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Abstract

A micromechanics-based plastic damage model including localised failure is proposed

in the present work for heterogenous materials which can be treated as a porous matrix

reinforced by mineral inclusions. This model explicitly considers the influences of pores

and inclusions volume fractions, also the solid phase dilatancy on the overall mechanical

performance. The induced damage in solid phase is also considered. Based on this two-scale

model, the bifurcation analysis is performed to detect both the onset and orientation of

localization band. Numerical simulations are carried out for different cases. It is found that

the material’s microstructure affects importantly the onset point of the localization and the

post-localization behavior. As an example of validation, the proposed model enhanced with

localization analysis is then adopted to predict the overall mechanical response before and

post localization of this typical claystone. Comparing with the experimental results, the

capacity of this enhanced modelling is clearly demonstrated.

Keywords: Micromechanical models, Localization analysis, Plastic deformation, Damage,

Porous materials, Claystone

1. Introduction

In many engineering applications (like nuclear waste storage, mining engineering, etc.),

rock and cement-based material are the most studied materials for the safety and durability

[19, 37, 41, 10, 2, 35]. In the context of the radioactive waste storage, the Callovo-Oxfordian
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(COx) claystone has been chosen as a possible natural protection of the radioactive waste dis-

posal in French [8, 40, 3]. These materials are generally heterogeneous with complex micro-

structures which affect their overall mechanical performance. Many constitutive modellings

were established for describing the mechanical response of such materials. For example,

[9, 42, 20] have developed phenomenological models for the COx claystone. These models

are essentially generally formulated and calibrated from macroscopic laboratory tests. The

material’s microstructural information is not explicitly taken into account. For instance,

experimental results indicates that the material strength is affected by the volume fraction

of pore and mineral compositions [8, 40, 3]. To overcome these weaknesses, many researchers

focus on the micromechanics-based constitutive modelings by using the up-scaling approach.

Based on the pioneer’s work [17] for a hollow sphere with a pressure independent matrix (von

Mises type), a high number of strength criteria have been formulated for different kinds of

porous materials. For example, some authors have considered effects of pore size and spatial

distribution at different scales [25, 12, 7, 29, 58, 59, 47, 44, 51, 43]; others have studied the

void shape effects [14, 15, 22, 26, 27, 46]. Different matrix properties have been investigated:

Mises-Schleicher type matrix [23, 11, 28, 56, 54], Green type one [47, 48, 52, 51, 55, 53] and

Drucker-Prager type one [21, 4, 16, 24, 57, 44, 11, 49] have also been investigated. On the

other hand, some studies have focused on the effects of mineral grains in heterogeneous ma-

terials. Macroscopic strength criteria have been derived in [13, 5, 24, 6]. What’s more, the

Hill’s incremental approach is adopted in [1, 48] by including both effects of mineral grains

and pores on the macroscopic behaviors of COx claystone. With two-step homogenization

procedures, some authors [45, 18, 6] have even proposed analytical elastic-plastic modelings

which simultaneously consider the meso-inclusions and micro-porosity.

However, in most previous studies, only elastic-plastic deformations are investigated. The

progressive failure due to onset of localized bands has not been taken into account. Indeed,

in most experimental studies [8, 40, 3], it is found that a single or multiple localized cracks

are formed after the peak stress in laboratory tests. The stress and strain fields in tested

samples are no more uniform after the onset of localization. The orientation of localized

zones (shear band or compaction band) depends on loading paths [36]. The description

of localization is a crucial issue for the analysis of failure process and excavation induced

damaged and fractured zones. Recently, the localised failure processes of sandstone have
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been investigated by some interesting studies [34, 32, 33] by using an enhanced macroscopic

constitutive model including the analysis of localization onset and post-localization behavior.

In this work, we focus on the analysis of localization phenomena in heterogenous rock-like

materials by developing an enhanced micromechanicas-based elastic-plastic damage model.

As a novelty, we shall investigate the influences of micro-structures (pores and mineral

inclusions) on the onset of localized bands and on the post-localization behavior of such

materials.

There are five principal parts in this work: adopting the macroscopic strength criterion

issued from nonlinear homogenization procedure [50], a basic constitutive modelling is pre-

sented in section 2 for heterogeneous materials with micro porosity and meso inclusions.

