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Abstract

Probabilistic automata are an extension of nondeterministic finite automata
in which transitions are annotated with probabilities. Despite its simplicity,
this model is very expressive and many of the associated algorithmic ques-
tions are undecidable. In this work we focus on the emptiness problem (and
its variant the value problem), which asks whether a given probabilistic au-
tomaton accepts some word with probability greater than a given threshold.
We consider a natural and well-studied structural restriction on automata,
namely the degree of ambiguity, which is defined as the maximum number of
accepting runs over all words. The known undecidability proofs exploits infi-
nite ambiguity and so we focus on the case of finitely ambiguous probabilistic
automata.

Our main contributions are to construct efficient algorithms for analysing
finitely ambiguous probabilistic automata through a reduction to a multi-
objective optimisation problem called the stochastic path problem. We ob-
tain a polynomial time algorithm for approximating the value of probabilistic
automata of fixed ambiguity and a quasi-polynomial time algorithm for the
emptiness problem for 2-ambiguous probabilistic automata.

We complement these positive results by an inapproximability result stat-
ing that the value of finitely ambiguous probabilistic automata cannot be
approximated unless P = NP.

Keywords: probabilistic automata, weighted automata, multi-objective
optimisation
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1. Introduction

Probabilistic automata are a natural extension of non-deterministic au-
tomata that were introduced by Rabin (1963). Such automata can also be
seen as a type of weighted automata, as defined by Schützenberger (1961),
over the semiring of real numbers. Syntactically, a probabilistic automaton
is a non-deterministic finite automaton in which each edge is annotated by
a probability. Such an automaton associates to every word a value between
0 and 1, which is the total probability that a run on the word ends in an
accepting state. We call this the acceptance probability of the word.

Despite their simplicity, probabilistic automata are very expressive and
have been widely studied. Unfortunately the price of this expressiveness is
that almost all natural decision problems are undecidable. Consequently, var-
ious approaches based on subclasses of probabilistic automata determined by
bounds on resources, such as structure, dimension, or randomness, have been
studied Chatterjee and Tracol (2012); Fijalkow et al. (2012, 2015); Chadha
et al. (2017).

In this paper, we look at probabilistic automata of bounded ambiguity,
where the ambiguity of a word relative to a given automaton is the number
of accepting runs. We say that a probabilistic automaton is f -ambiguous,
for a function f : N → N, if every word of length n has at most f(n)
accepting runs. (Note that ambiguity is a property of the underlying non-
deterministic finite automata, and is independent of the transition proba-
bilities.) This notion has been extensively studied in automata theory; in
particular, the landmark paper of Weber and Seidl (1991) gives respective
structural characterisations of the respective classes of finitely, polynomially,
and exponentially ambiguous nondeterministic finite automata, from which
polynomial-time algorithms are obtained for deciding membership in each of
these classes.

We focus on the most natural and well-studied problem for probabilistic
automata, called the emptiness problem: given a probabilistic automaton
and a threshold, does there exist a word accepted with probability exceed-
ing a given threshold? Since the emptiness problem is already undecidable
for linearly ambiguous probabilistic automata (as shown by Daviaud et al.
(2018); Chadha et al. (2018)), we focus on finitely ambiguous probabilistic
automata.

We study the complexity of the emptiness problem on various classes of
finitely ambiguous probabilistic automata. For each positive integer k we
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consider the class of k-ambiguous probabilistic automata, i.e., automata with
at most k accepting runs on any word. More generally we fix a polynomial p
and consider the class of automata whose ambiguity is at most p(n), where
n is the number of states. More generally still, bearing in mind that the
ambiguity can be exponential in the number of states, we have the class of
all finitely ambiguous automata.

Our main results are as follows. We show that the emptiness problem for
finitely ambiguous probabilistic automata is, respectively:

• in NEXPTIME and PSPACE-hard for the class of all finitely am-
biguous automata;

• PSPACE-complete for the class of probabilistic automata with am-
biguity bounded by a fixed non-constant polynomial in the number of
states.

• in NP for the class of k-ambiguous probabilistic automata, for every
positive integer k.

• in quasi-polynomial time for the class of 2-ambiguous probabilistic au-
tomata.

A natural counterpart of the emptiness problem is the function problem
of computing the value of a probabilistic automaton, that is, the supremum
over all words of the acceptance probability of a word. Here we show:

• for the class of all finitely ambiguous probabilistic automata, there is no
polynomial-time approximation algorithm for the value problem unless
P = NP,

• for each fixed k, the value of a k-ambiguous probabilistic automaton is
approximable up to any multiplicative constant in polynomial time.

The starting point to prove these results is to give an upper bound on the
length of a witness word, i.e. whose probability exceeds a given threshold.
More precisely, we show that for a k-ambiguous probabilistic automaton with
n states there is a word of length at most nk reaching the maximal proba-
bility. More generally, we show that for a finitely ambiguous probabilistic
automaton with n states, there is such a word of length at most n!. Both
results lead to complexity upper bounds for the emptiness problem of finitely
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ambiguous probabilistic automata in various regimes of ambiguity. Most of
the remainder of the paper is devoted to the case of k-ambiguous automata
for a fixed k.

We give a polynomial-time reduction from the emptiness problem for k-
ambiguous probabilistic automata to a multi-objective optimisation problem,
which we call the k-stochastic path problem. Using this reduction, we obtain
a polynomial-time algorithm for approximating the value of a k-ambiguous
probabilistic automata, and a quasi-polynomial time algorithm for the empti-
ness problem of 2-ambiguous probabilistic automata.

