity, was identified as a driving factor for non-

carbonated soils. No impact of land use and relief could be identified, as well as no
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impact of the relief at least at this scale. Further work based on a paired site approach
in different pedo-geological contexts is needed to better conclude on the impact of

these factors on the total topsoil Si concentrations.

Lastly, topsoil Sicaciz tended to decrease when topsoil Sii increase. The relationship
was the strongest in Podzols where Si was mainly contained in quartz. For the other
soil classes, we suggest that Sii,; may only be considered as a proxy for bioavailable

Si if the mineralogical composition is well constrained.
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Captions

Figure 1: Variability of Si.. (a) Relationship between the concentration in total Si concentration and
in carbonate content in French topsoils. The different soils developed on sedimentary rocks are
reported in yellow while those developed on igneous and metamorphic rocks are reported in grey;
(b) Separation between carbonated soils and non-carbonated soils on sedimentary rocks based on
the geo-pedological classification. All the soil groups with mean carbonate content lower than 5 %
were considered as non-carbonated soils.

Figure 2: Boxplots of Si;.; for the main geological domains and podzols. The boxes represent the
interquartile range, the bold horizontal segment the median Si, the whiskers, the 99 % range and
the black dots the outliers. Letters above boxplots represent groups with Si.; significantly different
and numbers, the sample size.

Figure 3: Boxplots of Si;. for all the considered pedo-geological groups. The boxes represent the
interquartile range, the bold horizontal segment the median Si., the whiskers, the 99 % range and
the black dots the outliers. Colors represent distinction of main geological domains plus podzols.

Figure 4: Si.; spatial distribution from digital soil mapping approach (DSM).

Figure 5: Variable importance in the random forest Model. The X-axis is the Mean Decrease Accuracy
computed as the increase percentage in mean squared error of predictions (estimated with out-of-
bag-Cross Validation) as a result of variable j being permuted. The definition of the environmental
covariates are listed in Table 2.

Figure 6: Plots of the total topsoil Si concentration versus the 30 year average of annual rainfall for
the different parent material domains. Soils on sedimentary parent materials were sorted according
to the nature of the parent material for the carbonated soils (shalk, marl, limestone and other) and
of the texture of the parent material for non-carbonated soils (clay, loam, sand). The black lines
represent the fitted linear regression. The Pearson correlation is also provided per parent material
domains. Stars represents the level of signification of the correlation: one star being significant at a
5 % confidence level, two stars at 1 % and three stars at 1 %o.

Figure 7: Variables correlation circle for the first two components of the Principal Component
Analyzes (PCA) performed for each main geological domain and podzols. In blue, Si considered as a
passive variable in these PCAs.
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Table 1: Exhaustive categorical and continuous covariates used for the Digital Soil Mapping approach

Pedological abreviates variables scale type Reference
factor
Institut National de I'Information
bdforet Forest type category Géographique et Forestiére (2006)
ecoclim Ecoclimap land use 1km category Faroux et al. (2013)
NPP_max Net Primary Production 1km quantitative LPDAAC (2001)
clco6 land use (Corine Land Cover) 250m category European Environment Agency (2007)
Vegetation 1st component of Normalized Difference Loiseau et al. (2019)
PC1_NDVI Vegetation Index 90m quantitative
2nd component of Normalized Difference Loiseau et al. (2019)
PC2_NDVI Vegetation Index 90m quantitative
3rd component of Normalized Difference Loiseau et al. (2019)
PC3_NDVI Vegetation Index 90m quantitative
cti Compound Topographic Index (SRTM) 90m quantitative USGS (2006)
roughness roughness (SRTM) 90m quantitative USGS (2006)
curvature curvature (SRTM) 90m quantitative USGS (2006)
Relief scale_pos slope position (SRTM) 90m quantitative USGS (2006)
slope slope (SRTM) 90m quantitative USGS (2006)
slopascos slope cosinus (SRTM) 90m quantitative USGS (2006)
srtm elevation DEM (SRTM) 90m quantitative USGS (2006)
eros Erosion rate 1:1000000 quantitative Cerdan et al. (2010)
prec mean annual precipitation ~1km quantitative Hijmans et al. (2005)
Climate Typo climate typology 250 m category Joly et al. (2010)
etp_mean mean annual potential evapotranspiration | 8km quantitative Quintana-Segui et al. (2008)
Parent material | gravimetry free-air Bouguer anomaly 4km quantitative Achache et al. (1997)
Soil ruprh1 available water capacity 1:1000000 quantitative Le Bas et al. (2004)
Soil and parent King et al. (1995)
material PG Pedological and Geological classification 1:1000000 category




Table 2: Pearson correlation coefficient between Si ¢,c, and Si o in French topsoils. Significance levels: ***: p-value < 0.001; **: p-value < 0.01; *: p-
value <0.05

Classes n r
Carponated soils on 508 0.12%**
sediments
Soil i trusi

oils on igneous extrusive 28 0.25
rocks
Soil . intrusi

oils on igneous intrusive 155 0.16*
rocks
Soils on metamorphic rocks 217 -0.26***
Noq-carbonated soils on 1020 0.41%**
sediments
Podzols 58 -0.75***

All data 1986 -0.32***
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Supplementary file:
Determination of the total Si
concentration (Si:) based on the
concentration in major elements