This basic model is enhanced in section 3 by including the analysis of localization onset and

post-localization response. Then, it is fully studied in section 4, especially by considering

the influences of microstructure parameters on the localised failure process. Finally, an ap-

plication is carried out in section 5 to study both the pre- and post- localization behaviors

of COx claystone, with different material composition and different loading condition.

2. Micromechanics-based constitutive model with microstructural information

In this section, a micromechanics-based elastic-plastic damage modelling is firstly pro-

posed to predict the macroscopic strength of heterogeneous materials with effects of porosity,

mineral grains and the dilatation of the solid phase. Figure 1 shows the representative vol-

ume element (RVE) of the studied heterogeneous material. At the mesoscopic scale, the

inclusions are embedded in a matrix which is a porous medium at the microscopic scale.

The pores and inclusions are both assumed to be spherical. In the RVE, the total domain is

denoted as V, the ones occupied by the inclusion, the pore and the solid phase are given as:

Vi, Vp and Vm, respectively. With these definitions, the micro-porosity at the microscopic

scale and the volume fraction of inclusion at the mesoscopic scale can be calculated:

f =
Vp

Vp + Vm
, ρ =

Vi

Vi + Vm + Vp
(1)
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Figure 1: Heterogeneous material with micro-porosity and meso-inclusions

With the elastic loading, we consider firstly the porous medium at the microscopic scale.

The effective elastic bulk moduli κpm and the shear one κpm of the porous medium depend on

the local ones of the solid phase (κs, µs) and also the local volume fraction of pore f . Due

to the spherical form, the Mori-Tanaka solution [30] is adopted here:

κpm =
4(1 − f )κsµs

4µs + 3 f κs
; µpm =

(1 − f )µs

1 + 6 f
κs + 2µs

9κs + 8µs

(2)

At the macroscopic scale, the overall elastic properties κhom, µhom can be calculated by

using the same homogenization procedure (2), considering the inclusion volume fraction ρ

and the values of κpm, µpm obtained in the first up-scaling for porous medium.

The meso-inclusions are elastic, while the solid phase is elastoplastic and is described by

the following Drucker-Prager model:

Φm(σs) = σs
d + α(σs

m − σ0) ≤ 0 (3)

where σs
m = trσs/3, σs

d =
√
σs′ : σs′ as a function of deviatoric part (σs′ = σs − σs

m1) of the

local solid phase stress σs. The stress in porous medium is defined as σ̃. σ is the overall

stress of the composite. α and σ0 are material parameters, the frictional coefficient and the

strength in the case of purely shear loading, respectively.

Based on the material’s microstructure, a two-step up-scaling is adopted for the overall

yield function. The micro-porosity f and the matrix’s dilatation at the microscopic scale is

considered in the first homogenization. The yield criterion obtained in [24] is adopted here

to describe the effective response of this porous medium:

Fmp(σ̃, f , α) =
1 + 2 f /3

α2 σ̃2
d +

(
3 f
2α2 − 1

)
σ̃2

m + 2(1 − f )σ0σ̃m − (1 − f )2σ2
0 = 0 (4)
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Considering the normality rule, the support function of the porous matrix can be calcu-

lated according to (4):

πmp = (1 − f )σ0

√
3 f

3 f − 2α2

α2

1 + 2 f /3

√
d2

d +
1 + 2 f /3
3 f /2 − α2 d2

v − (1 − f )σ0
2α2

3 f − 2α2 dv (5)

in which d denotes the strain rate, dv = trd, dd =
√

d′ : d′ with d′ = d − dm1.

It is interesting to note that both the plastically dilatant and contractant behaviors

can be observed even with the normality rule for the porous matrix. Differently from the

Drucker-Prager criterion (3) of the solid phase at the microscopic scale (black line in Figure

2), the yield criterion (4) with the influence of porosity gives a closed surface as indicated by

the illustrated blue lines. The dilatant and contractant behaviours can be predicted by this

same yield surface, depending on the loading path and material microstructure information.

For example, in the case with a porosity of f = 0.1, the plastic dilatancy can be obtained with

a low confining pressure (green dashed line) while the contractancy can be observed with

a high confining pressure (yellow dashed line). The porosity also has a great influence on

the dilatant and contractant responses of porous material with the same loading condition.