2. Preliminaries

Given a, b ∈ N, we write [a, b] for {a, a+ 1, . . . , b}.
Let Σ be a finite alphabet. For any word w ∈ Σ∗, we let |w| denote its

length. Given a finite set Q, a (sub)distribution is a function δ : Q → [0, 1]
such that

∑
q∈Q δ(q) ≤ 1. We let D(Q) denote the set of distributions over

Q.
A probabilistic automaton is a tuple P = (Q, qin,∆, F ), where Q is a

finite set of states, qin is the initial state, ∆ : Q×Σ→ D(Q) is the transition
function, and F is the set of accepting states. Given a word w = a1 · · · an, a
run ρ over w is a sequence of states q0, q1, . . . , qn. The probability of such a
run is P(ρ) =

∏
`∈{1,...,n}∆(q`−1, a`)(q`). We let RunP(p

w−→ q) denote the set

of runs ρ over w starting in p and finishing in q with P(ρ) > 0. The number
P(p

w−→ q) is the probability to go from p to q reading w, defined as the sum
of the probabilities of its runs, namely:

P(p
w−→ q) =

∑
ρ∈RunP (p

w−→q)

P(ρ).

A run ρ is accepting if it starts in qin, satisfies P(ρ) > 0, and finishes in
an accepting state, i.e. a state in F . We let RunP(w) denote the set of
accepting runs over w. The probability of w over P is defined as the sum of
the probabilities of its accepting runs by:

P(w) =
∑

ρ∈RunP (w)

P(ρ).

It is sometimes convenient to have instead of one initial state a distri-
bution of initial states. The definitions above are easily extended to this
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setting. This extension comes at no cost as we can transform such a prob-
abilistic automaton into one with a single initial state by adding one state
and performing some normalisation (specifically, removing an ε-transition).

Ambiguity. In this paper, we consider different subclasses of probabilistic
automata, obtained by restrictions on ambiguity. More specifically, we say
that:

• P is unambiguous if every word w has at most one accepting run, i.e.
|RunP(w)| ≤ 1.

• P is k-ambiguous if every word w has at most k accepting runs, i.e.
|RunP(w)| ≤ k.

• P is finitely ambiguous, if there exists k such that P is k-ambiguous.

• P is polynomially ambiguous, if there exists a polynomial P such that
for every word w, we have |RunP(w)| ≤ P (|w|).

If the polynomial P is linear or quadratic then we say that a polynomially
ambiguous automaton P is linearly ambiguous or quadratically ambiguous,
respectively. It is proved in Weber and Seidl (1991) that it is decidable in
polynomial time whether an automaton P is unambiguous, finitely ambigu-
ous, or polynomially ambiguous. Furthermore, a consequence of the results
of Weber and Seidl (1991) is that an automaton which is not finitely ambigu-
ous has ambiguity bounded below by a linear function.

Emptiness problem and value. Let P be a probabilistic automaton and
c a threshold. Following Rabin (1963), we define the threshold language
induced by P and c as:

L>c(P) = {w ∈ Σ∗ | P(w) > c} .

The emptiness problem asks, given a probabilistic automaton P and a thresh-
old c, whether the language L>c(P) is non-empty, that is, whether there exists
a word w such that P(w) > c.

A related function problem is to compute the value of a probabilistic
automaton P , defined by val(P) = supw∈Σ∗ P(w). Note that the emptiness
problem is equivalent to asking whether val(P) > c.
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3. Undecidability for Linearly Ambiguous Probabilistic Automata

In this section, we discuss undecidability results for linearly ambiguous
probabilistic automata, which justify the focus of our paper on finitely am-
biguous probabilistic automata.

Theorem 1 (Chadha et al. (2018); Daviaud et al. (2018)). The emptiness
problem is undecidable for linearly ambiguous probabilistic automata.

Undecidability of the emptiness problem has long been known for general
probabilistic automata, see Paz (1971); Bertoni (1974); Gimbert and Oual-
hadj (2010). However, the automata involved in the proof have exponential
ambiguity.

In the conference version of this paper we explained how to adapt the
proof strategy above to obtain the undecidability of the emptiness prob-
lem for quadratically ambiguous probabilistic automata, see Fijalkow et al.
(2017). We left open whether the undecidability already holds for linearly
ambiguous automata. Two subsequent independent papers filled the gap by
showing the stronger result stated in Theorem 1, see Daviaud et al. (2018);
Chadha et al. (2018). We therefore focus here on the isolation problem.

Given a probabilistic automaton P , we say that a threshold c is isolated
if there exists ε > 0 such that for all words w, we have |P(w) − c| > ε.
Rabin (1963) proved that if a threshold c is isolated then the corresponding
language L>c(P) is regular. The isolation problem asks to determine whether
a given threshold is isolated for a given automaton. This problem was shown
to be undecidable by Bertoni (1974); we refer to Fijalkow (2017) for a new
presentation of this result. We can refine the result of Bertoni (1974) to
obtain:

Theorem 2. The isolation problem is undecidable for linearly ambiguous
probabilistic automata.

We start by describing the key ingredient in the undecidability proof
of Bertoni (1974), which is the construction of a probabilistic automaton
computing the value of a rational number given in binary with least signifi-
cant digit on the left:

binR(a1 · · · an) =
n∑
i=1

ai
2n−i+1

.
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Figure 1: A probabilistic automaton computing bin.

The automaton proposed by Bertoni has exponential ambiguity. However, it
is possible to construct a linearly ambiguous probabilistic automaton com-
puting the same function but reversing the input:

bin(a1 · · · an) =
n∑
i=1

ai
2i
.