Landre et al. (2018) analyzed Si, for a subset of 673 samples, among the 2007 RMQS samples. Si

for the remaining sites was modelled using a Cubist modelling approach, as follow:

Si= f(Al, Fe,K, Na, Ca,., Mg, P,Mn, OC, CaCO3,residual Water) (S1)

Where f is the cubist regression trees model,

Ca,. and M g, are the fraction of calcium and magnesium, respectively, that are not included in

carbonate minerals nor adsorbed on the exchangeable surfaces. They were estimated as follow
CaCog .
Cane = Cagor — (75— * 0.401) + Caexcn) with Ca,.=0 (S2)
Mgne = Mgror — (Mgech + Caexcess) with  Mgp.=0 (S3)

Where Cagycess = Cancwhen Caye < 0 and Ca,. = 0 otherwise

The Cubist model is a form of regression rules that build unconventional regression trees, with final
nodes containing linear models instead of discrete values (Quinlan, 1992). Cubist creates
comprehensible rules that describe the relationships between predictive variables (here spectra or soil

properties) and the variable of interest.

In order to calibrate and validate the models, we used a repeated cross-validation approach combined
to a bootstrap step (James et al., 2013). Repeated cross-validation allows assessing the quality of the
prediction. It involves randomly dividing the available set of data into two parts, a calibration set and a
validation set. We repeated this operation 10 times using a split of 75%-25% for calibration and

validation respectively. This subdivision was performed using the conditioned Latin Hypercube



Sampling (cLHS) method (Minasny and McBratney, 2006). This method is a stratified random
procedure that provides an efficient way of sampling variables from their multivariate distributions.
The bootstrap step allows assessing the uncertainty of the model predictions. For this, we simulated
100 datasets by random sampling with replacement 95 % of the calibration dataset from the cross-
validation step. This procedure provided then 100 Cubist models. The final prediction is obtained by
averaging the predictions of 100 bootstrapped models. Our modelling approach involves a large
number of calibration and validation operations, and we thus used a parallel processing approach to
overcome the computational load. It is implemented in R using the packages foreach, doParrallel or
snow. We used the Cubist model implemented in the R package Cubist (Kuhn et al., 2016), the cLHS
function implemented in the R package clhs (Roudier, 2011) and the crps function implemented in the

R package verification (Laboratory NCAR-Research Applications, 2015).

The model was assessed using three conventional performance indicators: the coefficient of
determination (R?), the root mean square error (RMSE) also known as standard error of prediction
(SEP) and the bias, which is the mean residual of the model. We also took into account the
probabilistic characteristic of model predictions by using the continuous rank probability score
average (CRPS, equation 6). The CRPS represents the closeness between the prediction distribution

and the corresponding observations (Gneiting et al., 2007).

CRPS = [ _BS(y) dy (s4)

BS() = T {(F(») -1 (x; <9 (55)

Where BS(y) denotes the Brier (1950) score for probability forecasts of the binary event at the
threshold value y € R, x the observation and y the model prediction, n the number of samples, F the
cumulative distribution function (CDF) of X, a random variable, such as F(y) = P[X <y] and ?? is
the Heaviside step function. This function is a discontinuous function whose value is zero for negative

argument and one for positive argument.



The Si,; prediction function is yielding R? greater than 0.98 with a very small variance (0.0012)
among repetitions of the cross-validation, RMSE lower than 11 g kg™ and CRPS lower than 7 g kg™’
for measured Siy, ranging from 22.81 to 455.8 g kg™' over the RMQS database with a median equal to
323.6 g kg'!. These results are better than the results obtained by Landre et al. (2018) with their MIRS

PTF and suggest that our PTF can predict with higher accuracy the Si content.

To better figure out the accuracy of our PTF, we plotted in Figure S1, the predicted versus measured
Siy for only one iteration of the cross-validation step. In this figure, the predicted versus measured
Si, distribution closely follow the one to one line with a smaller prediction uncertainty than the
analytical uncertainty. Those results allow us considering that the predictions of this function are as
good as Si measurements since the prediction uncertainties are within the range of analytical values.
However, as explained by Landre et al. (2018), the analytical uncertainty was not taken into account in
the prediction uncertainty calculation, as they were not always available. Despite this, the obtained
PTF shows exceptional accuracy that is rarely obtained in environmental fields for PTFs (Minasny et

al., 2009; Viscarra Rossel et al., 2006) (see Landre et al. (2018) for more information).
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Figure S1: Predicted versus measured Si concentrations (in g kg™1) for the first cross-validation replication of our Si
concentration predictive function. In black, the one to one line and in red, the regression line. Black vertical error bars
represent the prediction’s uncertainty and blue horizontal error bars represent the analytical uncertainty.



DSM model validation

The model performance was estimated using a cross validation. four conventional performance
indicators were computed: the coefficient of determination (R?), the mean square error (MSE), the root
mean square error (RMSE, also known as standard error of prediction, SEP) and the bias, which is the
mean residual of the model. In addition, a fifties indicator was calculated, the concordance which is a
normalized statistic that determines the relative magnitude of the residual variance compared to the
measured data variance (Moriasi et al., 2007; Nash and Sutcliffe, 1970). The results of the cross
validation of the SCORPAN model are in accordance with previous digital soil mapping exercise of
topsoil properties (Mulder et al., 2016). We found an R? of 0.45, a MSE of 3647.99, a RMSE of 60.4 g

kg, an important bias of 4.70 and a high concordance of 0.59.