For example, following the triaxial compression test with a 2 MPa confining pressure (red

dashed line), the porous matrix is plastically dilatant for the porosity f = 0.1. Inversely,

it has a contractant behaviour when the porosity is f = 0.35. Taking into account the

microstructure effect is the main advantage of micro-mechanical model comparing with the

traditional phenomenological models.
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Figure 2: Yield surfaces predicted by criterion (4) with different porosity and different

loading path, α = 0.3, σ0 = 5.

According the equation (5), the relations between the stress and strain can be expression

as follows:

σ̃ = ∂πmp

∂d = 2µmpd′ + κmpdv1 + σp1, κmp =
1+2 f /3

3 f /2−α2
N
M , 2µmp = N

M ,

σ̃p = −(1 − f )σ0
2α2

3 f−2α2 , M =

√
d2

d +
1+2 f /3

3 f /2−α2 d2
v , N = (1 − f )σ0

√
3 f

3 f−2α2
α2

1+2 f /3

(6)

Based on the effective behavior of porous matrix, the influence of inclusion volume frac-

tion on the macroscopic elastoplastic properties will be accounted in the second up-scaling.

By adopting the modified secant method, [50] established a strength function for the studied

material considering simultaneously the effects of f , ρ and and the dilatation property α of

the solid phase, as illustrated in Figure 1. Here we take the main results and more details

can be found in [50] for the derivation.

Φ(σ, f , ρ, α) = Θσ2
d +

(
3 f
2α2 − 1

)
σ2

m + 2(1 − f )σ0σm −
3 + 2 f + 3 fρ

3 + 2 f
(1 − f )2σ2

0 = 0 (7)

where Θ =

1+2 f /3
α2 + 2

3ρ
(

3 f
2α2 − 1

)
4α2−12 f−9
6α2−13 f−6ρ + 1

.
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For the purpose to consider the plastic hardening phenomena observed in the experi-

mental and to construct a complete constitutive modelling, the frictional parameter α at

the microscopic scale is chosen here as the plastic hardening law, which is a function of

equivalent plastic strain ε
p
eq in the solid phase:

ᾱ = αm − (αm − α0)e−b1ε
p
eq (8)

Then the yield function (7) can be rewritten as follows:

Φ(σ, f , ρ, ᾱ) = Θσ2
d +

(
3 f
2ᾱ2 − 1

)
σ2

m + 2(1 − f )σ0σm −
3 + 2 f + 3 fρ

3 + 2 f
(1 − f )2σ2

0 = 0 (9)

where Θ =

1+2 f /3
ᾱ2 + 2

3ρ
(

3 f
2ᾱ2 − 1

)
4ᾱ2−12 f−9
6ᾱ2−13 f−6ρ + 1

.

For a general case, a non-associated flow rule is chosen in this constitutive modelling.

Based on the yield criterion (9), a macroscopic plastic potential is introduced which depends

on the microstructural information ( f , ρ, ᾱ, β̄ and σ0):

G(σ, f , ρ, ᾱ, β̄) = Θ̄σ2
d +

(
3 f

2ᾱβ̄
− 1

)
σ2

m + 2(1 − f )σ0σm −
3 + 2 f + 3 fρ

3 + 2 f
(1 − f )2σ2

0 (10)

where Θ̄ =

1+2 f /3
ᾱβ̄

+ 2
3ρ

(
3 f

2ᾱβ̄ − 1
)

4ᾱβ̄−12 f−9
6ᾱβ̄−13 f−6ρ + 1

. β̄ denotes the dilatancy parameter which controls the vol-

umetric deformation. Similar to the plastic hardening law (8), β̄ is chosen as function of

ε
p
eq:

β̄ = βm − (βm − β0)e−b2ε
p
eq (11)

Based on the plastic potential (10), the macroscopic plastic deformation can be computed:

Dp = λ̇
∂G
∂σ

(σ, f , ρ, ᾱ, β̄) (12)

With the process of loading, the solid phase can be damaged because of the micro-cracks

generations. This may be at the origin of macroscopic materials softening. For the simplicity,

this softening effect will be considered by the degradation of the cohesion coefficient σ0 in

local criterion (3) of the solid phase:

σ0 = c0 + c1e−b3<ε
p
eq−ε

p
r > (13)
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where c0 is the residual resistance of the solid phase; < x − x0 > is a mathematical operator

which is 0 when x ≤ x0, otherwise x−x0; ε
p
r is the reference values which controls the beginning

of softening. For the simplicity, the equivalent plastic deformation at the microscopic scale

will be taken as the reference value. In order to consider the microstructure effect and

loading influence, this value is related to the macroscopic strain and the ratio of incremental

values Ėp
eq/Ėeq is chosen as the critical point. In this work, the value Ėp

eq/Ėeq = 0.98 is taken

as the beginning of softening.

Based on (12), the local equivalent plastic strain can be computed:

ε̇p =
σ : Dp

(1 − f )(1 − ρ)
[
ᾱσ0 + (β̄ − ᾱ) σm

1− f

] (14)

The variations of pore and inclusion volume fractions are determined as:

ḟ =
1 − f
1 − ρ

trDp − (1 − f )β̄ε̇p
eq, ρ̇ = −ρtrDp (15)

The plastic multiplier λ̇ used in (12) can be fixed with the help of consistency condition:

λ̇ =

∂Φ
∂σ

: C : D
∂Φ
∂σ

: C : ∂G
∂σ
− ∂Φ

∂ f

[
1− f
1−ρ

∂G
∂σm
− β̄(1 − f )Z

]
− ∂Φ

∂ρ
(−ρ ∂G

∂σm
) − ∂Φ

∂ᾱ
∂ᾱ
∂ε

p
eq

Z − ∂Φ
∂σ0

∂σ0
∂ε

p
eq

Z
(16)

where Z =
σ: ∂G

∂σ

(1− f )(1−ρ)
(
ᾱσ0+(β̄−ᾱ) σm

1− f

) , C is a fourth order elastic stiffness tensor which depends on

material’s microstructure (porosity f , inclusion volume fraction ρ) as shown in equation (2).

In the elastoplastic case, the tangent one Ctan of the studied material can be calculated:

Ctan =


C if Φ(σ, f , ρ, ᾱ) ≤ 0, Φ̇(σ, f , ρ, ᾱ) < 0

C −
C : ∂G

∂σ
⊗ ∂Φ

∂σ
: C

HL if Φ(σ, f , ρ, ᾱ) = 0, Φ̇(σ, f , ρ, ᾱ) = 0
(17)

with HL = ∂Φ
∂σ

: C : ∂G
∂σ
− ∂Φ

∂ f

[
1− f
1−ρ

∂G
∂σm
− β̄(1 − f )Z

]
− ∂Φ

∂ρ
(−ρ ∂G

∂σm
) − ∂Φ

∂ᾱ
∂ᾱ
∂ε

p
eq

Z − ∂Φ
∂σ0

∂σ0
∂ε

p
eq

Z.

This proposed multiscale constitutive model now is adopted to predict the overall me-

chanical behavior of heterogeneous materials as illustrated in Figure 1. The material’s

microstructure informations are explicitly and simultaneously accounted by this microme-

chanics based model, for example, volume fractions of pore and inclusion ( f , ρ), also the

dilatation α of solid phase. At the constitutive level, the studied material is homogeneous

and the heterogeneous properties are directly considered in the criterion (9) and the plastic

potential (10). The prediction is well adopted before the peak strength of the material. The

post-peak behavior will accounted in the following section due to the localization zone.
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3. Analysis of localization onset and post-localization behavior

3.1. Onset condition of the localization band

At the beginning of the loading, the material is assumed as homogeneous and its mechan-

ical behavior is described by the micromechanics based model presented in section 2. With

the loading process, the material may loss is stability and the discontinuous bifurcation will

be generated. To predict the localization effects on macroscopic behaviors of the studied

heterogeneous materials through this micro-macro constitutive model, one need to specify

its onset and orientation. For this purpose, the classical method for the determination of

discontinuous bifurcation is adopted in this study as in [34]. We first present the acoustic

tensor A which can be expressed as A = n · Ctan · n, in which Ctan is the tangent stiffness

and calculated in the above constitutive model by the equation (17); n is the unit direction

vector. As illustrated in the Figure 3, here n is the direction of the localization band. In

spherical coordinate, n is given as:

n = [n1, n2, n3]t = [sin θ sinϕ, sin θ cosϕ, cos θ]t (18)

According to the symmetric property, the ϕ is taken as 90◦; the range of θ is [−90◦, 90◦].