The automaton is represented in Figure 1.

Proof. We construct a reduction from a variant of the Post’s Correspon-
dence Problem (PCP), called the infinite PCP, and shown to be undecid-
able by Ruohonen (1985). The problem asks, given two homomorphisms
ϕ1, ϕ2 : Σ∗ → {0, 1}∗, to decide whether there exists an infinite word w in Σω

such that ϕ1(w) = ϕ2(w) (where ϕ1, ϕ2 are extended to maps on Σω). We
first observe that equivalently, we ask whether for every ε > 0 there exists a
non-empty finite word w such that |bin(ϕ1(w))− bin(ϕ2(w))| ≤ ε.

Indeed, if there exists an infinite word w such that ϕ1(w) = ϕ2(w), then
the sequences obtained by considering the images under ϕ1 and ϕ2 of prefixes
of w have arbitrarily long common prefixes, so the difference of their binary
values converges to 0. Conversely, assume that for any ε > 0 there exists a
non-empty finite word w such that |bin(ϕ1(w)) − bin(ϕ2(w))| ≤ ε, then we
construct a solution to the infinite PCP using König’s lemma. To this end, for
each n let wn be a finite word such that |bin(ϕ1(wn))− bin(ϕ2(wn))| < 2−n,
i.e., such that ϕ1(wn) and ϕ2(wn) coincide on the first n letters. Applying
König’s Lemma to the infinite tree defined by the prefix closure of the set
{wn | n ≥ 0} (i.e., each node in the tree is the prefix of some word wn), there
exists an infinite word w such that ϕ1(w) = ϕ2(w).
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We now construct a reduction from the infinite PCP to the isolation
problem for linearly ambiguous probabilistic automata. Let ϕ1 and ϕ2 be two
homomorphisms, we construct a linearly ambiguous probabilistic automaton
P such that for every non-empty word w,

P(w) =
1

2
(bin(ϕ1(w)) + 1− bin(ϕ2(w))) .

Let us fix ε > 0 and w a non-empty word. The following equivalence holds

|bin(ϕ1(w))− bin(ϕ2(w))| ≤ ε⇐⇒ |P(w)− 1

2
| ≤ ε,

implying that the answer to the infinite PCP problem of (ϕ1, ϕ2) is positive
if and only if the threshold 1

2
is not isolated for P .

To construct the automaton P , we proceed as follows. Let P0 be the au-
tomaton computing bin. First, we construct Pϕ1 , which is obtained from P0

by extending the transition function as follows: when reading the letter a, the
automaton Pϕ1 simulates the transitions of ϕ1(a), which is a word over {0, 1}∗.
By construction we have Pϕ1(w) = bin(ϕ1(w)), and Pϕ1 is linearly ambigu-
ous. We construct Pϕ2 similarly, but complementing the set of accepting
states, so that Pϕ2(w) = 1 − bin(ϕ2(w)). Finally, P is the disjoint union of
Pϕ1 and Pϕ2 , with a distribution of initial states assigning probability 1

2
to

each of the initial states of Pϕ1 and Pϕ2 . The automaton P is linearly am-
biguous, and as explained in the previous section, one can easily transform it
into a (still linearly ambiguous) probabilistic automaton with a single initial
state.

An automaton is either finitely ambiguous, or at least linearly ambiguous.
Bearing in mind our undecidability results for linearly ambiguous automata,
we are led to focus on decidability results for finitely ambiguous automata.

4. Hardness of Approximation for Finitely Ambiguous Probabilis-
tic Automata

In this section we show another negative result for finitely ambiguous
probabilistic automata. The question we ask is whether there exists an ap-
proximation algorithm for computing the value of such automata, in the fol-
lowing sense: a K(n)-approximation algorithm takes as input a probabilistic

8



automaton P with n states and outputs v such that

val(P)

K(n)
≤ v ≤ K(n) · val(P).

In other words, we consider approximation algorithms up to a K(n) multi-
plicative factor.

The following hardness of approximation result complements the positive
results obtained later in this paper, witnessing the complexity of analysing
even finitely ambiguous probabilistic automata.

Theorem 3 (Lyngsø and Pedersen (2002)). For every ε > 0, there is no

polynomial time O(n
1
2
−ε)-approximation algorithm for the value of finitely

ambiguous probabilistic automata, unless P = NP.

The proof is a direct adaptation of the reduction constructed by Lyngsø
and Pedersen (2002), which uses the similar but different framework of Hid-
den Markov models.

Proof. We construct a reduction from the clique problem to the value of
finitely ambiguous probabilistic automata. The clique problem asks, given
an undirected graph G, to compute the size of a largest clique, i.e. a subset
of vertices such that there is an edge between any two vertices.

Given a graph G with n vertices, we construct an n-ambiguous proba-
bilistic automaton PG with O(n2) states such that for each m smaller than
n, there exists a word w such that PG(w) ≥ m

n2n−1 if and only if the graph G
contains a clique of size at least m.

We write V = {v1, . . . , vn} for the set of vertices of G and E ⊆ V ×V the
set of edges of G. By convention G does not contain self-loops, i.e. (v, v) /∈ E.
The set of states of PG is {vi,j : i ∈ [1, n], j ∈ [0, n]}. The transition function
is defined as follows for i, j ∈ [1, n]:

∆(vi,j−1, 1)(vi,j) =


1 if j = i
1
2

if (i, j) ∈ E
0 if (i, j) /∈ E

∆(vi,j−1, 0)(vi,j) =

{
1
2

if (i, j) ∈ E
0 if (i, j) /∈ E

The set of accepting states is {vi,n : i ∈ [1, n]}. The automaton PG has a
distribution of initial states: 1

n
for each vi,0 with i ∈ [1, n].

We remark that only words of length exactly n have accepting runs.
Such words are in bijection with subsets of vertices: the word w = a1 . . . an
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Figure 2: On the left a graph G and on the right the corresponding finitely ambiguous
probabilistic automaton PG such that MaxClique(G) = 4 · 23 · val(PG).

corresponds to the subset of vertices Sw = {vi : ai = 1}. The automaton PG
on input w has n runs, one for each vertex vi, chosen each with probability 1

n
.

Each accepting run has probability 1
2n−1 , because the probability is divided

by 2 at each transition except for one transition (case i = j in the definition
of ∆). The run over w corresponding to a vertex vi is accepting if and only if
vi is in Sw and all vertices of Sw are neighbours of vi. Consequently, the set
of vertices corresponding to accepting runs form a clique (included in Sw).
Hence a clique of size m induces a word accepted with probability m

n2n−1 , and
conversely.

Let MaxClique(G) denote the size of a largest clique in G, the equiva-
lence above reads MaxClique(G) = n2n−1val(PG). It follows that a K(n)-
approximation algorithm for the value of finitely ambiguous probabilistic
automata induces a K(n2)-approximation algorithm for the size of a largest
clique. Indeed, given a graph G with n vertices, we construct the proba-
bilistic automaton PG (recall that it has O(n2) states), and run the K(n)-
approximation algorithm, yielding a K(n2)-approximation of the value of
PG, which multiplied by n2n−1 yields a K(n2)-approximation of the size of
a largest clique. Zuckerman (2007) proved that for every ε > 0, there is no
polynomial time O(n1−ε)-approximation algorithm for the size of a largest
clique, unless P = NP, implying our result.

In Figure 2 we illustrate this construction with a graph G with four
vertices v1, . . . , v4 and the corresponding finitely ambiguous probabilistic au-
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tomaton PG. For example, here the word 1110 represents the set of vertices
{v1, v2, v3} which has probability 3

4·23 in PG, and is indeed a clique with three
vertices.

5. Decidability and Complexity of Finitely Ambiguous Probabilis-
tic Automata

In this section we study the emptiness problem for finitely ambiguous
probabilistic automata. We start by showing regularity of the threshold
language L>c(P) for a finitely ambiguous probabilistic automaton P and a
threshold c. A classical result due to Rabin (1963) shows that the threshold
language need not be regular in general. Unfortunately our proof of regu-
larity, while constructive, is not useful for determining the complexity of the
emptiness problem. However we are able to give a direct simple argument
that bounds the length of witnesses for the emptiness problem. We then use
these bounds to analyse the complexity of the emptiness problem.

Our proof of regularity makes use of the theory of well quasi orders. We
refer to Schmitz (2017) for a survey on the use of this theory in theoretical
computer science. We are only concerned with the well quasi order over Nk

induced by the pointwise order written ≤. A subset S of Nk is downward
closed if x ∈ S and y ≤ x implies y ∈ S, and it is directed if for any x, y ∈ S
there exists z ∈ S such that x ≤ z and y ≤ z. An ideal is a subset of Nk

which is both downward closed and directed. Every ideal I has the form

I =
{

(n1, . . . , nk) ∈ Nk : ni1 ≤ a1 ∧ . . . ∧ nis ≤ as
}

(1)

for certain indices 1 ≤ i1 < . . . < is ≤ k and natural numbers a1, . . . , as.
From the fact that Nk is a well quasi order it follows that every downward
closed subset D ⊆ Nk can be written as a finite union of ideals. Such a
decomposition can be computed from the finite set of minimal elements of
Nk \D as explained in Lazić and Schmitz (2015).

Theorem 4. Let P be a finitely ambiguous probabilistic automaton and c a
threshold. Then L>c(P) is a regular language.

Proof. Let P = (Q, qin,∆, F ) be a k-ambiguous probabilistic automaton. A
transition is a triple (p, a, q) ∈ Q × Σ × Q such that ∆(p, a)(q) > 0. Let
s denote the number of transitions of P , we fix a linear ordering on these
transitions. We say that m = (mi,j) ∈ Ns×k′ is admissible for a word w ∈ Σ∗

11



if there exist k′ (distinct) accepting runs of P on w such that mi,j is the
number of times that the i-th transition is taken in the j-th accepting run.

For any ideal I ⊆ Ns×k′ the following language is regular:

{w : ∃m ∈ I admissible for w} .

A non-deterministic automaton for this language guesses k′ accepting runs of
P and counts the number of times each transition is taken on each accepting
run up to a finite threshold N , where N is the largest integer appearing in
the description of I in the form (1). It follows that for any downward closed
subset D ⊆ Ns×k′ , the following language is regular:

{w : ∃m ∈ D admissible for w} .

Now let λ1, . . . , λs be the transition probabilities occuring in P , listed
according to the ordering on the transitions. Given k′ ∈ N, consider the set
of tuples

Sk′ =

{
(mi,j) ∈ Ns×k′ :

k′∑
j=1

λ
m1,j

1 . . . λms,j
s > c

}
.

For any word w ∈ Σ∗, we have w ∈ L>c(P) if and only if there exists k′ ≤ k
and m ∈ Sk′ that is admissible for w. Since each set Sk′ is downward closed,
it follows that L>c(P) is regular.