The beginning of localization is fixed at the point when the definiteness of this acoustic

tensor A becomes negative:

det(A) ≤ 0 (19)

With the loading path, the first stress-strain state for which det(A) ≤ 0 is checked to fix

the bifurcation inception. According to the Ctan given by (17), the value of det(A) can be

calculated by scanning all the possible directions n. Once one gets det(A) ≤ 0, usually a

range of orientation n can be mathematically found to satisfy the onset condition and any

n in this range is a possible direction of the localization band. In this work, the direction

which makes the minimum value of det(A) in the domain det(A) ≤ 0 is chosen as the most

probable band orientation and adopted in the following loading process.

3.2. Post-localization behavior

After this beginning of localization band, the studied material will be no longer homo-

geneous. There are two principal parts in the studied volume: the localization zone and the
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Figure 3: The orientation of the Localization zone

outside one. In this case, the traditional constitutive models can not be used directly to de-

scribe its macroscopic mechanical behaviors. These models should be improved or extended

to detect the onset of localization zone and to take into account the macroscopic behaviors

of post-localization. As illustrated in Figure 3, one need to separated well this two phases:

inside and outside localization zone. h is the thickness of the localization zone. According

to the average area S of the localization zone’s surface and the total volume Ω, the content

of this zone is calculated : φ = hS
Ω

. The width of the localisation band depends on both

microstructure of the studied material and also the loading conditions. With the process of

loading, it will also change during the deformation. For the simplicity, the localization band

thickness here is treated as a material property and fixed throughout the failure process.

At this step, the constitutive presented in the above section well be applied separately to

describe the mechanical behaviors inside and outside the localization zone. To be clarity, σi

and εi denote the stress and strain inside the localization zone while the outside ones are

defined as σo and εo, respectively. The total ones at the macroscopic scale are defined as Σ

and E. The strain rate relation between Ė, ε̇i and ε̇o can be found:

Ė = φε̇i + (1 − φ)ε̇o (20)

Then, it is necessary to calculate the strain rate ε̇i inside the localization zone. According
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to the works of [31, 34, 32], it takes the following simple form:

ε̇i = ε̇o +
1
h

(n ⊗ [u̇])s (21)

According to (21), the tensor of strain rate is composed of two parts. The first part is the

homogeneous strain rate. The second one is kinematically due to the discontinuous field of

displacement rate, denoted as [u̇], with n being the unit normal vector of the localization

band. Therefore, unlike strain localization problems commonly studied by using the bifurca-

tion theory, in this study, we consider crack-like localization problems in rock-like materials.

There are displacement discontinuities crossing the localized band. However, it is assumed

that this crack-like localization is generated by a progressive strain and micro-cracks local-

ization process. It is a priori assumed that the classical bifurcation criterion can be still used

for the detection of localization inception.

According equations (20) and (21), the local strain rates ε̇i and ε̇o can be derived as

functions of the macroscopic one Ė and [u̇]:

ε̇o = Ė −
φ

h
(n ⊗ [u̇])s, ε̇i = Ė +

1 − φ
h

(n ⊗ [u̇])s (22)

Based on the equilibration between the macroscopic work and the average value of local

one, the following relation can be derived:

Σ : Ė = φσi : ε̇i + (1 − φ)σo : ε̇o (23)

Combining equations (20) (22) and (23), we obtain:

[
Σ − φσi − (1 − φ)σo

]
: Ė −

φ(1 − φ)
h

(σi · n − σo · n) · [u̇] = 0 (24)

The equation (24) should be satisfied for any values of [u̇] and Ė. With this condition,

the following results can be derived [32]: σi · n = σo · n,

Σ = φσi + (1 − φ)σo

(25)

The localization zone and the outside part are assumed to be homogeneous. By using the

inside and outside tangent stiffness: Ctan
i and Ctan

o , the local stress rate can be computed:
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σ̇i = Ctan
i : ε̇i, σ̇o = Ctan

o : ε̇o. Considering the traction condition of equation (25), the velocity

jump [u̇] is given as:

[u̇] = hB ·
(
Ctan

o − Ctan
i

)
: Ė · n, with

B =
[
φ
(
n · Ctan

o · n
)

+ (1 − φ)
(
n · Ctan

i · n
)]−1 (26)

Substituting the expression of [u̇] in (22) and (25), the macroscopic tangent stiffness Ctan
m

can be obtained ([32]):

Σ̇ = Ctan
m : Ė, with

Ctan
m = φCtan

i + (1 − φ)Ctan
o − φ(1 − φ)

(
Ctan

o − Ctan
i

)
:
[
n ⊗ B ·

(
Ctan

o − Ctan
i

)
· n

] (27)

in which the macroscopic tangent stiffness Ctan
m reduces to the homogeneous one in the

case of Ctan
i = Ctan

o .

Before the beginning of the bifurcation, the studied material is homogeneous. Its macro-

scopic mechanical behavior is described by this micromechanics-based constitutive modelling

established in above section. According to the state of Ctan calculated by equation (17), the

condition of the onset localization zone is checked. Once the equation (19) is satisfied, the

studied material will be separated into two parts: the localization zone and the outside part.

In each part, the sub-materials are homogeneous respectively. As assumed in [33, 34, 32],

the zone outside the localization unloads elastically at the initial bifurcation while the inside

behavior is inelastic. According to the distributions of the incremental loading Ė for the

zone inside (ε̇i) and outside (ε̇o) the localization zone, each part can exhibit either elastic or

elastoplastic behavior which is determined separately by the proposed constitutive model.

At this step, the inside and outside mechanical states are different and the corresponding

plastic parameters in the constitutive model are conserved and updated separately. In the

following section, this model will be fully studied.

4. Model’s sensitivity study

The proposed micromechanics-based constitutive modelling is firstly implemented in

Abaqus. As presented in [33], the implicit stress return algorithms are adopted here. The

influences of parameter f , ρ, φ and b3 on the localization zone and material’s macroscopic

performance will be emphatically studied. Table 1 shows the common parameters used in

this constitutive model.
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Solid phase Inclusion

Elastic Es = 5GPa Ei = 98GPa

parameters vs = 0.33 vi = 0.15

Plastic T0 = 10−10, Tm = 0.68, b1 = b2 = 200

parameters t0 = −1.1, tm = 0.3, c0 = c1 = 15 Mpa

Table 1: Common parameters used in the constitutive model.

Figure 4 illustrates the influence of f on overall behavior for the case of triaxial loading

with 10 Mpa confining pressure. The inclusion content ρ = 0.4, the volume fraction of the

localization zone φ = 0.2 and b3 = 90 in the softening rule. Different porosities are chosen:

f = 0.15, 0.25, 0.30. The stress-strain curve are shown in Figure4-a. The material resistance

decreases quickly as the increase of f . The performance of post-localization is also affected

by f . According to the values of det(A) given in Figure 4-b, The porosity has an influence

on the onset and orientation of localization band. The values of the inclined angle θ which

makes the minimum det(A) are 49◦, 46◦, 45◦ for these three cases. The proposed model is

able to predict the plastic shearing and pore collapse mechanism by the same yield surface.

With the increase of porosity, there is a transition from shear band to compaction one. With

the process of loading, the distributions of the axial deformation are shown in Figure 4-c.

During time 0 → 1, the confining pressure is applied firstly, then the deviatoric loading is

added in time 1 → 2. Before the point B, the material is homogeneous. The bifurcation

begins at this point. For the case f = 0.3, the outside part is elastic while the inside one

is elastoplastic. Due to the localization zone, the axial deformation increases quickly in the

localization zone (dashed line). The same phenomena can be found for f = 0.25 and 0.15.

With the same loading procedure and low porosity, the mechanical behavior becomes more

complex. Combining the Figure 4-d of the local equivalent plastic deformation εp
eq evolution,

one can find that the elastic behavior becomes inelastic one outside the localization zone

after certain load, while the plastic deformation growth ratio decreases inside the zone.