The threshold language L>c(P) of a finitely ambiguous probabilistic au-
tomaton is regular, however, this does not say anything about how to decide
efficiently whether L>c(P) is empty or not. We say that a word w is a non-
emptiness witness, or simply a witness, if w ∈ L>c(P). The next step is to
bound the length of witnesses whenever L>c(P) 6= ∅. This will lead to upper
bounds on the complexity of the emptiness problem.

Lemma 1. Let P be a k-ambiguous probabilistic automaton with n states.
For every word w, there exists a word w′ of length at most nk such that
P(w) ≤ P(w′). This implies that the value of P is reached by some word of
length at most nk.

Proof. Let P = (Q, qin,∆, F ) and suppose that there are exactly k′ accepting
runs on w for some k′ ≤ k. If w has length strictly greater than nk

′
then

there exists a factorization w = xyz for x, y, z ∈ Σ∗, with y non-empty and
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xz of length at most nk, such that for each of the accepting runs on w, the
infix corresponding to the factor y starts and ends in the same state. Then
we have

P(w) =
∑

q∈F
∑

p∈QP(qin
x−→ p)P(p

y−→ p)P(p
z−→ q)

≤ ∑
q∈F
∑

p∈QP(qin
x−→ p)P(p

z−→ q)

= P(xz) .

Note that if k is fixed, then the length of a witness for L>c(P) is polyno-
mial in the number of states of the automaton. Unfortunately, it has been
shown in Weber and Seidl (1991) that the ambiguity of a finitely ambiguous
automaton can be exponential in the number of states and, thus, the previ-
ous lemma gives a double exponential bound for a witness of L>c(P) when
k is not fixed. The next result shows that the length of a witness is at most
exponential in the number of states.

Theorem 5. Let P be a finitely ambiguous probabilistic automaton with n
states. For every word w, there exists a word w′ of length at most n! such
that P(w) ≤ P(w′). This implies that the value of P is reached by some word
of length at most n!.

Proof. Consider a word w = a1 · · · a` of length at least n!. For any i ∈ [1, `],
let Ri be the set of states participating in at least one accepting run over w.
We equip Ri with the order defined by p ≤ q if

P(qin
a1···ai−−−→ p) ≤ P(qin

a1···ai−−−→ q),

i.e., after reading the prefix a1 · · · ai of w the probability of being in state p
is at most that of being in state q. Assume that ties are resolved consistently
for all Ri.

Since w has length at least n!, there exist two positions i < j such that
the ordered sets Ri and Rj coincide, let us refer to their common value as R.
There exists a factorization w = xyz, with y the word in between positions
i and j. Then we look at the runs of y from R to R, and make the following
claims:

1. For every p ∈ R, there exists a run over y from p to a state in R.
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2. For every p ∈ R, there exists at most one run over y from p to a state
in R.

3. For every p ∈ R, we have P(qin
xy−→ p) ≤ P(qin

x−→ p).

The first claim follows from the fact that R is the set of states participating
in at least one accepting run over w. For the second claim, if this were not
the case, then the number of runs from R to R would increase unboundedly,
contradicting that P is finitely ambiguous. Thus for any state p ∈ R there
exists a unique run over y from p to some state in R, which is written p′.
To prove the third claim, pick a state p ∈ R and note that P(qin

xy−→ p′) =

P(qin
x−→ p) ·P(p

y−→ p′) ≤ P(qin
x−→ p). This reduces the analysis to two cases.

On one hand, p ≤ p′ and then P(qin
xy−→ p) ≤ P(qin

xy−→ p′) ≤ P(qin
x−→ p).

On the other hand, p > p′ and then there exists a state q in R such that
q ≤ p and p′ ≤ q. This is because for any state r ∈ R there exists a unique
run over y from r to some state in R. It follows that P(qin

xy−→ p) ≤ P(qin
xy−→

q′) ≤ P(qin
x−→ q) ≤ P(qin

x−→ p).
The last claim implies the result, with the same calculations as for the

proof of Lemma 1.

With the previous bounds in hand, we can study the computational com-
plexity of the emptiness problem for various classes of finitely ambiguous
probabilistic automata. For each fixed positive integer k we consider the
class of k-ambiguous probabilistic automata. More generally, we can let the
ambiguity of an automaton depend on the number n of states: we consider
for each fixed polynomial P the class of all automata that have ambiguity
at most P (n). We call this the class of automata of P -finite ambiguity. We
emphasise that P -finite ambiguity is not the same as polynomial ambiguity:
for each P , the class of automata of P -finite ambiguity is a subclass of finitely
ambiguous automata. (Recall that the ambiguity can be exponential in the
number of states in general.)

Theorem 6.

• For each fixed positive integer k, the emptiness problem for the class of
k-ambiguous probabilistic automata is in NP.

• For each fixed polynomial P , the emptiness problem for the class of
probabilistic automata with P -finite ambiguity is in PSPACE. This
problem is PSPACE-hard already in case P (n) = n.
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• The emptiness problem for the class of finitely ambiguous probabilistic
automata is in NEXPTIME and is PSPACE-hard.

Proof. The algorithm for all three cases exploits Lemma 1 and Theorem 5 to
guess and check a word witnessing that the threshold language is non-empty.

For a k-ambiguous probabilistic automaton P we know by Lemma 1 that
a witness for checking whether L>c(P) 6= ∅ is of polynomial length in P and,
therefore, we can guess a word w of appropriate length and check whether
P(w) > c in polynomial time, implying that the emptiness problem is in NP.

Similarly, for finitely ambiguous P we know by Theorem 5 that the wit-
ness is of length at most exponential, so we can guess w and check whether
P(w) > c in NEXPTIME.

To show that emptiness is in PSPACE for probabilistic automata of P -
finite ambiguity, one can guess a word w “on the fly” of exponential length
and check whether P(w) > c. The problem here is that the value P(w)
(written in binary) could be of size exponential in the number of states of P .
To check whether P(w) > c with polynomial space one can guess w, and keep
a set of counters {cit} that stores how many times each transition t is used
on the i-th run of P over w. Since w is of length at most exponential and P
has at most P (n) accepting runs, then we need polynomially many counters,
each with at most polynomially many bits, namely, polynomial space to store
these counters during the simulation of P over w. After we conclude guessing
w, we can construct a polynomial-size circuit that receives {cti} and outputs
P(w). Checking whether the value of the circuit is greater or equal than a
constant c can be solved in PSPACE, since both addition and multiplication
are in NC and hence can be done in polylogarithmic space.

Next we consider a fixed polynomial p(n) = n, and prove PSPACE-
hardness of emptiness for the class of probabilistic automata of p(n)-bounded
ambiguity. The proof is by reduction from the emptiness problem of the in-
tersection of a finite collection of deterministic finite automata: given as
input a collection of deterministic finite automata, does there exist a word
accepted by each of them? This problem has been shown PSPACE-complete
in Kozen (1977). Given N deterministic automata, we construct a proba-
bilistic automaton P containing a copy of each deterministic automata and
with a distribution of initial states assigning probability 1

N
to the initial state

of each automaton. The probabilistic automaton P is N -ambiguous (note
that N is at most the number of states of P), and there exists a word w such
that P(w) = 1 if and only if there exists a word accepted by each of the N
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deterministic automata.

The aim of the last section is to give better algorithms for the k-ambiguous
case: in particular, we show that the emptiness problem is in quasi polyno-
mial time for 2-ambiguous probabilistic automata.

6. Algorithms and Approximations for Finitely Ambiguous Prob-
abilistic Automata

This section is devoted to the construction of algorithms for both the
emptiness problem and approximating the value of finitely ambiguous prob-
abilistic automata. The first step is a reduction to a multi-objective opti-
misation problem that we call the stochastic path problem. We construct
algorithms for this problem, relying on recent progress in the literature on
multi-objective optimisation problems, and thus obtain algorithms for finitely
ambiguous probabilistic automata.

6.1. The Stochastic Path Problem

The stochastic path problem is an optimisation problem on multi-weighted
graphs. It is parametrised by a positive integer constant k, giving rise to the
k-stochastic path problem. An instance is a triple consisting of an acyclic k-
weighted graph G and two vertices s and t. A k-weighted graph is given by a
set of vertices V of size n and a set of weighted edges E ⊆ V ×(Q∩[0, 1])k×V .
Note that the same pair of vertices (v, v′) can have several edges between
them and the weight of an edge is a k-tuple of rational numbers between 0
and 1.

A path π in G is a sequence of consecutive edges, and the set of feasible
solutions of the problem are all paths from s to t. We let (p1(π), . . . , pk(π))
denote the componentwise product of the weight vectors along the edges
of π. In other words, the weight of a path on component i is the product
of the weights of each edge along π on component i. In our applications we
think of each component of a weight vector of an edge as the probability
of a single event, and each component of a weight vector of a path as the
probability of a sequence of events. The value of the path π, written val(π),
is obtained by summing each component of the weight vector of the path:
val(π) =

∑k
i=1 pi(π).

As a running example, on the left-hand side of Figure 3 we represent an
instance of the 2-stochastic path problem. There are five paths from s to t,
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s

p

q

t

(.4, .6)

(.2, .3)

(.3, .2)

(.5, .35)

(.5, .3)(.9, .1)

(.9, .9)

.2 .3

.2

.3

Figure 3: An instance of the 2-stochastic path problem on the left, and the values of all
paths from s to t on the right. The four red dots are the Pareto curve, and the three
connected red dots the convex Pareto curve.

and their values are plotted in the right-hand side. For instance, the path
s, p, q, t using the left edge from p to q has weight (.4× .9× .9, .6× .1× .9) =
(.324, .054), so its value is .324 + .054 = .378.

The objective of the k-stochastic path problem is to find the path with
maximal value. The decision problem associated with the k-stochastic path
problem is the following:

The k-stochastic path problem: given a k-weighted graph G, two
vertices s and t and a threshold c in Q ∩ [0, 1], does there exist a path π
from s to t in G whose value is at least c, i.e. such that val(π) > c?

Towards finding efficient algorithms and approximations of k-ambiguous
probabilistic automata, we show a polynomial time reduction from the empti-
ness problem of k-ambiguous probabilistic automata to the k-stochastic path
problem. Intuitively, the reduction consists in constructing the powerset
graph of the paths, restricting to at most k paths.

Lemma 2. Fix k ≥ 2. There exists a polynomial-time reduction from the
emptiness problem of k-ambiguous probabilistic automata to the k-stochastic
path problem. Given a k-ambiguous probabilistic automaton P, the reduction
constructs an instance of the k-stochastic path problem (GP , s, t) satisfying
the two following properties.

1. for any word w there exists a path π in G from s to t such that P(w) ≤
val(π),
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2. for any path π in G from s to t there exists a word w such that val(π) ≤
P(w).