Due to the localization, the distributions of the incremental loading inside and outside the

zone are total different. There is a sudden increase inside the localization zone. Based on
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the mechanical behavior in each part, there is a sudden drop of material strength. The

corresponding evolutions of f and ρ are illustrated on Figure 4-e and f, respectively. One

can see that the evolutions of porosity are totally different inside and outside localization

zone. The inside porosity are much smaller than the outside one because of the localization

effects. The variation of ρ are complex but relatively small.

The effects of inclusion content ρ is investigated in Figure 5 with f = 0.25, other pa-

rameter are kept the same. According to the Figure 5-a, the inclusion content ρ increases

the material strength. However, the value of det(A) shown in Figure 5-b indicates that the

higher content of inclusion makes the material more unstable and the happens of bifurcation

are more possible. Unlike the case of porosity, the inclusion content ρ affect importantly

the onset localization zone, as the three point A, B and C given in the Figures 5-c and -d.

With the process of loading, the porosity inside the zone decreases quickly after the point

of bifurcation. Comparing with the porosity, the evolution of inclusion is small.

By taking f = 0.25 and ρ = 0.4, the influence of the localization band thickness φ is

studied in Figure 6. Different values are considered as φ = 0.15, 0.25, 0.35 and 0.45. We

can see that its onset point and orientation have no relation with φ (Figure 6-b). But it

affects the post-behavior. As shown in Figure 6-a of the stress-strain relation, the strength

drop becomes more gradual with the increasing of φ, which means that the material is more

homogeneous. The corresponding evolutions of the inside and outside axial deformations,

the plastic equivalent deformations in the solid phase, the porosities and inclusion contents

are illustrated in Figure 6-c to f.

The softening rule has an important influence on the localization failure analysis. The

parameter b3 in the softening rule affects the tangent stiffness Ctan (17). With the small

values, for example b3 = 60, the values of det(A) is positif for all directions θ and there is no

bifurcation. So the studied material are homogeneous and the inside and outside evolutions

of axial deformation, εp
eq, f and ρ are coincident (green lines). With the increasing of the

value b3, the material softening increases and it affects the localization procedure. When

b3 = 90, the material strength drop in the stress-strain curve are much sharper than the one

of b3 = 70 due to the localization zone. The same results can be found for the inside axial

deformation and plastic equivalent deformation. The higher values of b3 makes the more

possibility of localization.
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The effects of confining pressure on overall performance is investigated with ρ = 0.4,

f = 0.25, φ = 0.2, b3 = 90. The material resistance increases with the increasing of confining

pressure which has an important effect on the values of det(A) and affects the onset point of

the localization zone, as illustrated in Figure 8. Concerning the post-localization behavior,

the stress drop in the uniaxial loading is much more gradual than the one in triaxial loading.

In the following section, this multiscale constitutive modelling with the effect of localiza-

tion will be used to predict the macroscopic performances of claystone with different material

compositions and different confining pressure.
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- Influence of porosity f
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(f) Evolution of volume fraction of inclusion ρ

Figure 4: Influence of porosity f on the mechanical behaviors, ρ = 0.4, Pc = 10 Mpa,

b3 = 90, φ = 0.2
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- Influence of inclusion volume fraction ρ
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(f) Evolution of volume fraction of inclusion ρ

Figure 5: Influence of inclusion volume fraction ρ on the mechanical behaviors, f = 0.25,

Pc = 10 Mpa, b3 = 90, φ = 0.2
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- Influence of band volume fraction φ
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(b) det(A) as a function of localization band angle θ
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(f) Evolution of volume fraction of inclusion ρ

Figure 6: Influence of localization band size φ on the mechanical behaviors, ρ = 0.4,

f = 0.25, Pc = 10 Mpa, b3 = 90
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- Influence of softening rule b3
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(f) Evolution of volume fraction of inclusion ρ

Figure 7: Influence of model parameter b3 on the mechanical behaviors, ρ = 0.4, f = 0.25,

Pc = 10 Mpa, φ = 0.2
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- Influence of confining pressure Pc
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(b) det(A) as a function of localization band angle θ
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(f) Evolution of volume fraction of inclusion ρ

Figure 8: Confining pressure effect on the overall performance, ρ = 0.4, f = 0.25, φ = 0.2,

b3 = 90
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5. Application to Callovo-Oxfordian (COx) claystone