Proof. Let P = (Q, qin,∆, F ) be a k-ambiguous probabilistic automaton with
n states. The set of vertices of the k-weighted graph GP is defined as Qk ×
{0, . . . , nk}×{0, 1}k×k where {0, 1}k×k is the set of k×k matrices over {0, 1},
plus a special source vertex s and a special target vertex t.

Intuitively, being in the vertex ((q1, . . . , qk), `,M) means that we are sim-
ulating k runs which are now in the states (q1, . . . , qk), that the run so far
has length `, and the matrix M indicates which pairs of runs are different:
M(i, j) = 1 if and only if the i-th run is different from the j-th run.

We define the set of edges of GP .

• For the source vertex, there is an edge from s to ((qin, . . . , qin), 0,0)
with weight (1, . . . , 1), where 0 is the zero matrix.

• There is an edge from ((q1, . . . , qk), `,M) to ((q′1, . . . , q
′
k), `+1,M ′) with

weight (p1, . . . , pk) if there exists a letter a such that for each i ∈ [1, k]
we have ∆(qi, a)(q′i) = pi, and M ′(i, j) = 1 if and only if M(i, j) = 1 or
q′i 6= q′j.

• There is an edge from ((q1, . . . , qk), `,M) to t with weight (p1, . . . , pk)
where for each i ∈ [1, k] we have pi = 1 if qi ∈ F and M(i, j) = 1 for
every j < i, and pi = 0 otherwise.

Note that GP is acyclic and of size polynomial in P given that k is fixed.
We prove the correctness of the construction. Let w be a word. Thanks

to Lemma 1, we can assume without loss of generality that w has length at
most nk. Its set of accepting runs induces a path π in GP from s to t with
val(π) = P(w). Conversely, a path π in GP from s to t corresponds to a set
of accepting runs for some word w with val(π) ≤ P(w).

6.2. Approximating the Value in Polynomial Time

Multi-objective optimisation problems have long been studied; see Pa-
padimitriou and Yannakakis (2000) and Diakonikolas and Yannakakis (2008)
among many others. Since there is typically no single best solution, a natu-
ral notion for multi-objective optimisation problems is Pareto curves, which
comprise sets of dominating solutions. To make things concrete, we illustrate
the notion of Pareto curves on the k-stochastic path problem. We fix an in-
stance (G, s, t) of the k-stochastic path problem. A Pareto curve is a set of
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paths P such that for every path π, there exists a path π′ in P dominating π,
i.e. such that for all i in [1, k], we have pi(π) ≤ pi(π

′). In Figure 3, we can see
that the Pareto curve of our running example is given by the four red dots.
In dimension 2 dominating means being to the right and higher, so only one
path (represented by the black dot) is dominated by others. Unfortunately,
the size of Pareto curves in discrete multi-objective optimisation problems
is exponential in the worst case, motivating two relaxations: convex and
approximate Pareto curves.

A convex Pareto curve is a set of paths C such that for every path π,
there exists a family of paths π1, . . . , πm ∈ C such that π is dominated by a
convex combination of π1, . . . , πm in the sense that there exist non-negative
coefficients λ1, . . . , λm that sum to 1 such that pi(π) ≤ ∑j λjpi(πj) for all
components i in [1, k].

Convex Pareto curves have been studied in a general setting by Diakoniko-
las and Yannakakis (2008). They are in general smaller than Pareto curves,
yielding efficient algorithms for convex optimisation problems.

In Figure 3, there exists a convex Pareto curve consisting of only three
paths, the fourth one being dominated a convex combination of two other
paths. The figure connects the three dots, showing what is called the Pareto
front.

Fix ε > 0, an ε-Pareto curve is a set of paths C such that for every
path π, there exists a path π′ in C such that for all i in [1, k], we have
pi(π) ≤ (1 + ε) · pi(π′).

The notion of approximate Pareto curves is very appealing for two rea-
sons: first, knowing an approximate Pareto curve usually gives an approxi-
mately optimal solution, and second, a very general result of Papadimitriou
and Yannakakis (2000) shows that in most multi-objective optimisation prob-
lems, there exists a polynomially succinct approximate Pareto curve.

The two relaxations can be combined: an ε-convex Pareto curve is a
set of paths C such that for every path π, there exists a family of paths
π1, . . . , πm ∈ C and non-negative coefficients λ1, . . . , λm that sum to 1 such
that pi(π) ≤ (1 + ε)

∑
j λjpi(πj) for all components i in [1, k].

The following result shows how to find a (1 + ε)-approximation of the
value of a k-ambiguous probabilistic automaton P .
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Theorem 7. There exists an algorithm which given an instance of the k-
stochastic path problem and ε > 0, returns an ε-convex Pareto curve in time
polynomial in the instance and 1

ε
.

Proof. We rely on general results of Papadimitriou and Yannakakis (2000),
which give a sufficient condition for the existence of a polynomial time al-
gorithm constructing an ε-convex Pareto curve in time polynomial in the
instance and 1

ε
: it is enough to construct an algorithm solving the exact

version in pseudo-polynomial time. Recall here that an algorithm is pseudo-
polynomial if it runs in polynomial time when the numerical inputs are given
in unary.

In our case, the exact k-stochastic path problem reads: given an instance
(G, s, t) and a value c in [0, 1]∩Q, does there exist a path π in G from s to t
such that val(π) = c? Let n be the number of vertices of G. If all transition
probabilities have size B (in unary), then it is enough to consider paths such
that each weight has size n·B (in unary). Hence one can fill in a polynomially
large table indexed by (p, q, p1, . . . , pk), which checks for the existence of a
path from p to q of weights (p1, . . . , pk) of size n ·B (in unary).

The algorithm of Theorem 7 for the k-stochastic path problem yields
a polynomial time algorithm to approximate the value of a k-ambiguous
probabilistic automaton.

Theorem 8. There exists an algorithm which given a k-ambiguous proba-
bilistic automaton and ε > 0, returns a (1 + ε)-approximation of the value in
time polynomial in the size of the automaton and 1

ε
, and more specifically a

value Output such that

Output ≤ val(P) ≤ (1 + ε) ·Output.

Proof. Given a k-ambiguous probabilistic automaton P , the algorithm for
finding a (1 + ε)-approximation of val(P) is as follows:

1. construct the instance (GP , s, t) of the k-stochastic path problem using
Lemma 2.

2. construct an ε-convex Pareto curve C for (GP , s, t) thanks to Theorem 7.

3. return Output := maxπ∈C
∑

i∈[1,k] pi(π).

The first inequality is a direct consequence of Lemma 2 given that for every
path π in GP , there exists a word w such that val(π) ≤ P(w), so Output ≤
val(P).
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For the second inequality, consider a word w that achieves P(w) = val(P).
By Lemma 2, there exists a path π such that P(w) ≤ val(π). Since C is an
ε-Pareto curve, there exists a path π′ ∈ C such that for all i in [1, k], we
have pi(π) ≤ (1 + ε) · pi(π′). It follows that P(w) ≤ (1 + ε) · val(π′) ≤
(1 + ε) ·Output.

It is interesting to compare the positive result of Theorem 8 to the nega-
tive result of Theorem 3. The key difference is in fixing the ambiguity, which
allows us to go from intractable to tractable.

6.3. A Quasi-Polynomial Time Algorithm for 2-ambiguous Probabilistic Au-
tomata

The previous result show that one can (1 + ε)-approximate the value of
k-ambiguous probabilistic automaton in polynomial time. This is however
not enough to decide the emptiness problem. In this direction, Theorem 6
shows that for any fixed k the emptiness problem of k-ambiguous probabilistic
automata is in NP. We show that for k = 2 there exists a quasi-polynomial
time algorithm for the emptiness problem. For this, we start by constructing
a quasi-polynomial time algorithm for the 2-stochastic path problem.

Theorem 9. There exists an algorithm which given an instance of the 2-
stochastic path problem, returns a convex Pareto curve in quasi-polynomial
time.

The benefit of fixing k = 2 lies in the existence of a quasi-polynomial
bound on the size of convex Pareto curves. More precisely, if (G, s, t) is
an instance of the 2-stochastic path problem with n vertices, then it can
be shown that there exists a convex Pareto curve of size at most nlog(n).
This result was proved in Gusfield (1980), and a matching lower bound was
developed by Carstensen (1983). Note that they use a different framework,
called parametric optimisation: in the parametric shortest path problem each
edge has cost c+λd, where λ is a parameter. The length of the shortest path
is a piecewise linear concave function of λ, whose pieces correspond to the
vertices of the convex Pareto curve for the shortest path problem with weights
(c, d). It is then easy to obtain an upper bound on the size of convex Pareto
curves for the 2-stochastic path problem by reducing it to the parametric
shortest path problem, mapping the weights (p, q) to (− log(p),− log(q)).
Finally, the upper bound on the size of convex Pareto curves yields a quasi-
polynomial time algorithm, by constructing them in a standard divide-and-
conquer manner.
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The algorithm of Theorem 9 yields a quasi-polynomial time algorithm for
the emptiness problem of 2-ambiguous probabilistic automata.

Theorem 10. There exists a quasi-polynomial time algorithm for the empti-
ness problem of 2-ambiguous probabilistic automata.

Proof. Given a 2-ambiguous probabilistic automaton P and a threshold c,
an algorithm for deciding the emptiness of P is as follows:

• construct the instance (GP , s, t) of the 2-stochastic path problem using
Lemma 2.

• construct a convex Pareto curve C for (GP , s, t) thanks to Theorem 9.

• check whether Output := maxπ∈C
∑

i pi(π) > c.

To show the correctness of this algorithm, we first prove that P(w) ≤ Output
for every word w. Let w be a word, thanks to Lemma 2, there exists a
path π such that P(w) ≤ p1(π) + p2(π). Since C is a convex Pareto curve,
there exists a convex combination of paths π′ = λ′1π

′
1 + λ′2π

′
2 in C such that

p1(π) ≤ p1(π′) and p2(π) ≤ p2(π′). Now, consider all convex combinations of
paths in C; by convexity of the sum function, the maximum over this set is
reached on some path π′′m, so p1(π′) + p2(π′) ≤ p1(π′′m) + pi(π

′′
m). It follows

that P(w) ≤ p1(π′′m) + pi(π
′′
m) ≤ Output.

To conclude the proof of correctness, we show that Output ≤ P(w) for
some word w. Indeed, if π is a path such that Output = p1(π) + p2(π), then
thanks to Lemma 2 there exists a word w such that p1(π)+p2(π) ≤ P(w).

Conclusions

We have initiated the study of the computational complexity of analysing
finitely ambiguous probabilistic automata. Our main conceptual tool is a
reduction to a multi-objective optimisation problem called the stochastic
path problem. There remain many gaps in complexity, leaving interesting
open problems. The most exciting is the complexity of the emptiness problem
for k-ambiguous probabilistic automata: can it be solved in polynomial time
for k = 2, or in quasi-polynomial time for every k > 2?
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