In the nuclear waste storage investigation, the layer of COx has been chosen as a possible

geological disposal of radioactive wastes in French. Many experimental and theoretical

investigations has been performed to better under stand this clayey rock. According to

[40], the clay matrix is quasi continuous and reinforced essentially by quartz and calcite at

the mesoscopic scale. Its composition varies with the depth. Generally, the clay has 40 to

50%, the volume fraction of calcite is about 20 to 27% and the one of quartz is from 23 to

25%. The average porosity is 11 ∼ 14% which mostly located in clay. Normally, initially

anisotropy and damage induced anisotropy can be found in rock-like materials. Some works

have been done for this point(such as [39, 38]). The purpose of this study is to study the

localization effect due to different constituents of composite. For the simplicity, the isotropic

material will be firstly studied. Comparing with the clay matrix, the quartz and calcite can

be treated as rigid inclusions. For this reason, the studied COx can be presented by the

RVE in Figure 1.

The above complete constitutive modelling with the effects of localization is now applied

to describe the macroscopic performance of this claystone with different material composi-

tions and different confining pressures. The porosity is taken f = 0.25 as an average value

for all simulations. The inclusion content ρ varies with depth. The elastic and plastic pa-

rameters are chosen as the ones adopted in [50]. For the simplicity, the volume fraction of

the localization zone is taken as φ = 0.2. The parameters are summarized in Table 2.

Solid phase Inclusion

Elastic Es = 5GPa Ei = 98GPa

parameters vs = 0.33 vi = 0.15

Plastic T0 = 10−10, Tm = 0.68, b1 = b2 = 200

parameters t0 = −1.1, tm = 0.3, c0 = c1 = 15 Mpa, b3 = 90

Table 2: Parameters used in the constitutive model for all the simulations.

Using this same set of parameters, numerical simulations are performed in Abaqus with

different loading condition (Pc = 0, 5 and 10MPa) on different on different samples with
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different mineral compositions. Figure 9-a is for a simulation with uniaxial loading, at

the depth 466.8m and the corresponding ρ = 49%. Triaxial compression tests are studied

in Figures 9-b and c for Pc = 5 MPa and in Figures 9-d, e and f for Pc = 10 MPa. The

inclusion content in these numerical simulations are very different, changes from 40% to 56%.

Generally, the model’s predictions coincide well with the experimental results. With the

consideration of the localization zone, the material strength is well described, especially the

mechanical response after the peak point. The influence of microstructural information ( f ,

ρ, α) on the overall response is explicitly considered in this multiscale constitutive modelling.
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(d) Depth: 451.4m, ρ = 53%, Pc=10Mpa
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(e) Depth: 469.1m, ρ = 45%, Pc=10Mpa
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Figure 9: Model’s predictions and experimental results with different composition and

different confining pressures
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The evolutions of porosity for these compression tests at different depthes and different

confining pressures are illustrated in Figure 10. One can see that the variations of f inside

the localization zone (dashed lines) are totally different with the outside one (solid lines).

Due to the localization, the inside porosity becomes much smaller because of the compaction.
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Figure 10: Evolutions of porosity in the compression tests at different depthes and different

confining pressures.

6. Conclusion

By combining nonlinear homogenization technique and localization analysis, we have de-

veloped a new enhanced micro-macro constitutive model with localization analysis for het-

erogeneous materials with micro-porosity and meso-grains. Compared with existing models,

this enhanced multiscale constitutive modelling not only considers the influences of mi-

crostructural information on the overall mechanical behaviors of heterogeneous materials,

but also captures the onset of localized failure and the post localization behavior. The lo-

calization analysis is made at the constitutive level. This makes it very easy for engineering

applications. According to the results obtained, the localization behavior is strongly affected

by the volume fraction of pores and grains. The local material softening rule has an im-

portant influence on the onset point of localization. Further, the proposed enhanced model

with localization analysis is well able to predict the overall response of COx claystone in

both pre- and post-localization regimes. Therefore, this proposed model gives a fundamental

tool for the numerical study of localized damaged and fractured zones around underground
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structures.
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poreux par homogénéisation non linéaire. C. R. Mecanique 331, 271–276.
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